
Software V&V Support by Parametric Analysis of Large
Software Simulation Systems.

Johann Schumann1 , Karen Gundy-Burlet2, Corina Păsăreanu3, Tim Menzies4, and Anthony Barrett5
1RIACS, NASA Ames, Johann.M.Schumann@nasa.gov 2NASA Ames, Karen.Gundy-Burlet@nasa.gov

3CMU, NASA Ames, corina.s.pasareanu@nasa.gov 4Lane CS & EE, West Virginia University, tim@menzies.us
5JPL, California Institute of Technology, barrett@jpl.nasa.gov

Abstract—Modern aerospace software systems simulations
usually contain many (dependent and independent) param-
eters. Due to the large parameter space, and the complex,
highly coupled nonlinear nature of the different system com-
ponents, analysis is complicated and time consuming. Thus,
such systems are generally validated only in regions local to
anticipated operating points rather than through characteri-
zation of the entire feasible operational envelope of the sys-
tem. We have addressed the factors deterring such a com-
prehensive analysis with a tool to support parametric analysis
and envelope assessment: a combination of advanced Monte
Carlo generation with n-factor combinatorial parameter varia-
tions and model-based testcase generation is used to limit the
number of cases without sacrificing important interactions in
the parameter space. For the automatic analysis of the gener-
ated data we use unsupervised Bayesian clustering techniques
(AutoBayes) and supervised learning of critical parameter
ranges using the treatment learner TAR3. This unique com-
bination of advanced machine learning technology enables a
fast and powerful multivariate analysis that supports finding
of root causes.

1. INTRODUCTION

The design and development of complex systems like
Aerospace applications heavily depend on simulation. Only
by exploring detailed simulation models, the exact behavior
of the system can be analyzed in nominal and off-nominal
scenarios. These systems simulations often contain a large
number of dependent and independent parameters. The anal-
ysis of such simulation systems is very complicated and time-
consuming due to a large parameter space and the complex,
highly coupled nonlinear nature of the different system com-
ponents. Still these parameter settings need to be scruti-
nized during verification and validation (V&V), as those pa-
rameters contribute to the performance of the aerospace sys-
tem and can affect its safety. Typically, the performance of
an aerospace vehicle simulation depends on a large number
of vehicle hardware parameters including center of gravity,
mass, moment of inertia, propulsion system, environment as
well as control system parameters such as gains and dead-
bands. A major task is to establish safe ranges for control
system parameters that ensure a safe, on-target landing given
the expected variation in vehicle performance. Exhaustive ex-

1978-1-4244-2622-5/09/$25.00 c©2009 IEEE.
IEEEAC Paper #1316, Version 4 Updated 01/17/2009.

ploration of all parameter combinations is infeasible for such
a complex system, so, traditionally, parameters are randomly
sampled from a defined distribution for a statistically signifi-
cant number of runs (Monte Carlo testing). Vast amounts of
data can be generated that way, and manual inspection of this
data is usually confined to gross features of the solution (such
as absolute compliance with requirements). Valuable trend
and parameter sensitivities are often ignored and anomalous
or unexpected data can easily be overlooked. Thus, such sys-
tems are generally validated only in regions local to antici-
pated operating points rather than through characterization of
the entire feasible operational envelope of the system.

Researchers have recognized that “designers must be able
to examine various design alternatives quickly and easily
among myriad and diverse configuration possibilities” [2].
The number of configuration possibilities can be dauntingly
large. A model with only 20 binary choices already has
220 > 1, 000, 000 possible configurations, far beyond the ca-
pability of human comprehension.

Accordingly, since 2000 [1], we have explored sampling
those configurations at random, running the resulting model,
scoring the output with some oracle, and then using data min-
ing techniques to find the configuration options that most im-
prove model output. In this paper, we describe a new combi-
nation of methods and tools to study the configuration param-
eters and safety envelopes for large software simulations:

• An n-factor combinatorial test vector generation algorithm
to target tests toward regions of the parameter space where
interactions among parameters are key to performance.
• Model-based generation of testcases allows the analyst to
specifically drive simulations toward the execution of inter-
esting states in the mode logic.
• The TAR3 minimal contrast set learner [4] is a supervised
learning method that returns the minimal deltas between de-
sired outcomes (hitting the target) and all the other outcomes.
• EM clustering algorithms that are autogenerated by the
AUTOBAYES program synthesis tool. Clustering is an un-
supervised learning method that obtains the most probable
estimates for class frequency and governing parameters.

It was found that the combination of methods yielded more
information than any method used in isolation. The opera-
tion of each algorithm can be intelligently informed and use-
fully constrained by using the output of the other. Combi-

2natorial test exposes interactions between parameters, TAR3
focuses the analysis on a small number of variables while
AUTOBAYES reveals structures missed by TAR3.

The rest of this paper is structured as follows: In Section 2, we
will introduce the MCB project and the HTV (Hover Test Ve-
hicle), which is used in this paper to illustrate our approach.
Section 3 gives a high-level description of our tool architec-
ture, which will be discussed in Section 4 (generation of the
simulation scenarios) and Section 5 (data analysis). Section 6
presents results of the HTV analysis to determine best param-
eter ranges for such tasks as safely hovering and landing the
hover test vehicle. Section 7 concludes and discusses future
work.

2. MODULAR COMMON BUS

The Modular Common Bus (MCB) project is being devel-
oped as a family of small, low-cost spacecraft composed of
modular components. The intent is that science instruments
are solicited that meet the spacecraft’s mass and power bud-
get, rather than the current practice of designing a custom
spacecraft for each new science instrument. The modular de-
sign includes components that enable a range of missions, in-
cluding orbital and lander type missions. Simulink/Matlab R©
is used to rapidly prototype the design of the flight software
and autogenerate the on-board software for the vehicle. This
process also enhances the validation and verification (V&V)
of the vehicle requirements and flight software. An initial
prototype of the MCB lander configuration named the Hover
Test Vehicle (HTV) has been developed and flown in order to
assess this spacecraft development methodology.

The HTV is a prototype of a lunar landing configuration. The
vehicle is comprised of a main payload module and propul-
sion module. For earth-based testing, the propulsion module
contains a pair of scuba tanks that power one main and 6 at-
titude control system thrusters. The payload module contains
an inertial measurement unit (IMU), avionics and communi-
cations equipment. An image of the HTV is shown in Fig-
ure 1 (see [3] for a complete description).

The data mining techniques discussed in this paper have been
applied to the HTV simulation. It contains models of the ve-
hicle including 6DOF dynamics, propulsion system, effec-
tors, sensors, and avionics. Parametric analysis of the system
was performed in order to assess flight readiness and system
margins in preparation to the flight tests.

Numerous parameter variations are considered in order to de-
termine the resilience of the algorithms to dispersions in mass
properties, orientation, and tank pressures. Other analyses
were performed in order to assess optimal controller settings
given the expected dispersions in vehicle configuration. Re-
quirements on the behavior of the model are encoded in order
to accumulate failure data, and all solutions are rated relative
to their adherence to requirements, such as soft landing and
minimum excursion from the target point. The data mining

Figure 1. Hover Test Vehicle

techniques discussed here are intended to characterize the op-
erational envelope of the simulation and to find the ranges of
parameters that lead to the lengthiest flights that lands close to
the target. The margin between the best ranges to the failure
points of each parameter can then be determined.

3. TOOL ARCHITECTURE

Our tool (Figure 2) is centered around the simulation environ-
ment; currently the tool interfaces with the NASA Trick simu-
lation environment and with Mathwork’s Simulink/Stateflow.
The user sets up the specifications of the desired parameter
variations and their statistical properties, and provides high
level models (e.g., UML statecharts). Once the test-suite is
generated, simulation runs are being executed and the result-
ing data saved. Data analysis and visualization is controlled
via a Matlab graphical user interface.

In the following sections, we will describe the main com-
ponents of this tool: mechanisms to generate the simulation
cases and tool support for the analysis of the simulation data.
We will then present some results on experiments with the
HTV simulation.

3

Figure 2. Tool architecture

4. GENERATION OF SIMULATION CASES

Due to the inherent complexity a combinatorially exhaustive
parameter exploration is not feasible for a realistically large
system. We therefore use a combination of extended Monte
Carlo random generation with n-factor combinatorial explo-
ration and model-based testcase generation.

Covering the Option Space

We have explored two approaches toward covering the option
space, a standard Monte Carlo and a 3-factor combinatorial
technique. The standard Monte Carlo approach is simplest.
It generates parameters for a simulation run by randomly se-
lecting from user defined probability distributions, such as
Gaussian or Uniform. The main drawback of this approach is
a lack of any coverage guarantee, resulting in the need to run
a large number of simulations to attain a given level of user
confidence. Unlike the standard Monte Carlo approach, the
combinatorial approach makes a coverage guarantee while
attempting to perform a minimal number of simulations. In
the case of an n-factor combinatorial, the guarantee is that
any setting of any n discrete parameters appears in at least
one of the simulations. For instance, a 2-factor combinatorial
test suite for 20 binary parameters has only 11 tests, which is
much less than the million tests needed to exhaustively cover
every combination. A 3-factor case over the same parameters
only increases the number of tests to 26.

While the number of tests performed using the combinato-
rial approach is minuscule compared to exhaustive testing,
anecdotal evidence suggests that this small number of tests
is enough to catch most coding errors [10], [5], [6]. The un-
derlying premise behind the combinatorial approach can be
captured in the following statements:

• The simplest failures in a program are triggered by a single
input parameter.
• The next simplest failures are triggered by an interaction of
two input parameters.
• Progressively more obscure failures involve interactions
between more parameters.
• Exhaustive testing involves trying all combinations of all
inputs.

So errors can be grouped into families depending on how
many parameters need specific settings to exercise the error.
The n-factor combinatorial approach guarantees that all errors
involving the specific setting of n or fewer parameters will be
exercised by at least one test. When real-valued parameters
have to be varied, each parameter is represented as a parti-
tion of discrete ranges. When turning a computed test into a
simulation run, each range is replaced by a real value chosen
from a uniform distribution across that range. The result is a
multidimensional space of simulation runs that projects down
to a uniform distribution on any plane of input parameters.

There is a number of algorithms in the literature (e.g., [7]) to
generate 2-factor combinatorial test suites. Our algorithm is
a generalization of IPO [8] and has additional features that
a real world test suite generator would need [9]. These fea-
tures include the ability to explicitly include particular com-
binations, explicitly exclude particular combinations, require
n-factor combinatorial coverage of specific subsets of param-
eters, and tie the existence of particular parameters to the set-
ting of another parameter.

The resulting algorithm is 1041 lines of documented Java
code. Even with these extra capabilities the algorithm gen-
erates test suites that are comparable to those generated by
the more restricted systems in the literature, and are gener-
ated very rapidly as shown in Table 1. Times are measured
on a 400MHz Windows laptop machine.

Model-based Scenario Generation

The generation of simulation scenarios discussed so far fo-
cuses on the exploration of the parameter space. In many
cases, however, a systematic exploration with respect to code
coverage or modes is important. Complex aerospace software
usually contains state machines, which govern the behavior
of the system. In order to be able to explore specific modes
systematically, we combine our generation approach with the
automatic, model-based generation of simulation cases.

A model of the relevant system formalized as a Simu-
link/Stateflow diagram or a UML statechart is used as the
specification. After a translation of the diagram into an in-

4 Problem Sizes #Tests Time
34 ≈ 102 9 # 1 sec

313 ≈ 106 19 # 1 sec
41 × 339 × 235 ≈ 1029 29 < 1 sec

1020 216 1 sec
31000 ≈ 10477 48 22 sec

Table 1. 2-factor generation. XY means that there are Y
X-valued parameters.

ternal (procedural) form, SPF (Symbolic Pathfinder, [11]) is
used to automatically generate testcases that, when executed,
exercise a specific part or state of the state diagram. The syn-
ergistic combination of model checking (Java Pathfinder) and
symbolic execution of the SPF tool produces ranges of inputs
and parameters required to reach the specified state. This in-
formation can be used to constrain the Monte Carlo and n-
factor combinatorial generation of simulation cases to focus
on the exploration of important modes (e.g., hover, landing).

5. DATA ANALYSIS TOOLS & METHODS

In this section, we will discuss two tools to analyze the mul-
tivariate data set produced by the simulation runs: TAR3, a
minimal contrast set learner to study the influence of input
variables and model parameters on the outcome of the sim-
ulation, and the AUTOBAYES tool to automatically generate
efficient algorithms for unsupervised clustering of multivari-
ate data.

TAR3 Treatment Learning

Multi-Dimensional Optimization—BORE, short for best or
rest, takes instances scored on multiple utilities as input and
classifies each of them “best” or “rest”. BORE maps the in-
stance outputs into a hypercube, which has one dimension for
each utility.

BORE normalizes instances scored on N dimensions into
“zero” for “worst”, and “one” for “best”. The corner of the
hypercube at 1, 1, . . . is the apex of the cube and represents
the desired goal for the system. All examples are scored by
their normalized Euclidean distance Ni to the apex. Usually,
a domain-specific distance function (e.g., deviation from de-
sired landing spot) is used.

For each run i of the simulator, the n outputs Xi are normal-
ized to the range 0 . . . 1 as Ni = (Xi−min(X))/(max(X)−
min(X)). The Euclidean distance of {N1, N2, ...} to the
ideal position of {N1 = 1, N2 = 2, ...} is then computed
and normalized to the range 0..1 as

Wi = 1−
√

(N2
1 + N2

2 + . . .)/n

where higher Wi (0 ≤ Wi ≤ 1) correspond to better runs.
This means that the Wi can only be improved by increasing
all of the utilities. To determine the “best” and “rest” values,

all the Wi scores are sorted according to a given threshold
BEST. The top BEST% are then classified as “best” and the
remainder as “rest”.

Treatment Learning with TAR3—Once BORE has classified
the data into “best” and “rest”, a data miner is used to find
input settings that select for the better outputs. This study
uses the TAR3 data miner at it returns the smallest theories
that most effect the output. This means that TAR3 tries to
determine a minimal set of model parameters, which have the
most influence on the behavior of the simulation system.

The inputs to TAR3 is a set of training examples E. Each
example maps a set of attribute ranges to some class sym-
bol, i.e., {Ri, Rj , . . . → C}. The class symbols C1, C2, . . .
are stamped with some utility score that ranks the classes
{U1 < U2 < . . . < UC}. Within E, these classes oc-
cur at frequencies F1, F2, . . . , FC where

∑
Fi = 1. A

“treatment” T of size M is a conjunction of attribute ranges
{R1 ∧ R2 . . . ∧ RM}. For a subset e ⊆ E that is con-
sistent with the treatment the classes occur at frequencies
f1, f2, . . . , fC . TAR3 seeks the smallest treatment T which
induces the biggest changes in the weighted sum of the utili-
ties times frequencies of the classes. Formally, this is called
the lift of a treatment:

lift =
∑

C UCfC∑
C UCFC

Classes in treatment learning get a score UC and the learner
uses this to assess the class frequencies resulting from apply-
ing a treatment (i.e., applying constraints to the inputs). In
normal operation, a treatment learner does controller learn-
ing that finds a treatment, which selects for better classes and
reject worse classes. By reversing the scoring function, treat-
ment learning can also select for the worse classes and reject
the better classes. This mode is called monitor learning since
it finds the thing we should most watch for.

Formally, treatment learning is a weighted-class minimal
contrast-set association rule learner. The treatments are as-
sociations that occur with preferred classes. These treat-
ments serve to contrast undesirable situations with desirable
situation where more of the outcomes are favorable. Treat-
ment learning is different to other contrast set learners like
STUCCO [12] since those other learners don’t focus on min-
imal theories. Conceptually, a treatment learner explores all
possible subsets of the attribute ranges looking for good treat-
ments. Such a search is infeasible in practice so the art of
treatment learning is quickly pruning unpromising attribute
ranges. This study uses a version of the TAR3 treatment
learner [20] with stochastic search.

AutoBayes

A well-known method to find structure in large sets of data
is to perform clustering. Clustering is an unsupervised learn-
ing method that tries to estimate class membership matrix and

5model mog as ’Multivar. Mix of Gaussians’;

const int D as ’number of variables’
const int N as ’number of data points’
const int C as ’number of classes’

with 1 < C; with C << N;

double phi(1..C) as ’class probabilities’
with 1 = sum(_i := 1..C, phi(_i));

double mu(1..D, 1..C), sigma(1..D, 1..C);

output int c(1..N) as ’latent variable’;
c(_) ˜ discrete(phi);

data double x(1..D, 1..N);
x(_i,_j) ˜ gauss(mu(_i,c(_j)),sigma(_i,c(_j)));

max pr(x|{phi, mu, sigma}) wrt {phi, mu, sigma};

Figure 3. AutoBayes specification for mixture model.
Keywords are underlined.

class parameters, only given the data. A variety of algorithms
can be used, for example, the EM-algorithm [16]. A num-
ber of EM-implementations is available (e.g., Autoclass [17],
EMMIX [18], or MCLUST [19]) and could be used for this
problem. However, in order to refine the statistical model
(e.g., by incorporating other probability distributions for cer-
tain variables or to introduce domain knowledge), the EM-
algorithm needs to be modified substantially for each prob-
lem variant, making experimentation a time-consuming and
error-prone undertaking. Thus, we are using AUTOBAYES
tool to produce customized variants of the EM-algorithm.

AUTOBAYES [15], [14] is a fully automatic program syn-
thesis system that generates efficient and documented C/C++
code from abstract statistical model specifications. From the
outside, AUTOBAYES looks similar to a compiler for a very
high-level programming language: it takes an abstract prob-
lem specification in the form of a (Bayesian) statistical model
and translates it into executable C/C++ code that can be called
from Matlab.

On the inside, however, AUTOBAYES works quite different:
AUTOBAYES first derives a customized algorithm skeleton
implementing the model and then transforms it into optimized
C/C++ code. Hereby, the input specification is translated into
a Bayesian Network [22]. The program synthesis system uses
a schema based approach to break down large problems into
statistically independent subproblems and tries to solve them
symbolically. If no solution can be found, a customized nu-
merical algorithm is instantiated. This task is heavily sup-
ported by a domain-specific schema library, an elaborate sym-
bolic subsystem, and an efficient rewriting engine. After op-
timization C or C++ code is generated for various platforms
(e.g., embedded systems, Matlab, Simulink, or Octave). For
our experiment, we used AutoBayes to generate code that can
be called from Matlab as a MEX function.

The basic statistical model used for this study describes the
properties of the data in a fully declarative fashion: for each

data double x(1..D, 1..N);
data double flg(1..D, 1..N);
data double arr(1..D, 1..N);
x(_i,_j) ˜ gauss(mu(_i,c(_j)),sigma(_i,c(_j)));
flg(_i,_j) ˜ discrete(rho_flg(_i,c(_j)));
arr(_i,_j) ˜ poisson(rate(_i,c(_j)));

max pr({x, flg, arr}|{phi, mu, sigma, p_flg, rate})
wrt {phi, mu, sigma, p_flg, rate};

Figure 4. Specification for mixture model with different
probability density functions.

problem variable of interest (i.e., observation or parame-
ter), properties and dependencies are specified via probabil-
ity distributions and constraints. Figure 3 shows how Gaus-
sian mixture model with diagonal covariance matrices can
be represented. The model assumes that the data consists
of N points in D dimensions such that each point belongs
to one of C classes; the first few lines of the specification
just declare these symbolic constants and specify the con-
straints on them. Each point x(1..C, j) (where .. cor-
responds to Matlab’s subrange operator : and i, j are
index variables) is drawn independently from a univariate
Gaussian with mean mu(i,c(j)) and standard deviation
sigma(i,c(j)). The unknown distribution parameters
can be different for each class and each dimension; hence, we
declare them as matrices. The unknown assignment of the
points to the distributions (i.e., classes) is represented by the
latent variable c; since we are interested in the classification
results as well (and not only the distribution parameters), c is
declared as output. c is distributed as a discrete distribu-
tion with the relative class frequencies given by the also un-
known vector phi. Since each point must belong to a class,
the sum of the probabilities must be equal to one. Finally, we
specify the goal inference task, maximizing the conditional
probability pr(x|{phi, mu, sigma}) with respect to the pa-
rameters of interest, phi, mu, and sigma. This means that
we are interested in a maximum likelihood estimate (MLE)
of the model parameters.

However, not all simulation variables are Gaussian dis-
tributed, e.g., boolean values or angles (0 . . . 2π). Although
in most engineering applications, these values are converted
to Gaussians (e.g., by adding noise), the AUTOBAYES sys-
tem automatically handles mixtures with different probabil-
ity density functions. All that needs to be done to the speci-
fication in Figure 3 is to add declarations for the distribution
parameters, the additional data variables, and the distribution
and goal statement—Figure 4 shows a specification snippet.
For details see [14].

6. RESULTS

For the experiment shown below, we used standard Monte
Carlo and three-factor combinatorial techniques. For the
Monte Carlo cases, one thousand cases were run, with ran-
dom values chosen for each of the input parameters from
their respective probability distributions. Here, the parame-

6ter ranges are determined such that they are likely to include
failure cases.

Figure 5. HTV trajectories for 1000 simulation runs with
different simulation parameters.

The output data encompass a wide range of variables that are
saved at each iteration point. Thus, they are actually time se-
ries data over a large number of variables. Figure 5 shows
a 3D representation of 1000 simulated trajectories generated
through a traditional Monte Carlo style test generation tech-
nique.1 Data representing key parameters such as maximum
altitude and excursion, time of flight and landing velocities
were extracted from the simulation for the analysis that fol-
lows. After preprocessing, we obtained a data set with 10
dimensions.

These normalized data then were clustered using the Mat-
lab/C code as was generated by AUTOBAYES (790 lines of
C code). The generated data analysis algorithm determined
that with 10 classes, a good separation can be achieved.

The results of clustering, relative to time of flight and ini-
tial wet mass is shown in Figure 6. Different colors indicate
into which class a specific simulation run falls. The classes
are ranked using a penalty function based on landing velocity
and position error. Blue indicates the lowest penalty function,
while red indicates the highest penalty function. The trend
seen in the figure is that lower times of flight generally have
lower penalty functions. Wet mass is key to time of flight,
but other factors contribute to the failure clusters exhibited in
the plot. Here, the yellow through red classes show repeated
violations of the landing requirements. Overall statistics for
the compliance with performance requirements was (over the
1000 runs):

• Maximum Position Excursion no greater than 3m: 258
cases failed
• Vertical Velocity on Landing no greater than 4.0m/s: 167
failed

1In this paper, colors encode the class membership as determined by the
AUTOBAYES clustering algorithm.

• Horizontal velocity on Landing no greater than 1.0m/s: 49
failed

Some of the cases failed more than one of the requirements,
so the total number of cases without failure was 656. This
simulation exhibited a sufficient range of acceptable/failure
cases such that the key parameter values defining the failure
front could be determined.

Figure 6. Relationship between Time of Flight and Initial
Wet Mass Colors indicate class membership.

To determine the root cause of the poor landing clusters,
TAR3 was utilized to determine the key parameters driving
the simulation behavior. It identified several key parameters,
that in conjunction with each other drove the failure behavior.
In particular, TAR3 identified the following combined set of
parameter ranges that induced failure:

• MAS cgy location wet=0.005951. . . 0.007885
• MAS Iyz wet=-0.961177. . . -0.835669
• MAS wet=68.826103. . . 69.489502
• INI rotx=0.928976. . . 2.996930

This indicates that the initial mass, y center of gravity in com-
bination with one the Iyz moment of inertia and the initial x
rotation of the vehicle would cause unacceptable behavior.
This finding introduced a set of day-of-flight flight rule re-
strictions on initial orientation and a more careful evaluation
of the center of gravity of the vehicle. It was determined that
reduced mass in the tanks would lead to a lower y-cg offset,
so a reduced tank pressure was also utilized for the first free-
hover test flight.

Figure 7 shows contours of “likelihood” for two parameters
identified as critical by TAR3. To generate this plot, the in-
put domain was discretized and the likelihood of success was
computed for each cell. Here, likelihood combines the overall
probability of success in the whole population, ratio of suc-
cess in the local cell, and local cell population. Likelihood
will approach one in well-populated cells with a high ratio

7of success, and will approach zero if either there is poor sta-
tistical support or a low ratio of success. If a variable is not
correlated, then the local likelihood will approach the overall
ratio of success in the complete population. Using this metric,
it is seen that choosing a lower mass and carefully orienting
the vehicle improves the resilience of the simulation to dis-
persions in other key parameters.

Figure 7. Likelihood of successful flight relative to initial x
rotation and mass

7. CONCLUSIONS

In this paper, we have explored a combination of two learners
(AUTOBAYES and TAR3) to explore the internal state space
of some flight guidance software with combinatorial test tech-
niques. The combination of these technologies revealed fea-
tures that would have been invisible for state of the practice.
Further, the experiment suggests some novel ways that these
technologies could usefully augment each other. In the case
of the first test flight of the hover test vehicle, the combined
technologies provided guidance as to strategies that would in-
crease the chances of a successful test flight. In fact, the hover
test vehicle performed in the manner suggested by the sim-
ulation, and a successful set of free-flying test flights were
conducted.

More generally, given the growing importance of model-
based reasoning in software engineering, the ability to use
data miners to find and constrain the most important parts of
our software models, should prove to be a technique of grow-
ing importance in the years to come.

ACKNOWLEDGMENTS

This research was sponsored in part by NASA under the IS-
RDS Contract NNA07BB97C (RIACS/USRA). Part of this
work was performed at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under a contract with NASA.

REFERENCES

[1] Menzies, T. and Sinsel, E. Practical large scale what-
if queries: Case studies with software risk assessment.
In Proceedings ASE 2000, 2000. Available from http:
//menzies.us/pdf/00ase.pdf.

[2] Gray, J., Lin, Y., and Zhang, J. Automating change
evolution in model-driven engineering. IEEE Computer,
39(2):51–58, February 2006.

[3] Bell, J., E. A. Hover testing of a prototype small plane-
tary spacecraft. In Submitted to IAC’08, the 59th Inter-
national Astronautical Congress, Glasgow, 2008.

[4] Menzies, T. and Hu, Y. Data mining for very busy people.
In IEEE Computer, November 2003. Available from http:
//menzies.us/pdf/03tar2.pdf.

[5] Dunietz, I. S., Ehrlich, W. K., Szablak, B. D., Mallows,
C. L., and Iannino, A. Applying design of experiments
to software testing: experience report. In Proc. ICSE ’97,
pages 205–215, 1997.

[6] Wallace, D. R. and Kuhn, D. R. Failure modes in medical
device software: an analysis of 15 years of recall data.
International Journal of Reliability, Quality and Safety
Engineering, 8(4), 2001.

[7] Mats Grindal, Jeff Offutt, S. F. A. Combination testing
strategies: a survey. Software Testing, Verification and
Reliability, 15(3):167–199, 2005.

[8] Tai, K. and Lie, Y. A test generation strategy for pair-
wise testing. IEEE Transactions on Software Engineer-
ing, 28(1):109–111, 2002.

[9] Czerwonka, J. Pairwise testing in real world, practical
extensions to test case generators. In Proceedings of 24th
Pacific Northwest Software Quality Conference, 2006.

[10] D. Cohen, S. Dalal, J. Parelius, and G. Patton, “The
combinatorial design approach to automatic test gener-
ation,” Software, IEEE, 13(5):83–88, Sep 1996.

[11] C. S. Păsăreanu, J. Schumann, P. Mehlitz, M. Lowry,
G. Karsai, H. Nine, S. Neema. Model Based Analysis
and Test Generation for Flight Software In preparation,
2009.

[12] Bay, S. and Pazzani, M. Detecting change in categorical
data: Mining contrast sets. In Proceedings of the Fifth
International Conference on Knowledge Discovery and
Data Mining, 1999.

[13] C. S. Păsăreanu, P. C. Mehlitz, D. H. Bushnell,
K. Gundy-Burlet, M. Lowry, S. Person, and M. Pape,
“Combining unit-level symbolic execution and system-
level concrete execution for testing NASA software,” in
Proc. of ISSTA, 2008.

[14] J. Schumann, H. Jafari, T. Pressburger, E. Denney,
W. Buntine, and B. Fischer. AutoBayes Program Syn-
thesis System Users Manual. NASA/TM-2008-215366,
2008.

[15] B. Fischer and J. Schumann, “AutoBayes: A system for

http://menzies.us/pdf/03tar2.pdf
http://menzies.us/pdf/00ase.pdf
http://menzies.us/pdf/00ase.pdf
http://menzies.us/pdf/03tar2.pdf

8 generating data analysis programs from statistical mod-
els,” J. Functional Programming, 13(3):483–508, 2003.

[16] Dempster, A. P., Laird, N. M., and Rubin, D. B. Max-
imum likelihood from incomplete data via the EM algo-
rithm (with discussion). J. of the Royal Statistical Society
series B, 39:1–38, 1977.

[17] Cheeseman, P. and Stutz, J. Bayesian classification
(AutoClass): Theory and results. In Fayyad, U. M.,
Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R.,
editors, Proc. 2nd Intl. Conf. Knowledge Discovery and
Data Mining, pages 153–180. AAAI Press, 1996.

[18] McLachlan, G., Peel, D., Basford, K. E., and Adams,
P. The EMMIX software for the fitting of mixtures of
normal and t-components. J. Statistical Software, 4(2),
1999.

[19] Fraley, C. and Raftery, A. E. MCLUST: Software for
model-based clustering, density estimation, and discrim-
inant analysis. Technical Report 415, Department of
Statistics, University of Washington, October 2002.

[20] Y. Hu, “Treatment learning,” masters thesis, University
of British Columbia, 2002.

[21] K. Gundy-Burlet, J. Schumann, T. Menzies, and T. Bar-
rett, “Parametric analysis of Antares re-entry guidance al-
gorithms using advanced test generation and data analy-
sis,” in Proc. iSAIRAS, 2008.

[22] Buntine, W. L. Operations for learning with graphical
models. J. AI Research, 2:159–225, 1994.

BIOGRAPHY

Dr. Johann Schumann (PhD 1991,
Dr. habil 2000, Munich, Germany) is a
Senior Scientist with RIACS and work-
ing in the Robust Software Engineering
Group at NASA Ames. He is engaged
in research on verification and validation
of autonomy software and adaptive con-
trollers, and on automatic generation of

reliable code for data analysis and state estimation. Dr. Schu-
mann is author of a book on theorem proving in software
engineering and has published more than 80 articles on au-
tomated deduction and its applications, automatic program
generation, and neural network oriented topics.

Karen Gundy-Burlet Karen Gundy-
Burlet is a research scientist in the
Robust Software Engineering group at
NASA-Ames Research Center. Her cur-
rent interests are in the application of ad-
vanced information analysis techniques
to validation and verification of simula-
tion models and Guidance, Navigation

and Control (GNC) software. She was the group lead for the
NASA-Ames Intelligent Flight Control program that devel-
oped and implemented neural-adaptive algorithms for control

of damaged aircraft, and demonstrated and evaluated them
in full-motion piloted simulations. Other research efforts in-
clude optimal control of low-thrust spacecraft trajectories,
and computational modeling of unsteady flows in turboma-
chinery with an emphasis on rotor/stator interaction in com-
pressors and hot streak migration in turbines. She has inter-
ests in parallel systems and high-performance computing. Dr.
Gundy-Burlet graduated with a B.S. in Mechanical Engineer-
ing from U.C. Berkeley and obtained M.S. and Ph.D. degrees
in Aerospace Engineering from Stanford.

Corina Păsăreanu Dr. Corina Păsăreanu
is a Research Scientist at the NASA
Ames Research Center, Robust Software
Engineering Group. She is working on
using abstraction and symbolic execu-
tion in the context of software model
checking and testing, and on automating
assume-guarantee compositional verifi-

cation. She has served on program committees for many
meetings in the formal analysis area, such as CAV, ISSTA,
FSE, and ICSE. She is also associate editor for the ACM
TOSEM journal. More information can be found at:
http://ti.arc.nasa.gov/people/pcorina/.

Tim Menzies Dr. Tim Menzies has been
working on advanced modeling and AI
since 1986. He received his PhD from
the University of New South Wales,
Sydney, Australia and is the author of
over 164 refereed papers. A former re-
search chair for NASA, Dr. Menzies is
now a associate professor at the West

Virginia University’s Lane Department of Computer Sci-
ence and Electrical Engineering. For more information, see
http://menzies.us.

Anthony Barrett Dr. Anthony Bar-
rett is a member of the Artificial Intel-
ligence Group at the Jet Propulsion Lab-
oratory, California Institute of Technol-
ogy where his R&D activities involve
planning & scheduling, plan execution,
diagnosis, and test suite generation ap-
plied to spacecraft. He holds a B.S. in

Physics, Computer Science, and Applied Mathematics from
James Madison University and both an M.S. and PhD in
Computer Science from the University of Washington. His
research interests are in the areas of planning, scheduling, and
execution/diagnostics in the context of single and multi-agent
systems.

http://menzies.us
http://ti.arc.nasa.gov/people/pcorina/

	Introduction
	Modular Common Bus
	Tool Architecture
	Generation of Simulation Cases
	Data Analysis Tools & Methods
	Results
	Conclusions
	Acknowledgements
	References
	Biography

