
Cost Curve Evaluation of Fault Prediction Models

Yue Jiang, Bojan Cukic, Tim Menzies
Lane Department of Computer Science and Electrical Engineering

West Virginia University, Morgantown, WV 26506, USA
yue, cukic@csee.wvu.edu; tim@menzies.us

Abstract

Prediction of fault prone software components is one
of the most researched problems in software engineering.
Many statistical techniques have been proposed but there is
no consensus on the methodology to select the “best model”
for the specific project. In this paper, we introduce and dis-
cuss the merits of cost curve analysis of fault prediction
models. Cost curves allow software quality engineers to
introduce project-specific cost of module misclassification
into model evaluation. Classifying a software module as
fault-prone implies the application of some verification ac-
tivities, thus adding to the development cost. Misclassifying
a module as fault free carries the risk of system failure, also
associated with cost implications. Through the analysis of
sixteen projects from public repositories, we observe that
software quality does not necessarily benefit from the pre-
diction of fault prone components. The inclusion of misclas-
sification cost in model evaluation may indicate that even
the “best” models achieve performance no better than triv-
ial classification. Our results support a recommendation
favoring the use of cost curves in practice with the hope
they will become a standard tool for software quality model
performance evaluation.

1 Introduction
Software quality models can provide guidance for soft-

ware Verification and Validation (V&V) activities by pre-
dicting which modules are likely to hide faults. Many statis-
tical models have been proposed to predict fault-proneness
of program modules and various performance assessment
techniques have been used to evaluate their effectiveness.
Although the cost of V&V activities implied by the model
are a primary concern to software project managers, model
performance assessment techniques rarely address the im-
plications of misclassification.

Fault prediction models offer a chance to identify faulty
modules earlier in the development life cycle. Studies show
that design and code metrics, possibly fused with the re-
quirements metrics, offer sufficient information for effec-

tive modeling [9, 11]. Boehm et. al [3] observed that fault
removal is 50 − 200 times less costly when performed in
the design phase rather than after the deployment. NASA
research [6] shows that a fault introduced in the require-
ments, which leaks into the design, code, test, integration,
and operational phases, ensues the correction cost factors
of 5, 10, 50, 130, and 368, respectively. Although these re-
ports do not represent every software project, they indicate
the benefits of fault prediction models. On the other hand,
classifying a software module as fault-prone implies the ap-
plication of some verification activities, typically design or
code inspections, thus adding to the development cost. Us-
ing Boehm’s result, if a fault prediction model misclassifies
a 100 fault free modules as fault prone, the added unneces-
sary verification expense may offset the savings of correct
identification of one faulty module.

There have been attempts to include cost factors into
model evaluation. F − measure, for example offers a
cost factor to balance project specific cost concerns [15]
. Khoshgoftaar and Allen [13] proposed the use of prior
probabilities of misclassification to select classifiers which
increase performance. In [14] they compare the return-
on-investment in a large legacy telecommunication system
when V&V activities are applied to software modules se-
lected by a quality model vs. selecting them randomly. Cost
has been integrated into the test case selection for regression
testing too [8].

In this paper, we analyze a new model evaluation tech-
nique called cost curve [7]. Cost curve was proposed by
Drummond and Holte to evaluate machine learning classi-
fiers in data mining. Cost curve is possibly the most in-
formative chart for model comparison, because it offers vi-
sualization of a wide range of misclassification cost asso-
ciated with classification performance as well as with the
project specific quality assurance and economic needs. In
comparison to F −measure and return-on-investment ap-
proaches, cost curve evaluation provides model compari-
son results which are more general, yet easier to develop
and understand. Our analysis includes sixteen fault predic-
tion data sets from publicly available Metrics Data Program

(MDP) [1] and PROMISE [4] repositories.
A cost curve represents many classifiers and thresholds

in a simple informative chart. Each software system is
unique in a sense that it are developed following specific
processes, quality assurance techniques, and it operate in
environments in which the occurrence of failures imply dif-
ferent consequences. The assessments of failure critical-
ity or fault resolution priority have been a part of software
V &V activities for a long time. Software development
teams typically have a good understanding of the range of
pertinent cost implications of failures, making cost curve
evaluations practical.

The rest of paper is organized as follows. Section 2 in-
troduces the cost curve. Section 3 explains the experimen-
tal setup and introduces statistical confidence test we use
to evaluate classification results. Section 4 presents the ex-
perimental results. Section 5 summarizes our findings and
points out possible directions for future work.

2 Cost Curves

2.1 Traditional Performance Indices
A confusion matrix serves as the foundation when eval-

uating software quality models. Figure 1 depicts two con-
fusion matrices, which demonstrate the performance of two
specific fault prediction models. The confusion matrix has
four fields: True positives (TP) are modules correctly clas-
sified as faulty modules. False positives (FP) refer to fault-
free modules incorrectly labeled as faulty. True negatives
(TN) correspond to fault-free modules correctly classified
as such. Finally, false negatives (FN) refer to faulty mod-
ules incorrectly classified as fault-free modules. In prac-
tice, model evaluation is based on combinations of these
four values. The Probability of Detection (PD), also called
recall or specificity [16]), is defined as the probability of
correct classification of a faulty module. The Probability of
False Alarm (PF) is defined as the ratio of false positives to
all fault free modules. Precision represents the proportion
of correctly predicted faulty modules amongst all modules
classified as faulty. Overall accuracy is the overall prob-
ability of classifying modules correctly. The following ex-
pressions simplify the understanding of model evaluation
metrics which emerge directly from a confusion matrix:
PD = TP

TP+FN

PF = FP
FP+TN

precision = TP
FP+TP

accuracy = TP+TN
TP+TN+FP+FN

Although the metrics are simple, selecting the “best”
model is a multidimensional problem. In case of a high
PF , many fault-free modules would be “tagged” for rigor-
ous verification and validation, thus unnecessarily increas-
ing the cost of the process and the time needed for project’s

Figure 1. Confusion matrix of fault prediction
on PC1. (a) Random forests with majority vot-
ing; (b) Random forests with modified voting
cutoffs.

completion. There is always a tradeoff between PD and
PF . The precision index measures the chance of correctly
predicted faulty modules among the modules classified as
fault-prone. A small number of correctly predicted faulty
modules or a larger number of erroneously classified fault-
free modules would result in a low precision. A tradeoff
also exists between PD and precision [16, 20] . In project
PC1, Figure 1, less than 7% of 1, 109 modules contain
fault(s). We predict faulty modules in PC1 using random
forests [5], a tree ensemble classification method. These
trees vote to classify a data instance. Using a simple ma-
jority voting scheme, the random forest algorithm produced
the overall accuracy of 93.6% and PF of 1.5%, but PD is
only 27.3% (Figure 1(a)). Only 15 out of 1, 032 fault-free
modules were misclassified. With 21 fault-prone modules
correctly classified, the precision is calculated to be 58.3%.
By assigning a higher threshold to the majority class (thus
changing the model), we obtained the confusion matrix in
Figure 1(b). This model demonstrates a much higher PD
(74%). Now, 57 out of 77 fault-prone modules were accu-
rately predicted. Due to the trade-off between PD and PF ,
as well as the tradeoff between PD and precision, a higher
PD is followed by a higher PF (17.1%). 176 failure free
modules are incorrectly classified. The precision is 24.5%,
but this does not necessarily imply worse classification.

Receiver Operator Characteristic (ROC) curves visual-
ize a classifier’s performance. An ROC curve is a plot of the
Probability of Detection (PD) as a function of the Probabil-
ity of False alarm (PF) across all the experimental thresh-
old settings. Many classification algorithms allow users to
define and adjust the threshold parameter in order to chose
an appropriate classifier. ROC curves have been frequently
used for performance evaluation of fault prediction models
in software engineering. Unfortunately, none of the per-
formance indices presented in this subsection offer the op-
portunity to include misclassification cost implications in
model evaluation.

2.2 F-measure
F −measure, defined by equation 1, has been used in

evaluation of software quality models [15]. F-measure inte-
grates PD and precision in a single performance index. It
offers more flexibility by including a weight factor β which
allows us to manipulate the weight (cost) assigned to PD
and precision. Parameter β may assume any non-negative
value. If we set β to 1, equal weights are given to PD
and precision; when β > 1, the weight of PD increases
with the value of β; when 0 < β < 1, the assigned weight
of precision is greater than that of PD. With the differ-
ent values of β, F-measure can be adjusted to correspond to
project’s need. For instance, a project which wants to min-
imize the probability of failure in the field would increase
the weight of PD to emphasize the importance of detect-
ing many faulty modules even if that implies misclassifying
many fault free modules. On the contrary, a with severe
budget limitations for V&V activities may want to put em-
phasis on precision. However, the problem with F-measure
is the difficulty of assigning an appropriate value to β. This
has proven to be the reason for its sporadic use.

F −measure =
(β2 + 1) ∗ Precision ∗ PD

β2 ∗ Precision + PD
(1)

2.3 Cost Curve Construction
Cost curve, proposed by Drummond and Holte [7], is a

visual tool that describes classifier’s performance based on
the cost of misclassification. The x-axis represents proba-
bility cost function, denoted PC(+). The y-axis represents
normalized expected misclassification cost. Let us denote
faulty modules with a “+” and fault-free modules as “-”.
C(+|−) denotes the cost of incorrectly classifying a fault-
free module as faulty. C(−|+) represents the cost of mis-
classifying a faulty module as fault-free. p(+) and p(−)
are the probabilities of a software module being faulty or
fault free when the model is deployed. These two probabili-
ties become known only after the deployment of the model,
since the proportion of faulty modules in model’s training
and test sets are approximations. Cost curves support visu-
alization of model’s performance across all possible values
of p(+) and p(−), thus offering performance predictions
for various deployment environments. Equations 2 and 3
show how to compute the values of x-axis and y-axis:

x− axis = PC(+) =
p(+) ∗ C(−|+)

p(+) ∗ C(−|+) + p(−) ∗ C(+|−)
(2)

y − axis = (1− PD − PF) ∗ PC(+) + PF (3)

Typical regions of a cost curve are shown on Figure 2.
The diagonal line connecting (0,0) to (1,1) stands for a triv-
ial classifier (TC) that classifies all the modules to fault-
free. The points above this line indicate that the perfor-
mance of a classifier is worse than the trivial classifier. The

other diagonal line, connecting (0,1) to (1,0), stands for an-
other trivial classifier which classifies all the modules as
faulty. The points above this line also represent cases where
the performance of a classifier is worse than the trivial clas-
sifier. The horizontal line connecting (0,1) to (1,1) stands
for the extreme situation where the model misclassifies all
the modules. The x-axis line connecting (0,0) to (0,1) rep-
resents the ideal model that correctly classifies all the mod-
ules. From this prototypical cost curve, we can see that the
points in the range of (0,0.5) on y-axis are sufficient for
model evaluation, because we are not interested in classi-
fiers which perform worse than the trivial ones.

Figure 2. Typical regions in a cost curve.

An ROC curve connects a set of (PF, PD) pairs that char-
acterize the performance of a model. Cost curves are closely
related to ROC curves. To develop a cost curve, we draw
straight lines connecting points (0,PF) to (1,1-PD). Each
line corresponds to point (PF,PD) in the ROC curve. Af-
ter drawing all the straight lines with counterpart points in
the ROC curve, the lower envelope of cost curve is formed
by connecting all the intersection points from left to right.
Figure 3 shows an example of a cost curve from the appli-
cation of logistic classification model to project KC4. The
lower envelope of the cost curve corresponds to the convex
hull in the ROC curve. Every point along the ROC curve
corresponds to a line in the cost curve.

2.4 The Meaning of Classification Results

Let us denote the misclassification cost ratio µ =
C(+|−):C(−|+). Using µ, Equation 2 can be rewritten

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.0

1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
o
rm

al
iz

ed
 E

x
p
ec

te
d
 C

o
st

Logistic on KC4

Figure 3. A cost curve of logistic classifier on
KC4 project data.

as:

x− axis = PC(+) =
p(+)

p(+) + p(−) ∗ µ
, (4)

Please note that p(−) = 1 − p(+). If for the specific
project we can estimate the adequate range or values of
µ, we can calculate the corresponding PC(+) easily. Also,
if we know the value of PC(+), we can derive the corre-
sponding µ. For instance, in KC4 data set (described in
Table 3), the proportion of faulty modules observed in de-
velopment is very high, 48%. Therefore, p(+) = 0.48 and
p(−) = 0.52. If µ = 1, the cost of misclassifying a faulty
module and the cost of misclassifying a fault-free module
are the same, C(+|−) = C(−|+). According to Equation 4,
then PC(+) = 0.48. When µ = 5 the misclassification of
a fault-free module as faulty is estimated to cost the project
5 times more. From Equation 4, PC(+) = 0.156. When
µ = 1

5 , PC(+) = 0.82. These points on the x-axis denote
the stated misclassification costs.

Figure 4 shows the cost curves representing models gen-
erated by five classification algorithms: bagging, boost-
ing, logistic, naiveBayes, and random forest. The values
of µ = (100, 5, 1, 1

5 , 1
100) are indicated by vertical dashed

lines at corresponding values of PC(+): 0.009, 0.156, 0.48,
0.82, and 0.99, respectively. If in KC4 we are interested in a
particular misclassification cost ratio, for example (µ = 1),
we should choose a classifier that offers the minimal ex-
pected misclassification cost along the corresponding verti-
cal line (PC(+) = 0.48), from Figure 4 that is boosting.
When PC(+) < 0.48, misclassifying fault-free modules is
more costly than misclassifying a faulty module (µ > 1).
The region PC(+) < 0.48 offers of models adequate
for “cost − adverse” software projects. Intuitively, cost
adverse projects have tight budgets and typically develop
low criticality software. In cost-adverse environments, de-
velopers attempt to minimize the number of modules ex-
posed to additional verification activities. Therefore, such
projects prefer fault prediction models which rarely mis-

classify fault-free modules as fault-prone. The cost region
where PC(+) > 0.48 offers model comparison adequate
for so called “risk − adverse” projects. In risk averse de-
velopment environments, eradicating as many faults as pos-
sible is a priority. This will imply unnecessarily analyzing
some fault-free modules. Consequently, misclassifying a
faulty module as fault-free is significantly more consequen-
tial (0 < µ < 1). Cost curves offer a unique opportunity
for cost-based software quality management. Misclassifi-
cation costs can dictate the preference for selecting models
and model parameters considered the most appropriate.

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.0

1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag

bst

log

nb

rf

KC4

1

100

5

1/5

1/100

Figure 4. Cost curves of the five classifiers
applied to KC4 data set.

The goal of cost curve analysis is to select the model
which minimizes overall misclassification cost, that is, min-
imize the area under the lower envelope boundary. The
smaller the area under the lower envelope boundary is, the
lower the misclassification cost and, hence, the better the
performance of the classifier. However, it is unlikely that
a single model will be superior in all cost regions. It is
equally unlikely that the entire range of misclassification
costs would be of interest to a software project’s fault pre-
diction. If a project evolves to an understanding that the
misclassification cost differential is not the same one used in
the past, the project may decide to change the quality model
it uses even though the underlying metric distributions in
the data set remain the same. The model could be changed
due to variations in observed probabilities p(+) and p(−).
For instance, looking back at Figure 4, in the interval (0.22,
0.385) random forest offers the best performance; in the in-
terval (0.385,0.88), boosting outperforms other classifiers;
finally,in the range from 0.88 close to 1.0, logistic model
has the minimal misclassification cost.

We want to emphasize another observation from Figure
4. For PC(+) = (0, 0.2), bagging and boosting models
perform worse than the trivial classifier which simply classi-
fies every module as faulty-free. When PC(+) = (0, 0.05),
the other three models, logistic, naiveBayes, and random

forest, overlap with the trivial classifier. In this misclassi-
fication cost range, their performance is no better than the
trivial classifier’s. At the other end, when PC(+) > 0.87,
naiveBayes performs worse than the trivial classifier which
classifies each module as fault prone. After PC(+) > 0.95,
bagging overlaps with the trivial classifier too. At both ends
of x-axis, where PC(+) is either close to 0 or 1, it becomes
difficult to outperform trivial classifiers! The direct impli-
cation is that in extreme cost adverse or risk adverse envi-
ronments, analyzing no modules (extreme cost adverse) or
all the modules (extreme risk adverse) are the appropriate
policies. Cost curves offer support for decisions regarding
the most appropriate approach to the selection of software
modules for verification.

Cost curves have the ability to reveal the differences
among classification models that are not obvious in the cor-
responding ROC diagrams. Figure 5 demonstrates such an
example using MC2 data set. The cost curve in Figure 5(b)
provides a clear comparison between the two classifiers:
Logistic classifier is better than random forest (rf) because
its lower envelope is always closer to x-axis. Deriving this
conclusion from the ROC curves would be difficult.

Figure 5. Comparing MC2 fault prediction
models: (a) ROC curves and (b) the corre-
sponding cost curves.

3 Experimental Set-up
In our experiments, we develop fault prediction models

using five classification tools from Weka [19]. The five
classifiers include random forest (rf),boosting (bst), logis-
tic (log), naiveBayes (nb), and bagging (bag). In our expe-
rience these classifiers consistently demonstrate good per-
formance [9–11, 16].

The 16 datasets used in this study, listed in Table 1, come
from NASA MDP [1] and PROMISE repositories [4]. The
characteristics of fault prediction data sets are shown in Ta-
ble 1. NASA MDP data sets offer design and code metrics
that describe 13 diverse projects. JM1 and KC1 offer 21
metrics used as predictor variables, MC1 and PC5 offer 39,
the other data sets provide 40 software metrics. The three
data sets from PROMISE [2] repository originated from a
white-goods manufacturer that builds control software for

washing machines, dishwashers and refrigerators. These
data sets offer 29 software metrics used for fault prediction.

In practice, it is difficult to determine the exact value of
misclassification cost ratio µ. But it should not be difficult
to estimate project’s approximate risk level in terms of a
range of probability misclassification costs. For the purpose
of this paper, we divide projects into three groups based on
their misclassification risk levels. We discussed this sim-
plistic grouping with developers involved in projects we an-
alyze and they found it reasonable. A project exhibits a low
risk level if its misclassification ratio µ = C(+|−):C(−|+)
is in the range (100, 5). In simple terms, misclassifying
a fault free module as fault prone is highly undesirable,
5 to 100 times more then misclassifying a faulty module
as fault free. These are clearly cost averse projects, try-
ing to optimize V&V activities and speed up product deliv-
ery. A project is assigned a high risk level if the ultimate
goal of analysis is to identify as many fault prone modules
as possible. Such risk averse projects typically allocate a
substantial portion of their budgets to verification activities.
Their range of misclassification ratio µ = C(+|−):C(−|+)
is (1

5 , 1
100). Medium risk level projects are the remaining

ones, for which the misclassification ratio µ is in the inter-
val (5, 15).

The risk levels for 16 data sets used in this study have
been determined in discussions with software quality engi-
neers at NASA involved in the verification activities, and
the metrics collection experts at the white goods manufac-
turer. Seven NASA control and navigation software projects
are categorized as having high risk level. The three data
sets from the white-goods manufacturer are classified as
low risk, mostly due to strong time-to-market pressures.
Two additional NASA data sets, KC4 and MC2, are also
assigned a low risk level: KC4 is a ground-based subscrip-
tion server and MC2 is a video guidance system. The four
projects are assigned medium risk level. These data sets
are associated with storage management for ground data, a
zero gravity experiment, and a spacecraft instrument sys-
tem. Based on the risk levels assumed above, the misclas-
sification ratio ranges (µ) are assigned accordingly. Since
we know the ground truth about fault prone modules in all
data sets, assigning probability parameters p(+) and p(−)
for our experiments is simple. From Equation 2 we obtain
probability cost PC(+) and calculate the range of interest
for each project, implied by its risk classification and prob-
ability parameters. Specific values of these parameters are
shown in Table 2.

3.1 Statistical Significance in Cost Curves

Classifier’s performance is derived from the confusion
matrix. In cost curve, a confidence interval is generated
from a series of confusion matrices. We illustrate the use of
confidence bounds on cost curves following the procedure

Table 1. Datasets used in this study
Data mod.# % faulty project description language source risk
JM1 10,878 19.3% Real time predictive ground system C MDP high
MC1 9466 0.64% Combustion experiment of a space shuttle (C)C++ MDP high
PC2 5589 0.42% Dynamic simulator for attitude control systems C MDP high
PC5 17,186 3.00% Safety enhancement system C++ MDP high
PC1 1109 6.59% Flight software from an earth orbiting satellite C MDP high
PC3 1563 10.43% Flight software for earth orbiting satellite C MDP high
PC4 1458 12.24% Flight software for earth orbiting satellite C MDP high
CM1 505 16.04% Spacecraft instrument C MDP med.
MW1 403 6.7% Zero gravity experiment related to combustion C MDP med.
KC1 2109 13.9% Storage management for ground data C++ MDP med.
KC3 458 6.3% Storage management for ground data Java MDP med.
KC4 125 48% Ground-based subscription server Perl MDP low
MC2 161 32.30% Video guidance system C++ MDP low
ar3 63 12.70% Refrigerator C PROMISE low
ar4 107 18.69% Washing machine C PROMISE low
ar5 36 22.22% Dish washer C PROMISE low

outlined in [7]. The procedure is based on the resampling of
the confusion matrix at least 500 times using the bootstrap
method. The 95% confidence interval for a specific PC(+)
value is obtained by eliminating the highest and the lowest
2.5% of the normalized expected cost values.

Although we deploy five classification algorithms, our
goal is not to compare their performance. As we performed
our experiments, it became clear to us that in many cases,
some of these algorithms barely outperform trivial classi-
fiers, especially in extreme high and low risk situations. For
this reason, the goal of our analysis became understand-
ing the basic utility of fault prediction modeling: Does the
best prediction model outperform the trivial classifier in the
range of interest? Therefore, for each project, we choose
the algorithm that offers the lowest envelope boundary of
the cost curve inside the probability cost range of interested.
Then, we test this best classifier against the trivial classifier
(TC) to determine whether their performance difference is
significant using 95% confidence interval (CI). For exam-
ple, for KC4 data set, of the five classification algorithms
naiveBayes (nb) offers the best performance . We test naive-
Bayes against the trivial classifier. The calculated 95% con-
fidence interval of nb against TC cost curve is depicted in
Figure 6.

The shaded area in Figure 6 represents the 95% con-
fidence interval. There are three lines inside the shaded
area. The middle line represents the difference between the
means of nb and TC. The other two lines along the edges
of the shaded area represent the 95% confidence interval of
the difference between the means of these two classifiers. If
the confidence interval contains the zero line, then there is
no significant difference between the two classifiers; Other-
wise, there is. The larger the distance of the confidence in-
terval from the zero line, the more significant the difference

in performance. In some ranges of the curve, the perfor-
mance difference is significant, but in the other ranges, it is
not. Referring back to Figure 6, when PC(+) is in the range
(0.1, 0.21) and (0.30,0.73), the confidence interval indicates
that naiveBayes performs better than the trivial classifier.
However, the confidence interval is much closer to the zero
line in (0.1,0.21) than in (0.30,0.73). The confidence band
in cost curve reveals aspects which cannot be inferred from
the statistical analysis of any other performance index, such
as overall accuracy, error rate, or PD.

0.5

0.43

0.36

0.29

0.22

0.16

0.09

0.02

-0.05

-0.12

-0.19
1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
o
rm

al
iz

ed
 E

x
p
ec

te
d
 C

o
st

95% CI of nb vs. the trivial classifier on KC4

Figure 6. The 95% cost curve confidence in-
terval comparing naiveBayes and trivial clas-
sifiers on KC4.

4 Experiments and Results
Having determined risk levels for all the projects in the

study, we want to understand the impact of cost curve mod-
eling in evaluating fault prediction models. More precisely,
we want to know how well the models perform when mis-
classification cost is taken into account. Can cost modeling
be used to argue for or against software quality modeling in
the context of a specific project?

We developed cost curves describing the performance of
fault prediction models from the five classifiers on each of
the 16 data sets listed in Table 1. Figure 7 shows all the
16 cost curve diagrams. To increase readability of these
diagrams, we limit the displayed range of the probabil-
ity cost (x-axis) to include only the region of interest in-
ferred from the project’s risk level: low - (100, 5), medium
-(5, 1

5), or high - (1
5 , 1

100). The lower and upper bound of
each region are marked with thin solid vertical lines. Most
cost curve diagrams also show the operational point where
µ = C(+|−) = C(−|+) = 1.

A quick look at the diagrams in Figure 7 reveals two
general trends: (1) when PC(+) is close to 0 or close to 1,
the performance of fault prediction models becomes very
similar to trivial classifiers; (2) the most significant per-
formance benefit of fault prediction modeling is usually
achieved in the middle region of the cost curve, surrounding
PC(+) = 0.5. This observations imply that fault predic-
tion modeling has limited impact in cases of extremely risk
averse or cost averse projects. On the extreme risk averse
side, we would like the model to identify all the faulty mod-
ules. On the extreme cost averse side, we do not want to
misclassify any fault free module as fault prone. These
goals are, in fact, achieved by the two trivial classifiers
which assign all the modules in a single class! In binary
classification problems, near perfect module assignment to
one class results in high misclassification rate in the other
class. High misclassification cost differential between the
two classes, therefore, prefers trivial solutions.

Table 2 depicts each project’s risk level, the correspond-
ing probability cost range of interest and the classifica-
tion algorithm that achieves the best performance inside the
probability cost range (denoted best). The table also shows
the probability cost range in which the best model is sig-
nificantly better (using the 95% confidence interval) than
trivial classification, the size of statistically significant inter-
val with respect to the probability cost range of interest and
the corresponding range of misclassification cost ratio µ in
which the model outperforms trivial classification. The last
column offers the project - specific misclassification cost in-
terval in which software quality models offer benefits. If the
project’s actual misclassification cost ratio is not within this
interval, using models to select fault prone modules would
not justify the effort.

4.1 High Risk Projects

The data sets described as high risk were derived from
mission and safety critical development projects. Fig-
ure 7(a)-(g) depicts the cost curves of high risk projects.
Although we noted that highly imbalanced misclassifica-
tion cost may favor trivial classification, the high risk data
sets we analyzed all indicate that fault prediction models
outperform trivial classifiers. However, statistical signif-

icance does not necessarily span over the entire range of
the misclassification cost ratio (1

5 , 1
100). For example, for

JM1 in Figure 7(a), the model generated using random for-
est algorithm performs significantly better than the trivial
classifier in the probability cost region (0.545, 0.72), which
corresponds to the misclassification cost ratio range µ =
(1
5 , 1

10)1. Similar observations can be made for projects PC1
and PC3: when PC(+) < 0.80(µ ≈ 1

50) or PC(+) < 0.82
(µ ≈ 1

40), respectively, best models perform better than the
trivial classifier. The same is not true for higher misclassi-
fication cost ratios, µ > 1

50 or µ > 1
40 , respectively. Some-

what surprisingly, in PC2 data set, the statistically signifi-
cant performance difference between the best classifier and
the trivial classifier lays in the region of the highest mis-
classification cost ratio, µ = (1

40 , 1
100 . With the remaining

three high risk projects, MC1, PC4 and PC5, random forest
model outperforms trivial classifier in the entire range of
misclassification cost ratio. It is also interesting to observe
that in all high risk projects, models developed using ran-
dom forest algorithm outperform all other machine learning
algorithms used in our experiments.

4.2 Medium Risk Projects

The cost curves of medium risk projects CM1, MW1,
KC1, and KC3, where µ = (5, 1

5), are shown in Figure 7(h)-
(k). Interestingly, fault prediction models do not outperform
trivial classification throughout the range of interest. Cost
curve diagrams indicate that ”medium risk” resides in the
low range of the probability cost, i.e., PC(+) < 0.5. This
is not a region of the most beneficial performance impact.
Bagging, boosting and random forest are the classification
algorithms which seem to perform the best for medium risk
projects.

4.3 Low Risk Projects

The cost curves of low risk projects MC2, ar3, ar4 and
ar5 are depicted in Figure 7(l)-(o). The cost curves for KC4
project are shown in Figure 4. In four low risk projects, triv-
ial classification is as good for selecting fault prone modules
as any of the models we experimented with. In other words,
if the goal of software quality modeling is to avoid wasting
tight V&V budgets on verification of fault-free modules, the
best way to achieve this is by not classifying any module as
fault prone.

4.4 Discussion

The utility of fault prediction models varies with the mis-
classification cost: (1) in low risk projects, building soft-
ware quality model may not be justified; (2) in medium
risk projects the utility of a model is typically limited to

1PC(+) = 0.72 corresponds to µ = 93
1000

, approximately 1
10

.

Table 2. Probability cost ranges.
Data set Risk Probability cost Best Significant performance range and Significant

range of interest classifier % significantRange
interestedRange

µ range
JM1 high (0.545, 0.960) rf (0.545, 0.72) 42.17% (1

5
, 1

10
)

MC1 high (0.031, 0.391) rf entire 100% (1
5
, 1

100
)

PC2 high (0.021, 0.297) rf (0.15, 0.297) 53.26% (1
40

, 1
100

)
PC5 high (0.134, 0.756) rf entire 100% (1

5
, 1

100
)

PC1 high (0.261, 0.876) rf (0.261, 0.80) 87.64% (1
5
, 1

50
)

PC3 high (0.368, 0.921) rf,bst (0.368, 0.82) 81.74% (1
5
, 1

40
)

PC4 high (0.411, 0.933) rf entire 100% (1
5
, 1

100
)

CM1 med. (0.037, 0.489) rf (0.11, 0.489) 83.85% (1.5, 1
5

)
MW1 med. (0.014, 0.264) bag,bst (0.13, 0.264) 53.6% (1

2
, 1

5
)

KC1 med. (0.031, 0.447) rf (0.14, 0.447) 73.8% (1, 1
5

)
KC3 med. (0.013, 0.252) bag (0.18, 0.252) 30.13% (1

3.3
, 1

5
)

KC4 low (0.009, 0.156) nb (0.10, 0.156) 38.10% (8, 5)
MC2 low (0.005, 0.087) nb no 0
ar3 low (0.001, 0.028) bst no 0
ar4 low (0.002, 0.044) bst no 0
ar5 low (0.003, 0.054) bst no 0

a subset of misclassification cost ratio range; (3) the most
benefit is drawn by high risk projects.

Explaining this observation is not difficult. In most soft-
ware projects the proportion of fault prone modules is small,
causing a severe class size imbalance between faulty and
fault-free modules. For example, in MC1, only 0.64% of
the modules are fault prone and 99.36% are fault free. In
our study, KC4 has a large percentage of faulty modules,
48%, but it is also the smallest project (only 125 modules)
and the only one that uses a scripting language (Perl). In
MC1, identifying 61 faulty amongst 9, 644 modules is diffi-
cult for any classification algorithm. What makes the effort
worthy is only the high cost premium for fault detection. If
the premium is not there, given what we know about this
data set, no fault prediction model could justify the invest-
ment.

Looking at the shape of cost curves, the most signifi-
cant benefits for software assurance are achieved in the mid
range of the probability cost axis, surrounding PC(+) =
0.5. Due to class size imbalance the classification perfor-
mance for neutral misclassification cost ratio is indicated at
the value of PC(+) which is equal to the (low) percent-
age of faulty modules in the data set. For this simple rea-
son, most economical opportunity to apply fault prediction
modeling lays to the right of the neutral misclassification
cost point. This is the region of interest for high and some
of the medium risk projects.

When we planned this study, our original goal was to
compare the performance of different classification algo-
rithms for projects in different risk regions. We learned that
random forest consistently outperforms other classifiers in
the high risk region. But as the study evolved, it became
obvious that we need to understand whether fault predic-

tion models are any better than trivial classifiers for some
misclassification cost ranges. For this purpose, we applied
a rigorous statistical significance analysis procedure. This
analysis indicates that although naiveBayes, boosting and
bagging outperform other algorithms for low and medium
risk projects, their classification results are in many cases
not significantly better than trivial classification. We can
relate this observation to a steady trend in fault prediction
modeling literature recommending model evaluation with
lift charts, sometimes called Alberg diagrams [?,17]. Lift is
a measurement of the effectiveness of a classifier to detect
faulty modules. It calculates the ratio of correctly identified
faulty modules with and without the predictive model. Lift
chart is especially useful when the project has resources to
apply verification activities to a limited number of modules.
Lift chart evaluation can be used in concert with cost curves.

We want to add two caveats. Currently, we assume that
the misclassification cost of each software module is the
same. For NASA MDP projects this is not an unreasonable
assumption. The process at NASA calls for the application
of Independent Verification and Validation only to software
configuration items which justify the expense either due to
risk and criticality or due to some project specific require-
ments. If misclassification cost of modules varies signifi-
cantly within the project, a uniform misclassification cost
ratio in cost curve analysis may not be sufficiently flexible.
The last caveat is the fact in this study we knew the ex-
act proportion of faulty modules during fault prediction. In
actual deployments, this is not known, causing some uncer-
tainty regarding the calculation of probability cost function.
From this perspective, having wider evaluation ranges of in-
terest along the probability cost axis of cost curve diagrams
is desirable.

5 Conclusion

Do software quality models offer tangible benefits in
software development? The answer in the literature ap-
pears to be a resounding yes. The traditional V&V return-
on-investment wisdom states that catching faults before de-
ployment reduces the overall development cost. This is un-
doubtedly true. But, software applications are different,
some provide user’s with convenience at low cost, others
address mission critical system needs. Evaluation of fault
prediction models must differentiate the business context in
which projects emerge. The problem with traditional per-
formance evaluation measures of binary classification prob-
lems, such as PD, PF , precision, accuracy, etc., is that
they are highly interrelated. Choosing the “best” model be-
comes a difficult multidimensional problem.

Cost curve is a complementary model evaluation tech-
nique. If offers a different viewpoint by integrating the cost
of module misclassification into performance evaluation.
We are aware that determining exact misclassification cost
ratio is not an exact science. It arguably needs additional
consideration by the software assurance research commu-
nity. But software quality professionals we discussed cost
curve methodology with did not appear to have a diffi-
culty assessing approximate cost of misclassifying fault free
modules as fault prone or the other way around. Impor-
tantly, misclassification cost assessment is project-specific.
Factors that influence the cost are the size of the V&B bud-
gets (i.e., how many modules can be analyzed for faults),
schedule pressures, software configuration item’s criticality,
failure risks and severity, and various nonfunctional require-
ments including reliability, availability, etc. However, it re-
mains to be investigated whether the specific misclassifica-
tion cost ratio ranges we used to characterize high, medium
and low risk projects are the most appropriate generaliza-
tions which should be reused in future studies.

Based on our initial experience with cost curves, we
strongly recommend their inclusion in the evaluation of
software quality models. Results of our experiments indi-
cate that high risk projects draw the most significant benefit
from fault prediction models. We are further intrigued by
the observation that some modeling algorithms are consis-
tently better for high risk projects, while others have advan-
tages for medium or low risk projects. This result indicates
that future research may need to consider fault prediction
models developed specifically for the type of software un-
der the development.

References

[1] Metric data program. NASA Independent Verification and
Validation facility, Available from http://MDP.ivv.
nasa.gov.

[2] Promise data repository. available http://
promisedata.org/repository.

[3] B. Boehm and P. Papaccio. Understanding and controlling
software costs. IEEE Transactions on Software Engineering.

[4] G. Boetticher, T. Menzies, and T. Ostrand. Promise reposi-
tory of empirical software engineering data, 2007. available
in url{http://promisedata.org/}.

[5] L. Breiman. Random forests. Machine Learning, 45:5–32,
2001.

[6] J. Dabney. Return on investment for iv&v. 2002-
2004,NASA funded study. Results available from
http://sarpresults.ivv.nasa.gov/
ViewResearch/24.jsp.

[7] C. Drummond and R. C. Holte. Cost curves: An im-
proved method for visualizing classifier performance. Ma-
chine Learning, 65(1):95–130, 2006.

[8] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating
varying test costs and fault severities into test case prioritiza-
tion. icse, 00:0329, 2001.

[9] Y. Jiang, B. Cukic, and T. Menzies. Fault prediction using
early lifecycle data. pages 237–246. Software Reliability,
2007. ISSRE ’07. The 18th IEEE International Symposium
on, Nov. 2007.

[10] Y. Jiang, B. Cukic, and T. Menzies. Can data transforma-
tion help in the detection of fault-prone modules. In DE-
FECTS’08: International Workshop on Defects in Large
Software Systems, July 2008.

[11] Y. Jiang, B. Cukic, and T. Menzies. Comparing design and
code metrics for software quality prediction. In PROMISE
’08: Proceedings of the Third International Workshop on
Predictor Models in Software Engineering, May 2008.

[12] Y. Jiang, Y. Ma, and B. Cukic. Techniques for evaluating
fault prediction models. accepted by Emprical Software En-
gineering, 2008.

[13] T. M. Khoshgoftaar and E. B. Allen. Classification of fault-
prone software modules: Prior probabilities,costs, and model
evaluation. Empirical Softw. Engg., 3(3):275–298, 1998.

[14] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hude-
pohl. Cost-benefit analysis of software quality models. Soft-
ware Quality Control, 9(1):9–30, 2001.

[15] Y. Ma and B. Cukic. Adequate and precise evaluation of pre-
dictive models in software engineering studies. In 3rd Intl.
Workshop on Predictor Models in SE (PROMISE 2007),Min-
neapolis, MN, May 2007.

[16] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors. IEEE
Transactions on Software Engineering, 33(1):2–13, Jan-
uary 2007. Available from http://menzies.us/pdf/
06learnPredict.pdf.

[17] T. Ostrand, E. Weyuker, R. Bell. Predicting the location and
number of faults in large software systems. IEEE Transac-
tions on Software Engineering, 31(4): 340-355, 2005.

[18] N. Ohlson, H Alberg. Predicting Fault-Prone Software Mod-
ules in Telephone Switches. IEEE Transactions on Software
Engineering, 22(12): 886-894, 1996.

[19] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, October
2005.

[20] H. Zhang and Z. X. Comments on ’data mining static code
attributes to learn defect predictors’. IEEE Transactions on
Software Engineering, 33(9):635–637, Sept. 2007.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.0

1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
o
rm

al
iz

ed
 E

x
p
ec

te
d
 C

o
st

bag
bst
log
nb
rf

(a) JM1-high risk

1 1/5
1/100

0.3

0.25

0.2

0.15

0.1

0.05

0.0

0.40.360.320.280.240.20.160.120.080.040.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(b) MC1- high risk

1

1/5

1/100

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.0

0.30.270.240.210.180.150.120.090.060.030.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(c) PC2-high risk

1

1/5
1/100

0.2

0.15

0.1

0.05

0.0

1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(d) PC5-high risk

1

1/5
1/100

0.3

0.27

0.24

0.21

0.18

0.15

0.12

0.09

0.06

0.03

0.0

1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(e) PC1-high risk

1
1/5 1/100

0.3

0.25

0.2

0.15

0.1

0.05

0.0

1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(f) PC3-high risk

1
1/5

1/100

0.25

0.2

0.15

0.1

0.05

0.0

1.00.90.80.70.60.50.40.30.20.10.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(g) PC4-high risk

1 1/5

1/100

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0.0

0.50.450.40.350.30.250.20.150.10.050.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(h) CM1-medium risk

1

5

1/5

0.25

0.2

0.15

0.1

0.05

0.0

0.30.270.240.210.180.150.120.090.060.030.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(i) MW1-medium risk

1

5

1/5

0.3

0.25

0.2

0.15

0.1

0.05

0.0

0.50.450.40.350.30.250.20.150.10.050.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(j) KC1-medium risk

1/51
5

0.25

0.2

0.15

0.1

0.05

0.0

0.30.250.20.150.10.050.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(k) KC3-medium risk

1

5

1/5

0.2

0.15

0.1

0.05

0.0

0.20.150.10.050.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(l) MC2-low risk

100
5

0.2

0.15

0.1

0.05

0.0

0.20.150.10.050.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(m) ar3-low risk

100 5
1

0.2

0.15

0.1

0.05

0.0

0.20.150.10.050.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(n) ar4-low risk

100

5

0.3

0.25

0.2

0.15

0.1

0.05

0.0

0.30.250.20.150.10.050.0

Probability Cost

N
o

rm
al

iz
ed

 E
x

p
ec

te
d

 C
o

st

bag
bst
log
nb
rf

(o) ar5-low risk

100
5 1

Figure 7. Cost curves.

