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ABSTRACT
Traditionally, software quality models are built by assuming a uni-
form misclassification cost. In other words, cost implications of
misclassifying a fault prone module as fault free are assumed to
be the same as the cost implications of misclassifying a fault free
module as fault prone. In reality, these two types of misclassifi-
cation costs are rarely equal. They are project-specific, reflecting
the characteristics of the domain in which the program operates. In
this paper, through the analysis of projects from a public reposi-
tory, we analyze the benefits of techniques which incorporate mis-
classification costs in the development of software quality models.
We find that cost-sensitive learning does not provide operational
points which outperform cost-insensitive classifiers. However, an
advantage of cost-sensitive modeling is the explicit choice of the
operational threshold appropriate for the cost differential.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: metrics—quality, performance

General Terms
Design, Experimentation, Performance

Keywords
Fault-proneness prediction, Machine learning, Cost-sensitive

1. INTRODUCTION

1.1 Fault Prediction Models
Research studying the detection of software modules which are

likely to contain faults has been ongoing for a long time. The fault-
proneness information not only points to the need for increased
quality monitoring during the development but also provides im-
portant advice to assign verification and validation activities. Var-
ious studies show that software companies spend 50% to 80% of
their software development efforts on testing [13]. The identifi-
cation of fault-prone modules might have a significant cost-saving
impact on software development.
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A wide range of software metrics have been proposed for collec-
tion and used to identify modules which may contain faults [12].
Metrics describing software requirements (i.e. requirement doc-
uments) achieved notable success in predicting fault prone mod-
ules [19, 27, 16]. Design metrics, either collected from design doc-
uments or reverse engineered from code, have proved their utility
for fault-proneness prediction [32, 34]. Static code metrics, such
as Halstead complexity [15] and various code size metrics, have
also proven their effectiveness in many studies [28, 31, 22, 14, 6].

1.2 Importance of Cost
The “traditional" software quality models, some referenced above

and others overviewed in Section 5, typically assume uniform mis-
classification cost. In other words, this models suppose that the cost
implications of wrongly predicting a faulty module as fault free one
is the same as the cost of indicating that a fault free module may
contain faults. In reality, the cost implications of these two types
of misclassification are seldom equal in the real world. In high risk
software projects, for example, safety-related spacecraft navigation
instruments, the cost of missing a faulty module may have extreme
consequence associated with a loss of the entire mission. There-
fore, in such projects significant resources are typically available
for identifying and eradicating all faults because the cost of losing
a mission is much higher. On the other hand, in low risk projects
which aim to occupy a new market niche, time to market pressure
may imply that only a minimal number of faulty modules can be
analyzed. The cost of analyzing any significant number of misclas-
sified fault free modules is, therefore, unacceptable.

What makes the prediction of faulty modules a challenge is the
reality that they usually form a minority class compared to fault
free modules. The faulty and non-faulty classes are typically im-
balanced. Therefore, in order to develop models which find more
faults, one would expect that explicit placement of a cost premium
for fault identification will increase the accuracy of such models.
This expectation represents the motivation for the research described
in this paper.

1.3 Cost in Model Evaluation
While the techniques for model development which explicitly

account for misclassification cost differential have not been studied
in software quality modeling, there have been attempts to include
cost factors into model evaluation. F-measure, for example, offers
a technique to account for the cost factor [18] when comparing
different models. Khoshgoftaar and Allen [23] proposed the use
of prior probabilities of misclassification to select classifiers which
offer the most appropriate performance. In [24] they compare the
return-on-investment in a large legacy telecommunication system
when V&V activities are applied to software modules selected by a



actual faulty actual non-faulty
predict faulty TP FP

predict non-faulty FN TN

yRecall = yPD = TP
TP+FN

yPF = FP
FP+TN

yPrecision = TP
FP+TP

nRecall == nPD = TN
FP+TN

nPF = FN
TP+FN

nPrecision = TN
TN+FN

Figure 1: Confusion Matrix

quality model vs. at random. Cost has been considered in test case
selection for regression testing too [11].

There is a steady trend in fault prediction modeling literature
recommending model evaluation with lift charts [18], sometimes
called Alberg diagrams [32, 33]. Lift is a measure of the effec-
tiveness of a classifier in the detection faulty modules. It calculates
the ratio of correctly identified faulty modules with and without the
predictive model. Lift chart is especially useful when the project
has resources to apply verification activities to a limited number
of modules. Cost effectiveness measure described by Arisholm et
al. [2] can account for the nonuniform cost of module-level V &V .
As opposed to these approaches, our goal is to analyze the bene-
fits of incorporating project specific misclassification costs in the
development of software quality models, as opposed to their evalu-
ation.

The remainder of this paper is organized as follows. Section 2
introduces our method of cost-sensitive modeling and our experi-
mental design. Section 3 presents our experimental result and anal-
ysis. Section 4 offers a short overview of related work. Section 5
concludes the paper.

2. COST-SENSITIVE MODELING
In spite of the importance of misclassification cost in software

quality modeling, most classifiers simply do not allow the incorpo-
ration of cost into the modeling process. Instead they are typically
designed to increase the overall prediction accuracy (or decrease
the overall error rate) assuming that all misclassifications have the
same cost.

In this section, we introduce a method to incorporate different
misclassification costs into software quality modeling. In these
cost-sensitive models, the goal will be to minimize the overall mis-
classification cost. This is quite different from the cost-insensitive
models. First, we discuss the confusion matrix and the correspond-
ing measurements used in this study. Then we explain our cost-
sensitive classification methods. Finally, we explain experimental
design used to analyze the results.

2.1 Confusion Matrix
Figure 1 shows a confusion matrix. It has four categories: True

positives (TP) are modules correctly classified as faulty modules.
False positives (FP) refer to fault-free modules incorrectly labeled
as faulty. True negatives (TN) correspond to correctly classified
fault-free modules. Finally, false negatives (FN) refer to faulty
modules incorrectly classified as fault-free. In this study, we will
use recall, precision, and PF to evaluate prediction models. Recall
represents the probability of detection (PD) of faulty (or non-faulty)
modules. In this study, recall of faulty modules is denoted as

actual faulty actual non-faulty
predict faulty 0 (TP) 1(FP)

predict non-faulty 5(FN) 0(TN)

Figure 2: Cost matrix, an example

yRecall, recall of non-faulty modules is nRecall. Precision
is the proportion of the correctly predicted (faulty or non-faulty)
modules inside each prediction class: precision for faulty modules
is denoted yPrecision, for non-faulty modules nPrecision. PF
represents the probability of false alarms: PF for faulty modules
is denoted as yPF , for non-faulty modules nPF .

Receiver Operating Characteristic (ROC) curve is a plot of the
probability of detection (recall or PD) as a function of the prob-
ability of false alarm (PF) across all threshold settings. An ROC
curve provides an intuitive way to evaluate the classification per-
formance of software quality models. Many classifiers allow users
to define and adjust threshold parameters in order to generate an
appropriate performance [35]. The Area Under the ROC Curve
(AUC) is a numeric performance evaluation measure directly asso-
ciated with an ROC curve. In this study, we will utilize ROC and
AUC for model evaluation.

Boxplot diagrams, also known as box and whisker diagrams,
graphically depict numerical data distributions using the five first
order statistics: the smallest observation, lower quartile(Q1), me-
dian, upper quartile(Q3), and the largest observation. The box is
constructed based on the interquartile range(IQR) from Q1 to Q3.
The line inside the box depicts the median which follows the central
tendency. Outliers may be indicated as bubbles (or squares) lying
below/above 1.5*IQR. The whiskers indicate the smallest and the
largest observations which are not outliers.

2.2 Modeling Algorithms
In this study, the term cost always stands for the misclassification cost.

Figure 2 shows a cost matrix similar to the confusion matrix shown
in Figure 1. The cost matrix emphasizes the implications of mis-
classification. For this reason, the costs of correct classifications
are 0. If a fault free module is misclassified as faulty (FP ), addi-
tional V &V activity imply additional expenditure. In Figure 1, this
misclassification cost is assumed to be a factor 1. If a faulty module
is misclassified as fault free (FN ), the cost indicates the potential
for future damages. In Figure 1, it is assumed to be 5 times more
expensive than FP .

The MetaCost method introduced by Domingos [9] makes clas-
sifiers cost-sensitive. Let i, j denote two classes, m denotes a mod-
ule. The probability P (j|m) stands for the probability that m be-
longs to class j. C(i, j) denotes the costs denoted in the cost ma-
trix. MetaCost tries to minimize the misclassification cost by using
Bayes optimal prediction:

R(i|m) =
∑

j

P (j|m)C(i, j) (1)

The misclassification cost R(i|m) is the expected cost of predicting
that module m belongs to class i. MetaCost aims to achieve the
lowest possible overall misclassification cost over all modules by
wrapping a procedure described in Equation 1 to a regular cost-
insensitive classifier [9]. MetaCost works as follows [9]:

• First, bootstrap the training subset to form a sample; run the
base cost-insensitive classifier on the bootstrapped sample.
This procedure is repeated multiple times.



• Estimate class’ probability P (j|m) for each module m, across
all bootstraped samples.

• Given the known cost matrix, C(i, j), using Equation 1 re-
label each module with the estimated optimal class in order
to minimize the overall misclassification cost, R(i|m). This
process results in an optimal model.

• Apply the model developed accordingly to the test subset
samples.

Observe that with different cost matrices, the last two steps need
to be adjusted accordingly. According to Domingos, “MetaCost
treats the underlying classifier as a blackbox, requiring no knowl-
edge of its functioning or change to it” [9]. Weka offers MetaCost
procedure proposed by Domingos as a wrapper to any supported
classifier.

2.3 Design of Experiments
The 13 data sets listed in Table 1 come from the NASA Metrics

Data Program (MDP) repository [1]. The projects offer module
metrics associated with NASA Space Shuttle software. JM1 and
KC1 have 21 attributes that can be used as predictor variables, MC1
and PC5 have 39, while the other data sets have 40.

We do not know the cost matrix appropriate for each project.
In order to investigate the effect of cost-sensitive classification in
software quality models, we assign 11 different cost matrices to all
projects shown in Table 2. In Table 2, the cost of TP and TN are
zero. We use cost_ratio to denote a cost matrix which is shown in
Table 2 as the third column. For example, in the first row, the ratio
between FN and FP is 1

75 . The first five cost matrices represent
for low risk projects and the last five cost matrices stand for the
high risk projects.

The 11 cost ratios from Table 2 are run on each classifier over
each data set. We use standard 10 way cross-validation (CV) method
in this study. CV is the statistical practice of randomized partition-
ing of a data set into two parts: one part of data is used as training
and the remaining part of data is left as testing subset. In this study,
50% data is used for training and the other 50% is used for testing.
The partition is randomized 10 times and run 20 times on each data
set to get a better understanding of variance.

In experiments, we use five classifiers from Weka which con-
sistently demonstrate good performance [18, 20, 17, 19]: ran-
dom forest(rf ), boosting(bst), logistic(log), naiveBayes(nb), and
bagging(bag). The measures evaluated in this study are precision
(yPrecision and nPrecision) and recall (yRecall and nRecall).
Using 13 data sets, 11 different cost matrices, 5 machine learners,
and 20 cross validation runs, in total, our experiments resulted in
14, 300 runs.

3. ANALYSIS OF EXPERIMENTS
For each classifier – data set combination, we generate two box-

plot diagrams, which depict precision and recall for faulty and
for non-faulty modules. In total, there are 13 ∗ 5 ∗ 2 = 130 such
diagrams. Understandably, we cannot describe all our observations
in a paper, and neither would it be very interesting. However, we
observed the following trends: logistic and boosting classifiers of-
fer very similar performance characteristics; bagging is similar to
random forests; NaiveBayes is quite different as the impact of cost,
measured by precision or recall, seems to have a minor, if any,
impact. Therefore, we use logistic and bagging classifiers as ex-
amples to illustrate observed results. Figure 3 depicts boxplot di-
agrams for precision and recall of logistic and bagging on CM1
and JM1 data sets.

Figure 3: Boxplot diagrams depict precision and recall
for identifying faulty and non-faulty modules using different
cost_ratio. Shaded rectangle stands for precision; unshaded
notch stands for recall. Outliers for precision are indicated as
bubbles; and outliers for recall are indicated as squares.

From Figure 3, we can observe the clear increase of recall with
the decrease of precision in the detection of faulty modules when
cost_ratio varies from 1/75 to 75. However, the rate of increase
depends on the classifier. As expected, when identifying fault free
modules, recall decreases as precision increases.

Table 3 shows the median precision, recall, and PF for faulty
and fault free classes for 5 classifiers on CM1 and JM1 two data
sets. The performance indices for cost_ratio of 1/25, 1/5, 5, and
25 are omitted as they follow the overall performance trends. In low
risk situations (cost_ratio < 1) misclassifying fault free mod-
ules is more expensive than misclassifying faulty ones. yRecall
is, therefore, very low. For example, in CM1 project from 0.25 to
0.26 using naive bayes down to 0 with bagging and random for-
est. yPrecision is not good either. On the contrary, nRecall and
nPrecision are all quite high, greater than 0.80 with some even
as high as 1. This is not difficult to explain for field use data. When
there are limited resources to verify modules in a software project,
the cheapest choice is to check as few modules as possible. The be-
havior of bagging and random forest in these circumstances mimics
trivial classifiers by classifying every module as fault free.

In high risk projects (cost_ratio > 1) misclassifying a faulty
module as fault free is undesirable. The data sets used in this study
fall into this category, i.e., in most cases the models should identify
as many faults as possible. The good news is that when we increase



Table 1: Datasets used in this study
Data mod.# % faulty project description lang.
JM1 10,878 19.3% Real time predictive ground system C
MC1 9466 0.64% Combustion experiment of a space shuttle (C)C++
PC2 5589 0.42% Dynamic simulator for attitude control systems C
PC5 17,186 3.00% Safety enhancement system C++
PC1 1109 6.59% Flight software from an earth orbiting satellite C
PC3 1563 10.43% Flight software for earth orbiting satellite C
PC4 1458 12.24% Flight software for earth orbiting satellite C
CM1 505 16.04% Spacecraft instrument C
MW1 403 6.7% Zero gravity experiment related to combustion C
KC1 2109 13.9% Storage management for ground data C++
KC3 458 6.3% Storage management for ground data Java
KC4 125 48% Ground-based subscription server Perl
MC2 161 32.30% Video guidance system C++

Table 2: Eleven different cost matrices assigned to 13 projects in this experiment.
cost of FN cost of FP denoted as cost_ratio risk type note

1 75 1/75 low

lower cost to misclassifying faulty modules
1 50 1/50 low
1 25 1/25 low
1 10 1/10 low
1 5 1/5 low
1 1 1 equal cost to both classes
5 1 5 high

higher cost to misclassifying faulty modules
10 1 10 high
25 1 25 high
50 1 50 high
75 1 75 high

cost_ratio from 1 to 75, yRecall increases, although the rate of
increase depends on the algorithm. The bad news, although not
unexpected, is the decrease of yPrecision which implies needless
analysis of a large number fault free modules (false positives). The
optimal goal is to have high recall and precision at the same time,
but that seems impossible to achieve by varying cost_ratio only.
For example, in JM1 project when cost_ratio is greater than 50,
yRecall increases to 1 (using logistic and boosting) while nRecall
decreases to 0. This, again, reflects the result of a trivial classifier
which tags every module as faulty.

Figure 3 and Table 3 lead us towards the following observa-
tions:

• Fault prone modules are the minority class. Different cost
parameters indicate a compromise between yPrecision and
yRecall. Nevertheless, some classifiers offer better trade-
offs between the two evaluation parameters.

• Boosting, bagging and random forest algorithms consistently
reach yRecal rates close to 1 at high cost ratios, with preci-
sion slightly above 0.2.

• No matter what the cost_ratio is, nPrecision and nRecall
for identifying fault free modules are very high, reflecting the
fact that this is the majority class.

• NaiveBayes is quite different from the other four classifiers.
It’s performance indices (precision,recall, PF ) are rather
constant regardless of the cost.

We also want to acknowledge the high variance of yPrecision
in Figure 3 at cost_ratio = 1/5. Essentially, the precision in
identifying faulty modules varies from 0 to close to 1. We noticed
similar spikes in precision variance in a few other experiments. For
example, random forest on JM1 project at cost_ratio = 1/25,
boosting on KC3 data with cost_ratio between 1/75 and 1/5, bag-

ging on PC1 data with cost_ratio = 1 all report very high vari-
ance for precision. Similarly, when the goal is to identify fault free
modules, nPrecision at high cost_ratio may have a big variance
too: NaiveBayes on MC1 with cost_ratio=75, random forest on
MC2 at cost_ratio 50 and 75, logistic with JM1 with cost_ratio
between 50 and 75. These observations point that future research
in software quality modeling must take such variances into account
when recommending best practices. With such unreliable perfor-
mance, it is difficult to trust prediction results. The good news is
that recall does not appear to suffer from big variances through all
the experiments in this study. Therefore, recall should be relied
upon when evaluating the performance of software quality models.

3.1 Statistical significance
We further conducted a statistical test procedure to compare yRecall

across 11 different cost matrices for each classifier with each data
set, using Demsar’s test [7, 18]. Our hypotheses are: H0: There is
no difference in the performance among 11 different cost matrices
for a classifier on a specific data set evaluated using yRecall.
vs.
Hα: At least two different cost matrices have significantly different
performance for a learner on a specific data set evaluated by using
yRecall.

Using 95% confidence interval to evaluate the significance of
test, five classifiers and 13 data sets, we conducted Demsar’s test
65 times. Amongst the 65 tests, only two accepted H0 and re-
jected Hα: naive bayes on JM1 and MW1. In other 63 tests, the
hypothesis H0 is rejected and Hα is accepted. The yRecall based
performance ranks prefer higher cost_ratios.

Statistically significant differences in performance when all 11
cost ratios are taken into account are not surprising. Another im-
portant question is how sensitive models are to small changes in



Table 3: Median of precision and recall for 5 classifiers on CM1 and JM1 data set. yPrecision and yRecall stand for precisionand
recall for faulty modules; nPrecision and nRecall are corresponding precision and recall rates for identification of fault free
modules.

dataset learner cost_ratio yPF yPrecision yRecall nPF nPrecision nRecall

cm1

log 1/75 0.03 0.45 0.11 0.89 0.85 0.97
log 1/50 0.03 0.45 0.12 0.88 0.85 0.97
log 1/10 0.03 0.45 0.14 0.86 0.85 0.97
log 1 0.08 0.41 0.29 0.71 0.87 0.92
log 10 0.34 0.26 0.6 0.4 0.9 0.66
log 50 0.48 0.21 0.67 0.33 0.9 0.52
log 75 0.49 0.21 0.67 0.33 0.9 0.51

cm1

bst 1/75 0 0.54 0.05 0.95 0.84 1
bst 1/50 0.01 0.59 0.04 0.96 0.84 1
bst 1/10 0.01 0.41 0.03 0.98 0.84 0.99
bst 1 0.03 0.43 0.13 0.87 0.85 0.97
bst 10 0.38 0.25 0.7 0.3 0.91 0.62
bst 50 0.63 0.21 0.88 0.13 0.94 0.37
bst 75 0.64 0.22 0.9 0.1 0.95 0.36

cm1

bag 1/75 0 0 0 1 0.84 1
bag 1/50 0 0 0 1 0.84 1
bag 1/10 0 0 0 1 0.84 1
bag 1 0.02 0.35 0.06 0.94 0.84 0.98
bag 10 0.33 0.26 0.63 0.37 0.91 0.67
bag 50 0.71 0.2 0.93 0.07 0.96 0.29
bag 75 0.79 0.19 0.98 0.02 0.98 0.21

cm1

rf 1/75 0 0 0 1 0.84 1
rf 1/50 0 0 0 1 0.84 1
rf 1/10 0 0 0 1 0.84 1
rf 1 0.03 0.55 0.19 0.81 0.86 0.97
rf 10 0.17 0.33 0.47 0.54 0.89 0.83
rf 50 0.53 0.23 0.84 0.16 0.94 0.47
rf 75 0.62 0.22 0.94 0.06 0.97 0.38

cm1

nb 1/75 0.08 0.36 0.25 0.75 0.86 0.92
nb 1/50 0.08 0.36 0.25 0.75 0.86 0.92
nb 1/10 0.08 0.36 0.26 0.74 0.87 0.92
nb 1 0.09 0.34 0.27 0.73 0.87 0.91
nb 10 0.1 0.33 0.29 0.71 0.87 0.9
nb 50 0.11 0.32 0.3 0.7 0.88 0.89
nb 75 0.11 0.32 0.3 0.7 0.88 0.89

jm1

log 1/75 0 0.77 0.01 0.99 0.81 1
log 1/50 0 0.76 0.01 0.99 0.81 1
log 1/10 0 0.81 0.01 0.99 0.81 1
log 1 0.02 0.6 0.12 0.88 0.82 0.98
log 10 0.83 0.22 0.94 0.06 0.93 0.17
log 50 1 0.19 1 0 0.54 0
log 75 1 0.19 1 0 0 0

jm1

bst 1/75 0 0.88 0.01 0.99 0.81 1
bst 1/50 0 0.89 0.01 0.99 0.81 1
bst 1/10 0 0.85 0.01 0.99 0.81 1
bst 1 0.03 0.52 0.11 0.89 0.82 0.97
bst 10 0.76 0.23 0.94 0.06 0.94 0.24
bst 50 1 0.19 1 0 0 0
bst 75 1 0.19 1 0 0 0

jm1

bag 1/75 0 0 0 1 0.81 1
bag 1/50 0 0 0 1 0.81 1
bag 1/10 0 0 0 1 0.81 1
bag 1 0.04 0.51 0.19 0.81 0.83 0.96
bag 10 0.43 0.29 0.74 0.26 0.9 0.57
bag 50 0.87 0.21 0.98 0.03 0.96 0.13
bag 75 0.95 0.2 0.99 0.01 0.97 0.06

jm1

rf 1/75 0 0 0 1 0.81 1
rf 1/50 0 0 0 1 0.81 1
rf 1/10 0 0.87 0.01 1 0.81 1
rf 1 0.05 0.53 0.22 0.78 0.84 0.95
rf 10 0.24 0.36 0.57 0.44 0.88 0.76
rf 50 0.69 0.24 0.91 0.09 0.94 0.31
rf 75 0.8 0.22 0.95 0.05 0.95 0.2

jm1

nb 1/75 0.05 0.49 0.18 0.82 0.83 0.95
nb 1/50 0.05 0.49 0.18 0.82 0.83 0.95
nb 1/10 0.05 0.49 0.19 0.81 0.83 0.95
nb 1 0.05 0.48 0.2 0.8 0.83 0.95
nb 10 0.06 0.48 0.21 0.79 0.83 0.94
nb 50 0.06 0.48 0.22 0.78 0.83 0.94
nb 75 0.06 0.47 0.22 0.78 0.84 0.94



the misclassification cost ratio. For this test, we will apply Dem-
sar’s procedure to compare the rank performance of classification
models for each classifier using costs which range from 1 to 75.

Figure 4: Demsar’s rank test states that the rank performance
of classifiers within the critical distance (CD = 1.65) is not
statistically different. Classifiers were developed using random
forest algorithm and misclassification costs from 1 to 75.

Figure 4 depicts the results for random forest classifier over all
the 13 projects. Any two classifiers which lay within the critical
distance (CD = 1.69) offer performance which cannot be inter-
preted as different using 95% confidence interval. Using yRecall
as the performance measure, in most data sets models developed
using cost ratios 50 and 75, or 1 and 5 perform similarly. Anal-
ysis of other classifiers offer similar results. For this reason, we
conclude that knowing the exact misclassification cost is not as im-
portant as knowing its range range.

Using recall to evaluate the models’ performance to detect faulty
modules, we conclude that fault prediction generally benefits from
cost-sensitive learning in high risk cases because higher recall val-
ues, which indicate higher performance ranks, are obtained by ap-
plying higher. But the bottom line question is whether similar per-
formance could have been achieved through the traditional model
development, not “burdened" by the various misclassification cost
factors.

3.2 Cost-sensitive vs. cost-ignorant
Figure 5 shows the ROC curve obtained from the boosting classi-

fier using the traditional cost-ignorant modeling approach on CM1
data set. In the same figure, we overlayed the five median (PF, recall)
points of cost-sensitive learning with the values of cost_ratio > 1
over the ROC curve. The cost sensitive models have been devel-
oped using the same boosting classifier wrapped in the MetaCost
procedure [9]. We can observe that all five classifiers obtained
through cost-sensitive modeling can be obtained from cost-ignorant
model development by adjusting the model thresholds. The ob-
servations from this diagram are repeated for other classifiers and
other data sets. Another example is shown in Figure 6.

To generalize, appropriate threshold selection in cost-ignorant
models offers the models with performance equivalent to models
derived using cost-sensitive modeling methodology. Cost-sensitive

Figure 5: The ROC curve of cost-ignorant model and the me-
dian (PF, recall) points for five different cost_ratio > 1 on
CM1. All models developed using boosting.
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Figure 6: The ROC curve of cost-ignorant model and the me-
dian (PF, recall) points for five different cost_ratio > 1. All
models developed using bagging.



modeling does not provide operational points which outperform
“traditional" classifiers, as evaluated precision and recall.

The other important implication from this study is that we can
use cost to choose suitable operational threshold (based on different
cost_ratio) to control a classifier’s performance. In this study, four
classifiers except naive bayes provide this flexibility.

3.3 Discussion
The experiments presented above provide valuable information

in the quest to understand the best modeling practices for software
quality prediction. The inclusion of misclassification cost ratio
seems a natural choice in the software engineering domain, as in
many cases the consequences of system failures far outweigh the
cost of module verification activities.

The fact that the models developed using cost-sensitive modeling
algorithm do not outperform the “traditional", cost-ignorant mod-
els has a two fold interpretation. The bad news is that this approach
is not opening a new frontier in model performance. There is a
good news, though. Cost-sensitive modeling explicitly reveals the
model which minimizes the overall cost of software quality, given
that one can trust the assumed misclassification cost ratio. Select-
ing a appropriate model for predicting fault-prone modules through
the explicit notion of cost seems much easier for practitioners than
tinkering and / or justifying one amongst many possible threshold
values of the model.

In practice, exact costs are rarely known and could change as we
learn more about system requirements, its design, operational envi-
ronment, etc. When considering a wide range of cost ratios the re-
sulting models differ significantly. Nevertheless, our tests indicate
that changing the misclassification cost ratio from, say, 50 to 75 or
25 to 50 result in models whose performance is not significantly
different. Software project managers who are likely to desire ana-
lyzing various cost situations do not need to analyze many of them,
as the trends will be easy to understand.

4. RELATED WORK
A large number of fault-proneness modeling techniques have

been proposed and applied to software quality prediction. Many
of these techniques are relatively straightforward transplants from
the fields of data mining and machine learning. Some of them,
for example, logistic regression [3], aim to use domain-specific
knowledge to establish the input (software metrics) output (soft-
ware fault-proneness) relationship. Some techniques, such as clas-
sification trees [14, 5], neural networks [4], and genetic algo-
rithms [21], try to examine the available large-size data sets to rec-
ognize patterns and form generalizations. Some utilize one sin-
gle model to predict fault-proneness; others are based on ensemble
learning and build a collection of models from a single training data
set [26, 5]. Regression analysis (linear or logistic) [29, 31, 30] has
the advantage that it can be used by itself but also in combinations
with other algorithms,for example, classification trees, to form re-
gression tree algorithm.

A decision tree algorithm, for example C4.5, is one of the most
well studied classifiers which can depict the structure of software
metrics. C4.5 uses a divide and conquer mechanism to build a de-
cision tree from training set. After building and pruning the de-
cision tree is fitted to the training data set. Models from decision
trees are easy to interpret and, therefore, popular in practice when
a fault-prone prediction model needs explanation. Khoshgoftaar
et al. used C4.5 to identify fault-prone modules and compared it
with other algorithms [25] NaiveBayes (nb), as its name suggests,
“naively" assumes independence between different prediction vari-
ables. This assumption is considered overly simplistic in real life

application scenarios. However, in software engineering data sets,
it’s performance is surprisingly good [28]. Naive Bayes classifiers
have been used extensively in fault-proneness prediction, for exam-
ple in [28, 19, 18].

Random Forest is a decision tree based classifier. As implied
from its name, it builds a “forest" of decision trees. In empiri-
cal studies, Random forest usually is one of the best classifiers in
software engineering domain [14, 19, 18]. Bagging stands for boot-
strap aggregating. It relies on an ensemble of different models. The
training data is resampled from the original data set. Bagging typ-
ically performs better than any single method models and almost
never significantly worse. It has shown to have good performance
in software engineering experiments [19, 18]. Boosting combines
multiple models by explicitly seeking models that complement one
another. First, it is similar to bagging in using voting for classifi-
cation or averaging for numeric prediction. Like bagging, boosting
combines the models of the same type. However, boosting is iter-
ative. “Whereas in bagging individual models are built separately,
in boosting each new model is influenced by the performance of
those built previously. Boosting encourages new models to be-
come experts for instances handled incorrectly by earlier ones" [?].
Random forest, bagging and boosting develop an ensemble of base
models and use them in combination. In our experiments, they
demonstrate consistent performance in software quality prediction
[19, 18].

Another way to improve the performance of fault prediction mod-
els is to use feature subset selection (FSS). FSS selects useful at-
tributes or features and eliminate irrelevant or noisy features before
learning process starts. Principal Component Analysis (PCA) is a
classical method to cope with multicollinearity among attributes.
PCA transforms a set of attributes (metrics, features) into their un-
correlated linear combinations. PCA selected nine major compo-
nents from 38 software metrics on open source Apache 1.3 and 2.0
projects [8].

5. CONCLUSION
Software quality models offer tangible advantages for optimizing

project’s V&V activities by uncovering modules in which software
faults are most likely to hide. From the methodological perspec-
tive, these are binary classification models. Typical proportion of
modules which are likely to contain faults is rather small. This
makes automated binary classification problem of detecting faulty
modules more difficult.

In this paper, we analyzed the possible advantages of cost sen-
sitive software quality modeling. Cost sensitive modeling assigns
different cost factors to overlooking a faulty module and falsely
tagging a fault free module as fault prone. By minimizing the over-
all cost of misclassification, rather than the number of misclassified
modules, we expect to develop better classifiers.

We analyzed the impact of eleven different misclassification costs
to software quality modeling, using the projects from the NASA
MDP repository. Cost-sensitive modeling does not improve the
overall performance of classification models. Nevertheless, explicit
information about misclassification cost makes it easier for soft-
ware managers to select the most appropriate model for their spe-
cific project environment. The alternative to cost-sensitive model-
ing is to determine the most appropriate threshold in a set of models
developed in absence of cost information, which we believe to be
more challenging. Our experiments further indicate that in projects
where the exact misclassification cost is unknown, a likely scenario
in practice, cost sensitive models with similar misclassification cost
ratios are likely to exhibit performance which is not significantly
different.
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