
On the Value of Combining Feature Subset Selection with
Genetic Algorithms: Faster Learning of Coverage Models

James H. Andrews
University of Western Ontario

Department of Computer Science
London, Ont., Canada, N6A 2B7

andrews@csd.uwo.ca.

Tim Menzies
Lane Department of CS & EE

Morgantown, WV, USA
tim@menzies.us

ABSTRACT
The next challenge for the PROMISE community is scaling up and
speeding up model generation to meet the size and time constraints
of modern software development projects. There will always be a
trade-off between completeness and runtime speed. Here we ex-
plore that trade-off in the context of using genetic algorithms to
learn coverage models; i.e. biases in the control structures for ran-
domized test generators. After applying feature subset selection to
logs of the GA output, we find we can generate the coverage model
and run the resulting test suite ten times faster while only losing
6% of the test case coverage.

Categories and Subject Descriptors
B.4.8 [Programming techniques]: PerformanceModeling and pre-
diction; I.6.4 [Computing Methodologies]: Model Validation and
Analysis; G.3 [General]: Probability and Statistics—statistical com-
puting

Keywords
Software testing, genetic algorithms, feature subset selection

1. INTRODUCTION
In his famous paper on the Essence and Accidents of Software

Engineering [5], Frederick Brooks identifies complexity as one of
the essential properties of software.

Software entities are more complex for their size than
perhaps any other human construct. . . The complexity
of software is an essential property, not an accidental
one.. . . [D]escriptions of a software entity that abstract
away its complexity often abstract away its essence.

Representing all properties of software entities (their developers,
their development method, the artifacts they produce) is a complex
task. Such complexity places comprehension of large scale soft-
ware above the abilities of individuals; hence, analysis tools are
needed to support developers in such tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE ’09 Vancouver, Canada USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Data mining research in software engineering has managed to
avoid this complexity by focusing on very simple models and very
simple learning methods. For example, previously [18], we have
employed Naive Bayes classifiers to find defect patterns from static
code attributes. None of the algorithms used in that work were
slow: code attributes can be extracted in linear time, and Naive
Bayes classifiers use very little computational resources (linear time
training and tiny memory requirements).

However, just the fact that our prior work ran fast enough does
not offer much confidence for the future. In October 2008, we
visited Google to report some the results we’d obtained from the
PROMISE datasets1. The alarming conclusion from that site visit
was that it was now an open and urgent question to optimize our
data mining methods. Google developers work within an architec-
ture that delivers many small applications to the web. Each of these
smaller applications are developed by hyper-agile teams. Every one
to two weeks, these teams update their code but the teams do not
synchronize their update schedules. That is, at any moment, the
live Google code base can change. To help software engineers in
these conditions of extreme agility, we need data mining analyses
that run in minutes, not hours.

Given the commercial success and prominence of Google, we
expect Google’s development practices to be copied. That is, in the
very near future, it will be necessary that our data mining methods
continually update their models for large code bases. For certain
classes of model learning, our current technology is too slow to
keep up with such a high rate of change. For example, consider the
task of constructing coverage models:

• Unit testing is the testing of a group M of target methods.
• Coverage models control unit tests and select the sequence

of calls to the target methods, the parameters of each call and
the receiver2 of each call.

• Each call may be preceded by code that sets up the arguments
and may be followed by code that stores and checks results.

Randomized unit testing uses coverage models that contain a bias
on the random variables which select for the target method call se-
quence and/or arguments to the method calls. Many researchers [2,
6, 10, 21] have built such randomized coverage models, sometimes
combined with other tools such as model checkers.

However, these coverage models can also be learned. Previ-
ously [1], we have developed Nighthawk, a genetic algorithm (GA)
for learning randomized coverage models. Nighthawk is a “wrap-
per” system that automates the construction of test scripts. Wrapper-

1http://www.youtube.com/watch?v=vrvRsZsoMp8
2We use the word “receiver” to refer to the object that a method is
called on. For instance, in the Java method call “t.add(3)”, the
receiver is t.

SLOC Source file
9 LHashSet

17 Stack
46 HashSet
62 TreeSet

103 LHashMap
150 ArrayList
200 Vector
203 PQueue
227 LinkedList
239 EnumMap
355 Hashtable
360 HashMap
384 WHashMap
392 IHashMap
562 TreeMap

2492 Properties

 0

 20

 40

 60

 80

 100

 10 100 1000

co
ve

ra
ge

 (
%

)

SLOC

 0

 50

 100

 150

 200

 10 100 1000

ru
nt

im
e

(s
ec

s)

SLOC

Figure 1a: Case studies Figure 1b: SLOC vs line coverage. Median
line coverage= 93%. Worst line coverage=3%

from EnumMap.

Figure 1c: SLOC vs runtimes. Median
runtimes ≈ 102 seconds. Larger cases
studies do not necessarily have longer

runtimes.

Figure 1: Nighthawk results from [1].

based unit test generators are simpler to implement than (say) test
generators that use model checkers [22] or static code analysis since
these require access to a robust and complex parser and source code
analyzers. These complex tools are not often provided by language
providers and, if they are, they may not be updated to reflect recent
changes in the source language. Nighthawk, on the other hand,
does not require source code or bytecode analysis, instead depend-
ing only on the robust Java reflection mechanism and commonly-
available coverage tools. For instance, our code was initially writ-
ten with Java 1.4 in mind, but worked seamlessly on the Java 1.5
versions of the java.util classes, despite the fact that the source
code of many of the units had been heavily modified to introduce
templates.

Nighthawk meets, and surpasses, the Cornett threshold [8]; i.e.
“code coverage of 70-80% is a reasonable goal for system test of
most projects with most coverage metrics”. Using a novel value-
pool approach to coverage models, and running over the Java classes
of Figure 1a, Nighthawk:

• Achieves median coverage of 93% (measured in line cover-
age, see Figure 1b).

• Achieves much higher coverage than other GA methods that
ignore value pools [19] (measured in terms of condition/decision
coverage);

• Achieves similar coverage to other test coverage generators
that use symbolic execution [1].

Hence, we prefer Nighthawk’s wrappers to symbolic methods since
wrappers can be adapted to new languages faster than symbolic
execution methods.

Even thought Nighthawk is a successful tool, it is still too slow
to handle large code bases developed in an agile manner. As shown
in Figure 1c, Nighthawk’s runtimes are usually in the order to 102

seconds per class. The goal of our current work is to speed up
Nighthawk by two orders of magnitude3.

The rest of this paper discusses experiments with feature subset
selection (FSS) and genetic algorithms (GAs). We will show that
the RELIEF feature subset selector [16] consistently rejects 60% of

3Of course, even faster would be even better but given our current
case study library (Figure 1a), any speed up beyond 102 would
become hard to detect. Before exploring 103 speedups, we would
need to switch to much larger case studies.

our mutator operators over all the cases studies of Figure 1a. This
results in a much larger speedup than 60% since the search space
of a genetic algorithm is exponential on the number of mutators.
Empirically we find that when we just use the mutators selected by
RELIEF, we can usually (in 12 cases of 16) reach 94% of the cov-
erage seen with all mutators, ten times as quickly. The Future Work
section of this paper proposes an incremental feature subset selec-
tion method that might win us another order of magnitude speed
improvement (but this has yet to be tested). That is, we can report
good progress in our goal to achieving a speed up of 102.

The rest of this paper is structured as followed. Section 2 dis-
cusses related work. Section 3 describes the Nighthawk test in-
put generation system. Section 4 describes how we applied feature
subset selection (FSS) to data collected from Nighthawk in order to
determine how best to optimize it. Section 5 explores future work;
Section 6 concludes.

Note one digression before continuing. To enhance availability
of the software, Nighthawk uses the popular open-source coverage
tool Cobertura [7] to measure coverage. Cobertura can measure
only line coverage (each coverage point corresponds to a source
code line, and is covered if any code on the line is executed)4. How-
ever, Nighthawk’s algorithm is not specific to this measure; indeed,
our other empirical studies [1] show that Nighthawk performs well
when using other coverage measures.

2. RELATED WORK
This paper focuses on optimizations of genetic algorithms build-

ing test coverage models for randomized unit testing. While the
specifics of our techniques may not apply to other research, we
suspect that the general problem explored here is relevant to other
data mining research. This will be especially so for researchers ex-
ploring complex tasks in environments demanding greater speed.
Some learning methods require very complex and costly computa-
tions which need to be reiterated every time the data changes.

Many researchers use SVD (single value decomposition) for per-
forming tasks related to program comprehension; for example, Mar-
cus and Maletic [17] use it to find traceability links between doc-
umentation and source code based on terms. Once computed, the
SVD results can be queried in millisecond time to find (say) the 10
4Cobertura (v. 1.8) also reports what it calls “decision coverage”,
but this is coverage of lines containing decisions.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18x

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

y

 0
 0.2
 0.4
 0.6
 0.8

 1

Probability of covering

Figure 2: Spiky search space: the region x = y is very narrow.

methods closest to a particular method. This computation must be
repeated whenever the code base changes; but in common practice,
code base changes are becoming increasingly frequent. In order
for the representation of the software system to be accurate, and
for the tools to be able to help developers in real time during their
daily activities, the current techniques would need to perform these
complex computations over and over again, at an impractical com-
putational cost.

The complexity of SVD (single value decomposition) on a T ∗D
term*document matrix is O(min(T 2D, TD2)). In terms of algo-
rithmic theory, this seems acceptable (since it is still polynomial
time), but Marcus (personal communication) reports that, in prac-
tice, applying SVD over the large sparse T ∗D matrices seen with
real world code bases can take hours to days to compute.

Many local learning schemes have slow runtimes. For example,
Frank et al.’s [11] locally weighted Bayes classifier performs better
than standard Bayes, but runs much more slowly since the neigh-
borhood of each test case is computed at test time. In the worst case
(when the test set is the entire training set, of size D) this search
takes time O(D2) , since the distance between each pair of exam-
ples must be computed. While theoretically tractable, D2 can be
impractically large.

One way to optimize locally weighted learning schemes is to pre-
compute and cache clusters that divide the space into pre-defined
“chunks”. Each chunk is spatially indexed (e.g. using cover trees [4]
or kd-trees [3]) so that local learning can be constrained to just their
most relevant “chunk”. Note that this approach requires the recom-
putation of the clusters every time the training data changes.

The techniques discussed in this paper do not necessarily solve
the problems of the last two paragraphs. However, these problems
show that the general research area of this paper is a looming prob-
lem for many SE data mining tasks. We therefore expect an in-
creasing number of papers tackling the same theme of this paper
(orders of magnitude runtime optimizations in learning method).

3. NIGHTHAWK
This section describes how the results in Figure 1 were gener-

ated using Nighthawk. We first discuss the notion of “value pool”,
which Nighthawk uses to maintain candidate data for test cases. We
then describe the genetic algorithm (GA) used by Nighthawk, and
finally the algorithm used to randomly generate test data, which is
based on the model discovered by the GA.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18hi

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

lo

 0
 0.2
 0.4
 0.6
 0.8

 1

Probability of covering

Figure 3: Smooth search space resulting from value pools.

Without value pools With value pools
------------------- ----------------
a = f1(); a = f1();
b = f2(); x = f4(a);
c = f3(); y = f5(x);
x = f4(a); z = f6(y);
y = f5(b);
z = f6(c);

Figure 4: Unit tests without value pools (left) and with value
pools (right).

3.1 Value Pools
The core innovation in Nighthawk is that of value pools. Value

pools are a space of variables shared between methods in a unit test.
The sharing of variables has an interesting effect on the viability of
randomized unit test generators like Nighthawk.

To understand this effect, consider the problem of generating two
input values x and y that will cover the true direction of the deci-
sion “x = y”. If we cast the problem as a search for the two val-
ues themselves, and the score as whether we have found two equal
values, the search space is shaped as in Figure 2: a flat plain of
zero score with spikes along the diagonal. Most approaches to GA
white-box test data generation attempt to address this problem by
proposing fitness functions that detect “how close” the target de-
cision is to being true, often using analysis-based techniques. For
instance, Michael et al. [19] use fitness functions that specifically
take account of such conditions by measuring how close x and y
are. Watkins and Hufnagel [23] enumerate and compare fitness
functions proposed for GA-based test case generation.

Now consider a random search for values satisfying x = y when
x and y are calculated using value pools, where each value pool
contains variables between the values lo and hi. The reuse of vari-
ables for a shared pool increases the probability of a choosing the
same value for x and y, resulting in a search space more like Figure
3.

Generalizing this to method calls in general, without value pools,
every value on the unit test on the left-hand side of Figure 4 comes
from a different source. With value pools, we create fewer and
share more variables. In the right-hand side revision of the unit test
of Figure 4, the arguments to each function have a higher probabil-
ity of coming from the results of prior function calls. Note that now
there is a dependency between x and z (via y). Our search space
is therefore more like Figure 3 and there is an increasing chance
that random search will stumble on the sequence of calls that will
achieve high coverage of the methods under test.

Gene type Occurrence Type Description
numberOfCalls One for whole chromosome int the number n of method calls to be made
methodWeight One for each method m ∈ IM int The relative weight of the method, i.e. the likelihood

that it will be chosen
numberOfValuePools One for each type t ∈ CM int The number of value pools for that type
numberOfValues One for each value pool of each type t ∈ CM ex-

cept for boolean
int The number of values in the pool

chanceOfTrue One for each value pool of type boolean int The percentage chance that the value true will be
chosen from the value pool

lowerBound, upperBound One for each value pool of each range primitive type
t ∈ CM

int or float The lower and upper bounds on values in the pool;
initial values are drawn uniformly from this range

chanceOfNull One for each argument position of non-primitive
type of each method m ∈ IM

int The percentage chance that null will be chosen as
the argument

candidateBitSet One for each parameter and quasi-parameter of each
method m ∈ IM

BitSet Each bit represents one candidate type, and signifies
whether the argument will be of that type

valuePoolActivityBitSet One for each candidate type of each parameter and
quasi-parameter of each method m ∈ IM

BitSet Each bit represents one value pool, and signifies
whether the argument will be drawn from that value
pool

Figure 5: Nighthawk gene types.

3.2 Genetic Algorithm
Nighthawk is given a set M of target methods, and finds values

for genes that control randomized test data creation. We define the
set IM of types of interest corresponding to M as the union of the
following sets of types5:

• All types of receivers, parameters and return values of meth-
ods in M .

• All primitive types that are the types of parameters to con-
structors of other types of interest.

Each type t ∈ IM is associated with an array of value pools, and
each value pool for t contains an array of values of type t. Each
value pool for a range primitive type (a primitive type other than
boolean and void) has bounds on the values that can appear in
it. The number of value pools, number of values in each value pool,
and the range primitive type bounds are specified by genes.

We define a constructor to be a reinitializer if it has no parame-
ters, or if all its parameters are of types in IM . We define the set
CM of callable methods to be the methods in M plus the reinitial-
izers of the types in IM . The callable methods are the ones that
Nighthawk calls directly.

Nighthawk’s genetic algorithm finds values for genes of various
types; each gene type corresponds to zero or more genes of that
type. One type of gene represents n (the number of method calls in
this unit test) while another type selects the number of value pools
for each datatype in IM . Yet another gene type selects the size of
value pool for each datatype. The number of genes of each type
thus varies according to the properties of the software unit under
test. For example, Figure 5 shows that the methodWeight gene type
is repeated for each method in M .

The vector of all gene types and their values is the chromosome
used by Nighthawk. Our GA operates on this chromosome via the
usual steps of chromosome evaluation, fitness selection, mutation
and recombination. The GA first derives an initial template chro-
mosome appropriate to M , constructs an initial population of size
p as clones of this chromosome, and mutates the population. It then
performs a loop, for the desired number g of generations, of evalu-
ating each chromosome’s fitness, retaining the fittest chromosomes,
discarding the rest, cloning the fit chromosomes, and mutating the
genes of the clones with probability m% using point mutations and

5In this paper, the word “type” refers to any primitive type, inter-
face, or abstract or concrete class.

crossover (exchange of genes between chromosomes). The fitness
function for a chromosome is calculated using the Cobertura cov-
erage tool (discussed in the introduction): generally, chromosomes
that cause the generation of test cases that achieve higher coverage
are evaluated as being more fit.

Nighthawk uses default settings of p = 20, g = 50, m = 20.
These settings are different from those taken as standard in GA
literature [9], and are motivated by a need to do as few chromosome
evaluations as possible (the primary cost driver of the system). The
settings of other variables, such as the retention percentage, are
consistent with the literature.

3.3 Nighthawk
Here we present a simplified description of the Nighthawk’s coverage-

model-based test case generation. The algorithm takes two param-
eters: a set M of Java methods, and a GA chromosome c appro-
priate to M . The chromosome controls aspects of the algorithm’s
behaviour, such as the number of method calls to be made, as de-
scribed in the previous subsection.

The algorithm first chooses initial values for primitive type pools,
and then moves on to non-primitive type pools. A call description
is an object representing one method call that has been constructed
and run. It consists of the method name, an indication of whether
the method call succeeded, failed or threw an exception, and one
object description for each of the receiver, the parameters and the
result (if any). A test case is a sequence of call descriptions, to-
gether with an indication of whether the test case succeeded or
failed.

Nighthawk’s randomized testing algorithm is referred to as con-
structRunTestCase, and is described in Figure 6. It takes a set M
of target methods and a chromosome c as inputs. It begins by ini-
tializing value pools, and then constructs and runs a test case, and
returns the test case. It uses an auxiliary method called tryRun-
Method, described in Figure 7, which takes a method as input,
calls the method and returns a call description. In the algorithm de-
scriptions, the word “choose” is always used to mean specifically a
random choice which may partly depend on the chromosome c.

tryRunMethod considers a method call to fail if and only if it
throws an AssertionError. It does not consider other excep-
tions to be failures, since they might be correct responses to bad
input parameters. A separate mechanism is used for detecting pre-
condition violations and checking correctness of return values and
exceptions.

Input: a set M of target methods; a chromosome c.
Output: a test case.
Steps:

1. For each element of each value pool of each primitive type in IM , choose an
initial value that is within the bounds for that value pool.

2. For each element of each value pool of each other type t in IM :

(a) If t has no initializers, then set the element to null.
(b) Otherwise, choose an initializer method i of t, call

tryRunMethod(i, c), and place the result in the destination
element.

3. Initialize test case k to the empty test case.
4. Repeat n times, where n is the number of method calls to perform:

(a) Choose a target method m ∈ CM .
(b) Run algorithm tryRunMethod(m, c), and add the call description re-

turned to k.
(c) If tryRunMethod returns a method call failure indication, return k with

a failure indication.

5. Return k with a success indication.

Figure 6: Algorithm constructRunTestCase.

Input: a method m; a chromosome c.
Output: a call description.
Steps:

1. If m is non-static and not a constructor:

(a) Choose a type t ∈ IM which is a subtype of the receiver of m.
(b) Choose a value pool p for t.
(c) Choose one value recv from p to act as a receiver for the method call.

2. For each argument position to m:

(a) Choose a type t ∈ IM which is a subtype of the argument type.
(b) Choose a value pool p for t.
(c) Choose one value v from p to act as the argument.

3. If the method is a constructor or is static, call it with the chosen arguments.
Otherwise, call it on recv with the chosen arguments.

4. If the method call threw an AssertionError, return a call description with
a failure indication.

5. Otherwise, if the method call threw some other exception, return a call de-
scription with an exception indication.

6. Otherwise, if the method return type is not void, and the return value ret is
non-null:

(a) Choose a type t ∈ IM which is a supertype of the type of the return
value.

(b) Choose a value pool p for t.
(c) If t is not a primitive type, or if t is a primitive type and ret does not

violate the bounds on p, then choose an element of p and replace it by
ret.

(d) Return a call description with a success indication.

Figure 7: Algorithm tryRunMethod.

3.4 Generation of Results
We ran Nighthawk on each of the subject units in Figure 1a,

all taken from the standard java.util library, version 5.0. The
amount of coverage achieved by the “winning” chromosome on the
units is graphed against unit SLOC in Figure 1b, and the amount
of time taken to achieve highest coverage is graphed against unit
SLOC in Figure 1c. Note that there is no particular pattern in the
runtimes. For more details, see Andrews et al. [1].

This concludes our notes on how Figure 1 was generated. The
rest of this paper concerns how to optimize the above process.

4. FEATURE SUBSET SELECTION
Here we describe the work that we have done to optimize Nighthawk’s

GA and test case generation using feature subset selection.

4.1 Motivation
The size of the search space of a GA is the product of all possible

values for all parts of a chromosome. The run time cost to find the
best possible chromosome is therefore proportional to this value
times the evaluation cost of each chromosome:

cost = RL ∗ eval (1)

That is, a chromosome of length L = 20 with binary choices (so
the range of each choice is R = 2) takes 210 > 1, 000 times longer
to run than a chromosome of length 10 to achieve the same qual-
ity of result. Nighthawk’s chromosomes store information related
to the gene types of Figure 5. If we could discard some of those
gene types, then the reasoning in the last paragraph suggests that
this would lead to an exponential improvement in Nighthawk’s run-
times.

One tool for removing needless information is feature subset
selection (FSS). A repeated result in the data mining community
is that simpler models with equivalent or higher performance can
be built via FSS, algorithms that intelligently prune useless fea-
tures [12]. Features may be pruned for several reasons:

• They may be noisy, i.e. contain spurious signals unrelated to
the target class;

• They may be uninformative, e.g. contain mostly one value,
or no repeating values;

• They may be correlated to other variables; i.e. they can be
pruned since their signal is also present in other variables.

The reduced feature set has many advantages:

• Miller has shown that models generally containing fewer vari-
ables have less variance in their outputs [20].

• The smaller the model, the fewer are the demands on in-
terfaces (sensors and actuators) to the external environment.
Hence, systems designed around small models are easier to
use (less to do) and cheaper to build.

• As argued above, for GAs a linear decrease in the number of
chromosomes could lead to an exponential decrease in run-
times.

The literature lists many feature subset selectors. In the WRAP-
PER method, a target learner is augmented with a pre-processor
that uses a heuristic search to grow subsets of the available fea-
tures. At each step in the growth, the target learner is called to find
the accuracy of the model learned from the current subset. Subset
growth is stopped when the addition of new features does not im-
prove the accuracy. Kohavi and John [14] report experiments with
WRAPPER where 83% (on average) of the measures in a domain
could be ignored with only a minimal loss of accuracy.

The advantage of the WRAPPER approach is that, if some target
learner is already implemented, then the WRAPPER is simple to
implement. The disadvantage of the wrapper method is that each
step in the heuristic search requires another call to the target learner.
Since there are many steps in such a search (N features have 2N

subsets), WRAPPERs may be too slow.
Another feature subset selector is RELIEF. This is an instance

based learning scheme [13, 15] that works by randomly sampling
one instance within the data. It then locates the nearest neighbors
for that instance from not only the same class but the opposite class
as well. The values of the nearest neighbor features are then com-
pared to that of the sampled instance and the feature scores are
maintained and updated based on this. This process is specified for
some user-specified M number of instances. RELIEF can handle
noisy data and other data anomalies by averaging the values for
K nearest neighbors of the same and opposite class for each in-
stance [15]. For data sets with multiple classes, the nearest neigh-
bors for each class that is different from that of the current sampled
instance are selected and the contributions are determined by using
the class probabilities of the class in the dataset.

The experiments of Hall and Holmes [12] reject numerous fea-
ture subset selection methods. WRAPPER is their preferred option,
but only for small data sets. For larger data sets, the stochastic na-
ture of RELIEF makes it a natural choice.

4.2 Initial FSS Analysis of Nighthawk
We instrumented Nighthawk so that every time a chromosome

was evaluated, it printed the current value of every gene and the
final fitness function score. (For the two BitSet gene types, we
printed only the cardinality of the set.) For each of the 16 Collec-
tion and Map classes from java.util, we ran Nighthawk for 40
generations. Each class therefore yielded 800 observations, each
consisting of a gene value vector and the chromosome score.

RELIEF assumes discrete data and Nighthawk’s performance
scores are continuous. To enable feature subset selection, we first
discretized Nighthawk’s output. A repeated pattern across all our
experiments is that the Nighthawk scores fall into three regions:

• The 65% majority of the scores are within 30% of the top
score for any experiment. We call this the high plateau.

• A 10% minority of scores are less than 10% of the maximum
score. We call this region the hole.

• After the high plateau there is a slope of increasing gradient
that falls into the hole. This slope accounds for 25% of the
results.

Accordingly, to select our features, we sorted the results and di-
vided them into three classes: bottom 10%, next 25%, remaining
65%. RELIEF then found the subset of features that distinguished
these three regions.

Using the above discretization policy, we ran RELIEF 10 times
in a 10-way cross-validation study. The data set was divided into 10
buckets. Each bucket was (temporarily) removed and RELIEF was
run on the remaining data. This produced a list of “merit” figures
for each feature (this “merit” value is an internal heuristic measure
generated from RELIEF, and reflects the difference ratio of neigh-
boring instances that have different regions). We therefore got a
merit score for each of the ten runs for every gene corresponding to
every subject unit. Each run therefore yielded a ranked list R of all
genes, where gene 1 had the highest merit for this run, gene 2 had
the second highest merit, and so on.

We then calculated various summary statistics in order to come
up with rankings of the various gene types (recall that each gene
type t corresponds to zero or more genes, depending on the unit

Rank Gene type t bestMerit(t)
1 candidateBitSet 0.373
2 upperBound 0.267
3 valuePoolActivityBitSet 0.267
4 numberOfCalls 0.195
5 numberOfValuePools 0.186
6 chanceOfNull 0.166
7 numberOfValues 0.160
8 chanceOfTrue 0.150
9 methodWeight 0.144

10 lowerBound 0.129

Figure 8: Nighthawk gene types, sorted by the maximum RE-
LIEF merit of any of its features.

under test).

• avgMerit(g, u) is the average RELIEF merit score, across
all 10 runs of the cross-validation study, of gene g derived
from unit u.

• avgRank(g, u) is the average rank in R, across all 10 runs
of the cross-validation study, of gene g derived from unit u.

• bestMerit(t) is the maximum, over all genes g of type t and
all subject units u, of avgMerit(g, u).

• bestRank(t) is the maximum, over all genes g of type t and
all subject units u, of avgRank(g, u).

We took these summary numbers as indications of the possible rel-
ative expendibility of the various different gene types. For exam-
ple, Figure 8 shows the ten gene types from Figure 5, ranked in
terms of their best merit as defined above. This ranking places
candidateBitSet at the top, meaning that it considers genes
of that type to be the most valuable; it also places lowerBound
at the bottom, meaning that it considers genes of that type to be the
most expendible.

4.3 Efficiency Study
After ranking the gene types by the various ranking metrics, we

proceeded to study whether eliminating gene types on the basis
of the RELIEF results sped up Nighthawk without sacrificing the
quality of the results.

First, we instrumented the source code so that we could selec-
tively replace the parts of Nighthawk’s code controlled by each
gene type by code that assumed a constant value for each gene of
that type. This allowed us to “turn off” all genes of a given type.

We then ran Nighthawk using the top ranked 1 ≤ i ≤ 10 gene
types according to two rankings: the ranking by bestMerit shown
in Figure 8, and the ranking by bestRank. For example, in the
following experiments, if we say “number of gene types = 2” for the
bestMerit ranking, then we are using only candidateBitSet
and upperBound, and all other gene types are turned off.

4.3.1 Coverage Analysis
In the following, the result of each run is always compared to the

runtime and coverage seen using all 10 ten gene types and running
for g = 50 generations. Figure 9 shows how the coverage changed
over one of the case studies of Figure 1, using the bestMerit rank-
ing; the results for this subject unit are typical. The y-axis of that
figure is defined such that the point (50,1) represents the coverage
reached by using all 10 gene types after 50 generations. The thick
black curve on those figures shows the performance of Nighthawk
using all ten gene types. The other curves show results from using
1 ≤ i ≤ 9 gene types. The corresponding plot for the bestRank
ranking is shown in Figure 10.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 10 20 30 40 50 60 70

%
 m

ax
 c

ov
er

ag
e

generations

1
2
3
4
5
6
7
8
9

10

Figure 9: Nighthawk on Hashtable unit, eliminating gene types
according to bestMerit ranking.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 10 20 30 40 50 60 70

%
 m

ax
 c

ov
er

ag
e

generations

1
2
3
4
5
6
7
8
9

10

Figure 10: Nighthawk on Hashtable unit, eliminating gene
types according to bestRank ranking.

Number of used gene types
1 2 3 4 5 6 7 8 9 10 class being tested

.91 .92 .92 1.00 1.01 1.01 1.01 1.01 1.00 1.00 Hashtable

.89 .89 .90 1.01 1.01 1.00 .99 1.01 1.01 1.00 ArrayList
1.21 1.11 1.19 1.20 1.21 1.57 1.13 1.32 1.29 1.00 EnumMap
.83 .86 .85 .98 .99 1.00 1.00 1.00 .98 1.00 HashMap
.92 .91 .92 1.01 .99 1.00 1.01 1.00 .99 1.00 HashSet
.86 .88 .89 1.01 1.00 1.01 1.02 . 99 .99 1.00 IdentityHashMap
.84 .86 .84 1.02 1.01 1.01 1.01 1.00 1.02 1.00 LinkedHashMap
.93 .93 .94 1.01 1.01 1.01 1.01 1.01 1.01 1.00 LinkedHashSet
.93 .92 .92 1.01 1.00 1.01 1.00 1.00 1.01 1.00 LinkedList
.87 .87 .88 1.02 1.00 1.01 1.02 1.05 1.05 1.00 PriorityQueue
.99 .97 .99 1.00 1.00 1.01 1.00 1.00 1.00 1.00 Properties
.94 .93 .93 1.01 1.01 1.01 1.00 1.01 1.01 1.00 Stack
.75 .78 .77 .98 .98 .99 0.90 1.00 .98 1.00 TreeMap
.82 .81 .82 1.01 .99 1.03 1.02 1.01 1.00 1.00 TreeSet
.77 .82 .77 1.01 1.00 1.04 1.02 1.03 1.01 1.00 Vector
.87 .89 .87 1.01 1.00 1.03 1.00 .99 1.01 1.00 WeakHashMap
.90 .90 .90 1.02 1.01 1.05 1.01 1.03 1.02 1.00 mean

Figure 11: Coverage found using the top 1i ranked gene types
for 0 ≤ i ≤ 9 Coverages expressed as a ratio of the coverages
found using all gene types

A performance measure of interest in Figure 9 is the area under
the curves. This area is maximal when Nighthawk converges to
maximum coverage in only a few generations. Note that due to the
random nature of the GA and the randomized test data generation,
some of the curves are sometimes higher than the i = 10 line.

If we calculate the ratio of the area under a curve with the area
under the thick black curve, then we can summarize all the curves
of Figure 9 as the first row of Figure 11. In that figure, each column
shows how many gene types were used in a particular run (and
when used = 10, we are ignoring the FSS results and using all
gene types). Also, the number 1.00 informs us that we achieved
100% of the coverage reached by using all ten gene types.

Figure 11 summarizes Figure 9 as well as results from all other
cases studied in Figure 1a. The coverage is less than one for columns
(1,2,3) but predominantly equal to or greater than one for columns
(4-10). From this observation, we conclude that Nighthawk’s GA
need only use the top four ranked gene types of Figure 8. The
results for the bestRank ranking are less useful, as suggested by
Figure 10: by that ranking, the top six gene types are needed for
performance that comes close to all ten gene types.

We note that in both the study using the bestMerit ranking
and that using the bestRank ranking, the coverage achieved af-
ter 50 generations dropped off significantly at the point that we
turned off the numberOfCalls gene. This suggests that the
numberOfCalls gene may be more important than is suggested
by either the bestMerit ranking or the bestRank ranking. We
plan in the future to consider other rankings of genes, in an attempt
to find a ranking that best identifies the most useful gene types.

4.3.2 Time Analysis
In order to determine whether eliminating gene types from Nighthawk’s

GA is cost-effective, we must consider not only the coverage achie-
veable, but also the time taken to achieve that coverage. We there-
fore made two runs of Nighthawk on all the subject units, run (a)
using all the gene types and run (b) using just the top four gene
types ranked by bestMerit. We then divided the runtime and cov-
erage results from (b) by the (a) values seen after 50 generations,
and plotted the results.

Figure 12 shows the results, with time percentage on the X axis
and coverage percentage on the Y axis. For example, the graph
shows that in the Vector results, using four gene types achieved
100% of the coverage found using all types, but took 270% longer

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 50 100 150 200 250

%
 m

ax
 c

ov
er

ag
e

(4
 ty

pe
s)

/(
10

 ty
pe

s)

% time using (4 types)/(10 types)

time= 10%,
coverage= 94%

EnumMap Vector

ArrayList
EnumMap
HashMap
HashSet

HashTable
IdentityHashMap
LinkedHashMap
LinkedHashSet

LinkedList
PriorityQueue

Properties
Stack

TreeMap
TreeSet

Vector
WeahHashMap

Figure 12: Time results, 4 vs 10.

to do so. Note the point indicated by the arrow in Figure 12. This
point shows that it is usually (in 12

16
cases) possible to achieve 94%

of the coverage in under 10% of the time required to run all gene
types for 50 generations.

The two anomalous subject units in Figure 12 are EnumMap and
Vector. EnumMap looks like a success story, since we were able
to achieve 140% of the original coverage. In fact, this is simply
noise, since we could achieve only 3% coverage of EnumMap using
Nighthawk and generic test wrappers [1], and the graph shows an
improvement to less than 5%. To understand the Vector results,
note that Equation 1 has two components: number of options and
the evaluation cost of each option. In the case of Vector, even
though we reduced the chromosome search space size, we made
choices that greatly increased the runtime cost.

What do all these numbers mean to the Nighthawk system? In
a nutshell, they mean that the original Nighthawk was doing work
that did not pay off by achieving much better results. Consider the
six gene types ranked the lowest in the bestMerit ranking. Main-
taining all the genes associated with these gene types meant that the
original Nighthawk was spending time mutating these genes and
extracting information from the current values of the genes; it also
meant that the original Nighthawk was using up memory storing
the representations of these genes, for each chromosome in each
generation, with a concomitant time expense. When these less use-
ful genes were eliminated, no large loss of coverage was observed,
but a great increase in efficiency was observed.

5. IMPLICATIONS FOR FUTURE WORK
We see implications of this work on three levels, each of which

we would like to explore: on the tool level, the metaheuristic level,
and the theory-formation level.

On the tool level, this work shows that it is viable to use feature
subset selection as a postprocessing step in order to improve the
performance of a metaheuristic tool. Metaheuristic tools (such as

genetic algorithms and simulated annealers) typically mutate some
aspect of a candidate solution and evaluate the results. If the effect
of mutating each aspect is recorded, then each aspect can be con-
sidered a feature and is amenable to the FSS processing described
here. Another impact on the tool level is to suggest stopping cri-
teria for metaheuristic algorithms; for instance, Figure 12 suggests
that for Nighthawk’s GA, ending the algorithm when a time limit
is reached or when the fitness function has remained constant for
several generations will usually result in a good cost-effectiveness
tradeoff.

On the metaheuristic level, this work suggests that it may be use-
ful to integrate FSS directly into metaheuristic algorithms. Such an
integration would enable the automatic reporting of the merits of
individual features, and the automatic or semi-automatic selection
of features. If the results of this paper extend to other domains, this
would lead to metaheuristic algorithms that improve themselves au-
tomatically each time they are run. We also speculate that this is a
promising direction to look at for a further order of magnitude im-
provement in performance.

Finally, on the theory-formation level, this work opens up the
possibility of rapid turnover of the theoretical foundations under-
lying present tools, as aspects of heuristic and meta-heuristic ap-
proaches are shown to be consistently valuable or expendible. In
the framework of a self-monitoring metaheuristic algorithm, new
strategies, heuristics, and gene and mutator types can be introduced
as theories evolve, and can be evaluated efficiently by the algo-
rithms themselves.

As an example of this latter point, the chanceOfNull gene
type in Nighthawk determines how likely (in percent) Nighthawk’s
random test data generation is to choose a null as a parameter in a
given parameter position. That gene type was ranked as expendible
by both rankings explored here. This suggests that it is not worth-
while to search for different values for this percentage, and that the
default value (3%) is sufficient. Given sufficient corroboration from

other case studies and systems, this in turn suggests that the value
of generating test data with nulls is a relatively settled problem,
and that we can turn toward other aspects of test data generation
for future improvements.

6. CONCLUSION
We applied feature subset selection (FSS) to a metaheuristic al-

gorithm used to learn coverage models for randomized unit test
generation. FSS allowed us to cut down on the number of gene
types we used, without a noticeable loss of coverage. Since each
gene type corresponded to runtime cost, this also allowed us to cut
down on the time and memory taken for the algorithm.

These are preliminary results only, but are suggestive. In the fu-
ture, we wish to study the use of FSS to speed up other heuristic
and metaheuristic software engineering tools. We also wish to ex-
plore the impact of FSS on all three of the levels noted above (tool,
metaheuristic, and theory-formation).

Acknowledgment
Thanks to Willem Visser for making the source code of the Java
Pathfinder subject units available, and to the JDEAL development
team for their tool package. Thanks also for interesting comments
and discussions to Rob Hierons, Charles Ling, Bob Mercer and
Andy Podgurski. This research is supported by the first author’s
grant from the Natural Sciences and Research Council of Canada
(NSERC).

7. REFERENCES
[1] J. Andrews, F. Li, and T. Menzies. Nighthawk: A two-level

genetic-random unit test data generator. In IEEE ASE’07,
2007. Available from http:
//menzies.us/pdf/07ase-nighthawk.pdf.

[2] S. Antoy and R. G. Hamlet. Automatically checking an
implementation against its formal specification. IEEE
Transactions on Software Engineering, 26(1):55–69, January
2000.

[3] J. Bentley. K-d trees for semidynamic point sets. In
Proceedings Proceedings of the 6th Annual Symposium on
Computational Geometry, Berkley, California, United States,
pages 187–197, 1990.

[4] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for
nearest neighbor. In ICML’06, 2006. Available from
http://hunch.net/~jl/projects/cover_
tree/cover_tree.html.

[5] F. Brooks. No silver bullet: Essence and accidents of
software engineering. IEEE Computer, 20(4):34–42, 1987.

[6] K. Claessen and J. Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. In Proceedings of
the Fifth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’00), pages 268–279,
Montreal, Canada, September 2000.

[7] Cobertura Development Team. Cobertura web site.
cobertura.sourceforge.net, accessed February
2007.

[8] S. Cornett. Minimum acceptable code coverage.
http://www.bullseye.com/minimum.html, 2006.

[9] K. A. DeJong and W. M. Spears. An analysis of the
interacting roles of population size and crossover in genetic
algorithms. In First Workshop on Parallel Problem Solving
from Nature, pages 38–47. Springer, 1990.

[10] R.-K. Doong and P. G. Frankl. The ASTOOT approach to
testing object-oriented programs. ACM Transactions on
Software Engineering and Methodology, 3(2):101–130, April
1994.

[11] E. Frank, M. Hall, and B. Pfahringer. Locally weighted naive
bayes. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence, pages 249–256. Morgan Kaufmann,
2003.

[12] M. Hall and G. Holmes. Benchmarking attribute selection
techniques for discrete class data mining. IEEE Transactions
On Knowledge And Data Engineering, 15(6):1437– 1447,
2003.

[13] K. Kira and L. Rendell. A practical approach to feature
selection. In The Ninth International Conference on Machine
Learning, pages pp. 249–256. Morgan Kaufmann, 1992.

[14] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273–324, 1997.

[15] I. Kononenko. Estimating attributes: Analysis and extensions
of relief. In The Seventh European Conference on Machine
Learning, pages pp. 171–182. Springer-Verlag, 1994.

[16] I. Kononenko, E. Simec, and M. Robnik-Sikonja.
Overcoming the myopia of inductive learning algorithms
with relieff. Applied Intelligence, 7:39–55, 1997. Available
from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.56.4740.

[17] A. Marcus and J. Maletic. Recovering
documentation-to-source code traceability links using latent
semantic indexing. In Proceedings of the Twenty-Fifth
International Conference on Software Engineering, 2003.

[18] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Transactions
on Software Engineering, January 2007. Available from
http://menzies.us/pdf/06learnPredict.pdf.

[19] C. C. Michael, G. McGraw, and M. A. Schatz. Generating
software test data by evolution. IEEE Transactions on
Software Engineering, 27(12), December 2001.

[20] A. Miller. Subset Selection in Regression (second edition).
Chapman & Hall, 2002.

[21] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In Proceedings of
the 29th International Conference on Software Engineering
(ICSE 2007), pages 75–84, Minneapolis, MN, May 2007.

[22] W. Visser, C. S. Păsăreanu, and R. Pelánek. Test input
generation for Java containers using state matching. In
Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA 2006), pages 37–48, Portland,
Maine, July 2006.

[23] A. Watkins and E. M. Hufnagel. Evolutionary test data
generation: A comparison of fitness functions. Software
Practice and Experience, 36:95–116, January 2006.

