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Abstract 

Concept location is a critical activity during 
software evolution as it produces the location where a 
change is to start in response to a modification 
request, such as, a bug report or a new feature request.  
Lexical based concept location techniques rely on 
matching the text embedded in the source code to 
queries formulated by the developers.  The efficiency of 
such techniques is strongly dependent on the ability of 
the developer to write good queries.  We propose an 
approach to augment information retrieval (IR) based 
concept location via an explicit relevance feedback 
(RF) mechanism.  RF is a two-part process in which 
the developer judges existing results returned by a 
search and the IR system uses this information to 
perform a new search, returning more relevant 
information to the user.  A set of case studies 
performed on open source software systems reveals the 
impact of RF on the IR based concept location. 

1. Introduction 
Biggerstaff et al. [3] defined the concept 

assignment problem as “… discovering human 
oriented concepts and assigning them to their 
implementation instances within a program …”.  The 
problem has been rephrased in the research community 
in the past decades as concept location in software.  
The redefinition relates it to the problem of feature 
location in software [28], as features are regarded as (a 
set of) concepts associated with a software system’s 
functional requirements, reflected in user visible 
functionality.  Biggerstaff et al.’s early definition of the 
problem needs to be instantiated for practical use.  It 
needs a well defined context, which in turn helps 
define the operational goal and scope of concept 
location.  The context is defined by establishing the 
software engineering task supported by concept 
location, such as, change management, fault 
localization, traceability link recovery, etc.  This in 
turn helps define the input and output parameters for 
concept location: how are the human oriented concepts 

described and what are the “implementation instances 
within a program” referred to by Biggertsaff?  For 
example, Wilde et al.’s approach “is not expected to 
cover all possible functionalities nor always to discover 
all code segments associated with a functionality.  It is 
only intended to provide starting points for more 
detailed exploration of the code” [28]. 

In our research, we define concept location in the 
context of software change.  The software change 
process [24] starts with a modification request and 
ends with a set of changes to the existing code and 
addition of new code.  The software maintainer 
undertakes a set of activities to determine the parts of 
the software that need to be changed: concept location, 
impact analysis, change propagation, and refactoring.  
Concept location starts with the change request and 
ends when the developer finds the location in the 
source code where the first change must be made (e.g., 
a class or a method).  The other activities start with the 
result of concept location and establish the extent of 
the change. 

In our operating context (i.e., software change), the 
developers must decide where in the code they will 
start the change, hence their involvement is critical.  
The challenge here is to make sure the tools and 
methodologies work equally well for users with a wide 
range of expertise and abilities. 

Marcus et al. [20] proposed an Information 
Retrieval (IR) based approach to concept location.  The 
idea of the approach is to treat source code as a test 
corpus and use IR methods to index the corpus and 
build a search engine, which allows developers to 
search the source code much like they search other 
source of digital information (e.g., the internet).  The 
methodology was further refined in [22] and also 
combined with other feature location techniques [10, 
14, 16, 21, 29].  This family of approaches relies on the 
user to formulate a query and if she does not identify 
fast enough the location of the change, then she 
rewrites the query and restarts the search. 

Two issues remained constant in all these methods: 
(1) each approach is highly sensitive to the ability of 
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the user to write good queries; and (2) the knowledge 
gained by the user during the location process is not 
captured explicitly.  Specifically, developers start the 
process from a change request and they either use it as 
is as a query or they extract a set of words from the 
change request and use them as a query.  Extracting a 
good query from a change request depends on the 
experience of the developer and on her knowledge of 
the system.  Previous work showed that developers 
tend to write queries with significantly different 
performance starting from the same change request 
[14].  As the developer investigates the results of the 
first search, she learns more about the system and 
eventually decides to improve the query by adding or 
removing words.  There is a gap between the source 
code representation as classes and methods (or other 
decomposition units) and the words in a query and 
some developers can fill this gap easier than others. 

In this paper we propose and evaluate an approach 
aimed at addressing these two issues, based on explicit 
relevance feedback (RF) provided by the user.  We call 
the approach IRRF (Information Retrieval with 
Relevance Feedback) based concept location.  The 
approach is motivated by similar work on traceability 
[8, 11] in software. 

We present a case study where we explore under 
what circumstances IRRF improves the classic IR 
based concept location.  We reenact changes associated 
with several bug fixes in three open source projects. 

2. Concept location and relevance 
feedback 

Concept location is sometimes regarded as an 
instance of an information seeking activity, where 
developers search and browse the source code to find 
the location to start the change.  Different tools target 
the searching or the navigation aspects of the process.  
Regardless of the tool support, most concept location 
methodologies are interactive and iterative, as they 
require the user to decide whether a certain element of 
the source code, recommended by a tool, is relevant or 
not to the change.  These decisions affect subsequent 
steps in the process (i.e., navigation or new search). 

Our new concept location methodology combines 
the IR based concept location [20] with explicit RF 
from the user, which is used to formulate new queries.  
This section describes each technology and the 
proposed combination. 

2.1. IR based concept location 
Lexical based static concept location considers 

source code a text corpus and leverages the 
information encoded in identifiers and comments from 
the source code to guide the search.  As such, it can be 
seen as a classic IR problem: given a document 

collection and a query, determine those documents 
from the collection that are relevant to the query.  
Given that relevance is defined with respect to a textual 
query, user involvement is necessary to convert this 
relevance measure into a change related decision. 

IR based concept location, proposed in [20], is 
based on the above ideas.  It implies the use of an IR 
method to index the corpus extracted from the software 
and uses the index to compute a similarity measure 
between the document and a query.  It is composed of 
five major steps, which may be instantiated differently 
based on the type of IR method used and how the 
corpus is created: 
1. Corpus creation.  The source code is parsed using 
a developer-defined granularity level (i.e., methods or 
classes) and documents are extracted from the source 
code.  Each method (or class) will have a 
corresponding document in the corpus.  Natural 
language processing (NLP) techniques and other 
filtering techniques can be applied to the corpus. 
2. Indexing.  The corpus is indexed using the IR 
method and a mathematical representation of the 
corpus is created.  Each document (hence each method 
or class) has a corresponding index. 
3. Query formulation.  A developer selects a set of 
words that describe the concept to be located.  This set 
of words constitutes the query.  The tool checks 
whether the words from the query are present in the 
vocabulary of the source code.  If a word is not present, 
then the tool eliminates the word from the initial query.  
If filtering or NLP was used in the corpus creation, the 
query will get the same treatment. 
4. Ranking documents.  Similarities between the 
query and every document from the source code are 
computed.  The similarity measure depends on the IR 
method used.  Based on these measures the documents 
in the corpus are ranked with respect to the query. 
5. Results examination.  The developer examines the 
ranked list of source code documents, starting with 
documents with highest similarities.  For every source 
code document examined, a decision is required 
whether the document will be changed or not.  If it will 
be changed, then the search succeeded and concept 
location ends.  Else, if new knowledge obtained from 
the investigated documents helps formulate a better 
query (e.g., narrow down the search criteria), then step 
3 should be reapplied, else the next document in the list 
should be examined. 
2.2. Relevance feedback in IR 

Relevance feedback analysis is a technique to 
utilize user input to improve the performance of 
retrieval algorithms.  Relevance feedback has been one 
of the successes of information retrieval research for 
the past 30 years [17].  For example, the Text Retrieval 
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Conference1 (co-sponsored by the National Institute of 
Standards and Technology - NIST and the U.S. 
Department of Defense) has a relevance feedback 
track.  While the applications of relevance feedback 
and type of user input to relevance feedback have 
changed over the years, the actual algorithms have not 
changed much.  Most algorithms are either pure 
statistical word based, or are domain dependent.  There 
is no general agreement of what the best RF approach 
is, or what the relative benefits and costs of the various 
approaches are.  In part, that is because RF is hard to 
study, evaluate, and compare.  It is difficult to separate 
out the effects of an initial retrieval run, the decision 
procedure to determine what documents will be looked 
at, the user dependent relevance judgment procedure 
(including interface), and the actual RF reformulation 
algorithm.  Our case study aims at evaluating only a 
subset of these aspects of RF. 

There are three types of feedback: explicit, implicit, 
and blind (“pseudo”) feedback.  In our approach, we 
chose to implement an explicit RF mechanism.  
Explicit feedback is obtained from users by having 
them indicate the relevance of a document retrieved for 
a query.  Users may indicate relevance explicitly using 
a binary or graded relevance system.  Binary relevance 
feedback indicates that a document is either relevant or 
irrelevant for a given query.  Graded relevance 
feedback indicates the relevance of a document to a 
query on a scale using numbers, letters, or descriptions 
(such as "not relevant", “somewhat relevant", 
"relevant", or "very relevant"). 

Classic text retrieval applications of RF make 
several assumptions [17], which are not always true in 
the case of source code text and make the problem 
more challenging for us: 
! The user has sufficient knowledge to formulate the 
initial query.  This is not always the case when it 
comes to software, as developers might be unfamiliar 
with a software system or they might not have enough 
knowledge about a particular problem domain. 
! There are patterns of term distribution in the 
relevant vs. non-relevant documents: (i) term 
distribution in relevant documents will be similar; (ii) 
term distribution in non-relevant documents will be 
different from that in relevant documents (i.e., 
similarities between relevant and non-relevant 
documents are small).  There is no evidence so far that 
this is true for source code. 

RF has some known limitations, some of which we 
are also faced with: 
! It is often harder to understand why a particular 
document was retrieved after applying relevance 
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feedback.  We found this to be quite true in the case of 
source code based corpora. 
! It is easy to decrease effectiveness (i.e., one 
irrelevant word can undo the good caused by lots of 
good words).  This is hard to judge in our case, but 
quite likely. 
! Long queries are inefficient for a typical IR engine 
and we found that source code based corpora tends to 
increase query length significantly and rapidly. 

2.3. IRRF based concept location 
The IRRF based concept location combines the IR 

based concept location described in Section 2.1 with an 
explicit RF mechanism.  The new concept location 
methodology is defined as follows: 
1. Corpus creation – same as IR. 
2. Indexing – same as IR. 
3. Query formulation – same as IR. 
4. Ranking documents – same as IR. 
5. Results examination.  The developer examines the 
top N documents in the ranked list of results.  For 
every source code document examined, a decision is 
required whether the document will be changed or not.  
If it will be changed, then the search succeeded and 
concept location ends.  Else, the user marks the 
document as relevant or irrelevant.  After the N 
documents are marked a new query is automatically 
formulated and the methodology resumes at step 4.  If 
several rounds of feedback do not result in reaching the 
result, then the query may be reformulated manually by 
the user and resume at step 4. 

In order to provide tool support for the IRRF 
methodology, several options are available.  There are 
several options on how to generate the corpus from the 
source code, such as: document granularity (e.g., 
method, class, etc.), identifier splitting (i.e., keep 
original identifier or not), stop word removal, keyword 
removal, stemming, and comments inclusion.  Some of 
these options are programming language specific.  
Section 3 provides details on the options we used in the 
evaluation.  Indexing can be done with a variety of IR 
methods.  The initial query formulation can be done by 
the developer or automatically extracted from the 
change request (i.e., use the entire change request as 
the query). 

2.3.1. Vector space model 
The original IR based concept location technique 

[20] was built around Latent Semantic Indexing (LSI) 
[13], an advanced IR method.  Researchers 
investigated the use of other IR techniques , such as 
Vector Space Models (VSM) [27], Latent Dirichlet 
Allocation (LDA), or Bayes classifiers for concept 
location and other related activities (e.g., traceability 
link recovery).  So far, there is no clear winner among 
these techniques.  In consequence, we decided to use 
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here a VSM technique, implemented in Apache 
Lucene2.  Our choice is motivated also by the fact that 
traditional RF methods were developed specifically for 
this type of IR technique. 

In VSM, a vector model of a document d is a vector 
of words weights that span over the number of words 
in the corpus.  The weights for each word are 
computed based on the term frequency of that word in 
d and the inverse document frequency.  The similarity 
between two documents is computed as the cosine 
between their corresponding vector models. 

2.3.2. RF with Rocchio 
There are several options to implement an RF 

mechanism.  One of the most popular approaches is the 
Rocchio relevance feedback method [26], used in 
conjunction with a VSM indexing technique.  We 
implemented our own version of Rocchio, which 
integrates with Apache Lucene and works in the 
following way.  When analyzing the top ranked 
methods, the user is asked to judge the current method 
as relevant, irrelevant, or neutral to the current change 
task.  Given a set of documents DQ encompassed by 
query Q, let RQ be the subset of relevant documents 
and IQ the set of irrelevant documents to the query.  
The original query Q can be then transformed by 
adding terms from RQ and removing terms from IQ.  
This mechanism is meant to bring the query closer to 
the relevant documents and drive it away from the 
irrelevant documents in the vector space.  The new 
query is formulated as follows: 
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where !, ", and # are weighting parameters and d 
represents a document and its associated vector.  The 
relevance feedback can be given by the user in several 
feedback rounds and the query is updated after each 
round.   

The Rocchio technique is recursive.  Each round, a 
new query is generated based on the query generated in 
the previous round.  The three constants !, ", and # are 
provided so that a level of importance can be specified 
by the user for the initial query, the relevant documents 
and the irrelevant documents.  According to [9], 
placing emphasis on the relevant documents may 
improve the recall (new relevant documents may be 
found) while emphasizing the irrelevant documents 
may affect precision (false positives may be removed).  
Joachims recommends weighting the positive 
information four times higher than the negative [12].  
De Lucia et al. [8] advocates using !=1, "=0.75, and 
#=0.25 (i.e., relevant documents are three times more 
important than irrelevant ones).  Our implementation 
                                                           
2 http://lucene.apache.org/java/docs/ 

follows a similar line of thought, setting values of !=1, 
"=0.5, and #=0.15 for the three weighting parameters.  
We tried other sets of weights (!=1, "=0.75, and 
#=0.25 and !=1, "=1, and #=1), but the final set of 
weights seemed to yield the best performance.   

This type of query expansion is still prone to noise 
as certain common, but unimportant, terms may be 
added to the query.  To filter this noise and improve 
precision, the system used in this paper only allows 
terms to be added to the query if they appear in less 
than 25% of the corpus. 

3. Case study 
As mentioned before, we developed IRRF to 

address several issues we learned in our experience 
with concept location.  IR based concept location 
assumes the developers read the source code and 
reformulate the query if they did not locate the target 
methods.  We found that most programmers are good 
at judging whether a method is relevant to a change or 
not, but their ability to formulate a good natural 
language query based on their knowledge of the 
software varies quite a bit.  Developers have a hard 
time deciding what is wrong with their previous query 
and how to make it better.  IRRF eliminates this step in 
the process and allows developers to focus on what 
they know best (i.e., source code rather than queries) 
by reformulating the queries automatically.  Earlier 
work on traceability [7, 11] showed that RF improves 
an IR task, but not in all cases.  Our assumption is that 
IRRF improves the IR based concept location (i.e., 
reduces developer effort) and the goal of the case study 
we performed is to investigate under what 
circumstances this is true, given that our approach has 
a different context than the traceability work. 

3.1. Methodology 
The case study consists of the reenactment of past 

changes in open source software (i.e., we know which 
methods were modified in response to the change 
request).  The modified methods form the change set, 
and we call these methods target methods.  This 
methodology has been used in previous work on 
evaluating concept location techniques [14, 16, 21].  In 
our case study, one developer performed the concept 
location reenactment using IRRF, given a set of change 
requests.  He has seven years of programming 
experience (five in Java) and he was not familiar with 
the source code used in the study.  For each change 
request his task was to locate one of the methods from 
the change set, based on the following scenario: 
! He starts by running a query based on the change 
request, called the initial query.   
! If any one of the target methods is among the top 5 
methods in the ranked list of results, then he stops and 
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selects another change request, as RF is not needed in 
this case (i.e., IR based concept location will reach the 
method fast enough). 
! Else he provides RF in several rounds.  In each 
round, the developer marks the N top ranked methods 
as being relevant or irrelevant.  If he cannot judge the 
relevancy of a method, the he marks the document as 
neutral and proceeds to the next document, increasing 
the size of the set of marked methods set by one.   
! IRRF automatically reformulates the query based 
on the feedback provided by the developer and another 
round of feedback begins.  We keep track of the 
number of methods marked by the developer. 
! After each query is run, based on the positions of 
the target methods in the ranked list of search results 
and on the number of methods marked, the following 
decisions are made:  

a. If any of the target methods is located in the 
top N documents, then STOP; consider IRRF 
successful and a target method found. 
b. If for two consecutive feedback rounds the 
positions of the target methods declined in the 
ranked list of results, then STOP; consider that 
IRRF failed (i.e., the developer needs to 
reformulate the query manually). 
c. If more than 50 methods were marked by the 
developer, then STOP; consider that IRRF failed 
(i.e., the developer needs to reformulate the query 
manually). 

The values used for N vary and the performance of 
IRRF depends on it.  The most commonly used values 
range from 1 to 10.  We investigated the results of 
IRRF for three values of N: 1, 3, and 5, which are 
recommended values in recent studies for presenting 
lists of results to developers for investigation [25].  
Each reenactment was done three times by the 
developer, the difference from case to case was the 
number N of marked methods in one round. 

3.1.1. Data - software and change sets 
We chose as the objects of the case study three 

open source systems: Eclipse3, JEdit4, and Adempiere5.  
All three systems have an active community and a rich 
history of changes.  They all have online bug tracking 
systems, where bugs are reported and patches are 
submitted for review. 

Eclipse is an integrated development environment 
developed in Java.  For our case study, we considered 
version 2.0 of the system, which has approximately 2.5 
millions lines of code and 7,500 classes.  JEdit is an 
editor developed for programmers and it comes with a 
series of plugins which add extra features to its core 

                                                                                                                     
3 http://www.eclipse.org/ 
4 http://www.jedit.org/ 
5 http://www.adempiere.com/ 

functionality.  It is developed in Java and version 4.2 
used in this case study has approximately 300,000 lines 
of code and 750 classes.  Adempiere is a commons-
based peer-production of open source enterprise 
resource planning applications.  It is developed in Java 
and it has approximately 330,000 lines of code and 
1,900 classes in version 3.1.0, which was used in our 
case study. 

We used the history of a software system in order 
to extract real change sets from the source code.  
Specifically, we used approved patches of documented 
bugs for extracting the change sets.  The bug 
descriptions are considered to be the change requests.  
This approach has been used in previous work on 
evaluating concept location techniques [14, 16, 21].  
Some changes involve the addition of new methods.  
We do not, however, include these methods in the 
change sets, as they did not exist in the version that a 
developer would need to investigate in order to find the 
place to implement the change.  For each of the 
systems, we analyzed their online defect tracking 
systems and manually selected a set of bugs to extract 
change sets for our case study. 

The Eclipse community uses the open-source bug 
tracking system BugZilla6 to keep track of bugs in the 
system.  Each bug has an associated bug report, which 
consists of several sections, one of which is the bug 
description.  Sometimes the patches used to fix the 
bugs are also contained in the bug report, as 
attachments.  They are usually in the form of diff files, 
containing the lines of code that changed between the 
version of the software where the bug was reported and 
the version where the bug was fixed.  For our case 
study, we chose an initial set of 10 bugs reported in 
version 2.0 of the system, for which the patches were 
available in their bug reports. 

For jEdit7 and Adempiere8, we analyzed the bug 
tracking systems hosted on the projects’ 
sourceforge.net website.  Both projects have systems 
that keep track of the patches submitted for known 
bugs in the source code.  In these trackers, each patch 
has an associated report where the changes 
implemented in the patch are described in a diff file 
attached to the report.  We selected for each system 10 
initial patches for which a good description of the bug 
fixed by the patch was available, either in the 
description of the patch or in a separate bug report.  All 
the patches we selected for jEdit were submitted and 
their corresponding bugs reported after version 4.2 of 
the system was released.  For Adempiere patches were 
selected after the release of version 3.1.0.  

 
6 https://bugs.eclipse.org/bugs/ 
7 http://sourceforge.net/tracker/?group_id=588&atid=300588 
8 http://sourceforge.net/tracker/?atid=879334&group_id=176962 
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Based on the patches reported for the three systems, 
we constructed the 10 change sets for each system.  All 
change sets contained between one and six target 
methods. 

3.1.2. Corpus creation 
We extracted a corpus for each of the three 

systems.  We used the version of the software in which 
the bugs chosen in the previous step were reported.  
We mapped each method in the source code to a 
document in our corpus.  The Eclipse corpus has 
74,996 documents, the JEdit corpus has 5,366 
documents, and the Adempiere corpus has 28,622 
documents.  By comparison, the size of the corpora 
used in previous work on RF in traceability [6, 11] is in 
the few hundreds of documents range. 

The corpora were built in the following manner: 
! We extracted the methods using the Eclipse built 
in parser.  The comments and identifiers from each 
method implementation were extracted. 
! The identifiers were split according to common 
naming conventions.  For example, “setValue”, 
“set_value”, “SETvalue”, etc. are all split to “set” and 
“value”.  We kept the original identifiers in the corpus, 
which would favor any query containing an identifier 
already known by the user. 
! We filtered out programming language specific 
keywords, as well as common English stop words9. 
! We used the Porter stemmer10 in order to map 
different forms of the same lexeme to a common root. 

3.1.3. Query formulation 
As mentioned before, the goal of IRRF is to allow 

the developer not to write manually defined queries.  
Hence, in the case study the developer used as the 
initial query the bug description and bug title contained 
in the bug or patch reports (i.e., he copied the bug 
description and title).  However, we eliminated any 
details referring to the implementation of the bug fix 
contained in these descriptions, prior to the study.  The 
query was then automatically transformed following 
the same steps as the corpus (i.e., identifier splitting, 
stop word removal, stemming).  

3.1.4. Assessment 
Tool support in concept location is geared towards 

reducing developers’ effort in finding the starting point 
of a change.  Previous work on concept location [14, 
16, 21] defined and used as an efficiency measure the 
number of source code documents that the user has to 
investigate before locating the point of change.  We 
use here the same measure with an added advantage.  
In previous work the cost for (re)formulating a query 
was never considered in evaluation (i.e., assumed to be 
                                                           
9 www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words 
10 http://tartarus.org/~martin/PorterStemmer/ 

zero).  In our case, the cost of (re)formulating a query 
is indeed almost zero, as the initial query is copied 
from the bug description and title, whereas subsequent 
queries are formulated automatically.  The number of 
methods investigated is automatically tracked as they 
are explicitly marked by the developer. 

In order to avoid the bias and the cost associated 
with user formulated queries, we do not consider 
manual query formulation as part of the methodology 
(see the first part of this section).  We eliminate this 
step from both methodologies (i.e., IR and IRRS based 
concept location) for this case study. 

For each change request, the base line is provided 
by the IR based concept location without query 
reformulation.  The initial query is run and the baseline 
efficiency measure is the highest ranking (k) of any of 
the target methods.  This means the user would have to 
investigate k methods to reach the target.  For the IRRF 
case the efficiency measure is the number of methods 
marked one way or another (i.e., relevant, irrelevant, or 
neutral) before the target was found or until the method 
fails (see the methodology described above) plus the 
last rank of the target method.  IRRF is considered to 
improve the baseline if its efficiency measure is lower 
than the baseline efficiency (i.e., fewer methods are 
investigated). 

3.2. Results and discussion 
The results presented and discussed here are 

aggregated and omit several intermediary steps from 
the study, such as: actual markings in each round for 
all cases, queries, intermediary ranking of target 
methods, complete change sets, etc.  The complete data 
collected during the case study is available online at 
www.cs.wayne.edu/~severe/IRRF. 

As explained in Section 3.1.1, we selected 10 
changes for each system (i.e., 30 total).  In 12 cases, at 
least one of the target methods was ranked in top 5 
after the initial query, hence we did not use RF in those 
cases.  Error! Reference source not found. 
aggregates the results of the concept location for the 
three systems considered, reflecting the changes for 
which we used RF: 7 for Eclipse, 6 for jEdit, and 5 for 
Adempiere. 

The Baseline column shows the positions of the 
target methods in the result list after the initial query.  
The best rank in each case where there is more than 
one target method is bold.  This is the efficiency 
measure in the baseline case (i.e., how many methods 
would the user need to investigate to find the best 
ranked target). 

The IRRF columns show the positions of the target 
methods at the end of the IRRF location process, 
whether it succeeded or not (see Section 3.1 for 
details).  N indicates the number of marked methods in 
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each round during IRRF.  Note that only the methods 
for which relevance was given are counted as one of 
the N methods ranked in a feedback round (i.e., 
methods marked neutral are not counted towards the N, 
yet they count towards the efficiency measure).  The 
number of methods analyzed by the developer before 
he stopped (i.e., the efficiency measure), either because 
a target method was found or because IRRF failed is 
reported in parenthesis (marked with m).  This number 
includes all the methods marked by the developer in all 
the rounds of feedback, including also the methods 
marked as neutral, plus the rank of the target method in 
the final round.  If one of the target methods was not 
ranked in the top 1,000 results, we denote its position 
as 1K+.  To complete the picture, the number of 
feedback rounds is also reported in parenthesis 
(denoted with r), including the (incomplete) round 
when the target is found.   

For example, row #2 in Eclipse, reads as follows.  
Baseline (17, 42, 47) means there are three target 
methods and the best ranked is on position 17.  IRRF 
with N=3 (4, 1, 2 (7m/3r)) means that one of the target 
methods (i.e., the second) was ranked #1 on the third 
round and the user marked a total of 7 methods to 
reach it (including the target method in the 3rd round).  

The two numbers to compare here are: 17 in the 
baseline vs. 7 in the RF case.  We consider that IRRF 
improves here and highlight the table cell with green.  
Cells marked with yellow show no improvement of 
IRRF, but they are interesting as the cumulative 
ranking of methods is better than in the baseline (the 
number of investigated methods needs to be added here 
to the ranks of the target methods for a proper 
comparison).  White cells indicate cases where IRRF 
does not improve the baseline.  The stars in the white 
cells indicate the cases when IRRF failed in finding the 
target method in a reasonable amount of steps. 

The data reveals that IRRF brings improvement 
over the baseline in 13 of the 18 changes (i.e., at least 
one cell in the row is green).  In 3 changes, the 
improvement is observed for all values of N (i.e., all 
three RF cells are green in these rows).  RF with N=1 
improved in 9 cases, RF with N=3 improved in 9 cases, 
and RF with N=5 improved in 8 cases, not all the same. 

More specifically, in Eclipse for 6 out of the 7 
change sets reported, IRRF retrieved one of the target 
methods more efficiently than the baseline.  In jEdit, 
the ratio was 3 to 3, and in Adempiere IRRF performed 
better in 4 out of 5 cases.  We did not observe a pattern 
of when one of the values of N performs better than the 

Table 1. Concept location results for Eclipse, jEdit and Adempiere 

Eclipse 
No. Defect Report# Baseline  IRRF with N=1 IRRF with N=3 IRRF with N=5 
1 Bug #13926 54 1 (16m/15r) 11 (51m/16r) 36 (50m/10r) 
2 Bug #23140 17,42,47 99, 1, 2 (9m/8r) 4, 1, 2 (7m/3r) 6, 4, 14 (9m/2r) 

3 Bug #19691 1K+, 368, 531, 
1K+, 108, 139 

1K+, 1K+, 1K+, 1K+, 
1K+, 1K+ (2m/2r) 

1K+, 1K+, 1K+, 1K+, 
1K+, 1K+ (7m/2r) 

1K+, 1K+, 1K+, 1K+, 
1K+, 1K+ (11m/2r) 

4 Bug #12118 9 1 (5m/5r) 1 (23m/8r) 4 (10m/2r) 
5 Bug #17707 8 1 (2m/2r) 1 (4m/2r) 2 (7m/2r) 
6 Bug #19686 428 448 (5m/5r) 3 (48m/16r)  5 (46m/9r) 
7 Bug #21062 583,56 1K+, 781 (2m/2r) 604, 1 (37m/13r) 1K+, 1K+ (20m/4r) 

jEdit 
1 Patch #1649033 40,87,22 70, 60, 50 (8m/7r) 39, 7, 42 (22m/7r) 30, 5, 33 (26m/5r) 
2 Patch # 1469996 296 1 (37m/36r) 289 (12m/4r) 5 (41m/9r) 
3 Patch #1593900 7 1 (6m/4r) 1 (5m/2r) 1 (7m/2r)* 
4 Patch # 1601830 47 216 (2m/2r) 242 (9m/3r) 146 (10m/2r) 
5 Patch #1607211 354 98 (5m/5r) 3 (36m/12r) 3 (28m/6r) 
6 Patch # 1275607 151 238 (4m/4r) 38 (48m/16r) 35 (50m/10r) 

Adempiere 
1 Patch #1605419 15,550 1, 11 (8m/7r) 3, 109 (17m/5r) 1, 81 (12m/3r) 
2 Patch #1599107 122 613 (6m/3r) 1K+ (8m/2r) 1K+ (12m/2r) 
3 Patch #1599116 7 1 (3m/2r) 1 (5m/2r) 1 (7m/2r)* 
4 Patch #1612136 58 141 (4m/3r) 1 (13m/5r) 1 (16m/4r) 
5 Patch #1628050 52 1 (3m/3r) 2 (5m/2r) 2 (7m/2r) 

 

Green – IRRF retrieves results more efficiently Yellow – IRRF retrieves a better cumulative ranking of the target methods. 
*IRRF performs as efficiently as the baseline 
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other ones, nor about the magnitude of the IRRF 
improvement over the baseline.  So, we can not 
formulate at this time rules such as “N=5 is a better 
choice than N=3 or N=1”.  Nor we can state that there 
is a correlation between the initial query and IRRF 
improvements. 

One interesting phenomenon that we observed is 
that for one change set in jEdit and for one in 
Adempiere IRRF did not improve the efficiency of the 
baseline (based on our working definition), however it 
achieved a better cumulative ranking of the target 
methods.  These two cases are marked with yellow in 
the table.  We highlight these cases as we believe is 
still an indication that RF brings some added benefit in 
these situations. 

Another interesting and rather unexpected 
phenomenon is that in some cases where the there are 
more target methods the baseline favors one of them, 
whereas IRRF helps retrieve another one faster.  See 
Bug #23140 in Eclipse and Patch #1649033 in JEdit 
(the yellow cell).  We do not speculate on this issue 
here, as it is orthogonal to the goal of the study, but it 
opens up an avenue for future research. 

We identified cases when neither the ranking of the 
first target method, nor the cumulative ranking of 
IRRF was better than in the case of the baseline (i.e., 
all white rows in the table).  Our initial assumption was 
“if the initial query is really poor, RF does not help 
much”.  Unfortunately, this is not true as there were 
several cases where the initial query was worse, yet 
IRRF improved drastically (i.e., by one order of 
magnitude).  For example, see Bug #19686 in Eclipse, 
Patch # 1469996, and Patch #1607211 in JEdit. 

We investigated the cases with poor IRRF 
performance.  For example, in the case of Bug #19691 
in Eclipse, we found that the methods the developer 
would consider as being relevant based on the bug 
description would in fact not be relevant, even if they 
contained related terms from the bug description.  The 
bug description is about exporting preferences for the 
team, whereas the target methods just contained 
"ignore" settings in the team preferences.  This case 
highlights the difficulty of concept location in practice.  
Change requests are often formulated in terms different 
that the source code, both linguistically and logically.  
We can safely conclude that IRRF brings 
improvements over IR based concept location in many 
cases, but it is far from being a silver bullet. 
3.3. Threats to validity 

In our case study, we reenacted changes already 
performed in software systems and automated the 
process of query formulation.  In practice, the user may 
reformulate the query along the way and IR may 
retrieve better results with the user re-formulated 

query.  Simply put, the case study approximates the 
situation when the developer is not good at writing 
queries.  We argue that the opposite case does not need 
RF.  In fact, as the results revealed, 12 of the 30 bug 
descriptions produced great initial queries.  It is 
important to clearly establish the cases where explicit 
RF helps.  

Our results are based on the feedback provided by 
only one user.  Different people might give different 
feedback to IRRF. 

We used only three values of N (i.e., 1, 3, and 5) in 
the case study and a single weighting scheme in the 
IRRF implementation.  We are aware of the fact that 
other values used of N might retrieve different results.  
However, these values are within the range of values 
usually adopted in the implementation of explicit 
relevance feedback and represent a reasonable amount 
of information for a user to analyze in one round of 
feedback.  The current set of weights used in our 
Rocchio implementation was chosen based on 
empirical evidence.  Other weights could lead to 
slightly different results. 

4. Related work 
Approaches to concept location in software differ 

primarily on what type of information is used to guide 
the developer while searching the code.  Dynamic 
techniques are based on the analysis of execution 
traces and focus on identifying features (i.e., concepts 
associated with user visible functionality of the 
system).  Static techniques use the textual information 
embedded in source code (i.e., comments and 
identifiers) and/or structural information about the 
software (e.g., program dependencies).  There are 
combined methods that use combinations of dynamic 
and static techniques.  Given that IRRF is meant to 
augment lexical based static concept location, we will 
only refer to them in this section.  A more 
comprehensive overview of concept location 
techniques is available in [21] and static techniques are 
discussed in [19]. 

Lexical base static concept location techniques rely 
on matching a user query to the text in the source code.  
Traditional searching methods are built using regular 
expression matching tools, such as grep.  Such 
techniques limit user quires to be formulated as regular 
expressions and do not provide a ranking list of results, 
but rather a simple list of matches. 

More sophisticated techniques rely on the use of IR 
methods and have the advantage (over regular 
expression matching) that allow the user to formulate 
natural language queries and the results are ranked.  
Marcus et al. [20] introduced such a technique, using 
LSI as the IR method.  Our approach is based on this 
technique, as described in Section 2.  The method was 
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later extended by using formal concept analysis to 
cluster the results of the search [22].  A different 
implementation of the method was done using Google 
Desktop Search [23], as the underlying IR engine.  
More recently, Lukins at al. proposed a variation of the 
LSI based technique, using LDA [16].  SNIAFL [29] is 
a related approach, which combines an IR technique 
with call graph information and falls under the 
category of combined concept location techniques. 

Related to IR based concept location is work on 
traceability link recovery, impact analysis, and 
recommendation systems.  We do not list here all these 
works, but rather explain how they relate and how they 
differ from our work.  Software artifacts are 
represented in different formats and textual 
information is the common denominator for all of 
them, hence IR methods have become widely used in 
tools that support traceability link recovery [1, 7, 11, 
15, 18] and in many recommendation systems [5].  In 
impact analysis [2, 4] the textual information indexed 
with the IR method is usually used in conjunction with 
structural information or historical information about 
changes.  On of the main differences between these 
applications of IR vs. concept location is that they use 
queries extracted from different artifacts, rather than 
user written.  This allows for automation in many cases 
and elimination of the user from the process.  By 
definition these techniques retrieve usually sets of 
documents, hence evaluation is different than in the 
case of concept location. 

Of particular interest to our work is the work of 
Hayes et al. [11] and De Lucia et al. [6, 8], which 
introduced RF in the context of traceability link 
recovery.  At technology level, our work is similar to 
these approaches, as we use same IR methods and 
similar RF implementations.  The difference is in the 
context, application, methodology, and evaluation.  In 
[11] the problem is to reduce the number of false 
positives when high level requirements are traced to 
low level requirements.  The context is the same in [8] 
except that several types of artifacts are considered 
there.  In both cases, there are no user queries and the 
results consist of traceability matrices, which are 
manually evaluated.  Basically, those approaches use 
RF to improve an essentially automated process.  Due 
to the manual effort needed in the evaluation and 
availability of data, experimental data is restricted to 
corpora with hundreds of documents at best.  In our 
application, we use corpora several order of magnitude 
larger, which is more typical for IR applications. 

5. Conclusions and future work 
We defined a new methodology for lexical based 

static concept location, which combines the IR based 
concept location with explicit relevance feedback.  The 

goal of the methodology is to alleviate the burden of 
query formulation on the developer. 

Our case study revealed that in most cases RF 
reduces developer effort over the IR based concept 
location, in the absence of manual query reformulation.  
It also showed that in some cases, especially when the 
initial query is poor, RF does not really help.  Our 
results are in line with previous work using RF [8, 11] 
in traceability link recovery.  In each work RF was 
found to improve the performance in many case, but 
not across the board in all cases.  Although our context 
and corpora are different than the classic use of RF on 
text retrieval and in requirements traceability, this 
application is subject to some of the same limitations. 

Future work will focus on specific issues.  We will 
compare different IR methods (e.g., LSI, LDA, VSM, 
etc.) used in IRRF.  We expect our results might be 
different than previous comparisons, where small 
corpora were used, which is often unsuitable for some 
statistical IR techniques.  We will also experiment with 
more system, more change request, and different ways 
to build corpora.  For example, we expect that if we 
eliminate the comments from the corpus, the queries 
will grow slower.  On the other hand, information will 
be lost.  We plan to analyze the trade-offs.  Different 
weighting options in RF will be also investigated.  
Intuitively, favoring irrelevant documents over relevant 
documents should help in concept location, yet our 
current results support the opposite. 

As far as the methodology is concerned we need to 
define a better heuristic that tells the user when to 
switch from RF to manual reformulation.  During 
reenactment we knew the end result, so the heuristic 
we used in the experiment is based on this.  In practice 
that would not work as is. 

We focused here on studying methodologies rather 
than users.  An obvious next step is to extend our 
research to study how developers perform RF.  After 
all, concept location is a user driven activity. 

6. References 
[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and 
Merlo, E., "Recovering Traceability Links between Code and 
Documentation", IEEE Transactions on Software 
Engineering, 28, 10, October 2002, pp. 970 - 983. 
[2] Antoniol, G., Canfora, G., Casazza, G., and Lucia, A., 
"Identifying the Starting Impact Set of a Maintenance 
Request: A Case Study", in Proceedings 4th European 
Conference on Software Maintenance and Reengineering, 
Zurich, Switzerland, Feb 29 - March 03 2000, pp. 227-231. 
[3] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., 
"The Concept Assignment Problem in Program 
Understanding", in Proceedings 15th IEEE/ACM 
International Conference on Software Engineering (ICSE'94) 
May 17-21 1993, pp. 482-498. 

 9



ICSM 2009 submission 

 10

[4] Canfora, G. and Cerulo, L., "Impact Analysis by Mining 
Software and Change Request Repositories", in Proceedings 
11th IEEE International Symposium on  Software Metrics 
(METRICS'05), September 19-22 2005, pp. 20-29. 
[5] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S., 
"Hipikat: A Project Memory for Software Development", 
IEEE Transactions on Software Engineering, 31, 6, June 
2005, pp. 446-465. 
[6] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G., 
"Can Information Retrieval Techniques Effectively Support 
Traceability Link Recovery?" in Proceedings 14th IEEE 
International Conference on Program Comprehension 
(ICPC'06), Athens, Greece, June 14-16 2006, pp. 307-316. 
[7] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G., 
"Recovering Traceability Links in Software Artefact 
Management Systems", ACM Transactions on Software 
Engineering and Methodology, 16, 4, 2007 
[8] De Lucia, A., Oliveto, R., and Sgueglia, P., "Incremental 
Approach and User Feedbacks: a Silver Bullet for 
Traceability Recovery", in Proceedings IEEE International 
Conference on Software Maintenance (ICSM'06), 
Philadelphia, Pennsylvania, 2006, pp. 299-309. 
[9] Dekhtyar, A., Hayes, J. H., and Larsen, J., "Make the 
Most of Your Time: How Should the Analyst Work with 
Automated Traceability Tools?" in Proceedings 3rd 
International Workshop on Predictor Models in Software 
Engineering, Minneapolis, MN, May 20 2007 
[10] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, 
Y. G., "CERBERUS: Tracing Requirements to Source Code 
Using Information Retrieval, Dynamic Analysis, and 
Program Analysis", in Proceedings 17th IEEE International 
Conference on Program Comprehension (ICPC'08), 
Amsterdam, The Netherlands, 2008, pp. 53-62. 
[11] Hayes, J. H., Dekhtyar, A., and Sundaram, S. K., 
"Advancing candidate link generation for requirements 
tracing: the study of methods", IEEE Transactions on 
Software Engineering, 32, 1, January 2006, pp. 4-19. 
[12] Joachims, T., "A probabilistic analysis of the Rocchio 
algorithm with TFIDF for text categorization", in 
Proceedings 14th International Conference on Machine 
Learning, 1997, pp. 143-151. 
[13] Landauer, T. K., Foltz, P. W., and Laham, D., "An 
Introduction to Latent Semantic Analysis", Discourse 
Processes, 25, 2&3, 1998, pp. 259-284. 
[14] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., 
"Feature Location via Information Retrieval based Filtering 
of a Single Scenario Execution Trace", in Proceedings 22nd 
IEEE/ACM International Conference on Automated Software 
Engineering, Atlanta, GA, November 5-9 2007, pp. 234-243. 
[15] Lormans, M. and Van Deursen, A., "Can LSI help 
Reconstructing Requirements Traceability in Design and 
Test?" in Proceedings 10th European Conference on 
Software Maintenance and Reengineering, 2006 pp. 47-56. 
[16] Lukins, S. K., Kraft, N. A., and Etzkorn, L., "Source 
Code Retrieval for Bug Localization Using Latent Dirichlet 
Allocation", in 15th IEEE Working Conference on Reverse 
Engineering. Antwerp, Belgium, 2008, pp. 155-164. 

[17] Manning, C. D., Raghavan, P., and Schütze, H., 
Introduction to Information Retrieval, Cambridge University 
Press, 2008. 
[18] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery 
of Traceability Links Between Software Documentation and 
Source Code", International Journal of Software Engineering 
and Knowledge Engineering, 15, 4, Oct. 2005, pp. 811-836. 
[19] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and 
Sergeyev, A., "Static Techniques for Concept Location in 
Object-Oriented Code", in Proceedings 13th IEEE 
International Workshop on Program Comprehension 
(IWPC'05), 2005, pp. 33-42. 
[20] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., 
"An Information Retrieval Approach to Concept Location in 
Source Code", in Proceedings 11th IEEE Working 
Conference on Reverse Engineering (WCRE'04), Delft, The 
Netherlands, November 9-12 2004, pp. 214-223. 
[21] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., 
Antoniol, G., and Rajlich, V., "Feature Location using 
Probabilistic Ranking of Methods based on Execution 
Scenarios and Information Retrieval", IEEE Transactions on 
Software Engineering, 33, 6, June 2007, pp. 420-432. 
[22] Poshyvanyk, D. and Marcus, D., "Combining Formal 
Concept Analysis with Information Retrieval for Concept 
Location in Source Code", in Proceedings 15th IEEE 
International Conference on Program Comprehension 
(ICPC'07), Banff, Alberta, Canada, June 2007, pp. 37-48. 
[23] Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., and 
Liu, D., "Source Code Exploration with Google ", in 
Proceedings 22nd IEEE International Conference on 
Software Maintenance (ICSM'06), Philadelphia, PA, 2006, 
pp. 334 - 338. 
[24] Rajlich, V. and Gosavi, P., "Incremental Change in 
Object-Oriented Programming", in IEEE Software, 2004, pp. 
2-9. 
[25] Robillard, M., "Topology Analysis of Software 
dependencies", ACM Transactions on Software Engineering 
and Methodologies (TOSEM), 17, 4, 2008, pp. 18-53. 
[26] Rocchio, J. J., "Relevance feedback in information 
retrieval", in The SMART Retrieval System - Experiments in 
Automatic Document Processing, Prentice Hall, 1971, pp. 
313-323. 
[27] Salton, G. and McGill, M., Introduction to Modern 
Information Retrieval, McGraw-Hill, 1983. 
[28] Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D., 
"Locating User Functionality in Old Code", in Proceedings 
IEEE International Conference on Software Maintenance 
(ICSM'92), Orlando, FL, November 1992, pp. 200-205. 
[29] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., 
"SNIAFL: Towards a Static Non-interactive Approach to 
Feature Location", ACM Transactions on Software 
Engineering and Methodologies (TOSEM), 15, 2, 2006, pp. 
195-226. 
 


	1. Introduction
	2. Concept location and relevance feedback
	2.1. IR based concept location
	2.2. Relevance feedback in IR
	2.3. IRRF based concept location
	2.3.1. Vector space model
	2.3.2. RF with Rocchio


	3. Case study
	3.1. Methodology
	3.1.1. Data - software and change sets
	3.1.2. Corpus creation
	3.1.3. Query formulation
	3.1.4. Assessment

	3.2. Results and discussion
	3.3. Threats to validity

	4. Related work
	5. Conclusions and future work
	6. References

