
ICSM 2009 submission

On the use of Relevance Feedback in IR-based Concept Location

Gregory Gay1, Sonia Haiduc2, Andrian Marcus2, Tim Menzies1
1Lane Department of Computer Science,

West Virginia University
Morgantown, WV, USA

2Department of Computer Science
Wayne State University

Detroit, MI, USA
gregoryg@csee.wvu.edu; sonja@wayne.edu; amarcus@wayne.edu; tim@menzies.us

Abstract

Concept location is a critical activity during
software evolution as it produces the location where a
change is to start in response to a modification
request, such as, a bug report or a new feature request.
Lexical based concept location techniques rely on
matching the text embedded in the source code to
queries formulated by the developers. The efficiency of
such techniques is strongly dependent on the ability of
the developer to write good queries. We propose an
approach to augment information retrieval (IR) based
concept location via an explicit relevance feedback
(RF) mechanism. RF is a two-part process in which
the developer judges existing results returned by a
search and the IR system uses this information to
perform a new search, returning more relevant
information to the user. A set of case studies
performed on open source software systems reveals the
impact of RF on the IR based concept location.

1. Introduction
Biggerstaff et al. [3] defined the concept

assignment problem as “… discovering human
oriented concepts and assigning them to their
implementation instances within a program …”. The
problem has been rephrased in the research community
in the past decades as concept location in software.
The redefinition relates it to the problem of feature
location in software [28], as features are regarded as (a
set of) concepts associated with a software system’s
functional requirements, reflected in user visible
functionality. Biggerstaff et al.’s early definition of the
problem needs to be instantiated for practical use. It
needs a well defined context, which in turn helps
define the operational goal and scope of concept
location. The context is defined by establishing the
software engineering task supported by concept
location, such as, change management, fault
localization, traceability link recovery, etc. This in
turn helps define the input and output parameters for
concept location: how are the human oriented concepts

described and what are the “implementation instances
within a program” referred to by Biggertsaff? For
example, Wilde et al.’s approach “is not expected to
cover all possible functionalities nor always to discover
all code segments associated with a functionality. It is
only intended to provide starting points for more
detailed exploration of the code” [28].

In our research, we define concept location in the
context of software change. The software change
process [24] starts with a modification request and
ends with a set of changes to the existing code and
addition of new code. The software maintainer
undertakes a set of activities to determine the parts of
the software that need to be changed: concept location,
impact analysis, change propagation, and refactoring.
Concept location starts with the change request and
ends when the developer finds the location in the
source code where the first change must be made (e.g.,
a class or a method). The other activities start with the
result of concept location and establish the extent of
the change.

In our operating context (i.e., software change), the
developers must decide where in the code they will
start the change, hence their involvement is critical.
The challenge here is to make sure the tools and
methodologies work equally well for users with a wide
range of expertise and abilities.

Marcus et al. [20] proposed an Information
Retrieval (IR) based approach to concept location. The
idea of the approach is to treat source code as a test
corpus and use IR methods to index the corpus and
build a search engine, which allows developers to
search the source code much like they search other
source of digital information (e.g., the internet). The
methodology was further refined in [22] and also
combined with other feature location techniques [10,
14, 16, 21, 29]. This family of approaches relies on the
user to formulate a query and if she does not identify
fast enough the location of the change, then she
rewrites the query and restarts the search.

Two issues remained constant in all these methods:
(1) each approach is highly sensitive to the ability of

1

ICSM 2009 submission

the user to write good queries; and (2) the knowledge
gained by the user during the location process is not
captured explicitly. Specifically, developers start the
process from a change request and they either use it as
is as a query or they extract a set of words from the
change request and use them as a query. Extracting a
good query from a change request depends on the
experience of the developer and on her knowledge of
the system. Previous work showed that developers
tend to write queries with significantly different
performance starting from the same change request
[14]. As the developer investigates the results of the
first search, she learns more about the system and
eventually decides to improve the query by adding or
removing words. There is a gap between the source
code representation as classes and methods (or other
decomposition units) and the words in a query and
some developers can fill this gap easier than others.

In this paper we propose and evaluate an approach
aimed at addressing these two issues, based on explicit
relevance feedback (RF) provided by the user. We call
the approach IRRF (Information Retrieval with
Relevance Feedback) based concept location. The
approach is motivated by similar work on traceability
[8, 11] in software.

We present a case study where we explore under
what circumstances IRRF improves the classic IR
based concept location. We reenact changes associated
with several bug fixes in three open source projects.

2. Concept location and relevance
feedback

Concept location is sometimes regarded as an
instance of an information seeking activity, where
developers search and browse the source code to find
the location to start the change. Different tools target
the searching or the navigation aspects of the process.
Regardless of the tool support, most concept location
methodologies are interactive and iterative, as they
require the user to decide whether a certain element of
the source code, recommended by a tool, is relevant or
not to the change. These decisions affect subsequent
steps in the process (i.e., navigation or new search).

Our new concept location methodology combines
the IR based concept location [20] with explicit RF
from the user, which is used to formulate new queries.
This section describes each technology and the
proposed combination.

2.1. IR based concept location
Lexical based static concept location considers

source code a text corpus and leverages the
information encoded in identifiers and comments from
the source code to guide the search. As such, it can be
seen as a classic IR problem: given a document

collection and a query, determine those documents
from the collection that are relevant to the query.
Given that relevance is defined with respect to a textual
query, user involvement is necessary to convert this
relevance measure into a change related decision.

IR based concept location, proposed in [20], is
based on the above ideas. It implies the use of an IR
method to index the corpus extracted from the software
and uses the index to compute a similarity measure
between the document and a query. It is composed of
five major steps, which may be instantiated differently
based on the type of IR method used and how the
corpus is created:
1. Corpus creation. The source code is parsed using
a developer-defined granularity level (i.e., methods or
classes) and documents are extracted from the source
code. Each method (or class) will have a
corresponding document in the corpus. Natural
language processing (NLP) techniques and other
filtering techniques can be applied to the corpus.
2. Indexing. The corpus is indexed using the IR
method and a mathematical representation of the
corpus is created. Each document (hence each method
or class) has a corresponding index.
3. Query formulation. A developer selects a set of
words that describe the concept to be located. This set
of words constitutes the query. The tool checks
whether the words from the query are present in the
vocabulary of the source code. If a word is not present,
then the tool eliminates the word from the initial query.
If filtering or NLP was used in the corpus creation, the
query will get the same treatment.
4. Ranking documents. Similarities between the
query and every document from the source code are
computed. The similarity measure depends on the IR
method used. Based on these measures the documents
in the corpus are ranked with respect to the query.
5. Results examination. The developer examines the
ranked list of source code documents, starting with
documents with highest similarities. For every source
code document examined, a decision is required
whether the document will be changed or not. If it will
be changed, then the search succeeded and concept
location ends. Else, if new knowledge obtained from
the investigated documents helps formulate a better
query (e.g., narrow down the search criteria), then step
3 should be reapplied, else the next document in the list
should be examined.
2.2. Relevance feedback in IR

Relevance feedback analysis is a technique to
utilize user input to improve the performance of
retrieval algorithms. Relevance feedback has been one
of the successes of information retrieval research for
the past 30 years [17]. For example, the Text Retrieval

 2

ICSM 2009 submission

Conference1 (co-sponsored by the National Institute of
Standards and Technology - NIST and the U.S.
Department of Defense) has a relevance feedback
track. While the applications of relevance feedback
and type of user input to relevance feedback have
changed over the years, the actual algorithms have not
changed much. Most algorithms are either pure
statistical word based, or are domain dependent. There
is no general agreement of what the best RF approach
is, or what the relative benefits and costs of the various
approaches are. In part, that is because RF is hard to
study, evaluate, and compare. It is difficult to separate
out the effects of an initial retrieval run, the decision
procedure to determine what documents will be looked
at, the user dependent relevance judgment procedure
(including interface), and the actual RF reformulation
algorithm. Our case study aims at evaluating only a
subset of these aspects of RF.

There are three types of feedback: explicit, implicit,
and blind (“pseudo”) feedback. In our approach, we
chose to implement an explicit RF mechanism.
Explicit feedback is obtained from users by having
them indicate the relevance of a document retrieved for
a query. Users may indicate relevance explicitly using
a binary or graded relevance system. Binary relevance
feedback indicates that a document is either relevant or
irrelevant for a given query. Graded relevance
feedback indicates the relevance of a document to a
query on a scale using numbers, letters, or descriptions
(such as "not relevant", “somewhat relevant",
"relevant", or "very relevant").

Classic text retrieval applications of RF make
several assumptions [17], which are not always true in
the case of source code text and make the problem
more challenging for us:
! The user has sufficient knowledge to formulate the
initial query. This is not always the case when it
comes to software, as developers might be unfamiliar
with a software system or they might not have enough
knowledge about a particular problem domain.
! There are patterns of term distribution in the
relevant vs. non-relevant documents: (i) term
distribution in relevant documents will be similar; (ii)
term distribution in non-relevant documents will be
different from that in relevant documents (i.e.,
similarities between relevant and non-relevant
documents are small). There is no evidence so far that
this is true for source code.

RF has some known limitations, some of which we
are also faced with:
! It is often harder to understand why a particular
document was retrieved after applying relevance

1 http://trec.nist.gov/

feedback. We found this to be quite true in the case of
source code based corpora.
! It is easy to decrease effectiveness (i.e., one
irrelevant word can undo the good caused by lots of
good words). This is hard to judge in our case, but
quite likely.
! Long queries are inefficient for a typical IR engine
and we found that source code based corpora tends to
increase query length significantly and rapidly.

2.3. IRRF based concept location
The IRRF based concept location combines the IR

based concept location described in Section 2.1 with an
explicit RF mechanism. The new concept location
methodology is defined as follows:
1. Corpus creation – same as IR.
2. Indexing – same as IR.
3. Query formulation – same as IR.
4. Ranking documents – same as IR.
5. Results examination. The developer examines the
top N documents in the ranked list of results. For
every source code document examined, a decision is
required whether the document will be changed or not.
If it will be changed, then the search succeeded and
concept location ends. Else, the user marks the
document as relevant or irrelevant. After the N
documents are marked a new query is automatically
formulated and the methodology resumes at step 4. If
several rounds of feedback do not result in reaching the
result, then the query may be reformulated manually by
the user and resume at step 4.

In order to provide tool support for the IRRF
methodology, several options are available. There are
several options on how to generate the corpus from the
source code, such as: document granularity (e.g.,
method, class, etc.), identifier splitting (i.e., keep
original identifier or not), stop word removal, keyword
removal, stemming, and comments inclusion. Some of
these options are programming language specific.
Section 3 provides details on the options we used in the
evaluation. Indexing can be done with a variety of IR
methods. The initial query formulation can be done by
the developer or automatically extracted from the
change request (i.e., use the entire change request as
the query).

2.3.1. Vector space model
The original IR based concept location technique

[20] was built around Latent Semantic Indexing (LSI)
[13], an advanced IR method. Researchers
investigated the use of other IR techniques , such as
Vector Space Models (VSM) [27], Latent Dirichlet
Allocation (LDA), or Bayes classifiers for concept
location and other related activities (e.g., traceability
link recovery). So far, there is no clear winner among
these techniques. In consequence, we decided to use

 3

ICSM 2009 submission

here a VSM technique, implemented in Apache
Lucene2. Our choice is motivated also by the fact that
traditional RF methods were developed specifically for
this type of IR technique.

In VSM, a vector model of a document d is a vector
of words weights that span over the number of words
in the corpus. The weights for each word are
computed based on the term frequency of that word in
d and the inverse document frequency. The similarity
between two documents is computed as the cosine
between their corresponding vector models.

2.3.2. RF with Rocchio
There are several options to implement an RF

mechanism. One of the most popular approaches is the
Rocchio relevance feedback method [26], used in
conjunction with a VSM indexing technique. We
implemented our own version of Rocchio, which
integrates with Apache Lucene and works in the
following way. When analyzing the top ranked
methods, the user is asked to judge the current method
as relevant, irrelevant, or neutral to the current change
task. Given a set of documents DQ encompassed by
query Q, let RQ be the subset of relevant documents
and IQ the set of irrelevant documents to the query.
The original query Q can be then transformed by
adding terms from RQ and removing terms from IQ.
This mechanism is meant to bring the query closer to
the relevant documents and drive it away from the
irrelevant documents in the vector space. The new
query is formulated as follows:

""
##

$%&
QQ IdRd QQ

d
I

d
R

QQ
||||

' '() (1)

where !, ", and # are weighting parameters and d
represents a document and its associated vector. The
relevance feedback can be given by the user in several
feedback rounds and the query is updated after each
round.

The Rocchio technique is recursive. Each round, a
new query is generated based on the query generated in
the previous round. The three constants !, ", and # are
provided so that a level of importance can be specified
by the user for the initial query, the relevant documents
and the irrelevant documents. According to [9],
placing emphasis on the relevant documents may
improve the recall (new relevant documents may be
found) while emphasizing the irrelevant documents
may affect precision (false positives may be removed).
Joachims recommends weighting the positive
information four times higher than the negative [12].
De Lucia et al. [8] advocates using !=1, "=0.75, and
#=0.25 (i.e., relevant documents are three times more
important than irrelevant ones). Our implementation

2 http://lucene.apache.org/java/docs/

follows a similar line of thought, setting values of !=1,
"=0.5, and #=0.15 for the three weighting parameters.
We tried other sets of weights (!=1, "=0.75, and
#=0.25 and !=1, "=1, and #=1), but the final set of
weights seemed to yield the best performance.

This type of query expansion is still prone to noise
as certain common, but unimportant, terms may be
added to the query. To filter this noise and improve
precision, the system used in this paper only allows
terms to be added to the query if they appear in less
than 25% of the corpus.

3. Case study
As mentioned before, we developed IRRF to

address several issues we learned in our experience
with concept location. IR based concept location
assumes the developers read the source code and
reformulate the query if they did not locate the target
methods. We found that most programmers are good
at judging whether a method is relevant to a change or
not, but their ability to formulate a good natural
language query based on their knowledge of the
software varies quite a bit. Developers have a hard
time deciding what is wrong with their previous query
and how to make it better. IRRF eliminates this step in
the process and allows developers to focus on what
they know best (i.e., source code rather than queries)
by reformulating the queries automatically. Earlier
work on traceability [7, 11] showed that RF improves
an IR task, but not in all cases. Our assumption is that
IRRF improves the IR based concept location (i.e.,
reduces developer effort) and the goal of the case study
we performed is to investigate under what
circumstances this is true, given that our approach has
a different context than the traceability work.

3.1. Methodology
The case study consists of the reenactment of past

changes in open source software (i.e., we know which
methods were modified in response to the change
request). The modified methods form the change set,
and we call these methods target methods. This
methodology has been used in previous work on
evaluating concept location techniques [14, 16, 21]. In
our case study, one developer performed the concept
location reenactment using IRRF, given a set of change
requests. He has seven years of programming
experience (five in Java) and he was not familiar with
the source code used in the study. For each change
request his task was to locate one of the methods from
the change set, based on the following scenario:
! He starts by running a query based on the change
request, called the initial query.
! If any one of the target methods is among the top 5
methods in the ranked list of results, then he stops and

 4

ICSM 2009 submission

selects another change request, as RF is not needed in
this case (i.e., IR based concept location will reach the
method fast enough).
! Else he provides RF in several rounds. In each
round, the developer marks the N top ranked methods
as being relevant or irrelevant. If he cannot judge the
relevancy of a method, the he marks the document as
neutral and proceeds to the next document, increasing
the size of the set of marked methods set by one.
! IRRF automatically reformulates the query based
on the feedback provided by the developer and another
round of feedback begins. We keep track of the
number of methods marked by the developer.
! After each query is run, based on the positions of
the target methods in the ranked list of search results
and on the number of methods marked, the following
decisions are made:

a. If any of the target methods is located in the
top N documents, then STOP; consider IRRF
successful and a target method found.
b. If for two consecutive feedback rounds the
positions of the target methods declined in the
ranked list of results, then STOP; consider that
IRRF failed (i.e., the developer needs to
reformulate the query manually).
c. If more than 50 methods were marked by the
developer, then STOP; consider that IRRF failed
(i.e., the developer needs to reformulate the query
manually).

The values used for N vary and the performance of
IRRF depends on it. The most commonly used values
range from 1 to 10. We investigated the results of
IRRF for three values of N: 1, 3, and 5, which are
recommended values in recent studies for presenting
lists of results to developers for investigation [25].
Each reenactment was done three times by the
developer, the difference from case to case was the
number N of marked methods in one round.

3.1.1. Data - software and change sets
We chose as the objects of the case study three

open source systems: Eclipse3, JEdit4, and Adempiere5.
All three systems have an active community and a rich
history of changes. They all have online bug tracking
systems, where bugs are reported and patches are
submitted for review.

Eclipse is an integrated development environment
developed in Java. For our case study, we considered
version 2.0 of the system, which has approximately 2.5
millions lines of code and 7,500 classes. JEdit is an
editor developed for programmers and it comes with a
series of plugins which add extra features to its core

3 http://www.eclipse.org/
4 http://www.jedit.org/
5 http://www.adempiere.com/

functionality. It is developed in Java and version 4.2
used in this case study has approximately 300,000 lines
of code and 750 classes. Adempiere is a commons-
based peer-production of open source enterprise
resource planning applications. It is developed in Java
and it has approximately 330,000 lines of code and
1,900 classes in version 3.1.0, which was used in our
case study.

We used the history of a software system in order
to extract real change sets from the source code.
Specifically, we used approved patches of documented
bugs for extracting the change sets. The bug
descriptions are considered to be the change requests.
This approach has been used in previous work on
evaluating concept location techniques [14, 16, 21].
Some changes involve the addition of new methods.
We do not, however, include these methods in the
change sets, as they did not exist in the version that a
developer would need to investigate in order to find the
place to implement the change. For each of the
systems, we analyzed their online defect tracking
systems and manually selected a set of bugs to extract
change sets for our case study.

The Eclipse community uses the open-source bug
tracking system BugZilla6 to keep track of bugs in the
system. Each bug has an associated bug report, which
consists of several sections, one of which is the bug
description. Sometimes the patches used to fix the
bugs are also contained in the bug report, as
attachments. They are usually in the form of diff files,
containing the lines of code that changed between the
version of the software where the bug was reported and
the version where the bug was fixed. For our case
study, we chose an initial set of 10 bugs reported in
version 2.0 of the system, for which the patches were
available in their bug reports.

For jEdit7 and Adempiere8, we analyzed the bug
tracking systems hosted on the projects’
sourceforge.net website. Both projects have systems
that keep track of the patches submitted for known
bugs in the source code. In these trackers, each patch
has an associated report where the changes
implemented in the patch are described in a diff file
attached to the report. We selected for each system 10
initial patches for which a good description of the bug
fixed by the patch was available, either in the
description of the patch or in a separate bug report. All
the patches we selected for jEdit were submitted and
their corresponding bugs reported after version 4.2 of
the system was released. For Adempiere patches were
selected after the release of version 3.1.0.

6 https://bugs.eclipse.org/bugs/
7 http://sourceforge.net/tracker/?group_id=588&atid=300588
8 http://sourceforge.net/tracker/?atid=879334&group_id=176962

 5

ICSM 2009 submission

Based on the patches reported for the three systems,
we constructed the 10 change sets for each system. All
change sets contained between one and six target
methods.

3.1.2. Corpus creation
We extracted a corpus for each of the three

systems. We used the version of the software in which
the bugs chosen in the previous step were reported.
We mapped each method in the source code to a
document in our corpus. The Eclipse corpus has
74,996 documents, the JEdit corpus has 5,366
documents, and the Adempiere corpus has 28,622
documents. By comparison, the size of the corpora
used in previous work on RF in traceability [6, 11] is in
the few hundreds of documents range.

The corpora were built in the following manner:
! We extracted the methods using the Eclipse built
in parser. The comments and identifiers from each
method implementation were extracted.
! The identifiers were split according to common
naming conventions. For example, “setValue”,
“set_value”, “SETvalue”, etc. are all split to “set” and
“value”. We kept the original identifiers in the corpus,
which would favor any query containing an identifier
already known by the user.
! We filtered out programming language specific
keywords, as well as common English stop words9.
! We used the Porter stemmer10 in order to map
different forms of the same lexeme to a common root.

3.1.3. Query formulation
As mentioned before, the goal of IRRF is to allow

the developer not to write manually defined queries.
Hence, in the case study the developer used as the
initial query the bug description and bug title contained
in the bug or patch reports (i.e., he copied the bug
description and title). However, we eliminated any
details referring to the implementation of the bug fix
contained in these descriptions, prior to the study. The
query was then automatically transformed following
the same steps as the corpus (i.e., identifier splitting,
stop word removal, stemming).

3.1.4. Assessment
Tool support in concept location is geared towards

reducing developers’ effort in finding the starting point
of a change. Previous work on concept location [14,
16, 21] defined and used as an efficiency measure the
number of source code documents that the user has to
investigate before locating the point of change. We
use here the same measure with an added advantage.
In previous work the cost for (re)formulating a query
was never considered in evaluation (i.e., assumed to be

9 www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words
10 http://tartarus.org/~martin/PorterStemmer/

zero). In our case, the cost of (re)formulating a query
is indeed almost zero, as the initial query is copied
from the bug description and title, whereas subsequent
queries are formulated automatically. The number of
methods investigated is automatically tracked as they
are explicitly marked by the developer.

In order to avoid the bias and the cost associated
with user formulated queries, we do not consider
manual query formulation as part of the methodology
(see the first part of this section). We eliminate this
step from both methodologies (i.e., IR and IRRS based
concept location) for this case study.

For each change request, the base line is provided
by the IR based concept location without query
reformulation. The initial query is run and the baseline
efficiency measure is the highest ranking (k) of any of
the target methods. This means the user would have to
investigate k methods to reach the target. For the IRRF
case the efficiency measure is the number of methods
marked one way or another (i.e., relevant, irrelevant, or
neutral) before the target was found or until the method
fails (see the methodology described above) plus the
last rank of the target method. IRRF is considered to
improve the baseline if its efficiency measure is lower
than the baseline efficiency (i.e., fewer methods are
investigated).

3.2. Results and discussion
The results presented and discussed here are

aggregated and omit several intermediary steps from
the study, such as: actual markings in each round for
all cases, queries, intermediary ranking of target
methods, complete change sets, etc. The complete data
collected during the case study is available online at
www.cs.wayne.edu/~severe/IRRF.

As explained in Section 3.1.1, we selected 10
changes for each system (i.e., 30 total). In 12 cases, at
least one of the target methods was ranked in top 5
after the initial query, hence we did not use RF in those
cases. Error! Reference source not found.
aggregates the results of the concept location for the
three systems considered, reflecting the changes for
which we used RF: 7 for Eclipse, 6 for jEdit, and 5 for
Adempiere.

The Baseline column shows the positions of the
target methods in the result list after the initial query.
The best rank in each case where there is more than
one target method is bold. This is the efficiency
measure in the baseline case (i.e., how many methods
would the user need to investigate to find the best
ranked target).

The IRRF columns show the positions of the target
methods at the end of the IRRF location process,
whether it succeeded or not (see Section 3.1 for
details). N indicates the number of marked methods in

 6

ICSM 2009 submission

each round during IRRF. Note that only the methods
for which relevance was given are counted as one of
the N methods ranked in a feedback round (i.e.,
methods marked neutral are not counted towards the N,
yet they count towards the efficiency measure). The
number of methods analyzed by the developer before
he stopped (i.e., the efficiency measure), either because
a target method was found or because IRRF failed is
reported in parenthesis (marked with m). This number
includes all the methods marked by the developer in all
the rounds of feedback, including also the methods
marked as neutral, plus the rank of the target method in
the final round. If one of the target methods was not
ranked in the top 1,000 results, we denote its position
as 1K+. To complete the picture, the number of
feedback rounds is also reported in parenthesis
(denoted with r), including the (incomplete) round
when the target is found.

For example, row #2 in Eclipse, reads as follows.
Baseline (17, 42, 47) means there are three target
methods and the best ranked is on position 17. IRRF
with N=3 (4, 1, 2 (7m/3r)) means that one of the target
methods (i.e., the second) was ranked #1 on the third
round and the user marked a total of 7 methods to
reach it (including the target method in the 3rd round).

The two numbers to compare here are: 17 in the
baseline vs. 7 in the RF case. We consider that IRRF
improves here and highlight the table cell with green.
Cells marked with yellow show no improvement of
IRRF, but they are interesting as the cumulative
ranking of methods is better than in the baseline (the
number of investigated methods needs to be added here
to the ranks of the target methods for a proper
comparison). White cells indicate cases where IRRF
does not improve the baseline. The stars in the white
cells indicate the cases when IRRF failed in finding the
target method in a reasonable amount of steps.

The data reveals that IRRF brings improvement
over the baseline in 13 of the 18 changes (i.e., at least
one cell in the row is green). In 3 changes, the
improvement is observed for all values of N (i.e., all
three RF cells are green in these rows). RF with N=1
improved in 9 cases, RF with N=3 improved in 9 cases,
and RF with N=5 improved in 8 cases, not all the same.

More specifically, in Eclipse for 6 out of the 7
change sets reported, IRRF retrieved one of the target
methods more efficiently than the baseline. In jEdit,
the ratio was 3 to 3, and in Adempiere IRRF performed
better in 4 out of 5 cases. We did not observe a pattern
of when one of the values of N performs better than the

Table 1. Concept location results for Eclipse, jEdit and Adempiere

Eclipse
No. Defect Report# Baseline IRRF with N=1 IRRF with N=3 IRRF with N=5
1 Bug #13926 54 1 (16m/15r) 11 (51m/16r) 36 (50m/10r)
2 Bug #23140 17,42,47 99, 1, 2 (9m/8r) 4, 1, 2 (7m/3r) 6, 4, 14 (9m/2r)

3 Bug #19691 1K+, 368, 531,
1K+, 108, 139

1K+, 1K+, 1K+, 1K+,
1K+, 1K+ (2m/2r)

1K+, 1K+, 1K+, 1K+,
1K+, 1K+ (7m/2r)

1K+, 1K+, 1K+, 1K+,
1K+, 1K+ (11m/2r)

4 Bug #12118 9 1 (5m/5r) 1 (23m/8r) 4 (10m/2r)
5 Bug #17707 8 1 (2m/2r) 1 (4m/2r) 2 (7m/2r)
6 Bug #19686 428 448 (5m/5r) 3 (48m/16r) 5 (46m/9r)
7 Bug #21062 583,56 1K+, 781 (2m/2r) 604, 1 (37m/13r) 1K+, 1K+ (20m/4r)

jEdit
1 Patch #1649033 40,87,22 70, 60, 50 (8m/7r) 39, 7, 42 (22m/7r) 30, 5, 33 (26m/5r)
2 Patch # 1469996 296 1 (37m/36r) 289 (12m/4r) 5 (41m/9r)
3 Patch #1593900 7 1 (6m/4r) 1 (5m/2r) 1 (7m/2r)*
4 Patch # 1601830 47 216 (2m/2r) 242 (9m/3r) 146 (10m/2r)
5 Patch #1607211 354 98 (5m/5r) 3 (36m/12r) 3 (28m/6r)
6 Patch # 1275607 151 238 (4m/4r) 38 (48m/16r) 35 (50m/10r)

Adempiere
1 Patch #1605419 15,550 1, 11 (8m/7r) 3, 109 (17m/5r) 1, 81 (12m/3r)
2 Patch #1599107 122 613 (6m/3r) 1K+ (8m/2r) 1K+ (12m/2r)
3 Patch #1599116 7 1 (3m/2r) 1 (5m/2r) 1 (7m/2r)*
4 Patch #1612136 58 141 (4m/3r) 1 (13m/5r) 1 (16m/4r)
5 Patch #1628050 52 1 (3m/3r) 2 (5m/2r) 2 (7m/2r)

Green – IRRF retrieves results more efficiently Yellow – IRRF retrieves a better cumulative ranking of the target methods.
*IRRF performs as efficiently as the baseline

 7

ICSM 2009 submission

other ones, nor about the magnitude of the IRRF
improvement over the baseline. So, we can not
formulate at this time rules such as “N=5 is a better
choice than N=3 or N=1”. Nor we can state that there
is a correlation between the initial query and IRRF
improvements.

One interesting phenomenon that we observed is
that for one change set in jEdit and for one in
Adempiere IRRF did not improve the efficiency of the
baseline (based on our working definition), however it
achieved a better cumulative ranking of the target
methods. These two cases are marked with yellow in
the table. We highlight these cases as we believe is
still an indication that RF brings some added benefit in
these situations.

Another interesting and rather unexpected
phenomenon is that in some cases where the there are
more target methods the baseline favors one of them,
whereas IRRF helps retrieve another one faster. See
Bug #23140 in Eclipse and Patch #1649033 in JEdit
(the yellow cell). We do not speculate on this issue
here, as it is orthogonal to the goal of the study, but it
opens up an avenue for future research.

We identified cases when neither the ranking of the
first target method, nor the cumulative ranking of
IRRF was better than in the case of the baseline (i.e.,
all white rows in the table). Our initial assumption was
“if the initial query is really poor, RF does not help
much”. Unfortunately, this is not true as there were
several cases where the initial query was worse, yet
IRRF improved drastically (i.e., by one order of
magnitude). For example, see Bug #19686 in Eclipse,
Patch # 1469996, and Patch #1607211 in JEdit.

We investigated the cases with poor IRRF
performance. For example, in the case of Bug #19691
in Eclipse, we found that the methods the developer
would consider as being relevant based on the bug
description would in fact not be relevant, even if they
contained related terms from the bug description. The
bug description is about exporting preferences for the
team, whereas the target methods just contained
"ignore" settings in the team preferences. This case
highlights the difficulty of concept location in practice.
Change requests are often formulated in terms different
that the source code, both linguistically and logically.
We can safely conclude that IRRF brings
improvements over IR based concept location in many
cases, but it is far from being a silver bullet.
3.3. Threats to validity

In our case study, we reenacted changes already
performed in software systems and automated the
process of query formulation. In practice, the user may
reformulate the query along the way and IR may
retrieve better results with the user re-formulated

query. Simply put, the case study approximates the
situation when the developer is not good at writing
queries. We argue that the opposite case does not need
RF. In fact, as the results revealed, 12 of the 30 bug
descriptions produced great initial queries. It is
important to clearly establish the cases where explicit
RF helps.

Our results are based on the feedback provided by
only one user. Different people might give different
feedback to IRRF.

We used only three values of N (i.e., 1, 3, and 5) in
the case study and a single weighting scheme in the
IRRF implementation. We are aware of the fact that
other values used of N might retrieve different results.
However, these values are within the range of values
usually adopted in the implementation of explicit
relevance feedback and represent a reasonable amount
of information for a user to analyze in one round of
feedback. The current set of weights used in our
Rocchio implementation was chosen based on
empirical evidence. Other weights could lead to
slightly different results.

4. Related work
Approaches to concept location in software differ

primarily on what type of information is used to guide
the developer while searching the code. Dynamic
techniques are based on the analysis of execution
traces and focus on identifying features (i.e., concepts
associated with user visible functionality of the
system). Static techniques use the textual information
embedded in source code (i.e., comments and
identifiers) and/or structural information about the
software (e.g., program dependencies). There are
combined methods that use combinations of dynamic
and static techniques. Given that IRRF is meant to
augment lexical based static concept location, we will
only refer to them in this section. A more
comprehensive overview of concept location
techniques is available in [21] and static techniques are
discussed in [19].

Lexical base static concept location techniques rely
on matching a user query to the text in the source code.
Traditional searching methods are built using regular
expression matching tools, such as grep. Such
techniques limit user quires to be formulated as regular
expressions and do not provide a ranking list of results,
but rather a simple list of matches.

More sophisticated techniques rely on the use of IR
methods and have the advantage (over regular
expression matching) that allow the user to formulate
natural language queries and the results are ranked.
Marcus et al. [20] introduced such a technique, using
LSI as the IR method. Our approach is based on this
technique, as described in Section 2. The method was

 8

ICSM 2009 submission

later extended by using formal concept analysis to
cluster the results of the search [22]. A different
implementation of the method was done using Google
Desktop Search [23], as the underlying IR engine.
More recently, Lukins at al. proposed a variation of the
LSI based technique, using LDA [16]. SNIAFL [29] is
a related approach, which combines an IR technique
with call graph information and falls under the
category of combined concept location techniques.

Related to IR based concept location is work on
traceability link recovery, impact analysis, and
recommendation systems. We do not list here all these
works, but rather explain how they relate and how they
differ from our work. Software artifacts are
represented in different formats and textual
information is the common denominator for all of
them, hence IR methods have become widely used in
tools that support traceability link recovery [1, 7, 11,
15, 18] and in many recommendation systems [5]. In
impact analysis [2, 4] the textual information indexed
with the IR method is usually used in conjunction with
structural information or historical information about
changes. On of the main differences between these
applications of IR vs. concept location is that they use
queries extracted from different artifacts, rather than
user written. This allows for automation in many cases
and elimination of the user from the process. By
definition these techniques retrieve usually sets of
documents, hence evaluation is different than in the
case of concept location.

Of particular interest to our work is the work of
Hayes et al. [11] and De Lucia et al. [6, 8], which
introduced RF in the context of traceability link
recovery. At technology level, our work is similar to
these approaches, as we use same IR methods and
similar RF implementations. The difference is in the
context, application, methodology, and evaluation. In
[11] the problem is to reduce the number of false
positives when high level requirements are traced to
low level requirements. The context is the same in [8]
except that several types of artifacts are considered
there. In both cases, there are no user queries and the
results consist of traceability matrices, which are
manually evaluated. Basically, those approaches use
RF to improve an essentially automated process. Due
to the manual effort needed in the evaluation and
availability of data, experimental data is restricted to
corpora with hundreds of documents at best. In our
application, we use corpora several order of magnitude
larger, which is more typical for IR applications.

5. Conclusions and future work
We defined a new methodology for lexical based

static concept location, which combines the IR based
concept location with explicit relevance feedback. The

goal of the methodology is to alleviate the burden of
query formulation on the developer.

Our case study revealed that in most cases RF
reduces developer effort over the IR based concept
location, in the absence of manual query reformulation.
It also showed that in some cases, especially when the
initial query is poor, RF does not really help. Our
results are in line with previous work using RF [8, 11]
in traceability link recovery. In each work RF was
found to improve the performance in many case, but
not across the board in all cases. Although our context
and corpora are different than the classic use of RF on
text retrieval and in requirements traceability, this
application is subject to some of the same limitations.

Future work will focus on specific issues. We will
compare different IR methods (e.g., LSI, LDA, VSM,
etc.) used in IRRF. We expect our results might be
different than previous comparisons, where small
corpora were used, which is often unsuitable for some
statistical IR techniques. We will also experiment with
more system, more change request, and different ways
to build corpora. For example, we expect that if we
eliminate the comments from the corpus, the queries
will grow slower. On the other hand, information will
be lost. We plan to analyze the trade-offs. Different
weighting options in RF will be also investigated.
Intuitively, favoring irrelevant documents over relevant
documents should help in concept location, yet our
current results support the opposite.

As far as the methodology is concerned we need to
define a better heuristic that tells the user when to
switch from RF to manual reformulation. During
reenactment we knew the end result, so the heuristic
we used in the experiment is based on this. In practice
that would not work as is.

We focused here on studying methodologies rather
than users. An obvious next step is to extend our
research to study how developers perform RF. After
all, concept location is a user driven activity.

6. References
[1] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E., "Recovering Traceability Links between Code and
Documentation", IEEE Transactions on Software
Engineering, 28, 10, October 2002, pp. 970 - 983.
[2] Antoniol, G., Canfora, G., Casazza, G., and Lucia, A.,
"Identifying the Starting Impact Set of a Maintenance
Request: A Case Study", in Proceedings 4th European
Conference on Software Maintenance and Reengineering,
Zurich, Switzerland, Feb 29 - March 03 2000, pp. 227-231.
[3] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E.,
"The Concept Assignment Problem in Program
Understanding", in Proceedings 15th IEEE/ACM
International Conference on Software Engineering (ICSE'94)
May 17-21 1993, pp. 482-498.

 9

ICSM 2009 submission

 10

[4] Canfora, G. and Cerulo, L., "Impact Analysis by Mining
Software and Change Request Repositories", in Proceedings
11th IEEE International Symposium on Software Metrics
(METRICS'05), September 19-22 2005, pp. 20-29.
[5] Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S.,
"Hipikat: A Project Memory for Software Development",
IEEE Transactions on Software Engineering, 31, 6, June
2005, pp. 446-465.
[6] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.,
"Can Information Retrieval Techniques Effectively Support
Traceability Link Recovery?" in Proceedings 14th IEEE
International Conference on Program Comprehension
(ICPC'06), Athens, Greece, June 14-16 2006, pp. 307-316.
[7] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.,
"Recovering Traceability Links in Software Artefact
Management Systems", ACM Transactions on Software
Engineering and Methodology, 16, 4, 2007
[8] De Lucia, A., Oliveto, R., and Sgueglia, P., "Incremental
Approach and User Feedbacks: a Silver Bullet for
Traceability Recovery", in Proceedings IEEE International
Conference on Software Maintenance (ICSM'06),
Philadelphia, Pennsylvania, 2006, pp. 299-309.
[9] Dekhtyar, A., Hayes, J. H., and Larsen, J., "Make the
Most of Your Time: How Should the Analyst Work with
Automated Traceability Tools?" in Proceedings 3rd
International Workshop on Predictor Models in Software
Engineering, Minneapolis, MN, May 20 2007
[10] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc,
Y. G., "CERBERUS: Tracing Requirements to Source Code
Using Information Retrieval, Dynamic Analysis, and
Program Analysis", in Proceedings 17th IEEE International
Conference on Program Comprehension (ICPC'08),
Amsterdam, The Netherlands, 2008, pp. 53-62.
[11] Hayes, J. H., Dekhtyar, A., and Sundaram, S. K.,
"Advancing candidate link generation for requirements
tracing: the study of methods", IEEE Transactions on
Software Engineering, 32, 1, January 2006, pp. 4-19.
[12] Joachims, T., "A probabilistic analysis of the Rocchio
algorithm with TFIDF for text categorization", in
Proceedings 14th International Conference on Machine
Learning, 1997, pp. 143-151.
[13] Landauer, T. K., Foltz, P. W., and Laham, D., "An
Introduction to Latent Semantic Analysis", Discourse
Processes, 25, 2&3, 1998, pp. 259-284.
[14] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V.,
"Feature Location via Information Retrieval based Filtering
of a Single Scenario Execution Trace", in Proceedings 22nd
IEEE/ACM International Conference on Automated Software
Engineering, Atlanta, GA, November 5-9 2007, pp. 234-243.
[15] Lormans, M. and Van Deursen, A., "Can LSI help
Reconstructing Requirements Traceability in Design and
Test?" in Proceedings 10th European Conference on
Software Maintenance and Reengineering, 2006 pp. 47-56.
[16] Lukins, S. K., Kraft, N. A., and Etzkorn, L., "Source
Code Retrieval for Bug Localization Using Latent Dirichlet
Allocation", in 15th IEEE Working Conference on Reverse
Engineering. Antwerp, Belgium, 2008, pp. 155-164.

[17] Manning, C. D., Raghavan, P., and Schütze, H.,
Introduction to Information Retrieval, Cambridge University
Press, 2008.
[18] Marcus, A., Maletic, J. I., and Sergeyev, A., "Recovery
of Traceability Links Between Software Documentation and
Source Code", International Journal of Software Engineering
and Knowledge Engineering, 15, 4, Oct. 2005, pp. 811-836.
[19] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and
Sergeyev, A., "Static Techniques for Concept Location in
Object-Oriented Code", in Proceedings 13th IEEE
International Workshop on Program Comprehension
(IWPC'05), 2005, pp. 33-42.
[20] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J.,
"An Information Retrieval Approach to Concept Location in
Source Code", in Proceedings 11th IEEE Working
Conference on Reverse Engineering (WCRE'04), Delft, The
Netherlands, November 9-12 2004, pp. 214-223.
[21] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A.,
Antoniol, G., and Rajlich, V., "Feature Location using
Probabilistic Ranking of Methods based on Execution
Scenarios and Information Retrieval", IEEE Transactions on
Software Engineering, 33, 6, June 2007, pp. 420-432.
[22] Poshyvanyk, D. and Marcus, D., "Combining Formal
Concept Analysis with Information Retrieval for Concept
Location in Source Code", in Proceedings 15th IEEE
International Conference on Program Comprehension
(ICPC'07), Banff, Alberta, Canada, June 2007, pp. 37-48.
[23] Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., and
Liu, D., "Source Code Exploration with Google ", in
Proceedings 22nd IEEE International Conference on
Software Maintenance (ICSM'06), Philadelphia, PA, 2006,
pp. 334 - 338.
[24] Rajlich, V. and Gosavi, P., "Incremental Change in
Object-Oriented Programming", in IEEE Software, 2004, pp.
2-9.
[25] Robillard, M., "Topology Analysis of Software
dependencies", ACM Transactions on Software Engineering
and Methodologies (TOSEM), 17, 4, 2008, pp. 18-53.
[26] Rocchio, J. J., "Relevance feedback in information
retrieval", in The SMART Retrieval System - Experiments in
Automatic Document Processing, Prentice Hall, 1971, pp.
313-323.
[27] Salton, G. and McGill, M., Introduction to Modern
Information Retrieval, McGraw-Hill, 1983.
[28] Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D.,
"Locating User Functionality in Old Code", in Proceedings
IEEE International Conference on Software Maintenance
(ICSM'92), Orlando, FL, November 1992, pp. 200-205.
[29] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F.,
"SNIAFL: Towards a Static Non-interactive Approach to
Feature Location", ACM Transactions on Software
Engineering and Methodologies (TOSEM), 15, 2, 2006, pp.
195-226.

	1. Introduction
	2. Concept location and relevance feedback
	2.1. IR based concept location
	2.2. Relevance feedback in IR
	2.3. IRRF based concept location
	2.3.1. Vector space model
	2.3.2. RF with Rocchio

	3. Case study
	3.1. Methodology
	3.1.1. Data - software and change sets
	3.1.2. Corpus creation
	3.1.3. Query formulation
	3.1.4. Assessment

	3.2. Results and discussion
	3.3. Threats to validity

	4. Related work
	5. Conclusions and future work
	6. References

