Finding Robust Solutions in Requirements Models

Gregory Gay, Tim Menzie$, Omid Jalalt, Gregory Mundy,
Beau Gilkersoh, Martin Feathet, and James Kipér

! West Virginia University, Morgantown, WV, USA
2 Alderson-Broaddus College, Philippi, WV
3 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
4 Dept. of Computer Science and Systems Analysis, Miami University, Oxford, OH, USA

greg@greggay.com, tim@menzies.us, jalali.omid@gmail.com,
beau.gilkerson@gmail.com, mundyge@ab.edu,
martin.s.feather@jpl.nasa.gov, kiperjd@muohio.edu

Abstract. Solutions to non-linear requirements engineering problems may be
ObrittleO; i.e. small changes may dramatically alter solution effectiveness. There-
fore, it is not enough to merely generate solutions to requirements problems-
we must also assess the robustness of that solution. This paper introduces the
KEYS2 algorithm that can generatecision ordering diagrams. Once generated,
these diagrams can assess solution robustness in linear time. In experiments with
real-world requirements engineering models, we show that KEYS2 can generate
decision ordering diagrams @(N?). When assessed in terms of terms of () re-
ducing inference times, (b) increasing solution quality, and (c) decreasing the
variance of the generated solution, KEYS2 out-performs other search algorithms
(simulated annealing, ASTAR, MaxWalkSat).

1 Introduction

Consider a Orequirements modelO where stakeholders write:

— Their various goals;

Their different methods to reach those goals;

Their view of the possible risks that compromise those goals;
What mitigations they believe might reduce those risks.

We say that a OsolutionO to such a model is thedkvecost combination of mitigations

that reduce thexost risks, thereby enabling theost number of requirements. In theory,
software tools can bnd the solution that best exploits and most satispes the various
goals of our different stakeholders. Such software might Pnd good solutions that were
missed by stakeholders in early lifecycle design discussions. Finding solutions to these
requirements models is a non-linear optimization probletininize the sum of the
mitigation costs whilenaximizing the number of achieved requirements).

There are many heuristic methods that can generate solutions to non-linear problems
(seeRelated Work, below). However, such heuristic methods carbhele; i.e. small
changes may dramatically alter the effectiveness of the solution. Therefore, itimportant
to understand theeighborhood around the solution. A naive approach to understanding
the neighborhood might be to run a systéftimes then report:

— the solutions appearing in more than (sé&):ases;
- results with a-95% conbdence interval.

Note that both these approaches requires multiple runs of an analysis method. Multiple
runs are undesirable since, in our experience [20], stakeholders often ask questions
across a range of OscenariosO; i.e. hard-wired constraints that cannot be changed in
that scenario. For example, three scenarios might be Owhat can be achieved assuming a
maximum budget of one, two, or Pve million dollars?0. Scenario analysis can be time
consuming. Refecting over (say)= 10 possible decisions a statistically signibcant
number of times (e.gV = 20) requires up t@0 2% > 20, 000 repeats of the analysis.
Therefore, this paper proposes a rapid method for exploring decision neighbor-
hoods Decision ordering diagrams are a visual representation of the effects of changing
a solution. We show below that:

Using these diagrams, the region around a solution can be explored in linear time.
A greedy Bayesian-based method called KEYS2 can generate the decision ordering
diagrams inO(N?) time.

KEYS2 yields solutions of higher quality that several other methods (simulated
annealing, MaxWalkSat, ASTAR).

Also, the variance of the solutions found by KEYS2 is less (and hence, better) than
those found by the other methods.

This paper is structured as follows:

— After some background notes on the solution robustness, we descrili#Dihe
requirements engineering tool used at NASAOs Jet Propulsion Laboratory (the case
studies for this paper come from real-world early lifecycle DDP models);

- DDP inputs and outputs are then reviewed;

— Next, decision ordering diagrams are introduced;

- We then debne and compare bve different algorithms for generating solutions from
DDP models: KEYS, KEYS2, Simulated Annealing, MaxWalkSat, ASTAR. Exper-
imental results will show that KEYS2 out-performs the other methods (measured
in terms of quickly generating high quality solutions that allow us to reRect over
solution robustness).

- Finally, we offer some notes on related work and conclusions.

This paper extends a prior publication [39] in several ways:

That paper did not address concerns of solution robustness.

That paper did not explore a range of alternate algorithms.

This paper introduces KEYS2, which is an improved version of KEYS,.
This paper offers extensive notes on related work.

2 Background

According to Harman [30], understanding the neighborhood of solutions is an open
and pressing issue in search-based software engineering (SBSE). He argues that many

software engineering problems are over-constrained and no precise solution over all
variables is achievable; therefore partial solutions based on heuristic search methods
are preferredSolution robustness is a major problem for such partial heuristic searches.
The results of such partial heuristic search may be ObrittleO; i.e. small changes to the
search results may dramatically alter the effectiveness of the solution [31].

When offering partial solutions, it is very important to also offer insight into the
space of options around the proposed solution. Such neighborhood information is very
useful for managers with only partial control over their projects since it can give them
conbdence that even if only some of their recommendations are effected, then at least
the range of outcomes is well understood. Harman [30] comments that understanding
the neighborhood of our solutions is an open and pressing issue in search-based soft-
ware engineering (SBSE):

Oln some software engineering applications, solution robustness may be as im-
portant as solution functionality. For example, it may be better to locate an area
of the search space that is rich in bt solutions, rather than identifying an even
better solution that is surrounded by a set of far less bt solutions.O

OHitherto, research on SBSE has tended to focus on the production of the pttest
possible results. However, many application areas require solutions in a search
space that may be subject to change. This makes robustness a natural second
order property to which the research community could and should turn its at-
tention [30].0

This paper reports a set of experiments on Al search for robust solutions. Our exper-
iments address two important concerns. Firstiylemonstrating solution robustness a
time consuming task? Secondly, is it necessary, as Harman suggestsdhaion quality
must be traded off against solution robustness? That s, in our search for the conclusions
that were stable within their local neighborhood, would we have to reject better solu-
tions because they are less stable across their local neighborhood?

At least for the NASA models described in the next section, both these concerns are
unfounded. KEYS2 terminates in hundreths of a second (where as our prior implemen-
tations took minutes to terminate [22]). Also, the solutions found by KEYS2 where not
only of highest quality, they were also exhibited the lowest variance. Further, KEYS2
generates the decision ordering diagrams that can assess solution robustness in linear
time.

3 Requirements Modeling Using “DDP”

This section introduces the DDP requirements modeling tool [15, 20]. used to inter-
actively document the OTeam-XO early lifecycle meetings at NASAOs Jet Propulsion
Laboratory (JPL). These meetings are the source of the real-world requirements models
used in this paper.

At OTeam XO meetings, a large and diverse group of up to 30 experts from various
Pelds (propulsion, engineering, communication, navigation, science, etc) meet for very
short periods of time (hours to days) to produce a Omission conceptO document. This

1. Requirement goals:
— Spacecraft ground-based testing & Bight problem monitoring
— Spacecraft experiments with on-board Intelligent Systems Health Management (ISHM)
2. Risks:
— Obstacles to spacecraft ground-based testing & Right problem monitoring
e Customer has no, or insufbcient, money available for our use
e Difbculty of building the models / design tools
ISHM Experiment is a failure (without necessarily causing Right failure)
Usability, User/Recipient-system interfaces undebned
V&V (certibcation path) untried and scope unknown
Obstacles to Spacecraft experiments with on-board ISHM
e Bug tracking / bxes / conpguration management issues, Managing revisions and
upgrades (multi-center tech. development issue)
e Concern about our technology interfering with in-Right mission
3. Mitigations:
— Mission-specibc actions
e Spacecraft ground-based testing & Right problem monitoring
e Become a team member on the operations team
e Use Bugzilla and CVS
— Spacecraft experiments with on-board ISHM
e Become a team member on the operations team
o Utilize xyzOs experience and guidance with certibPcation of his technology

Fig. 1. Sample DDP requirements, risks, mitigations.

document may commit the project to, say, solar power rather nuclear power or a par-
ticular style of guidance software. All of the subsequent work is based on the initial
decisions documented in the mission concept.

DDP allows for the representation of the goals, risks, and risk-removing mitiga-
tions that belong to a specibc project. During a Team X meeting, users of DDP explore
combinations of mitigations that cost the least and support the most number of require-
ments. DDP propagate inBuences over matrices. For example, here is a trivial DDP
model wheramitigation1 costs $10,000 to apply and each requirement is of equal
value (100). Note that the mitigation can remove 90% of the risk. Also, unless mitigated,
the risk will disable 10% to 99% of requirements one and two (respectively):

$10,000 %1%
! ! ,
%m'tz'gfm'mjS wriskl — (requirementl =100) 1)
#$! g5t (requirement2 = 100)

0-9 0.99
The other numbers show the impact of mitigations on risks, and the impact of risks on
requirements. The core of DDP is two matrices: onenitgations*risks and another
for risks*requirements.
DDP is used as follows. A dozen experts, or more, gather together for short, inten-
sive knowledge acquisition sessions (typically, 3 to 4 half-day sessions). These sessions

must be short since it is hard to gather together these experts for more than a very short
period of time. The DDP tool supports a graphical interface for the rapid entry of the as-
sertions. Such rapid entry is essential, time is crucial and no tool should slow the debate.
Therefore, DDP uses a lightweight representations for its model. Such representations
are essential for early lifecycle decision making since only high-level assertions can be
collected in short knowledge acquisition sessions (if the assertions get more elaborate,
then experts may be unable to understand technical arguments from outside their own
Peld of expertise). Therefore, DDP uses the following lightweight ontology:

Requirements (free text) describing the objectives and constraints of the mission
and its development process;

Weights (numbers) of each requirements, ref3ecting their relative importance;

Risks (free text) are events that damage requirements;

Mitigations: (free text) are actions that reduce risks;

Costs: (numbers) effort associated with mitigations, and repair costs for correcting
Risks detected by Mitigations;

Mappings: directed edges between requirements, mitigations, and risks that capture
guantitative relationships among them.

— Part-of relations structure the collections of requirements, risks and mitigations;

Note that DDP models are the same as the Orequirements modelsO we debned in the
introduction. For examples of risks, requirements, and mitigations, see Figure 1. For an
example of the network of connections between risks and requirements and mitigations,
see Figure 2.

Sometimes, we are asked if the analysis of DDP requirements models is a real prob-
lem. The usual question is something like: OWith these ultra-lightweight languages,
arenOt all open issues just obvious?0. Such a question is usually informed by the small
model fragments that appear in the ultra-lightweight modeling literature. Those sample
model fragments are typically selected according to their ability to bt on a page or to
succinctly illustrate some point of the authors. Real world ultra-lightweight models can
be much more complex, paradoxically perhaps due to their simplicity: if a model is easy
to write then it is easy to write a lot of it. Figure 2, for example, was generated in under
a week by four people discussing one project. It is complex and densely-connected (a
close inspection of the left and right hand sides of Figure 2 reveals the requirements and
fault trees that inter-connect concepts in this model) and it is, by no means, the biggest
or most complex DDP model that has ever been built.

We base our experimentation around DDP for three reasons. Firstly, one potential
drawback with ultra-lightweight models is that they are excessively lightweight and
contain no useful information. DDPOs models are demonstrably useful (that is, we are
optimizing a real-world problem of some value). Clear project improvements have been
seen from DDP sessions at JPL. Cost savings in at least two sessions have exceeded $1
million, while savings of over $100,000 have resulted in others [20]. Cost savings are
not the only benebts of these DDP sessions. Numerous design improvements such as
savings of power or mass have come out of DDP sessions. Likewise, a shifting of risks
has been seen from uncertain architectural ones to more predictable and manageable
ones. At some of these meetings, non-obvious signibcant risks have been identibed and
subsequently mitigated.

Fig.2. An example of a model formed by the DDP tool. Red lines connect risks (middle) to
requirements (left). Green lines connect mitigations (right) to the risks.

Our second reason to use DDP is that we can access numerous real-world require-
ments models written in this format, both now and in the future. The DDP tool can be
used to document not just Pnal decisions but also to review the rationale that led to those
decisions. Hence, DDP remains in use at JPL: not only for its original purpose (group
decision support), but also as a design rationale tool to document decisions. Recent
DDP sessions included:

- Anidentibcation of the challenges of intelligent systems health management (ISHM)
technology maturation (to determine the most cost-effective approach to achieving
maturation) [23];

— A study on the selection and planning of deployment of prototype software [21].

Our third, and most important reason to use DDP in our research is that the tool is
representative of other requirements modeling tools in widespread use. At its core, DDP
is a set of inBuences expressed in a hierarchy, augmented with the occasional equation.
Edges in the hierarchy have weights that strengthen or weaken infBuences that 3ow
along those edges. At this level of abstraction, DDP is just another form of QOC [64]
or a quantitative variant of MylopoulosO s qualitative soft goal graphs [54].

4 Model Inputs and Outputs

Before describing experimental comparisons of different methods for generating deci-
sion ordering diagrams, we will brst offer more details on the DDP models.

4.1 Pre-Processing

To enable fast runtimes, a simple compiler exports the DDP models into a form acces-
sible by our algorithms. This compiler stores a Rattened form of the DDP requirements
tree. In our compiled form, all computations are performed once and added as a con-
stant to each reference of the requirement. For example, the compiler converts the trivial
model of Equation 1 inteetupModel andmodel functions similar to those in Fig-
ure 3. ThesetupModel function is called only once and sets several constant values.
The model function is called whenever new cost and attainment values are needed.
The topology of the mitigation network is represented as terms in equations within
these functions. As our models grow more complex, so do these equations. For exam-
ple, our biggest model, which contains 99 mitigations, generates 1427 lines of code.
Figure 4 compares the largest model to four other real-world DDP models.

Currently it takes about two seconds to compile a model with 50 requirements,
31 risks, and 58 mitigations. This compilation only has to happen once, after which
we will run our 2!4 what-if scenarios. While this is not a signibcant bottleneck, the
current compiler (written in unoptimized Visual Basic code) can certainly be sped up.
Experts usually change a small portion of the model ther2féinvhat-if scenarios to
understand the impact of that change. Therefore, an incremental compiler (that only
updates changed portions) would run much faster than a full compilation of the entire
DDP model.

#include "model.h"

#define M_COUNT 2
#define O_COUNT 3
#define R_COUNT 2

struct ddpStruct
{
float oWeight[O_COUNT+1];
float oAttainment[O_COUNT+1];
float oAtRiskProp[O_COUNT+1];
float rAPL[R_COUNT+1];
float rLikelihood[R_COUNT+1];
float mCost[M_COUNT+1];
float rolmpact[R_COUNT+1][O_COUNT+1];
float mrEffectfM_COUNT+1][R_COUNT+1];

h
ddpStruct *ddpData;

void setupModel(void)

{
ddpData = (ddpStruct *) malloc(sizeof(ddpStruct));
ddpData->mCost[1]=11;
ddpData->mCost[2]=22;
ddpData->rAPL[1]=1;
ddpData->rAPL[2]=1;
ddpData->oWeight[1]=1;
ddpData->o0Weight[2]=
ddpData->0Weight[3]=3;
ddpData->rolmpact[1][1] = 0.1;
ddpData->rolmpact[1][2] = 0.3;
ddpData->rolmpact[2][1] = 0.2;
ddpData->mrEffect[1][1] = 0.9;
ddpData->mrEffect[1][2] = 0.3;
ddpData->mrEffect[2][1] = 0.4;
}
void model(float *cost, float *att, float m[])
{
float costTotal, attTotal;
ddpData->rLikelihood[1] = ddpData->rAPL[1] * (1 - m[1] * ddpData->mrEffect[1][1])
* (1 - m[2] * ddpData->mrEffect[2][1]);
ddpData->rLikelihood[2] = ddpData->rAPL[2] * (1 - m[1] * ddpData->mrEffect[1][2]);
ddpData->0AtRiskProp[1] = (ddpData->rLikelihood[1] * ddpData->rolmpact[1][1])
+ (ddpData->rLikelihood[2] * ddpData->rolmpact[2][1]);
ddpData->0AtRiskProp[2] = (ddpData->rLikelihood[1] * ddpData->rolmpact[1][2]);
ddpData->0AtRiskProp[3] = O;
ddpData->0Attainment[1] = ddpData->0Weight[1] * (1 - minValue(1, ddpData->0AtRiskProp[1]));
ddpData->oAttainment[2] = ddpData->oWeight[2] * (1 - minValue(1, ddpData->0AtRiskProp[2]));
ddpData->oAttainment[3] = ddpData->oWeight[3] * (1 - minValue(1, ddpData->0AtRiskProp[3]));
attTotal = ddpData->0Attainment[1] + ddpData->0Attainment[2] + ddpData->oAttainment[3];
costTotal = m[1] * ddpData->mCost[1] + m[2] * ddpData->mCost[2];
*cost = costTotal;
*att = attTotal;
}

Fig. 3. A trivial DDP model after knowledge compilation

Model |LOC|ObjectivesRiskgMitigations|
modell.c 55 3 2 2
model2.¢ 272 1 30 31
model3.c 72 3 2 3
model4.¢1241 50 31 58
model5.¢1427 32 70 99

Fig. 4. Details of Five DDP Models.

4.2 Objective Function

When themodel function is called, a pairing of the total cost of the selected miti-
gations and the number of reachable requirements (attainment) is returned. All of our
algorithms then use that information to obtain a OscoreO for the current set of mitiga-
tions. The two numbers are normalized to a single score that represents the distance to
asweet spot of maximum requirement attainment and minimum cost:

&

score = cost’ + (attainment — 1)2 2)

x—min(x)

Here,z is a normalized valué < ———"=2
max(z) —min(x)
0 < score < 1 andhigher scores aréetter.

< 1. Hence, our scores ranges

4.3 Decision Ordering Diagrams

The objective function described above summarizes call to a DDP model. This
section describe8ecision ordering diagrams, which are a tool for summarizing the
results of thousands of calls to DDP models.

Consider some recommendation for changes to a project that requires dedisfons
size|d|. In the general casé,is a subset of the space of all solutiabgd C D). When
checking for solution robustness, or refecting over modibcatiods &ostakeholder
may need to consider up t§ C N!?l possibilities (andV = 2 for binary decisions of
the form Oshould | or should | not do thisO). This can be a slow process, especially if
evaluating each decision requires invoking a complex and slow simulator.

Decision ordering diagrams are a linear time method for studying the robustness and
neighborhood of a set of decisions. The diagrams assume that some method could offer
alinear ordering of the decisions € d ranked frommost-important 10 least-important.

They also assume that some method offers information on the effects of applying the
top-rankedl < z < |d| decisions (e.g. the median and variance seen in the modelOs
objective function after applying solutidnl; ..d,. }). For example, th@ecision ordering
diagram of Figure 5 shows such a linear ordering (this Pgure presentsfit andcost
results). In that bgure:

- The x-axis denotes the number of decisions made.
- The y-axis shows performance statistics of an objective function seen after impos-
ing the conjunction of decisions< i < z.

Benefits
(more is better)

—— median
- — spread

— median
Costs - — spread

(less is better)

number of decisions made

Fig. 5. A Decision Ordering Diagram. The median and spread plots show 50%-the percentile and
the (75-50)%-th percentile range (respectively) values generated from some objective function.

For performance, we run some objective function and report the median (50th per-
centile) andspread (the range given by the 75th percentile - the 50th percentile). We
use median and spread to avoid any parametric assumptions.

These diagrams can comment on the robustness and neighborhood of selutién}
as follows:

- By considering the variance of the performance statistics after app{vingl, }.
— By comparing the results of using the bralecisions to that of using the prst- 1
orz + 1 actions.

The neighborhood of a solution that uses decisiphs.d, } are solutions that use the
decisions{d;..d,+; }. Sincej is bounded) < |d| — 1, this means thateflecting over
solution neighborhoods takes time linear on the number of decisions d.
Decision ordering diagrams are a natural representation for Otrade studies,O the ac-
tivity of a multidisciplinary team to identify the most balanced technical solution among
a set of proposed viable solutions [2]. For example, minimum costs and maximum bene-
bts are achieved at point of Figure 5. However, after applying only half the decisions
(seer1) most of the benebts could be achieved, albeit at a somewhat higher cost.
Decision ordering diagrams asieeful under at least three conditions:

— The scores output by the objective functions aeéi-behaved; i.e. move smoothly
to a plateau.

— The decisiongame the variance; i.e. the spread falls to value much lower than then
median (otherwise, it is hard to show that decisions have any effect on the system
performance).

— The are generated inrénely manner. Fast runtimes are required in order to keep
up with fast moving discussion.

According to these debnitions, Figure 5 igsaful decision ordering diagram if it can
be generated in @mely manner.

10

It is an open issue if real worlds requirements models generate useful decision or-
dering diagrams. The following experiments test if, in practice, decision ordering di-
agrams generated from real world requirements modelsiaedy to generate while
beingwell-behaved andtame.

5 Searching for Solutions

Our experiments compare the results of numerous algorithms. We selected these com-
parison algorithms with much care. Numerous researchers have stressed the difbcul-
ties associated with comparing radically different algorithms. For example, Uribe and
Stickel [67] tried to make some general statement about the value of Davis-Putham
proof (DP) procedures or binary-decision diagrams (BDD) for constraint satisfaction
problems. In the end, they doubted that it was fair to compare algorithms that perform
constraint satisfaction and no search (like BDDs) and methods that perform search and
no constraint satisfaction (like DP). For this reason, model checking researchers like
Holzmann (pers. communication) eschew comparisons of tools like SPIN [35], which
are search-based, with tools like NuSMV [11], which are BDD-based. Hence we take
care to only select algorithms which are similar to KEYS.

In terms of the Gu et al. survey [27], our selected algorithms (simulated annealing,
ASTAR and MaxWalkSat) share four properties with KEYS and KEYS2. They are each
discrete, sequentialpiconstrained algorithms (constrained algorithms work towards a
pre-determined number of possible solutions while unconstrained methods are allowed
to adjust to the goal space).

For full details on simulated annealing, ASTAR, and MaxFunWalk, see below. We
observe that these algorithms share the property that at each step of their processing,
they comment on all model inputs. KEYS2, on the other hand, explores the conse-
quences of setting only a subset of the possible inputs.

5.1 SA: Simulated Annealing

Simulated Annealing is a classic stochastic search algorithm. It was Prst described in
1953 [51] and rePned in 1983 [43]. The algorithmOs namesake, annealing, is a technique
from metallurgy, where a material is heated, then cooled. The heat causes the atoms in
the material to wander randomly through different energy states and the cooling process
increases the chances of bnding a state with a lower energy than the starting position.
For each round, SA OpicksO a neighboring set of mitigations. To calculate this neigh-
bor, a function traverses the mitigation settings of the current state and randomly Rips
those mitigations (at a 5% chance). If the neighbor has a better score, SA will move to
it and set it as the current state. If it isnOt better, the algorithm will decide whether to
move to it based on the mathematical function:

prob(w, z,y, temp(y, 2)) = '~) €)

temp(y, 2) = =Y @
If the value of theprob function is greater than a randomly generated number, SA will

move to that state anyways. This randomness is the very cornerstone of the Simulated

11

1. Procedure SA

2. MITIGATIONS:= set of mitigations

3. SCORE:= score of MITIGATIONS

4. while TIME < MAX_TIME && SCORE < MIN_SCORE //minScore is a constant score (threshold)
5 find a NEIGHBOR close to MITIGATIONS

6 NEIGHBOR_SCORE:= score of NEIGHBOR

7 if NEIGHBOR_SCORE > SCORE

. MITIGATIONS:= NEIGHBOR

9. SCORE:= NEIGHBOR_SCORE

10. else if prob(SCORE, NEIGHBOR_SCORE, TIME, temp(TIME, MAX_TIME)) > RANDOM)
11. MITIGATIONS:= NEIGHBOR

12. SCORE:= NEIGHBOR_SCORE
13. TIME++
14. end while

15. return MITIGATIONS

Fig. 6. Pseudocode for SA

Annealing algorithm. Initially, the OatomsO (current solutions) will take large random
jumps, sometimes to even sub-optimal new solutions. These random jumps allow simu-
lated annealing to sample a large part of the search space, while avoiding being trapped
in local minima. Eventually, the OatomsO will cool and stabilize and the search will
converge to a simple hill climber.

As shown in line 4 of Figure 6, the algorithm will continue to operate until the
number of tries is exhausted or a score meets the threshold requirement.

5.2 MaxFunWalk

The design of simulated annealing dates back to the 1950s. In order to benchmark our
own search engine (KEYS2) against a more state-of-the-art algorithm, we implemented
the variant of MaxWalkSat described below.

WalkSat is a local search method designed to address the problem of boolean sat-
isPability [42]. MaxWalkSat is a variant of that algorithm that applies weights to each
clause in a conjunctive normal form equation [62]. While WalkSat tries to satisfy the en-
tire set of clauses, MaxWalkSat tries to maximize the sum of the weights of the satisped
clauses.

In one respect, both algorithms can be viewed as a variant of simulated annealing.
Whereas simulated annealing always selects the next solution randomly, the WalkSat
algorithms willsometimes perform random selection while, other times, conduct a local
search to bnd the next best setting to one variable.

MaxFunWalk is a generalization of MaxWalkSat:

- MaxWalkSat is debPned over CNF formulae. The success of a collection of vari-
able settings is determined by how many clauses are OsatisbPableO (debned using
standard boolean truth tables).

- MaxWalkFun, on the other hand, assumes that there exist an arbitrary function
that can assess a collection of variable settings. Here, we use the DDP model as a
assessment function.

12

1. Procedure MaxFunWalk

2. for TRIES:=1 to MAX-TRIES

3. SELECTION:=A randomly generate assignment of mitigations

4 for CHANGED:=1 to MAX-CHANGES

5. if SCORE satisfies THRESHOLD return

6. CHOSEN:= a random selection of mitigations from SELECTION
7 with probability P

8 flip a random setting in CHOSEN

9. with probability (P-1)

10. flip a setting in CHOSEN that maximizes SCORE
11. end for

12. end for

13. return BESTSCORE

Fig.7. Pseudocode for MaxFunWalk

Note thatM axW alk Fun = MaxW alkSat if the assessment is conducted via a logi-
cal truth table.

The MaxFunWalk procedure is shown in Figure 7. When run, the user supplies an
ideal cost and attainment. This setting is normalized, scored, and set as a goal threshold.
If the current setting of mitigations satisbes that threshold, the algorithm terminates.

MaxFunWalk begins by randomly setting every mitigation. From there, it will at-
tempt to make aingle change until the threshold is met or the allowed number of
changes runs out (100 by default). A random subset of mitigations is chosen and a ran-
dom number P between 0 and 1 is generated. The value of P will decide the form that
the change takes:

— P< «: A stochastic decision is made. A setting is changed completely at random
within the set CHOSEN.

- P> «: Local search is utilized. Each mitigation in CHOSEN s tested until one is
found that improves the current score.

The best setting of is domain-specibc. For this study, we usee: 0.3.

If the threshold is not met by the time that the allowed number of changes is ex-
hausted, the set of mitigations is completely reset and the algorithm starts over. This
measure allows the algorithm to avoid becoming trapped in local maxima. For the DDP
models, we found that the number of retries has little effect on solution quality.

If the threshold is never met, MaxFunWalk will reset and continue to make changes
until the maximum number of allowed resets is exhausted. At that point, it will return
the best settings found.

As an additional measure to improve the results found by MaxFunWalk, a heuristic
was implemented to limit the number of mitigations that could be set at one time. If too
many are set, the algorithm will turn off a few in an effort to bring the cost factor down
while minimizing the effect on the attainment.

13

53 A* (ASTAR)

A* is a best-prst path bnding algorithm that uses distance from oxigiarid estimated
cost to goal {7) to bnd the best path [33]. The algorithm is widely used [36,57,59, 66].

A* is a natural choice for DDP optimization since the objective function described
above is actually a Euclidean distance measure to the desired goal of maximum attain-
ment and minimum costs. Hence, for the second potion of the ASTAR heuristic, we can
make direct use of Equation 2.

The ASTAR algorithm keeps alosed list in order to prevent backtracking. We
begin by adding the starting state to the closed list. In each Oround,O a list of neighbors
is populated from the series of possible states reached by making a change to a single
mitigation. If that neighbor is not on the closed list, two calculations are made:

— G =Distance from the start to the current state plus the additional distance between
the current state and that neighbor.

- H = Distance from that neighbor to the goal (an ideal spot, usually 0 cost and a high
attainment). For DDP models, we use Equation 2 to compute H.

The best neighbor is the one with the lowest F=G+H. The algorithm OtravelsO to that
neighbor and adds it to the closed list. Part of the optimality of the A* algorithm is that
the distance to the goal is underestimated. Thus, the bnal goal is never actually reached
by ASTAR. Our implementation terminates once it stops Pnding better solutions for a
total of ten rounds. This number was chosen to give ample time for ASTAR to become
OunstuckO if it hits a corner early on.

1. Procedure ASTAR

2. CURRENT_POSITION:= Starting assignment of mitigations
3. CLOSEDI[0]:= Add starting position to closed list
4.,

5. while END:= false

6. NEIGHBOR_LIST:=list of neighbors

7. for each NEIGHBOR in NEIGHBOR_LIST

8. if NEIGHBOR is not in CLOSED

9. G:=distance from start

10. H:=distance to goal

11. F:=G+H

12. if F<BEST_F

13. BEST_NEIGHBOR:=NEIGHBOR
14. end for

15. CURRENT_POSITION:= BEST_NEIGHBOR
16. CLOSED[++]:=Add new state to closed list
17. if STUCK

18. END:= true

19. end while

20. return CURRENT_POSITION

Fig. 8. Pseudocode for ASTAR

14

54 KEYS and KEYS2

The core premise of KEYS and KEYS2 is that the above algorithms perform over-
elaborate searches. Suppose that the behavior of a large system is determined by a small
number ofkey variables. If so, then a very rapid search for solutions can be found by
(a) bPnding thesgeys then (b) explore the ranges of the key variables.

As documented in ouRelated Work section, this notion okeys has been discov-
ered and rediscovered many times by many researchers. Historically, bnding the keys
has seen to be a very hard task. For example, bnding the keys is analogous to bnd-
ing theminimal environments of DeKleerQ ATMS algorithm [17]. Formally, thisgical
abduction, which is an NP-hard task [8].

Our method for Pnding the keys uses a Bayesian sampling method. If a model con-
tains keys then, by dePnition, those variables must appear in all solutions to that model.
If model outputs are scored by some oracle, then the key variables are those with ranges
that occur with very different frequencies in high/low scored model outputs. Therefore,
we need not search for the keys- rather, we just need to keep frequency counts on how
often ranges appear tr st or rest outputs.

KEYS contains an implementation of this Bayesian sampling method. It has two
main components - a greedy search and the BORE ranking heuristic. The greedy search
explores a space dif mitigations over the course dff Oeras.O Initially, the entire set
of mitigations is set randomly. During each era, one more mitigation is 9et te X,

X; € {true, false}. In the original version of KEYS [48], the greedy search bxes one
variable per era. A newer variant, KEYS2, bxes an increasing number of variables as
the search progresses (see below for details).

In KEYS (and KEYS2), each eragenerates a set input, score > as follows:

1: MaxTries times repeat:
— Selected|1. . .(e — 1)] are settings from previous eras.
— Guessed are randomly selected values for unbxed mitigations.
— Input = selected U guessed.
- Callmodel to computescore = ddp(input);
2: TheMaxzTries scores are divided intg3% ObestO and remainder become OrestO.
3: Theinput mitigation values are then scored using BORE (described below).
4: The top ranked mitigations (the default is one, but the user may bx multiple miti-
gations at once) are bxed and storeddtected|e].

The search moves to eeat 1 and repeats steps 1,2,3,4. This process stops when ev-
ery mitigation has a setting. The exact settings ¥tz ries and 3 must be set via
engineering judgment. After some experimentation, we uged:7ries = 100 and
B = 10. For full details, see Figure 9.

KEYS ranks mitigations using a support-based Bayesian ranking measure called
BORE. BORE [12] (short for Obest or restO) divides numeric scores sedii aves
and stores the top 10% bast and the remaining 90% scores in thesett (thebest set
is computed by studying the delta of each score to the best score seen in any era). It then
computes the probability that a value is founddnt using Bayes theorem. The theorem
uses evidencé’ and a prior probabilityP(H) for hypothesisH € {best,rest}, to
calculate a posteriori probability (H|E) = P(E|H)P(H) / P(E). When applying

15

1. Procedure KEYS
2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS
3. for I:=1 to 100

4 SELECTEDI[1...(I-1)] = best decisions up to this step

5. GUESSED = random settings to the remaining mitigations
6. INPUT = SELECTED + GUESSED

7 SCORES= SCORE(INPUT)

8. end for

9. for J:=1 to NUM_MITIGATIONS_TO_SET

10. TOP_MITIGATION = BORE(SCORES)

11. SELECTEDI[FIXED_MITIGATIONS++] = TOP_MITIGATION
12. end for

13. end while

14. return SELECTED

Fig. 9. Pseudocode for KEYS

the theorem/ikelihoods are computed from observed frequencies. These likelihoods
(called OlikeO below) are then normalized to create probabilities. This normalization
cancels oufP(E) in Bayes theorem. For example, aff€r= 10, 000 runs are divided

into 1,000best solutions and 9,00&st, the valuemitigation31 = false might appear

10 times in theébest solutions, but only 5 times in the:st. Hence:

E = (mitigation31l = false)

P(best) = 1000 /10000 =0 .1

P(rest) = 9000 /10000 = 0 .9
freq(E|best) = 10 /1000 = 0 .01
freq(E|rest) =5 /9000 = 0 .00056
like(best|E) = freq(E|best) - P(best) =0 .001
like(rest|E) = freq(E|rest) - P(rest) =0 .000504
like(best|E)

P(best|E) =
(best|E) like(best|E) + like(rest|E)

=0.66 (5)

Previously [12], we have found that Bayes theorem is a poor ranking heuristic since it
is easily distracted by low frequency evidence. For example, note how the probability
of £ belonging to the best class is moderately high even though its support is very low;
i.e. P(best|E) = 0.66 but freq(E|best) = 0.01.

To avoid the problem of unreliable low frequency evidence, we augment Equation 5
with a support term. Support shouldcrease as the frequency of a valuecreases,
i.e.like(best|E) is a valid support measure. Hence, step 3 of our greedy search ranks
values via

like(best|E)?

P(best|E) x support(best|E) = like(best|E) + like(rest|E) ©

For each era, KEYS samples the DDP models and bxes th&tep 1 settings.
KEYS2 assigns progressively larger values. In era 1, KEYS2 behaves exactly the same
as KEYS while in (say) era 3, KEYS2 will bx the top 3 ranked ranges. Since it sets
more variables at each era, KEYS2 terminates earlier than KEYS.

16

Note that decision ordering diagrams could be directly generated during execution,
just by collection statistics from tHeCORESirray used in line 7 of Figure 9.

6 Results

Each of the above algorithms was tested on the bve models of Figure 4. Note that:

— Models one and three are trivially small. They were used them to debug our code,
but not in the core experiments. We report our results using models two, four and
bve since they are large enough to stress test real-time optimization.

— Model 4 was discussed in [49] in detail. The largest, model 5 was optimized previ-
ously in [22]. At that time (2002), it took 300 seconds to generate solutions using
our old, very slow, rule learning method.

We also studied how well KEYS and KEYS2 scale to larger models. Further, we
instrumented KEYS and KEYS2 to generate decision ordering diagrams. The results
from all of these experiments are shown below.

6.1 Attainment and Costs

We ran all of our algorithms 1000 times on each model. This number was chosen be-
cause it yielded enough data points to give a clear picture of the span of results. At the
same time, it is a low enough number that we can generate a set of results in a fairly
short time span.

The results are pictured in Figure 10. Attainment is along the x-axis and cost (in
thousands) is along the y-axis. Note that better solutions fall towards the bottom right
of each plot; i.e. lower costs and higher attainment. Also, better solutions exhibit less
variance; that is, the results are clumped closely together.

These graphs give a clear picture of the results obtained by our various algorithms.
Two methods are clearly inferior:

— Simulated annealing exhibits the worst variance, lowest attainments, and highest
costs.

- MaxFunWalk is better than SA (less variance, lower costs, higher attainment) but
its variance is still far too high to use in any critical situation.

As to the others:

— On larger models such as model4 and model5, KEYS and KEYS2 exhibit lower
variance, lower costs, and higher attainments than ASTAR.

— On smaller models such as model2, ASTAR usually produces higher attainments
and lower variance than the KEYS algorithms (this advantage disappears on the
larger models). However, observe the results neafh@) point of model20s AS-
TAR results: sometimes ASTAROs heuristic search failed completely for that model

17

6.2 Runtime Analysis

Measured in terms of attainment and cost, there is little difference between KEYS and
KEYS2. However, as shown by Figure 11, KEYS2 runs twice to three times as fast as
its predecessor. Interestingly, Figure 11 ranks two of the algorithms in a similar order
to Figure 10:

- Simulated annealing is clearly the slowest;
- MaxFunWalk is somewhat better but not as fast as the other algorithms.

As to ASTAR versus KEYS or KEYS2:

— ASTAR is faster than KEYS;
— and KEYS2 runs in time comparable to ASTAR.

Measured purely in terms of runtimes, there is little to recommend KEYS2 over AS-
TAR. However, ASTAROs heuristic guesses were sometimes observed to be sub-optimal
(recall the above discussion on tftg0) results in model20s ASTAR results). Such sub-
optimality was never observed for KEYS2.

Model 2 Model 4 Model 5
(31 mitigations) (58 mitigations) (99 mitigations)
4000 F 1000
< 2000 - 500
% o Lt i 0
0 1000 2000 3000
3 1000
g 4000
S L 500
= 2000
I"% 0 ! W 0 ! w
= 0 1000 2000 3000 0 100 200
30
« 2000 F 1000
& r . 2000 |- 500 |-
) | +H
< O 1 1 1 1 0 M! 0
0 02 04 06 038 0 1000 2000 3000 0 100 200
30
o e 4000 F 1000
> B 2000 + 500
g 0 1 1 1 Wl 0 I I # 0 I I ’
0 02 04 06 038 0 1000 2000 3000 0 100 200
30
N 2000 F 1000
15 500 |
> " N 2000
& 0 1 1 IWI 0 I I "* 0 - L -
0 02 04 06 038 0 1000 2000 3000 0 100 200

Fig. 10. 1000 results of running bve algorithms on three models (15,000 runs in all). The y-axis shows cost and the x-axis
shows attainment. The size of each model is measured in number of mitigations. Note that better solutions fall towards the
bottom right of each plot; i.e. lower costs and higher attainment. Also better solutions exhibit less variance, i.e. are clumped
tighter together.

18

Model 2 (31 mitigationg)Model 4 (58 mitigationg)Model 5 (99 mitigations)
SA 0.577 1.258 0.854
MaxFunWalk 0.122 0.429 0.398
ASTAR 0.003 0.017 0.048
KEYS 0.011 0.053 0.115
KEYS2 0.006 0.018 0.038

Fig. 11. Runtimes in seconds, averaged over 100 runs, measured using the Oreal timeO value from
the Unixtimes command. The size of each model is measured in number of mitigations (and
for more details on model size, see Figure 4).

Runtime (secs)%{ssz)
modelexpansiopmodel sizéKEYS[KEYS2 runtimes (secs)
2 1 62 001 o001 1.07 10 S —
2 2 124 0.03 002 1.23
4 1 139 0.04 002 229 7.5 [KEYS2 —= 4
5 1 201 0.13 0.04 3.8 r
2 4 248 0.100 0.05 2.09 5 A4
4 2 278 0.17) 0.05 3.48 g
5 2 4021 050 012 4.26 25 - e 1
2 8 496 0.44 0.4 3.21 W
4 4 556 0.73 0.16 4.66 0 % g
5 4 804 1.98 0.38 5.21 ‘ : :
4 8 1112 297 052 571 0 500 1000 1500
5 8 1608 8.06 1.35 5.9 model size

Fig. 12. Runtimes KEYS vs KEYS2 (medians over 1000 repeats) as models increase in size. The
OmodelO number in column one corresponds to Figure 4. The Oexpansion factorO of column two
shows how much the instance generator expanded the model. The Omodel sizesO of column three
are the sum of mitigations, requirements, and risks seen in the expanded model.

6.3 Scale-Up Studies

Figure 12 and Figure 13 shows the effect of changing the size of the model on the
number of times that the model is asked to generate a score for both KEYS and KEYS2.
To generate these graph, @atance generator was created that:

— Examined the real-world DDP models of Figure 4;

— Extracted statistics related to the different types of nodes (mitigations or risks or
requirements) and the number of edges between different types of nodes;

— Used those statistics to build random models that were 1,2,4 and 8 times larger than
the original models.

Figure 14 shows the results of curve btting to the plots of Figure 12 and Figure 13. The
KEYS and KEYS2 performance curves bt a low-order polynomial (of degree two) with
very high coefbcients of determinatioRq > 0.98).

Figure 14 suggests that we could scal#er KEYS or KEYS2 to larger models.
However we still recommend KEYS2. The column marlgég}/—ssz in Figure 13 shows
the ratio of the number of calls made by KEYS vs KEYS2. As models get larger, the
number of calls to the model are an order of magnitude greaterin KEYS than in KEYS2.
If applied to models with slower runtimes than DDP, then this order of magnitude is
highly undesirable.

19

Calls tomodel | KEYS

modelexpansioimodel siz¢éKEYS| KEYS?2 KEYS2 model calls
2 1 62| 3100 800 39 100,000 e —
2 2 124| 6200 1100 5.6
4 1 139 5800 1100 53 75000 (KEYSZ == 4]
5 1 201] 9900 1400 7.1
2 4 248/12400 1600 7.8 50,000 | . g
a4 2 278/11600 1500 7.7 s
5 2 40219800 2000 9.9 25000 | g
2 8 496/24800 2200 11.3 o
4 4 556(23200 2200 10.5 0 Pesoo—x——x——X]
5 4 804/39600 2800 14.1 : : :
4 8 111246400 3000 15.5 0 500 1000 1500
5 8 160879200 4000 19.8 model size

Fig. 13. Number of model calls made by KEYS vs KEYS2 (medians over 1000 results) as models
increase in size. This bgure uses the same column structure as Figure 12.

KEYS KEYS2
runtimesmodel callsruntimesmodel calls
exponential 0.82 0.83 0.88 0.93
polynomial (of degree 2) 0.99 0.99 0.99 0.98

Fig. 14. Coefbcients of determinatioR? of KEYS/KEYS2 performance bgures, btted to two
different functions: exponential or polynomial of degree two. Higher values indicate a better
curve bt. In all cases, the best bt is not exponential.

6.4 Decision Ordering Algorithms

The decision ordering diagrams of Figure 15 show the effects of the decisions made by
KEYS and KEYS2. For both algorithms, at= 0, all of the mitigations in the model
are set at random. During each subsequent era, more mitigations are bxed (KEYS sets
one at a time, KEYS2 an incrementally increasing number). The lines in each of these
plots show the median and spread seen in the 100 calls tmdkdel function during
each round.

Note that the these diagrams atgie andwell-behaved:

— Tame: The OspreadO values quickly shrink to a small fraction of the median.
— Well-behaved: The median values move smoothly to a plateau of best performance
(high attainment, low costs).

On termination (at maximum value af), KEYS and KEYS2 arrive at nearly identi-

cal median results (caveat: for model2, KEYS2 attains slightly more requirements at a
slightly higher cost than KEYS). The spread plots for both algorithms are almost in-
distinguishable (exception: in model2, the KEYS2 spread is less than KEYS). That is,
KEYS2 achieves the same results as KEYS, but (as shown in Figure 11 and Figure 12)
it does so in less time.

A core assumption of this work is the OkeysO concept; i.e. a small number of vari-
ables set the remaining model variables. Figure 15 offers signibcant support for this as-
sumption: observe how most of the improvement in costs and attainments were achieved
after KEYS and KEYS2 made only a handful of decisions (often ten or fewer).

20

30 T

KEYS - Median 08 L i
KEYS - Spread ------- ’ P
KEYS2 - Median --------- 0.7 ;
L KEYS2 - Spread -~ | = L

g? . P g 06 YS - Median
= E 05 KEYS - Spread ------- 7
8 5 04} KEYS2 - Median _
o Z o3k KEYS2 - Spread -~ |
02 /¢ E
01| /! S A E

0 / I - TN 1
1 10 20 30 1 10 20 30
Number of decisions made Number of decisions made

Figure 15a: Internal Decisions on Model 2.

T T T T T T T T T
| KEYS - Median i
4000 KEYS - Spread ------- 3000 P R b
KEYS2 - Median -~ /
3000 - KEYS2 - Spread -~ | o 2500 ,
< S 5000 KEYS - Median |
= A g B KEYS - Spread ---—----
& 2000 £ 1500 L KEYS2 - Median - i
(8} g i KEYS2 - Spread -
1000 B
1000 s
500 foin B
0 R L A 0 B L
1 10 20 30 40 50 1 10 20 30 40 50
Number of decisions made Number of decisions made
Figure 15b: Internal Decisions on Model 4.
1500 T T KEIYSI_ Mled|a:q T 250 [I” T T T T T T T T]
KEYS - Spread ------- ~
KEYS2 - Median --------- 200 F
L KEYS2 - Spread -~ | =
o 1000 P s KEYS - Median
= g 150 F KEYS - Spread - T
2 5 KEYS2 - Median -
o 500 Z 100 KEYS2 - Spread -~
50 | B
B et S S S B 1 1 0 A s S ST L L
1 10 20 30 40 50 60 70 80 90 1 10 20 30 40 50 60 70 80 90
Number of decisions made Number of decisions made

Figure 15c: Internal Decisions on Model 5.

Fig. 15. Median and spread of partial solutions learned by KEYS and KEYS2. X-axis shows the
number of decisions made. OMedianO shows the 50-th percentile of the measured value seen in
100 runs at each era. OSpreadO shows the difference between the 75th and 50th percentile.

21

On another matter, it is insightful to rel3ect on the effectiveness of different algo-
rithms for generating decision ordering diagrams. KEYS2 is the most direct and fastest
method. As mentioned above, all of the required information can be collected dur-
ing one execution. On the other hand, simulated annealing, ASTAR, and MaxWalkSat
would require a post-processor to generate the diagrams:

— Given D possible decisions, At each era, KEYS and KEYS2 collects statistics on
partial solutions whereé, 2, 3, ..|d| variables are bxed (whetkis the set of deci-
sions) while the remaining — d decisions are made at random.

— ASTAR, Simulated Annealing, and MaxFunWalk work with full solutions since
at each step they offer settings to @ll € D variables. In the current form, they
cannot comment on partial solutions. Modibed forms of these algorithms could add
in extra instrumentation and extra post-processing to comment on partial solutions
using methods like feature subset selection [28] or a sensitivity analysis [61].

7 Related Work

7.1 Early vs Later Life-cycle Requirements Engineering

The case studies presented in this paper come from the NASA Jet Propulsion LabOs
Team X meetings. Team X conducts early life-cycle requirement discussions.

Once a system is running, released, and being maintained or extended, another prob-
lem isrelease planning; i.e. what features to add to the néXtreleases. To solve this
problem, an inference engine must reason about how functionality extensions to cur-
rent software can best satisfy outstanding stakeholder requirements. The challenge of
release planning is that the benebpts of added functionality must be weighed against the
cost of implementing those extensions.

Several approaches have been applied to this problem including:

— The OPTIMIZE tool of Ngo-The and Ruhe [56], which combines linear program-
ming with genetic programming to optimize release plans for software projects
- The weighted Pareto optimal genetic algorithm approach of Zhang et al. [70]

(See also the earlier comparison of exact vs greedy algorithms by Bagnall et al. [5]).

Without further experimentation, we cannot assert that KEYS2 will work as well
on later life-cycle models (such as those used in release planning) as it did above (on
the earlier life-cycle Team X models). However, at this time, we can see no reason why
KEYS2 would not work as a non-linear optimizer of these later life-cycle models. This
could be a productive area for future work.

7.2 Other Optimizers

As documented by the search-based SE literature [13,31,32,58] and Gu et al [27], there
are many possible optimization methods. For example:

- Gradient descent methods assume that an objective functid is differentiable
at any single pointV. A Taylor-series approximation df'(X) can be shown to
decrease fastest if the negative gradient\(F'(V)) is followed from pointV.

22

— Sequential methods run on one CPU while parallel methods spread the work over
a distributed CPU farm.

— Discrete methods assume model variables have a Pnite range (that may be quite
small) while continuous methods assume numeric values with a very large (possibly
inPnite) range.

— The search-based SE literature prefers meta-heuristic methods like simulated an-
nealing, genetic algorithms and tabu search.

— Some methods map discrete values true/false into a continuous range 1/0 and then
use integer programming methods like CPLEX [53] to achieve results.

— Other methods bnd overlaps in goal expressions and generate a binary decision
diagram (BDD) where parent nodes store the overlap of children nodes.

This list is hardly exhaustive: Gu et al. list hundreds of other methods and no single
paper can experiment with them all. All the algorithms studied here are discrete and
sequential. We are currently exploring parallel versions of our optimizers but, so far,
the communication overhead outweighs the benepts of parallelism.

As to the general class of gradient descent methods, we do not use them since they
assume the objective function being optimizing is essentially continuous. Any model
with an OifO statement in it is not continuous since, at the OifO point, the programOs
behavior may become discontinuous. The requirements models studied here are dis-
continuous about every subset of every possible mitigation.

As to the more specibc class of integer programming methods, we do not explore
them here for two reasons. Coarfa et al. [14] found that integer programming-based
approaches ran an order of magnitude slower than discrete methods like the MaxWalk-
Sat and KEYS2 algorithms that we use. Similar results have been reported by Gu et.al
where discrete methods ran one hundred times faster than integer programming [27].

Harman offers another reason to avoid integer programming methods. In his search-
based SE manifest, Harman [31] argues that many SE problems are over-constrained
and so there may exist no precise solution that covers all constraints. A complete solu-
tion over all variables is hence impossible and partial solution based on heuristic search
methods are preferred. Such methods may not be complete; however, as Clarke et al
remark, O...software engineers face problems which consist, not in bhdgajution,
but rather, in engineering arcceptable or near-optimal solution from a large number
of alternatives.O [13]

7.3 Models of Requirements Engineering

DDP is a ultra-lightweight modeling tool. The value of ultra-lightweight ontologies

in early life cycle modeling is widely recognized. For example Mylopoulogxoal
graphs [54, 55] represent knowledge about non-functional requirements. Primitives in
soft goal modeling include statements of partial inBuence suébiasandhurts. An-

other commonly used framework in the design rationale community is a Oquestions-
options-criteria® (QOC) graph [64]. In QOC graphs:

— Questions suggesbptions. Deciding on one option can raise other questions;
— Options shown in a box denotelected options;

23

— Options are assessed byteria;
— Criteria are gradual knowledge; i.e. theyd/reject to support options.

QOCs can succinctly summarize lengthy debates; e.g. the 480 sentences uttered in a
debate on interface options can be displayed in a QOC graph on a single page [45].
SaatyOs Analytic Hierarchy Process (AHP) [60] is a variant of QOC.

While DDP shares many of the design aspects of softgoals & QOC & AHP, it dif-
fers in its representations and inference method. As explained above around Equation 1,
where as AHP and QOC and softgoals propagate inBuences over hierarchies, DDP prop-
agate infRuences over matrices.

7.4 Formal Models of Requirements Engineering

Zave & Jackson [69] debne requirements engineering as Pnding the specitSdation
the domain assumptiords that satisbes the given requiremeRtd.e.

bPndsS such thatS - R @)

Jureta, Mylopoulous & Faulkner [41] (hereafter IMF) take issue with Equation 7, saying
that it implicitly assume thak, S, R are precise and complete enough for the satisfac-
tion relation to hold. More specibcally, JMF complain that Equation 7 does not permit
partial fulbliment of (some) non-functional requirements. Also, the Zave&Jackson def-
inition does not allow any preference orderingspéci fication; overspecification.
JMF offer a replacement ontology where classical inference is replaced with operators
that supports the generation and ranking of subsets of domain assumptions that lead to
maximal (w.r.t. size) subsets of the possible goals, and softgoal quality Giteria

DDP reinterpretst@D in Equation 7 as an inference across numeric quantities, rather
than the inference over discrete logical variables suggested by Zave&Jackson. Hence,
it can achieve the same goals as JMF (ranking of partial solutions with weighted goals)
without requiring the JMF ontology.

7.5 Requirements Analysis Tools

There exist many powerful requirements analysis tools including continuous simula-
tion (also called system dynamics) [1, 65], state-based simulation (including petri net
and data Bow approaches) [3,29,47], hybrid-simulation (combining discrete event sim-
ulation and systems dynamics) [19, 46, 63], logic-based and qualitative-based meth-
ods [7, chapter 20] [37], and rule-based simulations [52]. One can bnd these models
being used in the requirements phase (i.e. the DDP tool described below), design refac-
toring using patterns [25], software integration [18], model-based security [40], and
performance assessment [6]. Many researchers have proposed support environments to
help explore the increasingly complex models that engineers are developing. Gray et

5 According to JMF: Oa salient characteristic of softgoals is that they cannot be satised to the
ideal extent, not only because of subjectivity, but also because the ideal level of satisfaction is
beyond the resources available to (and including) the system. It is therefore said that a softgoal
is not satised, but satisced.O

24

al [26] have developed the Constraint-Specibcation Aspect Weaver (C-Saw), which
uses aspect-oriented approaches [24] to help engineers in the process of model trans-
formation. Cai and Sullivan [9] describe a formal method and tool cdlledn that
Osupports interactive construction of formal models, derives and displays design struc-
ture matrices... and supports simple design impact analysis.O Other tools of note are
lightweight formal methods such as ALLOY [38] and SCR [34] as well as UML tools
that allow for the execution of life cycle specibcations (e.g. CADENA [10]).

Many of the above tools were built to maximize the expressive power of the rep-
resentation language or the constraint language used to express invariants. What dis-
tinguishes our work is that we aseilling to trade off representational or constraint
expressiveness for faster runtimes. There exists a class of ultra-lightweight model lan-
guages which, as we show above, can be processed very quickly. Any of the tools listed
in the last paragraph are also candidate solutions to the problem explored in this paper,
if it can be shown that their processing can generate tame and well-behaved decision
ordering diagrams in a timely manner.

7.6 Other Work on “Keys”

Elsewhere [50], we have documented dozens of papers that have reported the keys
effect (that a small number of variables set the rest) under different names including
narrows, master-variables, back doors, andfeature subset selection:

— Amarel [4] observed that search problems contain narrow sets of variables or col-
lars that must be used in any solution. In such a search space, what matters is not so
much how you get to these collars, but what decision you make when you get there.
Amarel debned macros encoding paths betweerows, effectively permitting a
search engine to jump between them.

- In a similar theoretical analysis, Menzies & Singh [50] computed the odds of a
system selecting solutions to goals using complex, or simpler, sets of preconditions.
In their simulations, they found that a system will naturally select for tiny sets of
preconditions (a.k.a. the keys) at a very high probability.

— Numerous researchers have examifeture subset selection; i.e. what happens
when a data miner deliberately ignores some of the variables in the training data.
For example, Kohavi and John [44] showed in numerous datasets that as few as 20%
of the variables aréey - the remaining 80% of variables can be ignored without
degrading a learnerQOs classibcation accuracy.

- Williams et.al. [68] discuss how to use keys (which they call Oback doorsO) to opti-
mize search. Constraining these back doors also constrains the rest of the program.
So, to quickly search a program, they suggest imposing some set values on the key
variables. They showed that setting the keys can reduce the solution time of certain
hard problems from exponential to polytime, provided that the keys can be cheaply
located, an issue on which Williams et.al. are curiously silent.

— Crawford and Baker [16] compared the performance of a complete TABLEAU
prover to a very simple randomized search engine called ISAMP. Both algorithms
assign a value to one variable, then infer some consequence of that assignment
with forward checking. If contradictions are detected, TABLEAU backtracks while

25

ISAMP simply starts over and re-assigns other variables randomly. Incredibly, ISAMP
took less time than TABLEAU to Pndnore solutions using just a small number of
tries. Crawford and Baker hypothesized that a small setaefer variables set the

rest and that solutions are not uniformly distributed throughout the search space.
TABLEAUOs depth-brst search sometimes drove the algorithm into regions con-
taining no solutions. On the other hand, ISAMPOs randomized sampling effectively
searches in a smaller space.

In summary, the core assumption of our algorithms are supported in many domains.

8 Conclusion

Requirements tools such as the DDP tool (used at NASA for early lifecycle discus-
sions), contain a shared group memory that stores all of the requirements, risks, and
mitigations of each member of the group. Software tools can explore this shared mem-
ory to Pnd consequences and interactions that may have been overlooked.

Studying that group memory is a non-linear optimization task: possible benebts
must be traded off against the increased cost of applying various mitigations. Har-
man [31] cautions that solutions to non-linear problems may be ObrittleO - small changes
to the search results may dramatically alter the effectiveness of the solution. Hence,
when reporting an analysis of this shared group memory, it is vitally important to com-
ment on the robustness of the solution.

Decision ordering diagrams are a solution robustness assessment method. The dia-
grams rank all of the possible decisions from most-to-least inRuential. Eachipoint
the diagrams shows the effects on imposing the conjunction of decisighg < =z.

These diagrams can comment on the robustness and neighborhood of slytidp}
using two operators:

1. By considering the variance of the performance statistics after apglingl.. }.
2. By comparing the results of using the brgtecisions to that of using the prst- 1
or z + 1 actions.

Since the diagrams are sorted, this analysis of robustness and neighborhood takes, at
most, time linear of the number of decisions. That is, theoretically, it takes linear time
to use a decision ordering diagram (sg£.3).

Empirically, it take low-order polynomial time tgenerate a decision ordering di-
agram using KEYS2. This algorithm makes the OkeyO assumption (that a small group
of variables set everything else) and uses Bayesian ranking mechanism to quickly Pnd
those keys. As discussed above in Betuted Work section, this assumption holds over
a wide range of models used in a wide range of domains. This OkeysO assumption can
be remarkably effective: our empirical results show that KEY2 can generate decision
ordering diagrams faster than the other algorithms studied here. Better yet, curve bts
to our empirical results show that KEYS runs in low-order polynomial time (of degree
two) and so should scale to very large models.

Prior to this work, our two pre-experimental concerns were that:

26

— We would need to trade solution robustness against solution quality. More robust
solutions may not have the highest quality.
— Demonstrating solution robustness requires multiple calls to an analysis procedure.

At least for the models studied here, neither concern was realized. KEYS2 generated
the highest quality solutions (lowest cost, highest attainments) and did so more quickly
than the other methods.

In §4.3 it was argued that decision ordering diagrams are useful when they:alse
to generate while beingell-behaved and tame. KEYS20s results are the mastely
(fastest to generate) of all of the methods studied here. As to the other criteria, Figure 15
shows that KEYS20s decision ordering diagrams:

- Move smoothly to a plateau with only a small amount of OjitterO;
- Have very low spreads, compared to the median results.

That is, at least for the models explored here, KEYS2 generated decision ordering dia-
grams they are bothell-behaved andrame.

In summary, we recommend KEYS2 for generating decision ordering diagrams
since, apart from the (slightly slower) KEYS algorithm, we are unaware of other search-
based software engineering methods that enable such a rapid ref3ection of solution ro-
bustness.

9 Acknowledgments

This research was conducted at West Virginia University, the Jet Propulsion Laboratory
under a contract with the National Aeronautics and Space administration, Alderson-
Broaddus College, and Miami University. Reference herein to any specibc commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the United States Government

References

1. T. Abdel-Hamid and S. MadnickSoftware Project Dynamics: An Integrated Approach.
Prentice-Hall Software Series, 1991.

2. F. A. Administration. System engineering manual version 3.1, section 4.6: Trade
studies, 2006. Available fromhttp://www.faa.gov/about/office_org/
headquarters_offices/ato/service_un%its/operations/sysengsaf/
seman/SEM3.1/Section%204.6.pdf

3. M. Akhavi and W. Wilson. Dynamic simulation of software process modelBrdneedings
of the 5th Software Engineering Process Group National Meeting (Held at Costa Mesa,
California, April 26 - 29). Software engineering Institute, Carnegie Mellon University, 1993.

4. S. Amarel. Program synthesis as a theory formation task: Problem representations and so-
lution methods. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, edit®dfachine
Learning: An Artificial Intelligence Approach: Volume II, pages 499D569. Kaufmann, Los
Altos, CA, 1986.

5. A. Bagnall, V. Rayward-Smith, and I. Whittley. The next release probleyfarmation and
Software Technology, 43(14), December 2001.

27

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

. S.Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance prediction
in software development: A survelEEE Transactions on Software Engineering, 30(5), May
2004.

. |. Bratko. Prolog Programming for Artificial Intelligence. (third edition). Addison-Wesley,
2001.

. T. Bylander, D. Allemang, M. Tanner, and J. Josephson. The Computational Complexity of
Abduction. Artificial Intelligence, 49:25D60, 1991.

. Y. Cai and K. J. Sullivan. Simon: modeling and analysis of design space structurest In

'05: Proceedings of the 20th IEEE/ACM international Conference on Automated software

engineering, pages 329332, New York, NY, USA, 2005. ACM Press.

A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hatcliff. Calm and cadena: Meta-

modeling for component-based product-line developm&&EE Computer, 39(2), Feburary

2006. Available fromhttp://projects.cis.ksu.edu/docman/view.php/7/

129/CALM-Cadena-|EEE-Comp%uter-Feb-2006.pdf

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,

and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking.

In Proc. International Conference on Computer-Aided Verification, 2002.

R. Clark. Faster treatment learning, Computer Science, Portland State University. MasterOs

thesis, 2005.

J. Clarke, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell, S. Man-

coridis, K. Rees, M. Roper, and M. Shepperd. Reformulating software engineering as a

search problemlEE Proceedings-Software, 150(3):161D175, 2003.

C. Coarfa, D. D. Demopoulos, A. San, M. Aguirre, D. Subramanian, and M. Y. Vardi.

Random 3-sat: The plot thickens. In Principles and Practice of Constraint Program-

ming, pages 143D159, 2000. Availabe frdttip://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.42.3662

S. Cornford, M. Feather, and K. Hicks. DDP a tool for life-cycle risk managemenEEIR

Aerospace Conference, Big Sky, Montana, pages 441D451, March 2001.

J. Crawford and A. Baker. Experimental results on the application of satispability algorithms

to scheduling problems. IWAAT *94, 1994.

J. DeKleer. An Assumption-Based TM&:rificial Intelligence, 28:163D196, 1986.

P. Denno, M. P. Steves, D. Libes, and E. J. Barkmeyer. Model-drven integration using exist-

ing models.IEEE Software, 20(5):59D63, Sept.-Oct. 2003.

P. Donzelli and G. lazeolla. Hybrid simulation modelling of the software prodessual

of Systems and Software, 59(3), December 2001.

M. Feather, S. Cornford, K. Hicks, J. Kiper, and T. Menzies. Application of a broad-spectrum

quantitative requirements model to early-lifecycle decision makiEE Software, 2008.

Available fromhttp://menzies.us/pdf/08ddp.pdf .

M. Feather, K. Hicks, R. Mackey, and S. Uckun. Guiding technology deployment decisions

using a quantitative requirements analysis techniquelERE International Conference

on Requirements Engineering, Industrial Practice and Experience track Barcelona, Spain,

2008.

M. Feather and T. Menzies. Converging on the optimal attainment of requirements. In

IEEE Joint Conference On Requirements Engineering ICRE’02 and RE’02, 9-13th Septem-

ber, University of Essen, Germany, 2002. Available fromhttp://menzies.us/pdf/

02re02.pdf

M. Feather, S. Uckun, and K. Hicks. Technology maturation of integrated system health

management. ISpace Technology and Applications International Forum (STAIF-2008)

Albuguerque, USA, February 2008.

R. E. FilmanAspect-Oriented Software Development. Addison-Wesley, Boston, 2004.

28

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

R. France, S. Ghosh, E. Song, and D. Kim. A metamodeling approach to pattern-based moel
refractoringt./EEE Software, 20(5):52D58, Sept.-Oct. 2003.

J. Gray, Y. Lin, and J. Zhang. Automating change evolution in model-driven engineering.
IEEE Computer, 39(2):51D58, February 2006.

J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. Algorithms for the satisbability (sat) prob-
lem: A survey. INDIMACS Series in Discrete Mathematics and Theoretical Computer Sci-

ence, pages 19D152. American Mathematical Society, 1997.

M. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data
mining. IEEE Transactions On Knowledge And Data Engineering, 15(6):1437D 1447, 2003.
Available from http://www.cs.waikato.ac.nz/+mhall/HallHolmesTKDE.

pdf .

D. Harel. Statemate: A working environment for the development of complex reactive sys-
tems.IEEE Transactions on Software Engineering, 16(4):403D414, April 1990.

M. Harman. The current state and future of search based software engineefingu-érof
Software Engineering, ICSE’07. 2007.

M. Harman and B. Jones. Search-based software engineévimgual of Information and
Software Technology, 43:833D839, December 2001.

M. Harman and J. Wegener. Getting results from search-based approaches to software engi-
neering. INICSE '04: Proceedings of the 26th International Conference on Software Engi-
neering, pages 728D729, Washington, DC, USA, 2004. IEEE Computer Society.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of mini-
mum cost pathsIEEE Transactions on Systems Science and Cybernetics, 4:100D107, 1968.

C. Heitmeyer. Software cost reduction. In J. J. Marciniak, editeryclopedia of Soft-

ware Engineering, January 2002. Available frorhttp://chacs.nrl.navy.mil/
publications/CHACS/2002/2002heitmeyer-encse.p%df

G. Holzmann. The model checker SPINEEE Transactions on Software Engineering,
23(5):279D295, May 1997.

Y. Hui, E. Prakash, and N. Chaudhari. Game ai: artibcial intelligence for 3d path bnding. In
TENCON 2004. 2004 IEEE Region 10 Conference, volume 2, pages 3060309, 2004.

Y. lwasaki. Qualitative physics. In P. C. A. Barr and E. Feigenbaum, editerandbook

of Artificial Intelligence, volume 4, pages 323D413. Addison Wesley, 1989.

D. Jackson. Alloy: a lightweight object modelling notatiodCM Trans. Softw. Eng.
Methodol., 11(2):256D290, 2002.

O. Jalali, T. Menzies, and M. Feather. Optimizing requirements decisions with keys.
In Proceedings of the PROMISE 2008 Workshop (ICSE), 2008. Available fromhttp:
/Imenzies.us/pdf/08keys.pdf

J. Jerjens and J. Fox. Tools for model based security engineerin@SAN06: Proceeding

of the 28th international conference on Software engineering, pages 8199822, New York,

NY, USA, 2006. ACM Press.

I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core ontology and problem in re-
quirements engineering. lmternational Requirements Engineering, 2008. RE '08. 16th

IEEE, pages 7180, Sept. 2008.

H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic and stochastic
search. InProceedings of the Thirteenth National Conference on Artificial Intelligence and

the Eighth Innovative Applications of Artificial Intelligence Conference, pages 1194D1201,
Menlo Park, Aug. 4D8 1996. AAAI Press / MIT Press. Available fidip://www.cc.
gatech.edu/+jimmyd/summaries/kautz1996.ps

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optlmlzatlon by simulated annedlinguce,
Number 4598, 13 May 1983, 220, 4598:671D680, 1983.

R. Kohavi and G. H. John. Wrappers for feature subset selectieniicial Intelligence,
97(1-2):273D324, 1997.

29

45

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

. A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions, options and criteria: Elements
of design space analysis. In T. Moran and J. Carroll, edifdesign Rationale: Concepts,
Techniques, and Use, pages 53D106. Lawerence Erlbaum Associates, 1996.

R. Martin and R. D. M. Application of a hybrid process simulation model to a software
development projectlournal of Systems and Software, 59(3), 2001.

R. Martin and D. M. Raffo. A model of the software development process using both con-
tinuous and discrete modelguternational Journal of Software Process Improvement and
Practice, June/July 2000.

T. Menzies, O. Jalali, and M. Feather. Optimizing requirements decisions with keys. In
Proceedings PROMISE "08 (ICSE), 2008.

T. Menzies, J. Kiper, and M. Feather. Improved software engineering decision support
through automatic argument reduction toolsSEDECS’2003: the 2nd International Work-

shop on Software Engineering Decision Support (part of SEKE2003), June 2003. Available

from http://menzies.us/pdf/03starl.pdf

T. Menzies and H. Singh. Many maybes mean (mostly) the same thing. In M. Madravio,
editor, Soft Computing in Software Engineering. Springer-Verlag, 2003. Available from
http://menzies.us/pdf/03maybe.pdf .

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state
calculations by fast computing machindsChem. Phys, 21:108791092, 1953.

P. Mi and W. Scacchi. A knowledge-based environment for modeling and simulation soft-
ware engineering procességEE Transactions on Knowledge and Data Engineering, pages
283D294, September 1990.

H. Mittelmann. Recent benchmarks of optimization softwar@2ha Euorpean Conference

on Operational Research, 2007.

J. Mylopoulos, L. Cheng, and E. Yu. From object-oriented to goal-oriented requirements
analysis.Communications of the ACM, 42(1):31D37, January 1999.

J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional requirements:
A process-oriented approachEEE Transactions of Software Engineering, 18(6):483D497,

June 1992.

A. Ngo-The and G. Ruhe. Optimized resource allocation for software release planning.
Software Engineering, IEEE Transactions on, 35(1):109D123, Jan.-Feb. 2009.

J. Pearl.Heuristics: intelligent search strategies for computer problem solving. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

L. Rela. Evolutionary computing in search-based software engineering. MasterOs thesis,
Lappeenranta University of Technology, 2004.

S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and D. D. Edwatgsficial intelligence:

a modern approach. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.

T. Saaty.The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation.
McGraw-Hill, 1980.

A. Saltelli, K. Chan, and E. Scoffensitivity Analysis. Wiley, 2000.

B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for satisPability testing.
In M. Trick and D. S. Johnson, editorBroceedings of the Second DIMACS Challange on
Cliques, Coloring, and Satisfiability, Providence RI, 1993.

S. Setamanit, W. Wakeland, and D.Raffo. Using simulation to evaluate global software de-
velopment task allocation strategie$ofiware Process: Improvement and Practice, (Forth-
coming), 2007.

S. B. Shum and N. Hammond. Argumentation-based design rationale: What use at what
cost?International Journal of Human-Computer Studies, 40(4):603D652, 1994.

H. Sterman. Business Dynamics: Systems Thinking and Modeling for a Complex World.

Irwin McGraw-Hill, 2000.

30

66. B. Stout. Smart moves: Intelligent pathbnditigune Developer Magazine, (7), 1997.

67. T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams and the davis-putnam
procedure. Ifn Proc. of the Ist International Conference on Constraints in Computational
Logics, pages 34D49. Springer-Verlag, 1994.

68. R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexitfroin
ceedings of IJCAI 2003, 2003. http://www.cs.cornell.edu/gomes/FILES/
backdoors.pdf

69. P. Zave and M. Jackson. Four dark corners of requirements engine®€ibTrans. Softw.

Eng. Methodol., 6(1):1D30, 1997.

70. H. Zhang and X. Zhang. Comments on Odata mining static code attributes to learn defect

predictorsQEEE Transactions on Software Engineering, September 2007.

Obtaining our System

We have placed on-line all the materials required for other researchers to conduct further
investigation into this problem. All the code, Makebles, scripts, and so on used in this
paper are available http://unbox.org/wisp/tags/ddpExperiment/install

For security reasons, all the available JPL requirements models have been OsanltlzedO;
i.e. all words replaced with anonymous variables.

31

