
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 1

Controlling Randomized Unit Testing With

Genetic Algorithms
James H. Andrews, Member, IEEE, Tim Menzies, Member, IEEE,

and Felix C. H. Li

Abstract

Randomized testing is an effective method for testing software units. Thoroughness of randomized

unit testing varies widely according to the settings of certain parameters, such as the relative frequencies

with which methods are called. In this paper, we describe Nighthawk, a system which uses a genetic

algorithm (GA) to find parameters for randomized unit testing that optimize test coverage.

Designing GAs is somewhat of a black art. We therefore use a feature subset selection (FSS) tool

to assess the size and content of the representations within the GA. Using that tool, we can prune back

90% of our GA’s mutators while still achieving most of the coverage found using all the mutators. Our

pruned GA achieves almost the same results as the full system, but in only 10% of the time. These

results suggest that FSS for mutator pruning could significantly optimize meta-heuristic search-based

software engineering tools.

Index Terms

Software testing, randomized testing, genetic algorithms, feature subset selection, search-based

optimization

Manuscript received January 1, 2009; revised September 4, 2009.

J. Andrews and F. Li are with the Department of Computer Science, University of Western Ontario, London, Ont., Canada,

N6A 2B7. E-mail: andrews@csd.uwo.ca.

T. Menzies is with the Lane Department of Computer Science and Electrical Engineering, West Virginia University,

Morgantown, WV 26506-610. E-mail: tim@menzies.us.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 2

I. INTRODUCTION

Software testing involves running a piece of software (the software under test, or SUT) on

selected input data, and checking the outputs for correctness. The goals of software testing are

to force failures of the SUT, and to be thorough. The more thoroughly we have tested an SUT

without forcing failures, the more sure we are of the reliability of the SUT.

Randomized testing uses randomization for some aspects of test input data selection. Several

studies [1]–[4] have found that randomized testing of software units is effective at forcing failures

in even well-tested units. However, there remains a question of the thoroughness of randomized

testing. Using various code coverage measures to measure thoroughness, researchers have come

to varying conclusions about the ability of randomized testing to be thorough [2], [5], [6].

The thoroughness of randomized unit testing is dependent on when and how randomization

is applied; e.g. the number of method calls to make, the relative frequency with which different

methods are called, and the ranges from which numeric arguments are chosen. The manner in

which previously-used arguments or previously-returned values are used in new method calls,

which we call the value reuse policy, is also a crucial factor. It is often difficult to work out the

optimal values of the parameters and the optimal value reuse policy by hand.

This paper describes the Nighthawk unit test data generator. Nighthawk has two levels. The

lower level is a randomized unit testing engine which tests a set of methods according to

parameter values specified as genes in a chromosome, including parameters that encode a value

reuse policy. The upper level is a genetic algorithm (GA) which uses fitness evaluation, selection,

mutation and recombination of chromosomes to find good values for the genes. Goodness is

evaluated on the basis of test coverage and number of method calls performed. Users can use

Nighthawk to find good parameters, and then perform randomized unit testing based on those

parameters. The randomized testing can quickly generate many new test cases that achieve high

coverage, and can continue to do so for as long as users wish to run it.

This paper also discusses optimization techniques for GA tools like Nighthawk. Using feature

subset selection techniques, we show that we can prune many of Nighthawk’s mutators (gene

types) without compromising coverage. The pruned Nighthawk tool achieves nearly the same

coverage as full Nighthawk (90%) and does so ten times faster. Therefore, we recommend that

meta-heuristic search-based SE tools should also routinely perform subset selection.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 3

A. Randomized Unit Testing

Unit testing is variously defined as the testing of a single method, a group of methods, a

module or a class. We will use it in this paper to mean the testing of a group M of methods,

called the target methods. A unit test is a sequence of calls to the target methods, with each

call possibly preceded by code that sets up the arguments and the receiver1, and with each call

possibly followed by code that stores and checks results.

Randomized unit testing is unit testing where there is some randomization in the selection of

the target method call sequence and/or arguments to the method calls. Many researchers [2], [3],

[6]–[10] have performed randomized unit testing, sometimes combined with other tools such as

model checkers. A key concept in randomized unit testing is that of value reuse. We use this

term to refer to how the testing engine reuses the receiver, arguments or return values of past

method calls when making new method calls. In previous research, value reuse has mostly taken

the form of making a sequence of method calls all on the same receiver object.

In our previous research, we developed a GUI-based randomized unit testing engine called

RUTE-J [2]. To use RUTE-J, users write their own customized test wrapper classes, hand-coding

such parameters as relative frequencies of method calls. Users also hand-code a value reuse policy

by drawing receiver and argument values from value pools, and placing return values back in

value pools. Finding good parameters quickly, however, requires experience with the tool.

The Nighthawk system described here significantly builds on this work by automatically

determining good parameters. The lower, randomized-testing, level of Nighthawk initializes and

maintains one or more value pools for all relevant types, and draws and replaces values in

the pools according to a policy specified in a chromosome. Chromosomes specifies relative

frequencies of methods, method parameter ranges, and other testing parameters. The upper,

genetic-algorithm, level searches for the parameter settings that increases the coverage seen

in the lower level. The information that Nighthawk uses about the SUT is only information

about type names, method names, parameter types, method return types, and which classes are

subclasses of others; this makes its general approach robust and adaptable to other languages.

Designing a GA means making decisions about what features are worthy of modeling and

1We use the word “receiver” to refer to the object that a method is called on. For instance, in the Java method call “t.add(3)”,

the receiver is t.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 4

mutating. For example, much of the effort on this project was a laborious trial-and-error process

of trying different types of genes within a chromosome. To simplify that process, we describe

experiments here with automatic feature subset selection (FSS), which lead us to propose that

automatic feature subset selection should be a routine part of the design of any large GA system.

B. Contributions and Paper Organization

The main contributions of this paper are as follows.

1) We Nighthawk, a novel two-level genetic-random testing system that encodes a value reuse

policy in a manner amenable to meta-heuristic search.

2) We demonstrate the value of feature subset selection (FSS) for optimizing genetic algo-

rithms. Using FSS, we can prune Nighthawk’s gene types while achieving nearly the same

coverage. Compared to full Nighthawk, this coverage is achieved ten times faster.

3) We offer evidence for the external validity of our FSS-based optimization: the optimization

learned from one set of classes (Java utils) also works when applied to another set of classes

(classes from the Apache system).

We discuss related work in Section II. Section III. describes our system and gene type pruning

using feature subset selection is described in Section IV. Section VI describes threats to validity,

and Section VII concludes.

This paper differs from prior publications as follows:

• The original Nighthawk publication [11] studied its effectiveness on the JAVA util classes.

• A subsequent paper [12] offered an FSS-based optimization. That paper found ways to

prune 60% of the gene types when trying to cover the Java util classes.

• This paper shows that that FSS-based optimizer was sub-optimal. We present here a better

optimization method that prunes 90% of the gene types (see §IV-D2). An analysis of that

optimized system in §IV-D3 revealed further improvements. We have successfully tested

the optimized and improved version of Nighthawk on Apache system classes (see §IV-D4).

II. RELATED WORK

A. Randomized Unit Testing

“Random” or “randomized” testing has a long history, being mentioned as far back as 1973

[13]; Hamlet [14] gives a good survey. The key benefit of randomized testing is the ability to

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 5

generate many distinct test inputs in a short time, including test inputs that may not be selected by

test engineers but which may nevertheless force failures. There are, however, two main problems

with randomized testing: the oracle problem and and the question of thoroughness.

Randomized testing depends on the generation of so many inputs that it is infeasible to get a

human to check all test outputs. An automated test oracle [15] is needed. There are two main

approaches to the oracle problem. The first is to use general-purpose, “high-pass” oracles that

pass many executions but check properties that should be true of most software. For instance,

Miller et al. [1] judge a randomly-generated GUI test case as failing only if the software crashes

or hangs; Csallner and Smaragdakis [16] judge a randomly-generated unit test case as failing if it

throws an exception; and Pacheco et al. [3] check general-purpose contracts for units, such as one

that states that a method should not throw a “null pointer” exception unless one of its arguments

is null. Despite the use of high-pass oracles, all these authors found randomized testing to be

effective in forcing failures. The second approach to the oracle problem for randomized testing

is to write oracles in order to check properties specific to the software [2], [17]. These oracles,

like all formal unit specifications, are non-trivial to write; tools such as Daikon for automatically

deriving likely invariants [18] could help here.

Since randomized unit testing does not use any intelligence to guide its search for test

cases, there has always been justifiable concern about how thorough it can be, given various

measures of thoroughness, such as coverage and fault-finding ability. Michael et al. [5] performed

randomized testing on the well-known Triangle program; this program accepts three integers as

arguments, interprets them as sides of a triangle, and reports whether the triangle is equilateral,

isosceles, scalene, or not a triangle at all. They concluded that randomized testing could not

achieve 50% condition/decision coverage of the code, even after 1000 runs. Visser et al. [6]

compared randomized unit testing with various model-checking approaches and found that while

randomized testing was good at achieving block coverage, it failed to achieve optimal coverage

for a measure derived from Ball’s predicate coverage [19].

Other researchers, however, have found that the thoroughness of randomized unit testing

depends on the implementation. Doong and Frankl [7] tested several units using randomized

sequences of method calls. By varying some parameters of the randomized testing, they could

greatly increase/decrease the likelihood of finding injected faults. The parameters included num-

ber of operations performed, ranges of integer arguments, and the relative frequencies of some

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 6

of the methods in the call sequence. Antoy and Hamlet [8], who checked the Java Vector class

against a formal specification using random input, similarly found that if they avoided calling

some of the methods (essentially setting the relative frequencies of those methods to zero), they

could cover more code in the class. Andrews and Zhang [20], performing randomized unit testing

on C data structures, found that varying the ranges from which integer key and data parameters

were chosen increased the fault-finding ability of the random testing.

Pacheco et al. [3] show that randomized testing can be enhanced via randomized breadth-first

search of the search space of possible test cases, pruning branches that lead to redundant or

illegal values which would cause the system to waste time on unproductive test cases.

Of the cited approaches, the approach described in this paper is most similar to Pacheco et

al.’s. The primary difference is that we achieve thoroughness by generating long sequences of

method calls on different receivers, while they do so by deducing shorter sequences of method

calls on a smaller set of receivers. The focus of our research is also different. Pacheco et al. focus

on identifying contracts for units and finding test cases that violate them. In contrast, we focus

on maximizing code coverage; coverage is an objective measure of thoroughness that applies

regardless of whether failures have been found, for instance in situations in which most bugs

have been eliminated from a unit.

B. Analysis-Based Test Data Generation Approaches

Approaches to test data generation via symbolic execution date back to 1976 [21], [22];

typically these approaches generate a thorough set of test cases by deducing which combinations

of inputs will cause the software to follow given paths. TESTGEN [23], for example, transforms

each condition in the program to one of the form e < 0 or e ≤ 0, and then searches for values

that minimize (resp. maximize) e, thus causing the condition to become true (resp. false).

Other source code analysis tools have applied iterative relaxation of a set of constraints on

input data [24] and generation of call sequences using goal-directed reasoning [25]. Some recent

approaches use model checkers such as Java Pathfinder [26]. These approaches are sometimes

augmented with “lossy” randomized search for paths, as in the DART and CUTE systems [10],

[27], the Lurch system [28], and the Java Pathfinder-based research of Visser et al. [6].

Some analysis-based approaches limit the range of different conditions they consider; for

instance, TESTGEN’s minimization strategy [23] cannot be applied to conditions involving

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 7

pointers. In addition, most analysis-based approaches incur heavy memory and processing time

costs. These limitations are the primary reason why researchers have explored the use of heuristic

and metaheuristic approaches to test case generation.

C. Genetic Algorithms for Testing

Genetic algorithms (GAs) were first described by Holland [29]. Candidate solutions are

represented as “chromosomes”, with solution represented as “genes” in the chromosomes. The

possible chromosomes form a search space and are associated with a fitness function representing

the value of solutions encoded in the chromosome. Search proceeds by evaluating the fitness of

each of a population of chromosomes, and then performing point mutations and recombination

on the successful chromosomes. GAs can defeat purely random search in finding solutions to

complex problems. Goldberg [30] argues that their power stems from being able to engage in

“discovery and recombination of building blocks” for solutions in a solution space.

Meta-heuristic search methods such as GAs have often been applied to the problem of test

suite generation. In Rela’s review of 122 applications of meta-heuristic search in SE [31], 44%

of the applications related to testing. Approaches to GA test suite generation can be black-box

(requirements-based) or white-box (code-based); here we focus on four representative white-box

approaches, since our approach focuses on increasing coverage, and is therefore also white-box.

Pargas et al. [32] represent a set of test data as a chromosome, in which each gene encodes one

input value. Michael et al. [5] represent test data similarly, and conduct experiments comparing

various strategies for augmenting the GA search. Both of these approaches evaluate the fitness

of a chromosome by measuring how close the input is to covering some desired statement or

condition direction. Guo et al. [33] generate unique input-output (UIO) sequences for protocol

testing using a genetic algorithm; the sequence of genes represents a sequence of inputs to a

protocol agent, and the fitness function computes a measure related to the coverage of the possible

states and transitions of the agent. Finally, Tonella’s approach to class testing [34] represents

the sequence of method calls in a unit test as a chromosome; the approach features customized

mutation operators, such as one that inserts method invocations.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 8

D. Nighthawk

In work reported in [11], we developed Nighthawk, the two-level genetic-random test data

generation system explored further in this paper, and carried out experiments aimed at comparing

it with previous research and finding the optimal setting of program switches.

Unlike the methods discussed above, Nighthawk’s genetic algorithm does not result in a single

test input. Instead, it finds settings to parameters which control aspects of randomized testing.

We designed Nighthawk by identifying aspects of the basic randomized testing algorithm that

would benefit from being controlled by parameters, and then encoding each parameter as a gene

in a chromosome. Details of the design of Nighthawk are presented in Section III.

Our initial empirical studies showed that, when run on the subject software used by Michael

et al. [5], Nighthawk reached 100% of feasible condition/decision coverage on average after 8.5

generations. They also showed that, when run on the subject software used by Visser et al. [6]

and Pacheco et al. [3], Nighthawk achieved the same coverage in a comparable amount of time.

Finally, our studies showed that Nighthawk could achieve high coverage (82%) automatically,

when using the best setting of system parameters, when run on the 16 Collection and Map

classes from the java.util package in Java 1.5.0. These results encouraged us to explore

Nighthawk further. The full empirical results are described in [11].

E. Analytic Comparison of Approaches

Once a large community starts comparatively evaluating some technique, then evaluation

methods for different methods become just as important as the generation of new methods.

Currently, there are no clear conventions on how this type of work should be assessed. However,

we can attempt some analytic comparisons.

It is clear that there are situations in which a source code analysis-based approach such

as symbolic evaluation or model checking will be superior to any randomized approach. For

instance, for an if statement decision of the form (x==742 && y==113), random search of

the space of all possible x,y pairs is unlikely to produce a test case that executes the decision

in the true direction, while a simple analysis of the source code will be successful. The question

is how often these situations arise in real-world programs. The Nighthawk system of this paper

cannot guess at constants like 742, but is still able to cover the true direction of decisions of

the form x==y because the value reuse policies it discovers will often choose x and y from

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 9

the same value pool. It is therefore likely that randomized testing and analysis-based approaches

have complementary strengths. Groce et al. [4] conclude that randomized testing is a good first

step, before model checking, in achieving high quality software.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18x

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

y

 0
 0.2
 0.4
 0.6
 0.8

 1

Probability of covering

Fig. 1. Spiky search space resulting from poor

fitness function.

Genetic algorithms do not perform well when the

search space is mostly flat, with steep jumps in fitness

score. Consider the problem of finding integer inputs x

and y that cover the true direction of the decision “x==y”.

If we cast the problem as a search for the two values, and

the score as whether we have found two equal values, the

search space is shaped as in Figure 1: a flat plain of zero

score with spikes along the diagonal. Most approaches to

GA white-box test data generation use fitness functions

that detect “how close” the target decision is to being

true, often using analysis-based techniques. For instance,

Michael et al. [5] use fitness functions that specifically take account of such conditions by

measuring how close x and y are. Watkins and Hufnagel [35] enumerate and compare fitness

functions proposed for GA-based test case generation.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18hi

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

lo

 0
 0.2
 0.4
 0.6
 0.8

 1

Probability of covering

Fig. 2. Smooth search space resulting from

recasting problem.

In contrast, we recast the problem as a search for the

best values of lo and hi that will be used as the lower

and upper bound for random generation of x and y, and

the score as whether we have generated two equal values

of x and y. Seen in this way, the search space landscape

still contains a spiky “cliff”, as seen in Figure 2, but the

cliff is approached on one side by a gentle slope.

If the inputs in Figure 1 were floating-point numbers

(not integers), the search space would consist of a flat

plain of zero score with a thin, sharp ridge along the

diagonal. In this case the solution depicted in Figure 2

would yield only a small improvement. This is where value pools come in. We draw each

parameter value from a value pool of finite size; each numeric value pool has size s and bounds

lo and hi, and is initially seeded with values drawn randomly within lo to hi. For the example

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 10

problem, we will be more likely to choose equal x and y as s becomes smaller, regardless of the

value of lo and hi and regardless of whether the values are integers or floating-point numbers,

because the smaller the value pool, the more likely we are to pick the same value for x and y.

This approach generalizes to non-numeric data. Each type of interest is associated with one

or more value pools; the number and size of which are controlled by genes. At any time, a value

in a value pool may be chosen as the receiver or parameter of a method call, which may in

turn change the value in the pool. Also, at any time a value in a value pool may be replaced

by a return value from a method call. Which value pools are drawn on, and which value pools

receive the return values of which methods, are also controlled by genes. A test case may consist

of hundreds of randomized method calls, culminating in the creation of values in value pools

which, when used as parameters to a method call, cause that method to execute code not executed

before. Changing gene values therefore makes this more/less likely to happen.

To the best of our knowledge, each run of previous GA-based tools has resulted in a single

test case, which is meant to reach a particular target. A test suite is built up by aiming the

GA at different targets, resulting in a fixed-size test suite that achieves coverage of all targets.

However, Frankl and Weiss [36] and Andrews and Siami Namin [37] have shown that both

size and coverage exert an influence over test suite effectiveness, and Rothermel et al. [38]

have shown that reducing test suite size while preserving coverage can significantly reduce its

fault detection capability. Therefore, given a choice between three systems achieving the same

coverage, (a) which generates one fixed set of test cases, (b) which generates many different test

cases slowly, and (c) which generates many different test cases quickly, (c) is the optimal choice.

A GA which generates one test case per run is in class (a) or (b) (it may generate different test

cases on each run as a result of random mutation). In contrast, Nighthawk is in class (c) because

each run of the GA results only in a setting of randomized testing parameters that achieves high

coverage; new high-coverage test suites can then be generated quickly at low cost.

All analysis-based approaches share the disadvantage of requiring a robust parser and/or an

analyzer for source code, byte code or machine code that can be updated to reflect changes in the

source language. As an example from the domain of formal specification, Java 1.5 was released

in 2004, but as of this writing, the widely-used specification language JML does not fully support

Java 1.5 features [39]. Our approach does not require source code or bytecode analysis, instead

depending only on class and method parameter information (such as that supplied by the robust

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 11

Java reflection mechanism) and commonly-available coverage tools. For instance, our code was

initially written with Java 1.4 in mind, but worked seamlessly on the Java 1.5 versions of the

java.util classes, despite the fact that the source code of many of the units had been heavily

modified to introduce templates. However, model-checking approaches have other strengths, such

as the ability to analyze multi-threaded code [40], further supporting the conclusion that the two

approaches are complementary.

III. NIGHTHAWK: SYSTEM DESCRIPTION

2)

...

...

int

...

TreeMap

Value
pool 1

Value
pool i

Value
pool 1

Value
pool j

t . put (k , v);

...

...
3)

... ...

......

1)

Fig. 3. Value pool initialization and use. Stage 1: random

values are seeded into the value pools for primitive types

such as int, according to bounds in the pools. Stage 2:

values are seeded into non-primitive type classes that have

initializer constructors, by calling those constructors. Stage

3: the rest of the test case is constructed and run, by

repeatedly randomly choosing a method and receiver and

parameter values. Each method call may result in a return

value, which is placed back into a value pool (not shown).

Our exploratory studies [11] suggested that

GAs generating unit tests should search method

parameter ranges, value reuse policy and other

randomized testing parameters. This section

describes Nighthawk’s implementation of that

search. We outline the lower, randomized-testing,

level of Nighthawk, and then describe the chro-

mosome that controls its operation. We then de-

scribe the genetic-algorithm level and the end

user interface. Finally, we describe automatically-

generated test wrappers for precondition check-

ing, result evaluation and coverage enhancement.

A. Randomized Testing Level

Nighthawk’s lower level constructs and runs

one test case. The algorithm takes two parameters:

a set M of Java methods, and a GA chromosome

c appropriate to M . The chromosome controls

aspects of the algorithm’s behavior, such as the

number of method calls to be made, and will be

described in more detail in the next subsection. We say that M is the set of “target methods”.

IM , the types of interest corresponding to M , is the union of the following sets of types2:

2In this paper, the word “type” refers to any primitive type, interface, or abstract or concrete class.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 12

Input: a set M of target methods; a chromosome c.
Output: a test case.
Steps:

1) For each element of each value pool of each primitive type in IM , choose an initial value that is within the bounds for that value pool.
2) For each element of each value pool of each other type t in IM :

a) If t has no initializers, then set the element to null.
b) Otherwise, choose an initializer method i of t, and call tryRunMethod(i, c). If the call returns a non-null value, place the

result in the destination element.
3) Initialize test case k to the empty test case.
4) Repeat n times, where n is the number of method calls to perform:

a) Choose a target method m ∈ CM .
b) Run tryRunMethod(m, c). Add the returned call description to k.
c) If tryRunMethod returns a method call failure indication, return k with a failure indication.

5) Return k with a success indication.

Fig. 4. Algorithm constructRunTestCase.

• All types of receivers, parameters and return values of methods in M .

• All primitive types that are the types of parameters to constructors of other types of interest.

Each type t ∈ IM has an array of value pools. Each value pool for t contains an array of values

of type t. Each value pool for a range primitive type (a primitive type other than boolean and

void) has bounds on the values that can appear in it. The number of value pools, number of

values in each value pool, and the range primitive type bounds are specified by chromosome c.

See Figure 3 for a high-level view of how the value pools are initialized and used in the

test case generation process. The algorithm chooses initial values for primitive type pools,

before considering non-primitive type pools. A constructor method is an initializer if it has

no parameters, or if all its parameters are of primitive types. A constructor is a reinitializer

if it has no parameters, or if all its parameters are of types in IM . (All initializers are also

reinitializers.) We define the set CM of callable methods to be the methods in M plus the

reinitializers of the types in IM (Nighthawk calls these callables directly).

A call description is an object representing one method call that has been constructed and

run. It consists of the method name, an indication of whether the method call succeeded, failed

or threw an exception, and one object description for each of the receiver, the parameters and

the result (if any). A test case is a sequence of call descriptions, together with an indication of

whether the test case succeeded or failed.

Nighthawk’s randomized testing algorithm is referred to as constructRunTestCase, and is

described in Figure 4. It takes a set M of target methods and a chromosome c as inputs. It

begins by initializing value pools, and then constructs and runs a test case, and returns the test

case. It uses an auxiliary method called tryRunMethod (Figure 5), which takes a method as

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 13

Input: a method m; a chromosome c.
Output: a call description.
Steps:

1) If m is non-static and not a constructor:
a) Choose a type t ∈ IM which is a subtype of the receiver of m.
b) Choose a value pool p for t.
c) Choose one value recv from p to act as a receiver for the method call.

2) For each argument position to m:
a) Choose a type t ∈ IM which is a subtype of the argument type.
b) Choose a value pool p for t.
c) Choose one value v from p to act as the argument.

3) If the method is a constructor or is static, call it with the chosen arguments. Otherwise, call it on recv with the chosen arguments.
4) If the call throws AssertionError, return a failure indication call description.
5) Otherwise, if the call threw another exception, return a call description with an exception indication.
6) Otherwise, if the method return is not void, & the return value ret is non-null:

a) Choose type t ∈ IM that is a supertype of the the return value.
b) Choose a value pool p for t.
c) If t is not a primitive type, or if t is a primitive type and ret does not violate the p bounds, then replace an element of p with

ret.
d) Return a call description with a success indication.

Fig. 5. Algorithm tryRunMethod.

input, calls the method and returns a call description. In the algorithm descriptions, the word

“choose” is always used to mean specifically a random choice which may partly depend on c.

tryRunMethod considers a method call to fail if and only if it throws an AssertionError.

It does not consider other exceptions to be failures, since they might be correct responses to bad

input parameters. We facilitate checking correctness of return values and exceptions by providing

a generator for “test wrapper” classes. The generated test wrapper classes can be instrumented

with assertions; see Section III-E for more details.

Return values may represent new object instances never yet created during the running of the

test case. If these new instances are given as arguments to method calls, they may cause the

method to execute statements never yet executed. Thus, the return values are valuable and are

returned to the value pools when they are created.

Although we have targeted Nighthawk specifically at Java, note that its general principles

apply to any object-oriented or procedural language. For instance, for C, we would need only

information about the types of parameters and return values of functions, and the types of fields in

structs. struct types and pointer types could be treated as classes with special constructors,

getters and setters; functions could be treated as static methods of a single target class.

B. Chromosomes

Aspects of the test case execution algorithms are controlled by the genetic algorithm chro-

mosome given as an argument. A chromosome is composed of a finite number of genes. Each

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 14

Gene type Occurrence Type Description
numberOfCalls One for whole chromosome int the number n of method calls to be

made
methodWeight One for each method m ∈ CM int The relative weight of the method, i.e.

the likelihood that it will be chosen
numberOf-
ValuePools

One for each type t ∈ IM int The number of value pools for that type

numberOfValues One for each value pool of each type
t ∈ IM except for boolean

int The number of values in the pool

chanceOfTrue One for each value pool of type
boolean

int The percentage chance that the value
true will be chosen from the value pool

lowerBound,
upperBound

One for each value pool of each range
primitive type t ∈ IM

int or
float

Lower and upper bounds on pool val-
ues; initial values are drawn uniformly
from this range

chanceOfNull One for each argument position of non-
primitive type of each method m ∈ CM

int The percentage chance that null will
be chosen as the argument

candidateBitSet One for each parameter and quasi-
parameter of each method m ∈ CM

BitSet Each bit represents 1 candidate type,
signifying if the argument will be of
that type

valuePool-
ActivityBitSet

One for each candidate type of each
parameter and quasi-parameter of each
method m ∈ CM

BitSet Each bit represents one value pool, and
signifies whether the argument will be
drawn from that value pool

Fig. 6. Nighthawk gene types.

gene is a pair consisting of a name and an integer, floating-point, or BitSet value. Figure 6

summarizes the different types of genes that can occur in a chromosome. We refer to the receiver

(if any) and the return value (if non-void) of a method call as quasi-parameters of the method

call. Parameters and quasi-parameters have candidate types:

• A type is a receiver candidate type if it is a subtype of the type of the receiver. These are

the types from whose value pools the receiver can be drawn.

• A type is a parameter candidate type if it is a subtype of the type of the parameter. These

are the types from whose value pools the parameter can be drawn.

• A type is a return value candidate type if it is a supertype of the type of the return value.

These are the types into whose value pools the return value can be placed.

Note that the gene types candidateBitSet and valuePoolActivityBitSet encode

value reuse policies by determining the pattern in which receivers, arguments and return values

are drawn from and placed into value pools.

It is clear that different gene values in the chromosome may cause dramatically different

behavior of the algorithm on the methods. We illustrate this point with two concrete examples.

Consider the “triangle” unit from [5]. If the value pool for all three parameter values contains

65536 values in the range -32768 to 32767, then the chance that the algorithm will ever choose

two or three identical values for the parameters (needed for the “isosceles” and “equilateral”

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 15

cases) is very low. If, on the other hand, the value pool contains only 30 integers each chosen

from the range 0 to 10, then the chance rises dramatically due to reuse of previously-used values

(the additional coverage this would give would depend on the SUT, but is probably > 0).

Consider further a container class with put and remove methods, each taking an integer

key as its only parameter. If the parameters to the two methods are taken from two different

value pools of 30 values in the range 0 to 1000, there is little chance that a key that has been

put into the container will be successfully removed. If, however, the parameters are taken from

a single value pool of 30 values in the range 0 to 1000, then the chance is very good that added

keys will be removed, again due to value reuse. A remove method for a typical data structure

executes different code for a successful removal than it does for a failing one.

C. Genetic Algorithm Level

We take the space of possible chromosomes as a solution space to search, and apply the GA

approach to search it for a good solution. We chose GAs over other metaheuristic approaches such

as simulated annealing because of our belief that recombining parts of successful chromosomes

would result in chromosomes that are better than their parents. However, other metaheuristic

approaches may have other advantages and should be explored in future work.

The parameter to Nighthawk’s GA is the set M of target methods. The GA performs the usual

chromosome evaluation steps (fitness selection, mutation & recombination). The GA derives an

initial template chromosome appropriate to M , constructs an initial population of size p as

clones of this chromosome, and mutates the population. It then loops for the desired number

g of generations, of evaluating each chromosome’s fitness, retaining the fittest chromosomes,

discarding the rest, cloning the fit chromosomes, and mutating the genes of the clones with

probability m% using point mutations and crossover (exchange of genes between chromosomes).

The evaluation of the fitness of each chromosome c proceeds as follows. The random testing

level of Nighthawk generates and runs a test case, using the parameters encoded in c. It then

collects the number of lines covered by the test case. If we based the fitness function only on

coverage, then any chromosome would benefit from having a larger number of method calls

and test cases, since every new method call has the potential of covering more code. Nighthawk

therefore calculates the fitness of the chromosome as:

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 16

(number of coverage points covered) ∗ (coverage factor)

− (number of method calls performed overall)

We set the coverage factor to 1000, meaning that we are willing to make 1000 more method

calls (but not more) if that means covering one more coverage point.

For the three variables mentioned above, Nighthawk uses default settings of p = 20, g =

50, m = 20. These settings are different from those taken as standard in GA literature [41], and

are motivated by a need to do as few chromosome evaluations as possible (the primary cost

driver of the system). The population size p and the number of generations g are smaller than

standard, resulting in fewer chromosome evaluations; to compensate for the lack of diversity in

the population that would otherwise result, the mutation rate m is larger. The settings of other

variables, such as the retention percentage, are consistent with the literature.

To enhance availability of the software, Nighthawk uses the popular open-source coverage tool

Cobertura [42] to measure coverage. Cobertura can measure only line coverage (each coverage

point corresponds to a source code line, and is covered if any code on the line is executed).

However, Nighthawk’s algorithm is not specific to this measure.

D. Top-Level Application

The Nighthawk application takes several switches and a set of class names as command-

line parameters. Our empirical studies [11] showed that it is best to consider the set of “target

classes” as the command-line classes together with all non-primitive types of parameters and

return values of the public declared methods of the command-line classes. The set M of target

methods is computed as all public declared methods of the target classes.

Nighthawk runs the GA, monitoring the chromosomes and retaining the first chromosome

that has the highest fitness ever encountered. This most fit chromosome is the final output of

the program. After finding the most fit chromosome, test engineers can apply the specified

randomized test. To do this, they run a separate program, RunChromosome, which takes the

chromosome description as input and runs test cases for a user-specified number of times.

Randomized unit testing generates new test cases with new data every time it is run, so if

Nighthawk finds a parameter setting that achieves high coverage, a test engineer can automatically

generate a large number of distinct, high-coverage test cases with RunChromosome.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 17

E. Test Wrappers

We provide a utility program that, given a class name, generates the Java source file of a “test

wrapper” class. Running Nighthawk on an unmodified test wrapper is the same as running it

on the target class; however, test wrappers can be customized for precondition checking, result

checking or coverage enhancement. A test wrapper for class X is a class with one private field

of class X (the “wrapped object”), and one public method with an identical declaration for each

public declared method of class X. Each wrapper method passes calls to the wrapped object.

To improve test wrapper precondition checking, users can add checks in a wrapper method

before the target method call. When preconditions are violated, the wrapper method just returns.

To customize a wrapper for test result checking, the user can insert any result-checking code

after the target method call; examples include normal Java assertions and JML [43] contracts.

Switches to the test wrapper generation program can make the wrapper check commonly-desired

properties; e.g. a method throws no NullPointerException unless one of its arguments

is null. The switch --pleb generates a wrapper that checks the Java Exception and Object

contracts from Pacheco et al. [3]. Test wrapper generation is discussed further in [11].

IV. ANALYSIS AND OPTIMIZATION OF THE GA

Our earlier work convinced us that Nighthawk was capable of achieving high coverage.

However, a pressing question remains: is Nighthawk spending time usefully in its quest for

good chromosomes? In particular, are all the aspects of the randomized testing level that are

controlled by genes the best aspects to be so controlled? If the answer to this question is “no”,

then the GA level of Nighthawk could be wasting time mutating genes that have little effect on

cost-effective code coverage; furthermore, the randomized testing level could be wasting time

retrieving the values of genes and changing its behavior based on them, when it could be using

hard-coded values and behavior. If this is the case, then further research work, on areas like

comparing GA search to other techniques such as simulated annealing, could be a waste of time

because the GA under study is using useless genes.

In general, it could be the case that some types of genes used in a GA are more useful and

some are less useful. If this is the case, then we need to identify the least useful genes, determine

if there is any benefit to eliminating them, and if so, do so.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 18

In order to check the utility of Nighthawk genes, we turn to feature subset selection (FSS).

As shown below, using FSS, we were able to identify and eliminate useless genes, find a better

initial value for one major gene type, and come to a better understanding of the tradeoffs between

coverage and performance of Nighthawk. In particular, we found that Nighthawk can run an order

of magnitude faster while maintaining nearly the same level of coverage.

In this section, we first discuss the motivation of this work in more detail, and then describe the

FSS method we selected. We describe the four major types of analysis activities we undertook,

and then describe how we iteratively applied them. We end the section with conclusions about

Nighthawk and about FSS-based analysis of GAs in general.

A. Motivation

The search space of a GA is the product of the sets of possible values for all genes in

a chromosome. In the simplest case, where all genes have R possible values and there are L

genes, the size of this search space is RL. The run time cost to find the best possible chromosome

is therefore proportional to this size times the evaluation cost of each chromosome:

cost = RL ∗ eval (1)

Nighthawk’s chromosomes for the java.util classes range in size from 128 genes to 1273

genes (recall that the number of genes is dependent on such things as the number of target

methods and the numbers of parameters of those methods), and each gene can have a large

number of values. Nighthawk’s chromosomes store information related to the gene types of

Figure 6. For example, for the public methods of java.util.Vector, Nighthawk uses

933 genes, 392 of which are valuePoolActivityBitSet genes, and 254 of which are

candidateBitSet genes. If we could discard some of those gene types, then Equation 1

suggests that this would lead to a large improvement in Nighthawk’s runtimes.

We can get information about which genes are valuable by recording, for each chromosome,

the values of the genes and the resulting fitness score of the chromosome. This leads to a large

volume of data, however: since the population is of size 20, there are 20 vectors of data for each

generation for each unit being tested. We can interpret our problem as a data mining problem.

Essentially, what we need to know from this data is what information within it is not needed to

accurately predict the fitness score of a chromosome.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 19

Feature subset selection (FSS) is a data mining technique that removes needless information.

A repeated result is that simpler models with equivalent or higher performance can be built via

FSS [44]. Features may be pruned for several reasons:

• Noisy: spurious signals unrelated to the target;

• Uninformative: contain mostly one value, or no repeating values;

• Correlated to other variables: so, if pruned, their signal will remain in other variables.

Apart from reduced runtimes, using fewer features has other advantages. Miller has shown that

models generally containing fewer variables have less variance in their outputs [45]. Also, the

smaller the model, the fewer are the demands on interfaces to the external environment. Hence,

systems designed around small models are easier to use (less to do) and cheaper to build.

B. Selecting an FSS Method

for f ← 1 to |features| do
Mf = 0 // set all merits to 0

done
for i ← 1 to N do

randomly select instance R from group G
find nearest hit H // closest thing in the same group
find nearest miss M // closest thing in a different group
for f ← 1 to |features| do

Mf ←Mf − ∆(f,R,H)
N + ∆(f,R,M)

N
done

done

Fig. 7. Binary RELIEF (two group system) for N instances
for merit of different features.

The RELIEF feature subset selector [46],

[47] assumes that the data is divided into

groups3 and tries to find the features that serve

to distinguish instances in one group from

instances in other groups.

RELIEF is a stochastic instance-based

scheme that works by randomly selecting

N reference instances R1..RN ; by default,

N = 250. For data sets with two groups, RE-

LIEF can be implemented using the simple

algorithm of Figure 7. For each instance, the

algorithm finds two other instances: the “hit” is the nearest instance to R in the same group

while the “miss” is the nearest instance to R in another group. RELIEF’s core intuition is that

features that change value between groups are more meritorious than features that change value

within the same group. Accordingly, the merit of a feature (denoted Mf) is increased for all

features with a different value in the “miss” and decreased for all features with different values

3Technically, RELIEF assumes that instances have been classified using some “class” attribute. However, to avoid confusion

with the concept of “class” discussed above, we will describe RELIEF in terms of “groups”.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 20

in the “hit”. The ∆ function of figure Figure 7 detects differences between feature values. If a

feature is discrete then the distance is one (if the symbols are different) or zero (if the symbols

are the same). If a feature is numeric, then the distance is the difference in value (normalized to

0...1). If a feature has a missing value, then a Bayesian statistic is used to generate an estimate

for the expected value (see [46] for details). For a complex data set with k > 2 groups, RELIEF

samples the k nearest misses and hits from the same or different groups.

Hall and Holmes [44] review and reject numerous FSS methods. Their favorite method (called

WRAPPER) is suitable only for small data sets. For larger data sets, they recommend RELIEF.

C. Analysis Activities

In our FSS analysis of Nighthawk, we iteratively applied three distinct analysis activities,

which we refer to as merit analysis, gene type ranking, and progressive gene type knockout.

1) Merit Analysis: Using data from a run of Nighthawk on a set of subject units, merit analysis

finds a “merit” score between 0.0 and 1.0 for each of the genes corresponding to the subject

units (higher merits indicates that that gene was more useful in producing a fit chromosome).

To prepare for merit analysis, we modified Nighthawk so that each chromosome evaluation

printed the current value of every gene and the final fitness function score. (For the two BitSet

gene types, we printed only the cardinality of the set.) The input to the merit analysis, for a set

of subject classes, is the output of one run of the modified Nighthawk for 40 generations on

each of the subject classes; by 40 generations, the fitness score had usually stabilized, and we

did not want to bias our dataset by including many instances with high score. Each subject class

therefore yielded 800 instances, each consisting of the gene values and the chromosome score.

RELIEF assumes discrete data, but Nighthawk’s fitness scores are continuous. We therefore

discretized Nighthawk’s output:

• The 65% majority of the scores are within 30% of the top score for any experiment. We

call this the high plateau.

• A 10% minority of scores are less than 10% of the maximum score (called the hole).

• The remaining data slopes from the plateau into the hole.

We therefore assigned each instance to one of three groups (plateau, slope and hole), and gave the

data to RELIEF to seek features (in this context, genes) that distinguished between the groups.

This produced one merit figure for each feature (gene).

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 21

Rank Gene type t avgMerit
1 numberOfCalls 85
2 valuePoolActivityBitSet 83
3 upperBound 64
4 chanceOfTrue 50
5 methodWeight 50
6 numberOfValuePools 49
7 lowerBound 44
8 chanceOfNull 40
9 numberOfValues 40

10 candidateBitSet 34

Fig. 8. Nighthawk gene types sorted by avgMerit, the average RELIEF merit over all genes of that type and all subject units.

Each run therefore also yielded a ranked list R of all genes, where gene 1 had the highest

merit for this run, gene 2 had the second highest merit, and so on. We define:

• merit(g, u) is the RELIEF merit score of gene g derived from unit u.

• rank(g, u) is the rank in R of gene g derived from unit u.

Note that higher/lower merits/rank indicate a more important gene (respectively).

2) Gene Type Ranking: Nighthawk uses the ten gene types listed in Figure 6. However, recall

that each gene type t may correspond to zero or more genes, depending on the unit under test. In

order to eliminate gene types, we need to rank them based on the merit scores for the individual

genes. We refer to this activity as gene type ranking.

We used four gene type rankings in our analysis. Each was based on assigning a numerical

score to the gene type derived from the merit scores of the genes of that type.

• bestMerit(t) is the maximum, over all genes g of type t and all subject units u, of

merit(g, u). Ranking by bestMerit favors genes that showed high merit for some unit.

• bestRank(t) is the minimum, over all genes g of type t and all subject units u, of rank(g, u).

Ranking by bestRank favors genes that were important in Nighthawk’s handling of some

unit, regardless of their absolute merit score.

• avgMerit(t) is the average, over all genes g of type t and all subject units u, of merit(g, u).

Ranking by avgMerit favors genes that consistently showed high merit across all units.

• avgRank(t) is the average, over all genes g of type t and all subject units u, of rank(g, u).

Ranking by avgRank favors genes that were consistently important across all units.

For example, Figure 8 shows the ten gene types from Figure 6, ranked in terms of their

avgMerit as defined above, resulting from running version 1.0 of Nighthawk on the first set

of subject units. This ranking places numberOfCalls at the top, meaning that it considers

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 22

Rank of gene type when ranked by measure
Gene type bestMerit bestRank avgMerit avgRank
numberOfCalls 4 7 1 1
valuePoolActivityBitSet 3 3 2 2
upperBound 2 2 3 3
chanceOfTrue 8 4 4 4
methodWeight 9 8 5 8
numberOfValuePools 5 9 6 6
lowerBound 10 5 7 5
chanceOfNull 6 10 8 9
numberOfValues 7 6 9 7
candidateBitSet 1 1 10 10

Fig. 9. Ranks of all gene types, when ranked by four measures computed from data on the first set of subject units.

genes of that type to be the most valuable; it also places candidateBitSet at the bottom,

meaning that it considers genes of that type to be the most expendable.

However, note also Figure 9, which compares the ranks of the gene types from the first

set of subject units. Some gene types, such as valuePoolActivityBitSet, have fairly

consistent ranks, whereas others, such as candidateBitSet and numberOfCalls, have

quite different ranks when different ranking measures are used.

3) Progressive Gene Type Knockout: To validate the rankings found by gene type rankings,

we conducted a progressive gene type knockout experiment. We instrumented the Nighthawk

source code so that we could easily “knock out” all genes of a given type, by replacing the code

controlled by that gene type by code that assumed a constant value for each gene of that type. For

example, if we chose to knock out the numberOfCalls gene type, then no information about

the number of method calls to be made was contained in the chromosome, and the randomized

testing level made the same number of calls in each case.

We then ran Nighthawk on the subject units again, first with all ten gene types, then with the

lowest (least useful) gene type in the gene type ranking knocked out, then with the lowest two

gene types knocked out, and so on until we were left with one gene type not knocked out. We

collected two result variables from each run on each subject unit: the amount of time it took,

and the coverage achieved by the winning chromosome. We then inspected the results using data

visualization methods in order to evaluate the tradeoffs in cost (time) and benefits (coverage).

D. Analysis Procedure

1) Stage 1: Initial Analysis: In the first stage of our analysis, we ran Nighthawk on the Java

1.5.0 Collection and Map classes. These are the 16 concrete classes with public constructors

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 23

in java.util that inherit from the Collection or Map interface, which we used for our

earlier experiments [11]. The source files total 12137 LOC, and Cobertura reports that 3512 of

those LOC contain executable code.

We performed a merit analysis and gene type ranking based on bestMerit and bestRank.

We then proceeded with progressive gene type knockout based on the bestMerit and bestRank

rankings of gene types. The results of this initial progressive gene type knockout experiment

were reported in [12]. We showed that with only the best four gene types according to the

bestMerit ranking, or the best seven gene types according to the bestRank ranking, we were

able to achieve 90% of the coverage achieved by all ten gene types, in about 10% of the time.

2) Stage 2: Re-Ranking: However, we also noticed that a very large (around 10%) drop

in coverage occurred in each case at the point at which we knocked out the gene corre-

sponding to numberOfCalls. This finding cast doubt on the validity of the bestMerit and

bestRank rankings. We therefore ranked the gene types according to avgMerit, and realized

that numberOfCalls was the highest ranked, and that the avgRank ranking largely agreed

with this assessment. We therefore performed a progressive gene type knockout according to the

avgMerit ranking instead, and tabulated the results.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 10 20 30 40 50 60 70

%
 m

ax
 c

ov
er

ag
e

generations

1
2
3
4
5
6
7
8
9

10

Fig. 10. Nighthawk on Hashtable unit, eliminat-

ing gene types according to avgMerit ranking.

In the following, each run was compared to the runtime

and coverage seen using all ten gene types and running

for g = 50 generations. Figure 10 shows how the cov-

erage changed for one of the java.util classes; the

results for this subject unit are typical. The axes of that

figure is defined such that the point (50,1) represents the

coverage of all 10 gene types after 50 generations. The

thick black curve on those figures shows the performance

of Nighthawk using all ten gene types. Other curves show

results from using 1 ≤ i ≤ 9 gene types.

A measure of interest in Figure 10 is the area under

the curve, which is maximal when Nighthawk converges

to maximum coverage in a few generations. Due to the random nature of the GA and the

randomized test data generation, some of the curves are sometimes higher than the i = 10 line.

If we calculate the ratio of the area under a curve (AUC) with the area under the thick black

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 24

Number of used gene types
1 2 3 4 5 6 7 8 9 10 class being tested

1.00 1.00 1.01 0.99 1.00 1.00 1.00 1.00 1.00 1.00 ArrayList
1.13 1.00 1.03 0.96 0.65 0.68 0.67 0.88 0.71 1.00 EnumMap
0.98 0.99 0.98 0.96 1.01 1.00 1.00 1.00 0.98 1.00 HashMap
0.99 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 HashSet
0.99 1.00 1.00 1.00 0.99 1.00 0.98 1.01 1.01 1.00 Hashtable
0.97 0.97 0.98 0.97 0.98 0.97 1.00 0.98 0.98 1.00 IdentityHashMap
0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99 1.00 LinkedHashMap
0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.01 1.01 1.00 LinkedHashSet
1.01 1.01 1.01 1.02 1.00 1.01 1.01 1.02 1.00 1.00 LinkedList
1.01 0.99 0.97 1.01 1.03 0.99 0.95 0.98 1.00 1.00 PriorityQueue
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 Properties
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Stack
0.90 0.97 0.95 0.93 0.99 0.97 0.97 1.02 1.01 1.00 TreeMap
0.90 0.95 0.98 0.93 0.97 0.98 0.98 1.00 0.98 1.00 TreeSet
0.95 0.97 0.99 0.96 0.99 0.92 0.99 0.97 1.01 1.00 Vector
0.96 0.97 0.97 0.98 0.98 0.97 0.98 0.99 0.97 1.00 WeakHashMap
0.98 0.99 0.99 0.98 0.97 0.97 0.97 0.99 0.98 1.00 mean

Fig. 11. Coverage found using the top i ranked gene types for 1 ≤ i ≤ 10, using the avgMerit ranking. Coverages are expressed
as a ratio of the coverages found using all gene types.

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

%
 m

ax
 c

ov
er

ag
e

(b
es

t t
yp

e)
/(1

0
ty

pe
s)

% time using (best type)/(10 types)

time= 10%,
coverage= 90%

EnumMap

TreeMap

ArrayList
EnumMap
HashMap
HashSet

HashTable
IdentityHashMap
LinkedHashMap
LinkedHashSet

LinkedList
PriorityQueue

Properties
Stack

TreeMap
TreeSet

Vector
WeahHashMap

Fig. 12. Time vs coverage result, compared between one

and ten gene types, for the Java util classes.

curve, then we can summarize all the curves of

Figure 10 as the Hashtable row of Figure 11. In

that figure, each column shows how many gene

types were used in a particular run (and when

used = 10, we are ignoring the FSS results and

using all gene types). The number 1.00 informs us

that we achieved 100% of the coverage reached

by using all ten gene types.

Figure 11 summarizes Figure 10 as well as

results from all the other java.util classes.

The last row of Figure 11 shows that the mean

AUC is very similar using the top-ranked i gene

types. From this observation, we concluded that

Nighthawk’s GA gained most of its efficacy

just for mutations of the top-ranked gene type

numberOfCalls. However, a statistical com-

parison of the coverage measures with only the

top gene type and those with all ten gene types

does show a statistically significant difference (a

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 25

paired Wilcoxon test with α = 0.05).

To check if eliminating gene types from Nighthawk’s GA is cost-effective, we must consider

both the coverage achievable and the time taken to achieve that coverage. We therefore made

two runs of Nighthawk using (a) all the gene types and using (b) just the top gene type ranked

by avgMerit (i.e. numberOfCalls). We then divided the runtime and coverage results from

(b) by the (a) values seen after 50 generations, and plotted the results.

Figure 12 shows the results, with time percentage on the X axis and coverage percentage on

the Y axis. Note the point indicated by the arrow in Figure 12. This point shows that it is usually

(in 13
16 cases) possible to achieve 90% of the coverage in under 10% of the time required to run all

gene types for 50 generations. The data for the two outlier subject units in Figure 12, EnumMap

and TreeMap, can be attributed to the low coverage achieved by the original Nighthawk on

EnumMap and the stochastic nature of both the GA and random testing level.

The results of this progressive gene type knockout procedure corroborated the rankings that

we had derived using the avgMerit and avgRank measures, lending support to the validity of

these measures as opposed to the bestMerit and bestRank measures. We therefore continued

to use only avgMerit and avgRank in our subsequent research.

3) Stage 3: Optimizing numberOfCalls: The implication of the result regarding the numberOfCalls

gene type was that changing the number of method calls made in the test case was most important

to reach higher coverage. What was the cause of this importance? If it was due simply to the

fact that we had chosen a sub-optimal initial value for the number of calls, then changing the

initial value could result in a quicker convergence to an optimal value. Moreover, a sub-optimal

initial value for numberOfCalls could have the effect of skewing our FSS analysis, since

numberOfCalls could assume a skewed importance due to the need to change it.

Nighthawk assigns an initial value of k · |CM | to numberOfCalls, where k is a constant

and CM is the set of callable methods. The motivation for this initial value is that if there are

more callable methods associated with the unit under test, then we expect to have to make more

method calls in order to test them. In version 1.0 of Nighthawk, we set k to 5, based on our

earlier experience with randomized testing.

To investigate whether this initial value of numberOfCalls was optimal, we generated

a scatter plot (Figure 13) plotting the number of callable methods against the final value of

numberOfCalls for the winning chromosome found by Nighthawk for each of our subject

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 26

units. From this scatter plot, it became obvious that the initial value was indeed sub-optimal:

a value of 5 for k results in the lower line in the figure, which is below the final value for all

but one of the subject units. A value of 50 for k results in the upper line in the figure, which is

much closer to the final value for all units.

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200

Fi
na

l n
um

be
rO

fC
al

ls
va

lu
e

Number of callable methods in unit

final
initial k=5

initial k=50

Fig. 13. Finding the optimal initial number of calls.

Based on this analysis, we changed the value

of k to 50; that is, we set the initial value of

numberOfCalls to 50 times the number of

callable methods. We refer to Nighthawk with this

change as Nighthawk version 1.1, since it exhibits

quite different behavior from Nighthawk 1.0.

4) Stage 4: Analyzing the Optimized Version:

Because of our concern that the sub-optimal ini-

tial numberOfCalls value had skewed our pre-

vious analysis, we re-ran the merit analysis using

Nighthawk 1.1 and the java.util classes.

To corroborate our conclusions, we ran a merit

analysis using Nighthawk 1.1 and a new set of classes. The Apache Commons Collection classes

is a set of classes implementing efficient data structures, developed by the open-source Apache

development community. We focused on the 36 concrete top-level classes in this effort. Two

of these classes (ExtendedProperties and MapUtils) tended to generate large numbers

of files when Nighthawk was run on them; we could have dealt with this by modifying the

appropriate test wrappers, but for greater reproducibility we decided to omit them. We therefore

ran a merit analysis using Nighthawk 1.1 and the other 34 concrete top-level classes.

We then performed a gene type ranking using only the avgMerit and avgRank measures.

The results of this ranking are in Figure 14. Note that while numberOfCalls is still ranked

highly, now the gene type chanceOfTrue emerges as the most influential gene type, with

upperBound and valuePoolActivityBitSet also being influential for some classes.

However, as noted even for Nighthawk 1.0 using the avgMerit and avgRank rankings, the

gene types candidateBitSet and chanceOfNull were consistently not useful.

A progressive gene type knockout based on the avgMerit gene type ranking supported the

validity of that ranking: knocking out the lowest-ranked gene types had almost no effect on

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 27

Rank of gene type when ranked by measure
java.util Apache

Gene type avgMerit avgRank avgMerit avgRank
numberOfCalls 3 3 1 2
valuePoolActivityBitSet 4 5 2 3
chanceOfTrue 1 1 3 1
numberOfValuePools 7 7 4 4
methodWeight 9 9 5 8
numberOfValues 6 6 6 7
upperBound 2 2 7 5
lowerBound 5 4 8 6
chanceOfNull 8 8 9 9
candidateBitSet 10 10 10 10

Fig. 14. Ranks of all gene types according to average merit and average gene rank, after running Nighthawk 1.1 on the
java.util classes and the Apache Commons classes.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

%
 m

ax
 c

ov
er

ag
e

(b
es

t t
yp

e)
/(1

0
ty

pe
s)

% time using (best type)/(10 types)

time= 10%,
coverage= 90%

BufferUtils

BinaryHeap

ArrayStack
BagUtils

BeanMap
BinaryHeap

BoundedFifoBuffer
OverflowExcept

UnderflowExcept
BufferUtils

ClosureUtils
CollectionUtils

ComparatorUtils
CursorableLinkedList

DefaultMapEntry
DoubleOrderedMap

EnumerationUtils
FactoryUtils

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

%
 m

ax
 c

ov
er

ag
e

(b
es

t t
yp

e)
/(1

0
ty

pe
s)

% time using (best type)/(10 types)

time= 10%,
coverage= 90%

FunctorException

FastArrayList
FastHashMap
FastTreeMap

FunctorExcepton
HashBag

IteratorUtils
LRUMap
ListUtils

MultiHashMap
PredicateUtils

ReferenceMap
SequenceHashMap

SetUtils
StaticBucketMap

SynchronizedPriorityQueue
TransformerUtils

TreeBag
UnboundedFifoBuffer

Fig. 15. Time vs coverage result, compared between one and ten gene types, for the Apache classes.

eventual coverage, while knocking out the higher-ranked gene types had a small but more

noticeable effect.

Furthermore, as shown in Figure 15, it is still the case that we can achieve 90% of the coverage

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 28

achieved by all 10 gene types in 10% of the time if we use only the top-ranked gene type and

stop the genetic algorithm early. The Figure 15 results were generated in the same manner as

above (in Figure 12):

• We made two runs using (a) all the gene types and using (b) just the top gene type ranked

by avgMerit (i.e. numberOfCalls).

• We then divided the runtime and coverage results from (b) by the (a) values seen after 50

generations, and plotted the results in Figure 15

• The points indicated by the two arrow in Figure 15 shows that it is usually (in 28
34 cases)

possible to achieve 90% of the coverage in under 10% of the time required to run all gene

types for 50 generations.

• There exist some outlier results (BinaryHeap, BufferUtils, FunctorException) where the run-

times were much longer for the Nighthawk using only one operator than for full Nighthawk.

Note that, in all those exception cases, the Nighthawk optimized by FSS still achieved 90%

of the coverage in 10% of the time required of full Nighthawk.

E. Discussion

There are two main areas of implications for this work: implications for Nighthawk itself, and

implications for other systems.

1) Implications for Nighthawk: On the surface, the results reported above suggest that most

gene types can be eliminated. However, there are at least two mitigating factors. First, the addi-

tional coverage may be of code that is difficult to cover, and thus this additional coverage might

be more valuable to the user than the raw coverage numbers suggest. Second, the observations

about gene types might not carry over to other, different subject units.

Nevertheless, the results show that it is very likely that Nighthawk can be modified to give

users a better range of cost-benefit tradeoffs, for instance by eliminating gene types or using

early stopping criteria that take advantage of the early plateaus in coverage seen in Figure 12. In

particular, the results suggest that the gene types candidateBitSet and chanceOfNull

were not useful. Translating this back into the terms of Nighthawk’s randomized test input

generation algorithm, this means that when it is looking for a value to pass to a parameter of

class C, it should always draw parameter values from value pools in all the subclasses of C (the

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 29

default value of candidateBitSet); furthermore, it is sufficient for it to choose null as a

parameter 3% of the time (the default value of chanceOfNull).

2) Implications for Other Systems: At the meta-heuristic level, this work suggests that it may

be useful to integrate FSS directly into meta-heuristic algorithms. Such an integration would

enable the automatic reporting of the merits of individual features, and the automatic or semi-

automatic selection of features. If the results of this paper extend to other domains, this would

lead to meta-heuristic algorithms that improve themselves automatically each time they are run.

Also, on the theory-formation level, this work opens up the possibility of rapid turnover of the

theoretical foundations underlying present tools, as aspects of heuristic and meta-heuristic ap-

proaches are shown to be consistently valuable or expendable. The expendability of Nighthawk’s

candidateBitSet and chanceOfNull gene types is an example of this latter phenomenon.

V. THREATS TO VALIDITY

The representativeness of the units under test is the major threat to external validity. We

studied Java collection classes and the Apache classes because these are complex, heavily-used

units that have high quality requirements. However, other units might have characteristics that

cause Nighthawk to perform poorly. Randomized unit testing schemes in general require many

test cases to be executed, so they perform poorly on methods that do a significant amount of

disk I/O or thread generation.

Nighthawk uses Cobertura, which measures line coverage, a weak coverage measure. The

results that we obtained may not extend to stronger coverage measures. However, the Nighthawk

algorithm does not perform special checks particular to line coverage. The comparison studies

suggest that it still performs well when decision/condition coverage and MCC are simulated.

The question of whether code coverage measures are a good indication of the thoroughness of

testing is still, however, an area of active debate in the software testing community, making this

a threat to construct validity.

Also, time measurement is a construct validity threat. We measured time using Java’s

systemTimeInMillis, which reports total wall clock time, not CPU time. This may show

run times that do not reflect the testing cost to a real user.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 30

VI. CONCLUSIONS AND FUTURE WORK

Randomized unit testing is a promising technology that has been shown to be effective, but

whose thoroughness depends on the settings of test algorithm parameters. In this paper, we have

described Nighthawk, a system in which an upper-level genetic algorithm automatically derives

good parameter values for a lower-level randomized unit test algorithm. We have shown that

Nighthawk is able to achieve the same coverage as earlier studies, and high coverage of complex,

real-world Java units, while retaining the most desirable feature of randomized testing: the ability

to generate many new high-coverage test cases quickly.

We have also shown that we were able to optimize and simplify meta-heuristic search tools.

Metaheuristic tools (such as genetic algorithms and simulated annealers) typically mutate some

aspect of a candidate solution and evaluate the results. If the effect of mutating each aspect is

recorded, then each aspect can be considered a feature and is amenable to the FSS processing

described here. In this way, FSS can be used to automatically find and remove superfluous parts

of the search control.

Future work includes the integration into Nighthawk of useful facilities from past systems,

such as failure-preserving or coverage-preserving test case minimization, and further experiments

on the effect of program options on coverage and efficiency. We also wish to integrate a feature

subset selection learner into the GA level of the Nighthawk algorithm for dynamic optimization

of the GA. Further, we can see a promising line of research where the cost/benefits of a particular

meta-heuristic are tuned to the particulars of a specific problem. Here, we have shown that if

we surrender 1
10 -th of the coverage, we can run Nighthawk ten times faster. While this is an

acceptable trade-off in many domains, it may unsuitable for safety critical applications. More

work is required to understand how to best match meta-heuristics (with or without FSS) to

particular problem domains.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of UNIX utilities,” Commun. ACM, vol. 33,

no. 12, pp. 32–44, December 1990.

[2] J. H. Andrews, S. Haldar, Y. Lei, and C. H. F. Li, “Tool support for randomized unit testing,” in Proceedings of the First

International Workshop on Randomized Testing (RT’06), Portland, Maine, July 2006, pp. 36–45.

[3] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed random test generation,” in Proceedings of the

29th International Conference on Software Engineering (ICSE 2007), Minneapolis, MN, May 2007, pp. 75–84.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 31

[4] A. Groce, G. J. Holzmann, and R. Joshi, “Randomized differential testing as a prelude to formal verification,” in Proceedings

of the 29th International Conference on Software Engineering (ICSE 2007), Minneapolis, MN, May 2007, pp. 621–631.

[5] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating software test data by evolution,” IEEE Transactions on Software

Engineering, vol. 27, no. 12, December 2001.

[6] W. Visser, C. S. Păsăreanu, and R. Pelánek, “Test input generation for Java containers using state matching,” in Proceedings

of the International Symposium on Software Testing and Analysis (ISSTA 2006), Portland, Maine, July 2006, pp. 37–48.

[7] R.-K. Doong and P. G. Frankl, “The ASTOOT approach to testing object-oriented programs,” ACM Transactions on

Software Engineering and Methodology, vol. 3, no. 2, pp. 101–130, April 1994.

[8] S. Antoy and R. G. Hamlet, “Automatically checking an implementation against its formal specification,” IEEE Transactions

on Software Engineering, vol. 26, no. 1, pp. 55–69, January 2000.

[9] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for random testing of Haskell programs,” in Proceedings of

the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada, September

2000, pp. 268–279.

[10] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine for C,” in Proceedings of the 13th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (ESEC/FSE), Lisbon, September 2005, pp. 263–272.

[11] J. Andrews, F. Li, and T. Menzies, “Nighthawk: A two-level genetic-random unit test data generator,” in IEEE ASE’07,

2007, available from http://menzies.us/pdf/07ase-nighthawk.pdf.

[12] J. Andrews and T. Menzies, “On the value of combining feature subset selection with genetic algorithms: Faster learning

of coverage models,” in PROMISE 2009, 2009, available from http://menzies.us/pdf/09fssga.pdf.

[13] W. C. Hetzel, Ed., Program Test Methods, ser. Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall, 1973.

[14] R. Hamlet, “Random testing,” in Encyclopedia of Software Engineering. Wiley, 1994, pp. 970–978.

[15] E. J. Weyuker, “On testing non-testable programs,” The Computer Journal, vol. 25, no. 4, pp. 465–470, November 1982.

[16] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic robustness tester for Java,” Software Practice and Experience,

vol. 34, no. 11, pp. 1025–1050, 2004.

[17] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Artoo: Adaptive random testing for object-oriented software,” in Proceedings

of the 30th ACM/IEEE International Conference on Software Engineering (ICSE’08), Leipzig, Germany, May 2008, pp.

71–80.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically discovering likely program invariants to support

program evolution,” IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123, February 2001.

[19] T. Ball, “A theory of predicate-complete test coverage and generation,” in Third International Symposium on Formal

Methods for Components and Objects (FMCO 2004), Leiden, The Netherlands, November 2004, pp. 1–22.

[20] J. H. Andrews and Y. Zhang, “General test result checking with log file analysis,” IEEE Transactions on Software

Engineering, vol. 29, no. 7, pp. 634–648, July 2003.

[21] L. A. Clarke, “A system to generate test data and symbolically execute programs,” IEEE Transactions on Software

Engineering, vol. SE-2, no. 3, pp. 215–222, September 1976.

[22] J. C. King, “Symbolic execution and program testing,” Communications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[23] B. Korel, “Automated software test generation,” IEEE Transactions on Software Engineering, vol. 16, no. 8, pp. 870–879,

August 1990.

[24] N. Gupta, A. P. Mathur, and M. L. Soffa, “Automated test data generation using an iterative relaxation method,” in Sixth

International Symposium on the Foundations of Software Engineering (FSE 98), November 1998, pp. 224–232.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 32

[25] W. K. Leow, S. C. Khoo, and Y. Sun, “Automated generation of test programs from closed specifications of classes and

test cases,” in Proceedings of the 26th International Conference on Software Engineering (ICSE 2004), Edinburgh, UK,

May 2004, pp. 96–105.

[26] W. Visser, C. S. Păsăreanu, and S. Khurshid, “Test input generation with Java PathFinder,” in Proceedings of the

ACM/SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2004), Boston, MA, July 2004, pp.

97–107.

[27] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated random testing,” in Proceedings of the ACM SIGPLAN

2005 Conference on Programming Language Design and Implementation (PLDI), Chicago, June 2005, pp. 213–223.

[28] D. Owen and T. Menzies, “Lurch: a lightweight alternative to model checking,” in Proceedings of the Fifteenth International

Conference on Software Engineering and Knowledge Engineering (SEKE’2003), San Francisco, July 2003, pp. 158–165.

[29] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.

[30] D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.

[31] L. Rela, “Evolutionary computing in search-based software engineering,” Master’s thesis, Lappeenranta University of

Technology, 2004.

[32] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-data generation using genetic algorithms,” Journal of Software Testing,

Verification and Reliability, vol. 9, pp. 263–282, December 1999.

[33] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian, “Computing unique input/output sequences using genetic

algorithms,” in 3rd International Workshop on Formal Approaches to Testing of Software (FATES 2003), ser. LNCS,

vol. 2931. Springer, 2004, pp. 164–177.

[34] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the ACM/SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2004), Boston, Massachusetts, USA, July 2004, pp. 119–128.

[35] A. Watkins and E. M. Hufnagel, “Evolutionary test data generation: A comparison of fitness functions,” Software Practice

and Experience, vol. 36, pp. 95–116, January 2006.

[36] P. G. Frankl and S. N. Weiss, “An experimental comparison of the effectiveness of branch testing and data flow testing,”

IEEE Transactions on Software Engineering, vol. 19, no. 8, pp. 774–787, August 1993.

[37] A. S. Namin and J. Andrews, “The influence of size and coverage on test suite effectiveness,” in International Symposium

on Software Testing and Analysis (ISSTA’09), Chicago, IL, USA, 2009, pp. 57–68.

[38] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical study of the effects of minimization on the fault

detection capabilities of test suites,” in Proceedings of the International Conference on Software Maintenance (ICSM ’98),

Washington, DC, USA, November 1998, pp. 34–43.

[39] D. R. Cok, “Adapting jml to generic types and java 1.6,” in Seventh International Workshop on Specification and Verification

of Component-Based Systems (SAVCBS 2008), November 2008, pp. 27–34.

[40] K. Havelund and T. Pressburger, “Model checking Java programs using Java PathFinder,” International Journal on Software

Tools for Technology Transfer, vol. 2, no. 4, pp. 366–381, 2000.

[41] K. A. DeJong and W. M. Spears, “An analysis of the interacting roles of population size and crossover in genetic algorithms,”

in First Workshop on Parallel Problem Solving from Nature. Springer, 1990, pp. 38–47.

[42] Cobertura Development Team, “Cobertura web site,” accessed February 2007, cobertura.sourceforge.net.

[43] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, and G. T. Leavens, “An overview of JML tools and applications,”

International Journal on Software Tools for Technology Transfer, vol. 7, no. 3, pp. 212–232, June 2005.

September 27, 2009 DRAFT

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 33

[44] M. Hall and G. Holmes, “Benchmarking attribute selection techniques for discrete class data mining,” IEEE Transactions

On Knowledge And Data Engineering, vol. 15, no. 6, pp. 1437– 1447, 2003.

[45] A. Miller, Subset Selection in Regression (second edition). Chapman & Hall, 2002.

[46] K. Kira and L. Rendell, “A practical approach to feature selection,” in The Ninth International Conference on Machine

Learning. Morgan Kaufmann, 1992, pp. pp. 249–256.

[47] I. Kononenko, “Estimating attributes: Analysis and extensions of relief,” in The Seventh European Conference on Machine

Learning. Springer-Verlag, 1994, pp. pp. 171–182.

[48] S. Cornett, “Minimum acceptable code coverage,” 2006, http://www.bullseye.com/minimum.html.

[49] S. Berner, R. Weber, and R. K. Keller, “Enhancing software testing by judicious use of code coverage information,” in

29th International Conference on Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 2007, pp. 612–620.

September 27, 2009 DRAFT

