
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. (2009)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/spip.414

Accurate Estimates Without
Local Data?

Research Section

Tim Menzies,1,*,† Steve Williams,1 Oussama Elrawas,1

Daniel Baker,1 Barry Boehm,2 Jairus Hihn,3 Karen Lum3

and Ray Madachy4

1 LCSEE, West Virginia University, Morgantown, West Virginia, USA
2 CS, University of Southern California, Los Angeles, California, USA
3 JPL, California, USA
4 SE, Naval Postgraduate School, San Diego, California, USA

Models of software projects input project details and output predictions via their internal
tunings. The output predictions, therefore, are affected by variance in the project details P and
variance in the internal tunings T. Local data is often used to constrain the internal tunings
(reducing T).

While constraining internal tunings with local data is always the preferred option, there exist
some models for which constraining tuning is optional. We show empirically that, for the USC
COCOMO family of models, the effects of P dominate the effects of T i.e. the output variance of
these models can be controlled without using local data to constrain the tuning variance (in ten case
studies, we show that the estimates generated by only constraining P are very similar to those
produced by constraining T with historical data).

We conclude that, if possible, models should be designed such that the effects of the project
options dominate the effects of the tuning options. Such models can be used for the purposes of
decision making without elaborate, tedious, and time-consuming data collection from the local
domain. Copyright 2009 John Wiley & Sons, Ltd.

KEY WORDS: AI; decision making; software engineering; model-based project management; search

1. INTRODUCTION

Predictions are generated using data and/or mod-
els. If data is available, it is possible to learn new
models. If data is unavailable, it is possible to reuse
models learned from other sites. Typically, models
taken from other sites must be tuned using local
data. This paper is about a novel technique for
reusing models without tuning them.

In model-based project management, models are
used to find better ways to organize a project.
Managers conduct what-if queries across the space

∗ Correspondence to: Tim Menzies, LCSEE, West Virginia
University, Morgantown, WV, USA
†E-mail: tim@menzies.us

Copyright 2009 John Wiley & Sons, Ltd.

of project options P to find a subset of those options
that most improves predictions about the project
(e.g. reduce defects and development time). This
problem can be formalized as follows: find the
smallest P′ ⊆ P that most improves model esti-
mates. Conceptually, the estimate generated by a
model are a function of the project options P and
the internal model tunings T; i.e.

estimate = project ∗ tuning (1)

For example, consider the following simplified
COCOMO model,

effort = a · LOCb+pmat · acap (2)

Here, a, b control the linear and exponential effects,
respectively, on model estimates. while pmat (pro-
cess maturity) and acap (analyst capability) are

Research Section T. Menzies et al.

project choices adjusted by managers. That is, the
tuning options T are the range of a, b, and the project
options P are the range of pmat and acap.

Traditional approaches use historical data to
reduce the space of possible calibrations (e.g.
using regression). In our approach, we leave
the tunable variables unconstrained and instead
use an AI search engine to reduce the space of
possibilities in the project options. Our SEESAW
tool performs large scale what-if queries looking
for the smallest P′ ⊆ P that most improves model
estimates. SEESAW constrains project options P,
but not the tuning options T. In two studies (ASE
2007 (Menzies et al. 2007) and ICSE 2009 (Menzies
et al. 2009)) Menzies et al. found that, at least for the
USC models we use, estimate variance was more
controlled by project variance. That is, in terms of
what factors dominate the output:

estimate = project ∗ tuning (3)

Note the reverse case of the above equation:

estimate = project ∗ tuning (4)

In the case of Equation 4, the tuning variance is the
major controller of the estimate and decision making
must be delayed until after tuning. Equation 4 is
undesirable when it is difficult to access the data
required for constraining model tunings. This ‘data
drought’ is quite common:

• Metrics-guru Norman Fenton spent years advo-
cating careful data collection (Fenton and
Pfleeger 1995). Recently, he has despaired of
that approach. At a keynote address in 20071 he
shocked his audience by saying:

‘‘. . ..much of the current software metrics
research is inherently irrelevant to the indus-
trial mix ... any software metrics program that
depends on some extensive metrics collection
is doomed to failure.’’

• Our experience is similar to that of Fenton.
After 26 years of trying, we have only collected
less than 200 sample projects for the COCOMO

1 (http://promisedata.org/?cat=130).

database. Also, even after 2 years of effort we
were only able to add seven records to a NASA-
wide software cost metrics repository (Menzies
et al. 2007).

There are many reasons for this data drought
including data not being collected or the business
sensitivity associated with the data, as well as
differences in how the metrics are defined, collected
and archived. Also, within the organizations we
have contact with, we note a decreasing to share
data compared to, say, 15 years ago.

Whatever the reason, we often need to adjust our
modeling methodologies to accommodate the data
drought. For example, we could assume Equation 3
and use SEESAW. But before we can trust those
tools we must test that AI tools like SEESAW not
less accurate at estimation than (say) traditional
linear regression methods. Accordingly, this paper
compares:

• Estimates generated by conventional methods
that reduce the tuning variance T using local
data;

• Estimates generated by SEESAW that reduce
the project variance P without constraining the
tuning variance.

For the USC models used in this study, the range
of estimate errors seen after constraining the project
options P (but not the tuning options T) is similar
to the range seen after constraining just the tuning
options T. That is, using our AI methods, we can
perform model-based project management without
requiring local data.

The rest of this paper is structured as follows.
After discussing the implications of this work, we
review the models used in this study and the AI
search engine that finds useful constraints to project
choices. This is followed by a description of an
experiment that compares model estimates after
constraining (a) just the project options using SEE-
SAW or (b) just the tuning options using linear
regression.

2. IMPLICATIONS

2.1. Implications of SEESAW for Early Lifecycle
Decision Making

Standard practice in model building normally
involves three steps:

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section Accurate estimates without local data?

Step 1: Collecting domain knowledge (previous
results, expert knowledge).

Step 2: Building an initial model based on step
1 including as yet unknown parameters.
Note that these unknowns represent a
range of tuning options.

Step 3: Constraining tuning options using local
data (e.g. via linear regression).

In domains suffering from a data drought, we
cannot consider methods requiring large volumes
of data. In the approach advocated by this article,
we reuse existing models (from USC) and then
study them with an AI search engine that only
reduces project options (and not tuning options).
This approach removes the need for Step 1 and
Step 2, and does not require Step 3. Yet, as shown
below, it still makes accurate effort predictions.
Since our method does not require detailed domain
knowledge, it can be applied very early in the
process life cycle.

From a business perspective, our result means
that certain models can be used for decision making
in one of two ways:

Either: constrain the tuning variance using histor-
ical data;

Or: constrain the project variance using an AI
search engine like SEESAW.

Note that this second method avoids a lengthy
and expensive data collection phase prior to deci-
sion making. This result is of tremendous practical
benefit when it is difficult to find relevant data
within a single organization to constrain the tuning
options of a model.

2.2. Implications of the ‘Data Drought’ on Model
Selection

Our introduction mentioned Norman Fenton’s
pessimism on the practicality of industrial data
collection for software engineering. Sometimes,
Fenton’s pessimism is unfounded. There exists
an increasing number of high process maturity
organizations that store large amounts of consistent
data collected from projects with well defined
processes. The techniques reported in this article
(AI search using the SEESAW algorithm) are not
required for such data-rich domains.

However, in data-starved domains, a ‘Goldilocks’
principle might be appropriate:

• Tiny models offer trite conclusions and are
insensitive to important project features.

• Very large models need extensive data collection
to constrain the internal tunings.

• In between there may exist some models that are
‘just right’ i.e. big enough to draw interesting
conclusions, but small enough such that the
internal tuning variance does not dominate the
variance results from input project options.

We make no claim that all process models are
‘just right’ and, hence, can be controlled by our
methods. Such process models can be quite complex
and include: discrete-event models (Law and Kelton
2000; Kelton et al. 2002); system dynamics mod-
els (Abdel-Hamid and Madnick 1991); state-based
models (Harel l990; Akhavi and Wilson 1993; Mar-
tin and Raffo 2000); rule-based programs (Mi and
Scacchi 1990); or standard programming constructs
such as those used in Little-JIL (Cass et al. 2000;
Wise et al. 2000). These rich modeling frameworks
allow the representation of detailed insights into an
organization. However, in data-starved domains,
the effort required to tune may be non-trivial. In
terms of the Goldilocks principle, we suspect that
many process models may not be near the ‘right
size’ and will require extensive tuning before they
can be used for decision making. Hence, in domains
suffering from a data drought, we would advocate
‘just right’ models like those from USC.

3. TOOLS USED IN OUR EXPERIMENTS

3.1. Models used in this Study

The USC models, we argue, are ‘just right’ because
they have been developed, refined, and constrained
over a very long period of time. The range of tuning
options we explore below are taken from 30 years
of modeling experience and regression studies of
hundreds of projects (Boehm 2000). The variables in
our models have been selected and tested by a large
community of academic and industrial researchers
led by Boehm (this large group has meet annually
since 1985). It is hardly surprising that, for the USC
models, the project options dominate the tuning
options since these tuning options have been refined
and constrained by decades of work.

The USC models have other useful features.
Unlike other models such as PRICE TRUE PLAN-
NING (Park 1988), SLIM (Putnam and Myers 1992),

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section T. Menzies et al.

strategic? tactical?
scale
factors
(exponentially
decrease
effort)

prec: have we done this before?
flex: development flexibility
resl: any risk resolution activities?

team: team cohesion
pmat: process maturity

upper
(linearly
decrease
effort)

acap: analyst capability
pcap: programmer capability
pcon: programmer continuity
aexp: analyst experience
pexp: programmer experience
ltex: language and tool experience
tool: tool use
site: multiple site development

sced: length of schedule
lower
(linearly
increase
effort)

rely: required reliability
data: secondary memory storage requirements
cplx: program complexity
ruse: software reuse

docu: documentation requirements
time: runtime pressure
stor: main memory requirements
pvol: platform volatility

COQUALMO
defect removal
methods

auto: automated analysis
execTest: execution-based testing tools

peer: peer reviews

Figure 1. The variables of COCOMO, COQUALMO, and the THREAT model

or SEER-SEM (Jensen 1983), the COCOMO family
of models is fully described in the literature. Also,
at least for the effort model, there exist baseline
results (Chulani et al. 1999). Further, we work exten-
sively with government agencies writing software.
Amongst those agencies, these models are fre-
quently used to generate and justify budgets. Lastly,
the space of possible tunings within COCOMO &
COQUALMO is well defined (see below). Hence, it
is possible to explore the space of possible tunings.

Figure 1 shows the variables used by our models.
The last two columns of this figure show the results
of a Delphi panel session at the Jet Propulsion
Laboratory (JPL) where the COCOMO variables
were separated into:

• the tactical variables that can be changed within
the space of one project;

• the strategic variables that require higher-level
institutional change (and so may take longer to
change).

For example, the panel declared that pmat (pro-
cess maturity) is hard to change within the space
of a single JPL project. When searching for subsets
of project options that improve model predictions,
we take care to separate our search into either tac-
tical or strategic runs. Note that these definitions
of strategic and tactical options are not hard-wired

into our system. If a user disagrees with our defini-
tions of strategic/tactical, they can change a simple
configuration file.

This study uses three USC models:

1. The COQUALMO software defect predictor
[p254-268] (Boehm et al. 2000). COQUALMO
models defect introduction and defect removal
in requirements, design, and coding.

2. The COCOMO effort and development time pre-
dictor [p29-57] (Boehm et al. 2000). COCOMO
assumes that effort depends exponentially on
some scale factors and linearly to some effort mul-
tipliers. COCOMO estimates development work
months (total) and calendar months (elapsed)
and includes all coding, debugging, and man-
agement activities.

3. The THREAT model [p284-291] (Boehm et al.
2000) contains a large set of two-dimensional
tables like Figure 4 representing pairs of vari-
able settings that are problematic. For example,
using the rely versus sced table, the THREAT
model would raise an alert if our tool decides
to build a system with high rely (required reli-
ability) and low sced (schedule available to the
development).

When searching for good subsets of the project
options, our AI search engine tries to minimize
the outputs of these above models, combined as

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section Accurate estimates without local data?

float fixed
project variable low high variable setting

prec 1 2 data 3
OSP flex 2 5 pvol 2

resl 1 3 rely 5
team 2 3 pcap 3
pmat 1 4 plex 3
stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

float fixed
project variable low high variable setting

rely 3 5 tool 2
data 2 3 sced 3

fight cplx 3 6
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2
data 2 3 sced 3

ground cplx 1 4
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 2. Four case studies define a space of project options P

follows:

combined =
√

Effort2 + Time2 + Threats2 + Defects2

(5)

This is the Euclidean distance to minimum values
for all these predictions. Note one small technical
detail: in order that one measure does not dominate
over the others, we normalize all predictions to the
range 0.100.

3.2. P: The Project Options

Figure 2 summarizes four NASA case studies using
the project options of Figure 1:

• ‘OSP’ is the GNC (guidance, navigation, and
control) component of NASA’s 1990s Orbital
Space Plane;

• ‘OSP2’ is a later version of OSP;

• ‘Flight’ and ‘ground’ show typical ranges of
NASA’s JPL.

Inside our model, project options typically range
from 1 to 5 where ‘3’ is the nominal value that
offers no change to the default estimate. Some of
the project options in Figure 2 are known precisely
(see all the options with single values). But many of
the features in Figure 2 do not have precise values
(see all the features that range from some low to high
value).

Sometimes the ranges of options are very narrow
(e.g. the process maturity of JPL ground software is
between 2 and 3), and sometimes the ranges are very
broad. Figure 2 does not mention all the features
listed in Figure 1 inputs. For example, our defect
predictor has inputs for use of automated analysis,
peer reviews, and execution-based testing tools. Dur-
ing SEESAW’s search, for all project options not

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section T. Menzies et al.

increasing effort decreasing effort
0.073 ≤ m ≤ 0.21 −0.178 ≤ m ≤ −0.078

(a) tuning options in COCOMO

phase increasing defects decreasing defects
requirements 0 ≤ m ≤ 0.112 −0.183 ≤ m ≤ −0.035
design 0 ≤ m ≤ 0.14 −0.208 ≤ m ≤ −0.048
coding 0 ≤ m ≤ 0.14 −0.19 ≤ m ≤ −0.053

(b) tuning options in COQUALMO effort multipliers

phase defect removal
requirements 0.08 ≤ m ≤ 0.14
design 0.1 ≤ m ≤ 0.156
coding 0.11 ≤ m ≤ 0.176

(c) tuning options in COQUALMO scale factors

Figure 3. Linear relations in our models

rely=
very
low

rely=
low

rely=
nominal

rely=
high

rely=
very
high

sced = very low 0 0 0 1 2
sced = low 0 0 0 0 1
sced = nominal 0 0 0 0 0
sced = high 0 0 0 0 0
sced = very high 0 0 0 0 0

Figure 4. An example risk table

mentioned in Figure 2, values are picked at random
from the full range of Figure 1.

3.3. T : the Tuning Options

Many of our project options have a linear relation-
ship to the output. Such linear relations form the
line y = mx + b with slope ‘m’ passing through point
x = 3, y = 1; i.e. at the nominal value of ‘3’, there are
no changes to the effort estimate. Such a line has a
y-intercept of b = 1 − 3m. Substituting this value of
b into y = mx + b yields:

estimate = m(x − 3) + 1 (6)

Over the history of the COCOMO project, it
has been observed that all the linear parameters
that increase/decrease effort have the slopes of
Figure 1a. Similarly, the linear relations in the
COQUALMO defect model linear relationships fall
within very narrow slopes of Figure 1b.

Like COCOMO, COQUALMO also includes scale
factors that affect the estimates exponentially. These
scale factors hinge about the origin and have the
slopes of Figure 3c.

Note also that COCOMO includes two other
tuning points: the {a, b} ‘calibration parameters’

that can any linear and exponential effects: see
Equation 8, discussed later.

Sampling across Equation 6 is a simple matter of
picking random m values from Figure 3. Similarly,
it is possible to sample the space of {a, b} values by
selecting at random from their known ranges (see
Figure 5, below).

To sample across the space of THREAT tunings,
another mechanism is required. Tables like Figure 4
can be represented as an exponentially decaying
function that peaks in one corner of the risk table
at a value between two to four. Since this model
is heuristic in nature, the exact height of the peak
is not certain. When we perform tuning samplings
over THREAT, we vary the height of the peak by
a random factor 0.5 ≤ x ≤ 1 if the peak is four, and
0.5 ≤ x ≤ 1.5 if the peak is two.

3.4. Changing Project Options P with SEESAW

SEESAW seeks the smallest subset of the project
options P′ ⊆ P that most improves model esti-
mates of Equation 5. To this, it sets one variable
at a time (selected at random) using a greedy
stochastic search (see the algorithm described in
the appendix). The resulting estimates (combined
using Equation 5) are then logged. At the end, SEE-
SAW reviews the effects of how setting the first,
second, third (etc) variables changes the resulting
predictions. SEESAW recommends all the settings
up to the setting where the resulting estimates are
all minimized. That is, SEESAW be can viewed as
either a tool for selecting the best P′ ⊆ P or as a tool
for pruning away irrelevant project options (those
not found in P′).

Note that:

• One run of SEESAW selects at random from
the tuning options (see Equations Figure 3) and
project options (as defined by Figure 2).

• SEESAW constrains project options P and not
the tuning options T.

3.5. Changing Tuning Options T with ‘LC’

At the end of this article is an experiment compar-
ing the effects of generating estimates after reducing
project options P with SEESAW or reducing tuning
options T. This section describes ‘LC’, the stan-
dard regression procedure used by the COCOMO
community since 1981. LC changes the tuning

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section Accurate estimates without local data?

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

3 4 5 6 7 8 9 10 11 12 13

b

a

Baker’s results: (a,b) seen after 30 LCs

0

100

200

300

400

500

%

All values, sorted

MRE1: from LC

Figure 5. Results of applying LC numerous times to 90% of the NASA93 data sets (available from http://
promisedata.org/data). Left-hand-side shows computed (a, b) values. Right-hand-side shows MRE1s generated over
the NASA93 data set for ten case studies (one study per line)

parameters T inside the COCOMO model using
local data.

LC assumes that some matrix Di,j holds:

• The natural log of the LOC (lines of code)
estimates;

• The natural log of the actual efforts for each
project j;

• The natural logarithm of the cost drivers (the
scale factors and effort multipliers) at locations
1 ≤ i ≤ 15 (for COCOMO-I) or 1 ≤ i ≤ 22 (for
COCOMO-II).

With those assumptions, (Boehm (1981) shows
that for COCOMO-I, the following calculation
yields estimates for ‘a’ and ‘b’ that minimize the
sum of the squares of residual errors:

EAFi =
∑N

j Di,j

a0 = t
a1 =

∑t
i KLOCi

a2 =
∑t

i(KLOCi)
2

d0 =
∑t

i (actuali − EAFi)
d1 =

∑t
i ((actuali − EAFi) ∗ KLOCi)

b = (a0d1 − a1d0)/(a0a2 − a2
1)

a3 = (a2d0 − a1d1)/(a0a2 − a2
1)

a = ea3

(7)

Note that LC is the opposite of SEESAW in that the
former makes no comment on the project options.
Rather, LC just proposes constraints to two tuning
variables (a, b).

In the case of COCOMO-I (Boehm 1981) these
a, b values are used in the following equation to
generate effort estimates. In this equation, EMi are

the effort multipliers from Figure 1:

effort = a · KSLOCb ·
15∏

i

EMi (8)

Even after applying LC, the tuning variance can still
be quite large. The left-hand-side of Figure 5 shows
the COCOMO-I (a, b) values learned by (Baker
(2007)) after, 300 times, extracting 10 projects at
random from COCOMO data sets, then applying
Equation 7 to the remaining data. The data sets
used in this study contained 93 projects, so LC
was applied to 93 − 10

93 = 89% of the data. A pre-
experimental intuition was that we were not using
enough data to yield stable (a, b) values. As can be
clearly seen by the wide variance on the (a, b) values
in Figure 5, this was not the case.

The right-hand-side of Figure 5 shows the mag-
nitude of the relative error (or MRE) values seen
in Baker’s study (MRE is a standard measure in
the effort estimation field as follows: MRE% =
100 ∗ abs(actual − predicted)

actual). In the sequel, we will
refer to Baker’s results as MRE1.

Some of the MRE1 errors are very large (up to
nearly 500%) suggesting that LC was incomplete
or that the variance in the (a, b) calculations has
significant impact on the estimation. Note that this
right-hand-side figure is not without precedent in
the estimation literature: it is a well-established
result that initial development effort estimates may
be incorrect by a factor of four (Boehm 1981) or even
more (Kemerer 1987).

Elsewhere we have been partially successful in
reducing estimation variance of Figure 5 using
feature subset selection (FSS) (Chen 2005; Menzies
et al. 2006) or more data collection. Unfortunately,

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section T. Menzies et al.

further data collection is possible, but only at great
organizational expense. Also, FSS reduces but does
not eliminate the a, b variance. Since we failed
to reduce estimation variance by constraining the
tuning variables, we took another approach: we
developed the SEESAW system to explore the effects
of just constraining the projects variables.

4. EXPERIMENTS

4.1. Goals

In terms of trusting SEESAW, the key question is
how much SEESAW’S estimates differ from those
generated by conventional methods such as LC.
Formally, this can be expressed as two hypotheses:

H0: The effort estimates generated after constrain-
ing the tuning options T are different to those
generated after not constraining them.

H1: The effort estimates generated by constraining
just the project options P are similar to those
seen after constraining just the tuning options
T.

Having stated our goal formally in this way,
we add that the following conclusions will be not
be based solely on statistical significance tests of
H0 versus H1. (Cohen (1988)) is scathing about
such tests when he writes that the significance
hypothesis testing of H0 P versus H1 is a ‘potent
but sterile intellectual rake who leaves . . . no
viable scientific offspring’. In support of Cohen’s
thesis, we offer the following salutary lesson.
Writing in the field of marketing, (Armstrong
(2007)) reviews one study that, using significance
testing, concludes that estimates generated from
multiple sources do no better than those generated
from a single source. He then demolishes this
conclusion by listing 31 studies where multiple
source prediction consistently out-performs single
source prediction by 3.4 to 23.4% (average = 12.5%).
These improvements, in every study surveyed by
Armstrong, are the exact opposite of what would
be predicted from the significance test results.

Accordingly, in the following, we will use simple
visualizations to assess H0 versus H1 and demote
significance tests to the role of a ’reasonableness test’
for the conclusions drawn from the visualizations.

Figure 6. Experimental design. ‘LC’ denotes Boehm’s
1981 regression procedure

4.2. Method

This experimental design described below (and
illustrated in Figure 6) lets us reflect over two
distributions:

• MRE1: the difference between expected and
actual when the tuning options T were changed
by LC;

• MRE2: the difference between the predictions
generated by LC or SEESAW.

Note that LC changes only the tuning options T
while SEESAW changes project options P. Hence,
by comparing the two distributions, we can assess
H0 versus H1.

Our experiment executes as follows:

1. 5 × 2 = 10 different case studies were created:
• Two kinds of control policies were explored;

i.e., the strategic and tactical choices marked
in Figure 1.

• Five kinds of projects were created; i.e.
the four projects from Figure 2 and one using an
imaginary project whose project choices included
the entire range of all COCOMO variables.
2. For these 2 × 5 = 10 case studies, we ran SEE-

SAW to find the constraints that led to minimum
effort, threats, defects, and development time.

3. From each of the ten sets of constraints,
we generated projects consistent with those
constraints.

4. Effort estimates were then added to the above
randomly generated projects. Each estimate

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section Accurate estimates without local data?

0

100

200

300

400

500

%

All values, sorted

MRE1: from LC

0

100

200

300

400

500

%

All values, sorted

MRE2: abs
(SEESAW - LC) / LC

Figure 7. MRE2 results for Figure 6, for ten case studies (one study per line). The MRE1 results (left-hand-side) come
from Figure 4

was the median estimate value seen in 1000
simulations of SEESAW, for a particular set of
project constraints. That is, these estimates were
generated from constrained project choices but
unconstrained tuning variables.

5. SEESAW’s predicted effort estimates were then
compared to those generated by conventional
means; i.e., LC learning on some historical
NASA data2 then applied to the projects gener-
ated from the constraints found by SEESAW.

6. The delta in SEESAW’s and LC’s estimates was
computed using !=100× abs(SEESAW − LC)

SEESAW .
7. Steps 4, 5, 6, and 7 were repeated 20 times to

generate the set ‘‘MRE2’’.

4.3. RESULTS

Figure 7, shows the MRE values seen in ten case
studies (one per line). The left-hand-side shows the
sorted MRE1 results from LC and has median values

median (MRE)

= {25, 26, 27, 28, 29, 30, 31, 35, 37, 38}%

The right-hand-side shows the sorted MRE2 results
and has median values

median(!) = {20, 20, 21, 22, 23, 23, 23, 23, 24, 25}%

Three features of Figure 7 are noteworthy:

• The SEESAW errors (in MRE2) are never greater
than the LC errors (in MRE1).

• SEESAW’s MRE2 errors are small (within 25%
or less of the LC results). This is a surprising

2 NASA93, available for download at http://promisedata.org/
repository/data/nasa93/nasa93.arff.

result, given that SEESAW samples effort from
the unconstrained space of possible tunings. The
only explanation for this effect is that, within the
USC models, the project options P dominate
the tuning options T. The project choices found
by SEESAW forced this process model into
a narrow space of behaviors. In this narrow
space, the impact of the tuning variance becomes
unimportant.

• The median differences between SEESAW and
LC, as shown in MRE2, are quite small when
compared to the range of values seen with just
LC (MRE1). These deltas are very small when
superimposed over the MRE1 curve (which can
range to over 400%).

That is, a visual inspection of these results favors
H1.

4.4. Significance Tests

For the sake of completeness, we performed a sta-
tistical significance test on the MRE1 and MRE2
distributions. Recalling Cohen and Armstrong (dis-
cussed earlier), we believe that such significance
tests should be a secondary, not primary, evaluation
criteria. For example, we use them as a reasonable-
ness check on conclusions gathered via intuitive
visual means.

• Since we are comparing distributions, paired
tests were deemed inappropriate.

• Since Figure 5 and Figure 7 have a small number
of large outliers, tests that make a Gaussian
assumption were also deemed inappropriate.

• Therefore, we compared the left and right sides
of Figure 7.

• In this case, Mann-Whitney tests did not violate
our visual impressions. At the 99% confidence

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section T. Menzies et al.

level, the distributions were different only in the
minority case (four out of ten).

4.5. Summary of Results

In summary, the visualizations of Figure 7 make us
endorse H1 (and statistical significance tests do not
challenge that endorsement). Hence, we say that
the estimates generated after constraining project
options P (using SEESAW) are about the same as
those generated after constraining tuning options T
(using LC).

5. RELATED WORK

To the best of our knowledge, this work is the first to
try controlling the project options while leaving the
tuning options unconstrained. Much of the related
work on uncertainty in software engineering uses
a Bayesian analysis. For example, (Pendharkar et
al. (2005) demonstrate the utility of Bayes networks
in effort estimation while Fenton and Neil explore
Bayes nets and defect prediction (Fenton and Neil
1999; Fenton et al. 2008) (but unlike this article,
neither of these teams links defect models to effort
models). We elect to take a non-Bayesian approach
since most of the industrial and government
contractors we work with use parametric models
like COCOMO.

Even in the field in search-based software engineering
(SBSE), we have not seen anything like this study.
Typically, SBSE hunts for near optimal solutions
to complex and over-constrained software engi-
neering problems. This approach has been applied
to many problems in software engineering (e.g.
requirements engineering (Jalali et al. 2008) but most
often in the field of software testing (Andrews et al.
2007). A recent review of 123 search-based SE arti-
cles (Rela 2004) showed that much of that work
relates to testing (e.g. simulated annealing to min-
imize test suites for regression testing) while only
a handful of those articles related to the kinds of
early project process planning discussed is here. For
example, (Aguilar-Ruiz et al. (2001)) and (Alvarez
et al. (2003)) apply search-based methods for effort
estimation. One facet that distinguishes SEESAW
from other methods is that we are searching over
more than just the effort models explored by the
Aquilar-Ruiz & Alvarez teams.

The SBSE literature initially inspired us to try
simulated annealing to search the what-ifs in

untuned COCOMO models (Menzies et al. 2007).
However, we found that SEESAW ran much faster
and produced results with far less variance than
simulated annealing.

As to our own work, for years, we have struggled
with the data drought problem and have recom-
mended elaborate FSS methods to prune uninfor-
mative data (Chen 2005; Menzies et al. 2006). Here,
we take a radically different approach and explore
the value of models whose internal tunings have
not been constrained with local data.

6. CONCLUSION

We are concerned with using models in domains
suffering from a data drought. If a particular domain
is data rich, the techniques described in this article
are not required. Otherwise, AI search methods like
SEESAW can be used to reuse models from other
sites without requiring local data.

To make that case, this report showed ten case
studies comparing the deltas between ranges of esti-
mates generated by SEESAW (without constraining
the tuning options) and those found by tradi-
tional estimation methods (that constrain the tuning
options). The distributions of the two estimates were
found to be similar. From a technical perspective,
this means that if estimation variance arises from a
tuning variance T and project variance P, then there
exist models such as COCOMO/COQUALMO
where P ' T; i.e. project choices dominate tuning
options.

When P ' T, the estimates found by constraining
project choices will be close to estimates found via
tuning on historical data. For such models:

• Using local data to reduce tuning variance is
optional;

• It is possible to compute accurate estimates
without local data;

• Decision making need not wait for detailed local
data collection.

APPENDIX: INSIDE SEESAW

Recall our formalization of the model-based man-
agement task from the introduction: find the small-
est subset of the project options P′ ⊆ P that most
improves model estimates. This section describes
the SEESAW algorithm and its methods for

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section Accurate estimates without local data?

1 function run (AllRanges, ProjectConstraints) {
2 OutScore = -1
3 Prob = 0.95
4 Out = combine(AllRanges, ProjectConstraints)
5 Options = all Out choices with ranges low < high
6 while Options {
7 X = any member of Options, picked at random
8 {Low, High} = low, high ranges of X
9 LowScore = score(X, Low)

10 HighScore = score(X, High)
11 if LowScore < HighScore
12 then Maybe = Low; MaybeScore = LowScore
13 else Maybe = High; MaybeScore = HighScore
14 fi
15 if MaybeScore < OutScore or Prob < rand()
16 then delete all ranges of X except Maybe from Out
17 delete X from Options
18 OutScore = MaybeScore
19 fi }
20 return backSelect(Out) }
21
22 function score(X, Value) {
23 Temp = copy(Out) ;; don't mess up the Out global
24 from Temp, remove all ranges of X except Value
25 run monte carlo on Temp for 100 simulations, scoring each run using Equation 3.
26 return median score of the 100 }

Figure 8. Pseudocode for SEESAW

reducing the model estimates (as computed by
Equation 5).

SEESAW was designed after observing experi-
mentally that the most interesting part of the project
options P was generally the minimum and maxi-
mum values for each variable. For example, if the
project options of Figure 2 say that analyst capabil-
ity ranges from low to very high, we kept finding that
best effects were seen at either low or very high, and
nowhere in between.

The reason for this is simple: all the functions
in COCOMO/COQUALMO/THREAT are mono-
tonic, causing the most dramatic effects to occur at
the extreme ends of the ranges. In fact, SEESAW
takes its name from the way earlier versions of
this algorithm tended to seesaw between extreme
values. We have conducted experiments with other
approaches that allow intermediate values. On com-
parison with the simulated annealing method used
in a prior publications (Menzies et al. 2007), we
found that seesawing between {Low, High} values
was adequate for our purposes.

SEESAW is an adaption of Kautz & Selman’s
MaxWalkSat local search procedure (Kautz et al.
1997). Its pseudocode is presented in Figure 8. Each
solution is scored via a Monte Carlo procedure (see
score in Figure 8), and SEESAW seeks to minimize
that score.

SEESAW first combines the ranges for all the
COCOMO project choices with the known project
constraints of Figure 2. These constraints range from
Low to High values. If a case study does not mention
a project choice, then there are no constraints on
that choice, and the combine function (line 4) returns
the entire range of that choice. Otherwise, combine
returns only the values from Low to High.

In the case where a choice is fixed to a single
value, then Low = High. Since there is no decision
to be made for this choice, SEESAW ignores it.
The algorithm explores only those choices with a
range of Options where Low < High (line 5). In each
iteration of the algorithm, it is possible that one
acceptable value for a choice X will be discovered.
If so, the range for X is reduced to that single value,
and the choice is not examined again (line 17).

SEESAW prunes the final recommendations (line
20). This function removes the N selections added
last that do not significantly change the final
score (t-tests, 95% confidence). This culls any final
irrelevancies in the selections.

The score function shown at the bottom of Figure 8
calls COCOMO/COQUALMO/THREAT models
100 times3, each time selecting random values

3 The value ‘100’ was set after experimentation showed that this
was big enough to reduce our variance and not large enough to
slow down the runtimes.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section T. Menzies et al.

for the project choices (from the Options set); and
random values for the tuning options (as described
in Figure 3). The median value of the Equation 5
values seen in these runs is the score for those
project choices. As SEESAW executes, the ranges in
Options are removed and replaced by single values
(lines 16-17), thus constraining the space of possible
simulations.

SEESAW is a stochastic algorithm: the selection
of the next choice to explore is completely random
(line 7). We use this stochastic approach since
much research from the 1990s showed the benefit
of such search methods. Not only can stochastic
algorithms solve non-linear problems and escape
from local minima/maxima, but they can also
find solutions faster than complete search, and
for larger problems (Motwani and Raghavan 1995).
For example, we have implemented a deterministic
version of SEESAW that replaces the random
selection of one choice in line 7 with a search
through all choice for the best {Low, High} value.
That algorithm ran much slower (runtimes were
12 times greater) with nearly identical results to
those of the stochastic search. (Crawford and Baker
(1994)) offer one explanation for the strange success
of stochastic search. For models where the solutions
are a small part of the total space, a complete search
wastes much time exploring uninformative areas of
the problem. A stochastic search, on the other hand,
does not get stuck in such uninformative areas.

REFERENCES

Abdel-Hamid T, Madnick S. 1991. Software Project
Dynamics: An Integrated Approach. Prentice-Hall Software
Series, USA.

Aguilar-Ruiz JS, Ramos I, Riquelme J, Toro M. 2001.
An evolutionary approach to estimating software
development projects. Information and Software Technology
43(14): 875–882.

Akhavi M, Wilson W. 1993. Dynamic simulation of
software process models. Proceedings of the 5th Software
Engineering Process Group National Meeting (Held at Costa
Mesa, California, April 26–29). Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, USA.

Alvarez JL, Mata J, Riquelme JC, Ramos I. 2003. A data
mining method to support decision making in software
development projects. In ICEIS’2003: Fifth International
Conference on Enterprise Information Systems, France.

Andrews JH, Li FCH, Menzies T. 2007. Nighthawk: A
two-level genetic-random unit test data generator. In IEEE
ASE’07, Available from http://menzies.us/pdf/07ase-
nighthawk.pdf.

Armstrong JS. 2007. Significance tests harm progress in
forecasting. Internatioal Journal of Forecasting 23: 21–327.

Baker D. 2007. A hybrid approach to expert and
model-based effort estimation. Master’s thesis, Lane
Department of Computer Science and Electrical Engi-
neering, West Virginia University, Available from
https://eidr.wvu.edu/etd/documentdata.eTD?docum
entid=5443.

Boehm B. 1981. Software Engineering Economics. Prentice
Hall: Upper Saddle River, New Jersey.

Boehm B. 2000. Safe and simple software cost analysis.
IEEE Software: 17(5): 14–17, Available from http://www.
computer.org/certification/beta/Boehm Safe.pdf.

Boehm B, Horowitz E, Madachy R, Reifer D, Clark BK,
Steece B, Winsor Brown A, Chulani S, Abts C. 2000.
Software Cost Estimation with Cocomo II. Prentice Hall:
Upper Saddle River, New Jersey.

Cass AG, Staudt Lerner B, McCall EK, Osterweil LJ,
Sutton SM Jr, Wise A. 2000. Little-jil/juliette: A process
definition language and interpreter. In Proceedings of the
22nd International Conference on Software Engineering (ICSE
2000), Grenoble, France, 754–757.

Chen Z. 2005. Tim Menzies, and Dan Port. Feature sub-
set selection can improve software cost estimation. In
Proceedings, PROMISE workshop, ICSE 2005, Available
from http://menzies.us/pdf/05/fsscocomo.pdf. Min-
neapolis, Minnesota, USA.

Chulani S, Boehm B, Steece B. 1999. Bayesian analysis
of empirical software engineering cost models. IEEE
Transaction on Software Engineerining 25: 4, July/August,
1999.

Cohen J. 1988. The earth is round (p < .05). American
Psychologist 49: 997–1003.

Crawford J, Baker A. 1994. Experimental results on
the application of satisfiability algorithms to scheduling
problems. In AAAI ‘94.

Fenton NE, Neil M. 1999. A critique of software
defect prediction models. IEEE Transactions on
Software Engineering 25(5): 675–689, Available from
http://citeseer.nj.nec.com/fenton99critique.html.

Fenton N, Neil M, Marsh W, Hearty P, Radlinski L, Krause
P. 2008. Empirical Software Engineering.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

Research Section Accurate estimates without local data?

Fenton NE, Pfleeger SL. 1995. Software Metrics: A Rigorous
& Practical Approach, 2nd edn. International Thompson
Press.

Harel D. 1990. Statemate: A working environment for
the development of complex reactive systems. IEEE
Transactions on Software Engineering 16(4): 403–414.

Jalali O, Menzies T, Jalali O, Feather M, Kiper J. 2008.
Real-timee requirements engineering, Available from
http://menzies.us/pdf/08realtime.pdf.

Jensen R. 1983. An improved macrolevel software
development resource estimation model. In 5th ISPA
Conference, April, 88–92.

Kautz H, Selman B, Jiang Y. 1997. A general
stochastic approach to solving problems with hard
and soft constraints. In The Satisfiability Problem:
Theory and Applications, Gu D, Du J, Pardalos P
(eds): New York; 573–586, Available on-line at
http://citeseer.ist.psu.edu/168907.html.

Kelton D, Sadowski R, Sadowski D. 2002. Simulation with
Arena, 2nd edn. McGraw-Hill, USA.

Kemerer CF. 1987. An empirical validation of software
cost estimation models. Communications of the ACM 30(5):
416–429.

Law A, Kelton B. 2000. Simulation Modeling and Analysis.
McGraw Hill.

Martin RH, Raffo DM. 2000. A model of the software
development process using both continuous and discrete
models. In International Journal of Software Process
Improvement and Practice, June/July.

Menzies T, Chen Z, Hihn J, Lum K. 2006.
Selecting best practices for effort estimation. IEEE
Transactions on Software Engineering Available from
http://menzies.us/pdf/06coseekmo.pdf, November.

Menzies T, Elwaras O, Hihn J, Feathear nd B,
Boehm M, Madachy R. 2007. The business case for
automated software engineerng.IEEE ASE, Available
from http://menzies.us/pdf/07casease-v0.pdf.

Menzies T, Williams S, El-waras O, Boehm B, Hihn J.
2009. How to avoid drastic software process change (using
stochastic statbility). In ICSE’09 (to appear), Available
from http://menzies.us/pdf/08drastic.pdf.

Mi P, Scacchi W. 1990. A knowledge-based environment
for modeling and simulation software engineering
processes. IEEE Transactions on Knowledge and Data
Engineering: 283–294.

Motwani R, Raghavan P. 1995. Randomized Algorithms.
Cambridge University Press: (reprinted 1997, 2000).

Park R. 1988. The central equations of the price software
cost model. In 4th COCOMO Users Group Meeting,
November, LA, USA.

Pendharkar PC, Subramanian GH, Rodger JA. 2005. A
probabilistic model for predicting software development
effort. IEEE Transactions on Software Engineering 31(7):
615–624.

Putnam L, Myers W. 1992. Measures for Excellence.
Yourdon Press Computing Series.

Rela L. 2004. Evolutionary computing in search-based
software engineering. Master’s thesis, Lappeenranta
University of Technology.

Wise A, Cass AG, Staudt Lerner B, McCall EK, Oster-
weil LJ, Sutton SM Jr. 2000. Using little-jil to coor-
dinate agents in software engineering. In Proceed-
ings of the Automated Software Engineering Conference
(ASE 2000) Grenoble, France, September, Available from
ftp://ftp.cs.umass.edu/pub/techrept/techreport/2000/
UM-CS-2000-045.ps.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., (2009)
DOI: 10.1002/spip

