
How to Share Experiments

Gregory Gay, Tim Menzies, Bojan Cukic
CS& EE, WVU, Morgantown, WVU

gregoryg@csee.wvu.edu,
tim@menzies.us, cukic@csee.wvu.edu

Burak Turhan
NRC Institute for Information Technology

Ottawa, Canada
Burak.Turhan@nrc-cnrc.gc.ca

ABSTRACT
OURMINE is an environment for developing and sharing
data mining experiments. Adding new tools to OURMINE,
in a variety of languages, is a rapid and simple process. This
makes it a useful research tool.

OURMINE also has pedagogical advantages. Complicated
graphical interfaces have been eschewed for simple command-
line prompts. This simplifies the learning curve for data
mining novices. The simplicity also encourages large scale
modification and experimentation with the code.

More importantly, OURMINE is a useful communication
tool. For example, in this paper, we show the OURMINE
code required to reproduce a recent experiment checking
how defect predictors learned from one site apply to another.
This is an important result for the PROMISE community
since it shows that our shared repository is not just a useful
academic resource. Rather, it is a valuable resource indus-
try: companies that lack the local data required to build
those predictors can use PROMISE data to build defect pre-
dictors.

As this example shows, OURMINE offers a succinct nota-
tion for describing experiments. We therefore propose OUR-
MINE as a candidate technology for the creation of libraries
of reusable software engineering experiments.

Categories and Subject Descriptors
i.5 [learning]: machine learning; d.2.8 [software engi-
neering]: product metrics

Keywords
algorithms,experimentation, measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE’09, May 18–19, 2009, Vancouver, Canada
Copyright 2009 ACM 978-1-60558-036-4/08/05 ...$5.00.

1. INTRODUCTION
The mantra of the PROMISE series is “repeatable, im-

provable, maybe refutable”software engineering experiments.
This community has successfully created a library of reusable
software engineering data sets that is growing in size and
which have been used in multiple PROMISE papers:

• 2006: 23 data sets
• 2007: 40 data sets
• 2008: 67 data sets
• 2009: 85 data sets (at the time of this writing)

The premise of this paper is that after data sharing comes
experiment sharing; i.e. the PROMISE repository should
grow to include not just data, but the code required to run
experiments over that data. This simplifies the goal of let-
ting other researchers repeat, and maybe even improve, the
experimental results of others.

Our experience with existing tools such as the WEKA1,
“R”2, ORANGE3 and RAPID-I4 and MLC++ 5 and MAT-
LAB6 is that these tools are not suitable for publishing ex-
periments. This paper discusses why we believe this to be
so and offers OURMINE as an alternate format for sharing
executable experiments.

OURMINE is a data mining environment used at West
Virginia University to teach data mining as well as support-
ing the generation of our research papers. OURMINE does
not replace WEKA, “R”, etc. Rather, it takes a UNIX shell
scripting approach that allows for the“duct taping” together
of various tools. For example, OURMINE currently calls
WEKA as a sub-routine but it is not limited to that tool.
This is no requirement to code in a single language (e.g.
the JAVA used in WEKA) so data miners written in “C”
can be run along side those written in JAVA or any other
language. Any program with a command-line API can be
combined together in OURMINE. In this way, we can lever
useful components from WEKA, R, etc, while quickly adding
in scripts to handle any missing functionality.

Based on three years experience with OURMINE, we as-
sert that the tool has certain pedagogical advantages. The
simplicity of the tool encourages experimentation and mod-
ification, even by data mining novices. We also argue that

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.r-project.org/
3http://magix.fri.uni-lj.si/orange/
4http://rapid-i.com/
5http://www.sgi.com/tech/mlc/
6http://www.mathworks.com

Figure 1: WEKA.

Figure 2: Orange.

OURMINE is a productive data mining research environ-
ment. For example 9

10
of the first and second authors’ recent

papers used OURMINE.
But more importantly, OURMINE offers a succinct exe-

cutable representation of an experiment that can be included
in a research paper. To demonstrate that, we present:

• The OURMINE script reproducing a recent SE exper-
iment [10].

• The results obtained from that script.

The experiment selected is of particular importance to the
PROMISE community since it shows that PROMISE data
sets collected from one source can be applied elsewhere to
learn good defect predictors. This in turn means that the
PROMISE repository is not just a useful academic resource,
but is also a valuable source of data for industry. If a com-
pany wants to build defect predictors, but lacks the local
data required to build those predictors, then using the right
relevancy filters (described below) it is possible to use data
imported from the PROMISE repository to generate defect
predictors nearly as good as those that might be built from
local data.

2. RELATED WORK
Data mining experimentation encourages the generation

of robust tools. By the time researchers make the standard
report in the literature (a 10x10-way cross-validation exper-
iment on 20 data sets), then they have extensively exercised

Figure 3: Data mining operator trees. From [7].

and debugged their tool. Hence, data mining research has a
long history of producing reusable tools. For example:

• MLC++ was a large library of “C” functions that in-
cluded many data mining algorithms [3].

• One reason for the popularity of Quinlan’s C4.5 deci-
sion tree learner [8] was the ready availability of the
C4.5 source code and its documentation. We know
many data mining researchers that learned “C” from
reading Quinlan’s code.

With the recent rise of powerful open-source development
platforms also came the development of data mining envi-
ronments that offered seamless connection between a wide
range of tools. The most famous of these tools is the WEKA [11]
from the Waikato University’s Computer Science Machine
Learning Group (see Figure 1). WEKA contains hundreds
of data miners, has been widely used for teaching and ex-
perimentation, and won the the 2005 SIGKDD Data Mining
and Knowledge Discovery Service Award. Other noteworthy
tools are “R”, ORANGE (see Figure 2) and MATLAB (since
our interest is in the ready availability of tools, the rest of
this paper will ignore proprietary tools such as MATLAB).

Our complaint with these tools is the same issue raised by
Ritthoff et al. [9]. Real-world data mining experiments (or
applications) are more complex that running one algorithm.
Rather, such experiments or applications require intricate
combinations of a large number of tools that include data
miners, data pre-processors and report regenerators. Rit-
thoff et al. argue (and we agree) that the standard interface
of (say) WEKA does not support the rapid generation of
these intricate combinations.

The need to “wire up” data miners within a multitude of
other tools has been addressed in many ways. In WEKA’s
visual knowledge flow programming environment, for exam-

ple, nodes represent different pre-processors/ data miners/
etc, and arcs represent data flows between them. A similar
visual environment is offered by many other tools including
ORANGE (see Figure 2). The YALE tool (now RAPID-I)
built by Ritthoff et al. formalize these visual environments
by generating them from XML schemas describing operator
trees like Figure 3.

In our experience in CS, students find these visual envi-
ronments either discouraging or distracting:

• Some are discouraged by the tool complexity. These
students shy away from extensive modification and ex-
perimentation.

• Others are so enamored with the impressive software
engineering inside these tools that they waste an entire
semester building environments to support data min-
ing, but never get around to the data mining itself.

A similar experience is reported by our colleagues in WVU
statistics. In order to support teaching, they bury these
data mining tools inside high-level scripting environments.
Their scripting environments shields the user from the com-
plexities of “R” by defining some high-level LISP code that,
internally, calls “R”.

3. OURMINE
While a powerful language, we find LISP can be arcane

to many audiences. Hence, OURMINE’s script are a combi-
nation of BASH and GAWK. Our choice of BASH/GAWK
over, say, LISP is partially a matter of taste but we defend
that selection as follows. Once a student learns, say, RAPID-
I’s XML configuration tricks, then those learned skills are
highly specific to that particular tool. On the other hand,
once a student learns BASH/GAWK methods for data pre-
processing and reporting, they can apply those scripting
tricks to any number of future applications.

Another reason to prefer scripting over the complexity of
RAPID-I, WEKA, “R”, etc, is that it reveals the inherent
simplicity of many of our data mining methods. For ex-
ample, Figure 4 shows a GAWK implementation of a Naive
Bayes classifier for discrete data where the last column stores
the class symbol. This tiny script is no mere toy- it success-
fully executes on very large datasets such as those seen in the
2001 KDD cup. WEKA, on the other hand, cannot process
these large data sets since WEKA always loads its data into
RAM. Figure 4, on the other hand, only requires memory
enough to store one instance as well as the frequency counts
in the hash table “F”.

More importantly, in terms of teaching, Figure 4 is easily
customizable. For example, Figure 5 shows four warm-up
exercises for novice data miners that (a) introduce them to
basic data mining concepts and (b) show them how easy it is
to script their own data miner: Each of these tasks requires
changes to less than 10 lines to change in Figure 4. The ease
of these customizations fosters a spirit of “this is easy” for
novice data miners. This in turn empowers them to design
their own extensive and elaborate experiments.

3.1 Built-in Data/Functions
The appendix of this paper describes the download and in-

stall instructions for OURMINE. The standard install comes
with the following public domain data sets (found in the
$OURMINE/lib/arffs directory):

#naive bayes classifier in gawk
#usage: gawk -F, -f nbc.awk Pass=1 train.csv Pass=2 test.csv

Pass==1 {train()}
Pass==2 {print $NF "|" classify()}

function train(i,h) {
Total++;
h=$NF; # the hypotheis is in the last column
H[h]++; # remember how often we have seen "h"
for(i=1;i<=NF;i++) {

if ($i=="?")
continue; # skip unknown values

Freq[h,i,$i]++
if (++Seen[i,$i]==1)

Attributes[i]++} # remember unique values
}

function classify(i,temp,what,like,h) {
like = -100000; # smaller than any log
for(h in H) { # for every hypothesis, do...

temp=log(H[h]/Total); # logs stop numeric errors
for(i=1;i<NF;i++) {

if ($i=="?")
continue; # skip unknwon values

temp += log((Freq[h,i,$i]+1)/(H[h]+Attributes[NF])) }
if (temp >= like) { # we’ve found a better hypothesis

like = temp
what=h}

}
return what;

}

Figure 4: A Naive Bayes classier for data sets in csv
format where the last column is the class.

1. Modify Figure 4 so that there is no train/test data. In-
stead, make it an incremental learning. Hint: 1) call the
functions train, then classify on every line of input. 2)
The order is important: always train before classifying
so the the results are always on unseen data.

2. Convert Figure 4 into HYPERPIPES [1]. Hint: 1) add
globals Max[h, i] and Min[h, i] to keep the max/min
values seen in every column “i”and every hypothesis
class “h”. 2) Test instance belongs to the class that most
overlaps the attributes in the test instance. So, for all
attributes in the test set, sum the returned values from
contains1:

function contains1(h,i,val,numerip) {
return numericp ?

Max[h,i] >= val && Min[h,i] <= val :
(h,i,value) in Seen }

3. Use Figure 4 for anomaly detector. Hint: 1) make all
training examples get the same class; 2) an anomalous

test instance has a likelihood 1
α

of the mean likelihood

seen during training (alpha needs tuning but alpha = 50
is often useful).

4. Using your solution to #1, create an incremental version
of HYPERPIPES and a anomaly detector.

Figure 5: Four Introductory OURMINE program-
ming exercises.

buildIncrementalSet builds a set containing a set number of
instances;

classes find all values for a class attribute;

combineFilesRandom combines two data sets, randomizing
the lines;

combineFiles combines two data sets with common attributes

gains runs InfoGain on the data

intersectAttributes finds the intersection of attributes over
several data sets;

logNumbers logs all numeric values in a data set ;

randomizeFiles randomizes lines in a data set;

rankViaInfoGain ranks attributes by InfoGain values;

removeAttributes performs column pruning;

sample creates an over or under-sampled dataset;

shared find shared attributes;

someArff splits a data set into train.arff and test.arff where
the test fail contains the B-th division of 1

B
-the data and

train file contains the rest.

some generates an ARFF file containing certain attributes;

Figure 6: OURMINE data manipulation functions.

abcd: finds a,b,c,d values and reports pd, pf, accuracy, precision,
and balance. If {A, B, C, D} are the true negatives, false
negatives, false positives, and true positives (respectively)
found by a defect predictor, then:

pd = recall = D/(B + D)
pf = C/(A + C)

balance = 1−
√

(0−pf)2+(1−pd)2√
2

columnStats: find column min, max, mean, and std.deviations.

medians: finds medians;

quartiles: generates box plots showing quartiles;

uniques: finds the unique entries in a column;

winLossTie: runs the Mann-Whitney test

Figure 7: OURMINE statistical functions.

• PROMISE: cm1, kc1, kc2, kc3, mc1, mc2, mw1, pc1,
pc2, pc3, pc4, pc5, ar3, ar4, ar5

• UCI (discrete): anneal, colic, hepatitis, kr-vs-kp, mush-
room, sick, waveform-5000, audiology, credit-a, glass,
hypothyroid, labor, pcolic, sonar, vehicle, weather, au-
tos, credit-g, heart-c, ionosphere, letter, primary-tumor,
soybean, vote,
weather.nominal, breast-cancer, diabetes, heart-h, iris,
lymph, segment, splice, vowel

• UCI (numeric): auto93, baskball, cholesterol, detroit,
fruitfly, longley, pbc, quake, sleep, autoHorse, body-
fat, cleveland, echoMonths, gascons, lowbwt, pharynx,
schlvote, strike, autoMpg, bolts, cloud, elusage, hous-
ing, mbagrade, pollution, sensory, veteran, autoPrice,
breastTumor, cpu, fishcatch, hungarian, meta, pwLin-
ear, servo, vineyard

OURMINE also comes with a library of common func-
tions used in machine learning experiments. All learners are
the WEKA implementations. The functions that interface
OURMINE with the WEKA set certain command-line pa-

nb() {
blab "n"
java -Xmx1024M -cp $Tmp/weka.jar \

weka.classifiers.bayes.NaiveBayes \
-p 0 -t $1 -T $2

}

Figure 8: OURMINE calling the WEKA

rameters. To see those flag settings, type show <learner
name> at the command prompt. That library includes:

• The data manipulation functions of Figure 6;
• The statistical functions of Figure 7;
• Some reporting functions such as code to auto-generate

the latex files required to report quartile charts. For
examples of those charts, see Figure 12, Figure 13
(later in this article).

• Learners: oner, jRip, jRip10, part, aode, aode10, nb
(naive bayes), nb10, nbk, lwl, j48, j4810, j4810c, lsr,
m5p, 1Bkx, 1Bk, apriori

3.2 Extending the Functionality
OURMINE’s library of functions contains the functions

used more than once by a team of 12 graduate students and
one faculty student researching data mining over a three year
period. This library is hardly complete and one of the goals
of this paper is to create a community of OURMINE pro-
grammers so that the library of functions can be extended.

Adding new functionality to OURMINE is not difficult.
OURMINE’s library of scripts are contained in a file called
minerc which is just a collection of functions written in the
BASH scripting language. Hence, to add functionality:

• Create a separate BASH file (i.e. functions.sh).
• Write all new functions in this file.
• At the end of minerc, add the line “. functions.sh”.

Very little knowledge of BASH is required to add functions
to OURMINE. If the new function is actually in a JAVA file,
the BASH function could just instantiate the Java file. In
Figure 8, for example, the BASH function nb uses a series of
commands. The blab is a built-in function that prints text to
the screen. The second line is the command to launch an ex-
ternal Java application (-Xmx1024M is a flag that gives the
Java application a certain amount of memory). This process
is similar for external programs written in any language.

The majority of the functions in OURMINE are BASH
scripts gluing together GAWK code. GAWK is simple to
learn and encourages short, easily modifiable, programs. R.
Loui, an associate professor in Computer Science at Wash-
ington University in St. Louis, strongly supports the use of
GAWK in his artificial intelligence classes. He writes:

There is no issue of user-interface. This forces
the programmer to return to the question of what
the program does, not how it looks. There is no
time spent programming a binsort when the data
can be shipped to /bin/sort in no time. [5]

For example, the GAWK script of Figure 9 extracts N ran-
domly selected data lines from an arff file. It uses two pa-
rameters as input: $1=input file; $2=N (how many lines of
data we require).

1 someData() {
2 cat $1 | gawk ’
3 BEGIN { IGNORECASE =1
4 srand(’$RANDOM’)
5 N=’$2’ }
6 gsub(/%.*/,"")
7 /^[\t]*$/ { next }
8 In { Data[rand()]=$0 }
9 /@data/ { In=1 }
10 /@/ { next }
11 END { for(D in Data) {
12 print Data[D]
13 if ((--N) <= 0) exit }} ’
14 }

Figure 9: SomeData: An OURMINE function

1 demo15() {
2 cd $Tmp
3 (echo "#data,bin, a,b,c,d,acc,pd,pf,prec,bal"
4 seed=$RANDOM;
5 for((bin=1;bin<=10;bin++)); do
6 blab "$bin"
7 auto93discreteClass |
8 someArff --seed $seed --bins $Bins --bin $bin
9 nb train.arff test.arff |
10 gotwant |
11 abcd --goal "_20" --prefix "auto93,$bin" --decimals 1
12 done |
13 sort -t, -n -k 11,11
14) |
15 malign > demo15.csv
16 blabln " "
17 echo ""; cat demo15.csv
18 cp demo15.csv $Safe/demo15.csv
19 cd $Here
20 }

Figure 10: An OURMMINE experiment.

• Lines 4 and 5 initializes random numbers and N .
• Lines 6 and 7 are the standard idiom for “skip lines

that are all blanks or comments”. If, after deleting all
characters after comment, the line contains only white
space then we skip that line.

• Line 8 stores a data line at a random location in the
Data array, but only if Line 9 ran before and recog-
nized the start of the data section in this file (marked
with “@data”).

• Line 10 skips all the meta lines in the file.
• Lines 10 through 13 print out N random data items.

3.3 Writing Experiments
The OURMINE user writes experiments in a BASH no-

tation into a file loaded by minerc. Running an experiment
is as simple as typing the name of its function at the OUR-
MINE command prompt (i.e. if your function is called exp1,
it will run when you type exp1 at the command prompt).

Figure 10 shows a basic experiment from OURMINE. When
reading BASH scripts like Figure 10, one thing to note is that
the pipe character “|” links the output of one process into
the input of another. Also, a “|” at the end of line means
that the next line inputs the piped output of the last line.

Line 5 of Figure 10 shows that this a 10-way cross-validation
experiment, executed over one file (see line 7: auto93 from

the UCI collection). At line 8, the someArff function splits
the data into ”train.arff” (containing 90% of the data) and
”test.arff” (containing 10% of the data).

At line 9, a Naive Bayes learner of Figure 8 is called. A
more general construct, seen in the experiment described
below is to loop through, a set of learners using

for learner in $learners; do

in which case, line 9 would become

$learner train.arff test.arff

The code in lines 10 and 11 collect the performance statis-
tics and print out a, b, c, d, acc, pred, pf, prec, bal. Some of
these statistics are class-dependent. Line 11 shows the idiom
abcd –goal ” 20” which instructs OURMINE to only report
statistics for the class ” 20”. If statistics for all classes are
required, then the OURMINE idiom is to cache the result
of the learner, then loop through all classes calling abcd on
each class in turn. When using the OURMINE tools, that
idiom can be see in lines 20 through 29 of Figure 11.

The sort function of line 13 of Figure 8 sorts these results
on accuracy (column 11) and the results are saved to a safety
box $Safe. This final saving step is required because, by
default, OURMINE cleans up after itself as it exits. Unless
result files are saved to some safe place, they will be wiped.

This is a simple experiment, and it should be fairly easy
to see the flow between statements. If the settings used for
the parameters of a function are confusing, students learning
OURMINE can run that function separately at the BASH
prompt or look at its source code using the show <function
name> command within OURMINE.

One nuance, not readily apparent in Figure 10, is that
these scripts are naturally parallizable. The idiom

ssh me@someMachine.edu runThis

logs into a machine and runs the script runThis. The script
executes in some default, rather restricted, environment so
runThis must now how to create the paths and temp di-
rectories needed for execution. OURMINE is designed to
automatically create its execution environment so it is easy
to write runThis scripts based on OURMINE. In a stan-
dard university environment, where students have the same
password on multiple machines, then very large experiments
can be farmed out over those CPUs by running:

ssh me@someMachine1.edu runThis1
ssh me@someMachine2.edu runThis2
ssh me@someMachine3.edu runThis3

etc

This lets researchers complete lengthy data mining experi-
ments in minutes to hours, rather than days to weeks.

4. OURMINE & RESEARCH
To illustrate the use of OURMINE, the rest of this paper

uses the tool to reproduce a recent Empirical Software Engi-
neering paper written by the second and fourth authors [10].
Note that the following code was written by the first author
with minimal assistance from the others: for the most part,
the first author worked straight from the text of [10].

In their paper, Turhan et al. [10] focus on binary defect
prediction (defective or non-defective) and perform three ex-
periments to reach a conclusion in favor of either either:

• Cross-company (CC) data imported from other sites;
• or within-company (WC) data collected locally.

That paper made several conclusions:

• Turhan#1: Using local WC data produces signifi-
cantly better defect predictors than using imported CC
data.

• Turhan#2: However, when relevancy filtering (see
below) is applied to the CC data, then the imported
CC data lead to defect predictors nearly as effective as
using local WC data.

• Turhan#3: Hence, while local data is the preferred
option, it is feasible to use imported data provided it
is selected by a relevancy filter.

This experiment is of great importance to the PROMISE
community. It shows that PROMISE data sets collected
from one source can be applied elsewhere to learn good de-
fect predictors; i.e. the PROMISE repository is not just a
useful academic resource, but is also a valuable source of
data for industry. Companies wishing to build defect pre-
dictors can do so, even if they lack the local data required
to build those predictors.

Such an important result needs confirmation. Tools like
OURMINE are useful for such replication studies.

4.1 Experiment
As a preliminary to this experiment, we took seven PROMISE

defect data sets (PC1,CM1,KC1,KC2,KC3,MW1,MC2) and
built seven combined data sets, each containing 6

7
-th of the

data. For example, the file:

$OURMINE/lib/arffs/mdp/combined PC1.arff

contains all seven data sets except PC1. This is the training
set used for the CC (cross-company) data.

Next, we conducted a 10*10-way cross validation experi-
ment; i.e. 10 times we asked someArff to randomly sort
each data set, then generate 10 train and test sets contain-
ing 90% and 10% of each data set. The 90% sets are the
training set of the WC (within-company) data. Lines 17 to
31 of Figure 11 shows that standard cross-validation study.

The CC study is shown on lines 32 to 46 of Figure 11.
This is the same as the WC study but this time the train
set is one the of the combined X.arff files described above.

The learners in this study were two Naive Bayes classifiers.
Nb (from Figure 8) i and Frank et al. locally weighted Bayes
classifier called lwl [2]. Naive Bayes classifiers were used
since:

• Previously [6], we have offered evidence that they do
better than other commonly used learners;

• Lessmann et al. report that many other learners do no
better than Naive Bayes on the PROMISE defect data
sets [4].

Lwl applies relevancy filtering to the training set. The idea
behind relevancy filtering is to collect similar instances to-
gether in order to construct a learning set that is homoge-
neous with the testing set. Specifically, the aim of this filter
is to try to introduce a bias in the model by using train-
ing data that shares similar characteristics with the testing
data. Turhan et al. implemented this with a combination of
k-Nearest Neighbor (k-NN) method and Naive Bayes. For
each test instance in the test set, the k=10 nearest neigh-
bors in the training set are collected. Duplicates are removed

and the remaining examples are used to train a Naive Bayes
Classifier.

For reasons of repeatability, this study did not use Turhan
et al.’s relevancy filter. Rather, we used the lwl from the
WEKA. For each test instance, lwl constructs a new naive
Bayes model using a weighted subset of training instances
in the locale of the test instance. In this approach, the size
of the training subset is based on the distance of the kth
nearest-neighbor to the instance being classified. The train-
ing instances in this neighborhood are weighted, with more
weight assigned to the closest instances. An instance iden-
tical to the test instance is given a weight of one, with the

1 an2() {
2 local me="promise_an2"
3 local bins=10
4 local repeats=10
5 local learners="nb lwl"
6 local datas="PC1 CM1 KC1 KC2 KC3 MW1 MC2"
7 cd $Tmp
8 (echo "#data,repeat,bin,treatment,learner,goal,a,b,c,d \
9 ,acc,pd,pf,prec,bal"
10 for((r=1;r<=$repeats;r++)); do
11 for data in $datas; do
12 arff=$OURMINE/lib/arffs/mdp/shared_$data.arff
13 combined=$OURMINE/lib/arffs/mdp/combined_$data.arff
14 blab "data=$data repeat=$r "
15 seed=$RANDOM;
16
17 for((bin=1;bin<=$bins;bin++)); do
18 blab "$bin"
19 cat $arff |
20 someArff --seed $seed --bins $bins --bin $bin
21 goals=‘cat $arff | classes --brief‘
22 for learner in $learners; do
23 $learner train.arff test.arff |
24 gotwant > results.dat
25 for goal in $goals; do
26 cat results.dat |
27 abcd --goal "$goal" \
28 -prefix "$data,$r,$bin,WC,$learner,$goal" \
29 --decimals 1
30 done
31 done
32 goals=‘cat $arff | classes --brief‘
33 blab "CC"
34 local N=$[($RANDOM % 10) +1]
35 blab "($N)"
36 cat $arff |
37 someArff --seed $seed --bins $bins --bin $N
38 for learner in $learners; do
39 makeTrainCombined $combined > trainCom.arff
40 $learner trainCom.arff test.arff |
41 gotwant > results.dat
42 for goal in $goals; do
43 cat results.dat |
44 abcd --goal "$goal" \
45 --prefix "$data,$r,CC,CC,$learner,$goal" \
46 --decimals 1
47 done
48 done
49
50 done
51 blabln
52 done
53 done
54) | sort -t, -n -k 12,12 | malign > $me.csv #each bin
55 blabln " "
56 echo ""; cat $me.csv
57 cp $me.csv $Safe/$me.csv
58 cd $Here
59 }

Figure 11: WC or CC defect prediction. From [10].

weight decreasing linearly to zero as the distance increases.
Higher values for the number of neighbors (k) will result
in models that are less sensitive to data anomalies, while
smaller models will conform more closely to the data. The
authors caution against using too small of a value for k, as it
will be sensitive to the noise in the data. At the suggestion
of Frank et al. we ran Figure 11 using k ∈ {10, 25, 50, 100}.

4.2 Results
Our results, shown in Figure 12 and Figure 13, are divided

into reports of probability of detection (pd) and probability
of false alarms (pf). When a method uses k nearest neigh-
bors, the k value is shown (in brackets). For example, the
first line of Figure 12 reports WC data when lwl used 100
nearest neighbors.

The results are sorted, top to bottom, best to worse (higher
pd is better; lower pf is better). Quartile plots are shown
on the right-hand side of each row. The black dot in those
plots shows the median value and the two “arms” either side
of the median show the second and third quartile respec-
tively. The three vertical bars on each quartile chart mark
the (0%,50%,100%) points.

Column one of each row shows the results of a Mann-
Whitney test (95% confidence): learners are ranked by how
many times they loss compared to every other learner (so
the top-ranked learner loses the least). In Figure 12 and
Figure 13, row i has a different rank to row i + 1 if Mann-
Whitney reports a statistically significant difference between
them.

Several aspects of these results are noteworthy:

pd 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 WC lwl(100) 20 76 97 .2.8.0.2

w
1 WC lwl(50) 25 75 95 .2.8.0.2

w
2 CC lwl(100) 20 73 93 .5.5.0.5 w
3 WC lwl(25) 33 73 93 .2.8.3.2 w
3 WC lwl(10) 33 73 92 .5.5.3.5

w
4 CC lwl(50) 25 70 91 .9.1.0.9

w
5 WC nb 57 68 83 .3.7.5.3 w
6 CC lwl(10) 25 67 89 .1.1.0.1 w
7 CC lwl(25) 25 67 88 .9.1.0.9

w
8 CC nb 47 65 88 .5.5.2.5

w
0 50 100

Figure 12: Probability of Detection (PD) results,
sorted by median values.

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 WC lwl(100) 3 22 80 .0.0.7.0 w
1 WC lwl(50) 5 22 75 .0.0.7.0 w
2 CC lwl(100) 7 26 80 .0.0.5.0 w
3 WC lwl(25) 7 25 67 .7.7.7.7 w
4 WC lwl(10) 7 27 67 .7.7.3.7 w
5 CC lwl(50) 9 29 75 .0.0.1.0 w
6 WC nb 18 32 43 .2.8.7.2 w
7 CC lwl(10) 11 33 74 .3.7.8.3 w
8 CC lwl(25) 11 33 75 .0.0.6.0 w
9 CC nb 11 35 53 .6.4.1.6 w

0 50 100

Figure 13: Probability of False Alarm (PF) result,
sorted by median values.

• Measured in terms of pd and pf , the learners are ranked
the same. That is, methods that result in higher pd
values also generate lower pf values. This result means
that, in this experiment, we can make clear recommen-
dations about the value of different learners.

• When performing relevancy filtering on CC data, ex-
treme locality is not recommended. Observe how k ∈ {10, 25}
are ranked second and third worst in terms of both pd
and pf .

• When using imported CC data, some degree of rele-
vancy filtering is essential. The last line of our results
shows the worst pd, pf results and on that line we see
that Naive Bayes, using all the imported data, per-
forms worst.

• The locally-weighted scheme used by lwl improved WC
results as well as CC results. This implies that a cer-
tain level of noise still exists within local data sets and
it is useful to remove extraneous factors from the local
data.

These results confirm the Turhan et al. results:

• In a result consistent with Turhan#1, best results
were seen using WC data (see the top two rows of
each table of results).

• In a result consistent with Turhan#2, after relevancy
filtering with k = 100, the CC results are nearly as
good as the WC result: a loss of only 3% in the median
pd and a loss of 4% in the median pf .

Our conclusions from this study are the same as Turhan#3:
while local data is the preferred option, it is feasible to use
imported data provided it is selected by a relevancy filter.
If a company has a large collection of local development
data, they should use that to develop defect predictors. If
no such local repository exists, then a cross-company data
collection filtered by a locally-weighted classifier will yield
usable results. Repositories like PROMISE can be used to
obtain that CC data.

5. DISCUSSION
As Figure 14 illustrates, the replication for this exper-

iment was completed within a matter of hours. Original
research would undoubtedly take more time, but the tools
in OURMINE clearly cut the necessary time to set up an ex-
periment, or to reproduce an experiment, by a large amount.

Note that the slowest task in reproducing the experiment
was the 200 minutes for experimental alteration; i.e. finding
and fixing conceptual bugs in version i of the functions, then
improve them with i+1. In the past, we considered this work
wasted time since it seemed that we were just making dumb
mistakes and correcting them. Now, we have a different
view. It is this process of misunderstanding, then correcting
the details of an experiment, that is the real point of the
experimentation:

Time spent
Step (minutes)

Prep work 38
Data manipulation 152

Coding 163
Experiment alteration (bugs, rework) 210

Total 563 ≈ 10 hours

Figure 14: Time spent on each step

• If repeating an experiment takes too long, we may
abandon the exercise and learn nothing from the pro-
cess.

• If repeating an experiment is too easy (e.g. just edit-
ing a RAPID-I operator tree) then repeating the ex-
periment does little to change our views on software
engineering and data mining.

• But if repeating the experiment takes the right amount
of time (not too long, not too short), and it challenges
just enough of our understanding of some topic, then
we find that we “engage” with the problem; i,e, we
think hard about:

– The base assumptions of the experiment;
– The interesting properties of the data;
– and the alternative methods that could achieve

the same or better results.

That is, we advocate OURMINE and the ugly syntax of
Figure 11 over beautiful visual programming environments
like WEKA’s knowledge flow or the RAPID-I operator tree
because the visual environments are too easy to use (so we
are not forced into learning new ideas).

One the other hand, we still want a productive develop-
ment environment for developing our experiments. It be
should possible to update a data mining environment and
get new insights from the tools, fast enough to keep ups mo-
tivated and excited to work on the task. In our experience,
the high-level scripting of BASH and GAWK lets us find
that middle ground between too awkward and too easy.

6. CONCLUSIONS
The next challenge in the PROMISE community will be

to not only share data, but to share experiments. We look
forward to the day when it is routine for PROMISE submis-
sions to come not just with supporting data but also with
a fully executable version of the experimental rig used in
the paper. Ideally, when reviewing papers, PROMISE pro-
gram committee members could run the rig and check if the
results recorded by the authors are reproducible.

In the paper, we have used OURMINE to reproduce an
important result:

• It is best to use local data to build local defect predic-
tors;

• However, if imported data is selected using a relevancy
filtering, then....

• ... imported data can build defect predictors that func-
tion nearly as well as those built from local data.

This means that repositories like PROMISE are actually an
important source of data for industrial applications.

We prefer OURMINE to other tools. For example, four
features of Figure 8 and Figure 11 are worthy of mention:

1. OURMINE is very succinct. As seen below, a few lines
can describe even complex experiments.

2. OURMINE’s experimental descriptions are complete.
There is nothing hidden in Figure 11; it is not the pseu-
docode of the our experiments, it is the experiment.

3. OURMINE code like Figure 11 is executable and can
be executed by other researchers directly.

4. Lastly, the execution envirionment of OURMINE read-
ily available. Many machines already have the sup-
port tools required for OURMINE. For example, we

have run OURMINE on Linux, Mac, and Windows
machines (with Cygwin installed).

Like Ritthol et al., we doubt that the standard interfaces
of tools like WEKA, etc, are adequate for representing the
space of possible experiments. Impressive visual program-
ming environments are not the answer: their sophistica-
tion can either distract or discourage novice data miners
from extensive modification and experimentation. Also, we
find that the functionality of the visual environment can be
achieved with a little BASH and GAWK scripts, with a frac-
tion of the development effort and a greatly increased change
that novices will modify the environment.

OURMINE is hence a candidate format for sharing de-
scriptions of experiments. The PROMISE community might
find this format unacceptable but discussions about the draw-
backs (or strengths) of OURMINE would help evolve not
just OURMINE, but also the discussion on how to repre-
sent data mining experiments for software engineering.

APPENDIX
Installing OURMINE
OURMINE is an open source tool licenses under GPL 3.0.
It can be downloaded from http://unbox.org/wisp/trunk/

our/INSTALL.
As OURMINE is a command-line tool, the system require-

ments are insignificant. However, there are a few things that
are necessary before installing OURMINE.

• A Unix-based platform. OURMINE is designed to
work in the BASH shell, and will not operate on a
Windows system. If no other platform is available, a
BASH emulator like Cygwin will need to be installed
before using OURMINE. Users running any Linux dis-
tribution, BSD, or Mac OS X can run OURMINE na-
tively.

• The Java Runtime Environment. Most computers will
already have this installed. The ability to run Java
programs is required for the WEKA learners.

• The GAWK Programming Language. Many of the
scripts within OURMINE are written using GAWK.
Any up-to-date Linux system will already have GAWK
installed. Cygwin or Mac OS X users will need to in-
stall it themselves.

To install OURMINE, follow these instructions:

• Go to a temporary directory
• wget -q -O INSTALL

http://unbox.org/wisp/trunk/our/INSTALL
• bash INSTALL

OURMINE is installed to the $HOME/opt directory by de-
fault. To run OURMINE, simply move into that directory
and type bash our minerc. This will launch the OURMINE
shell. OURMINE has several demos included to familiarize
you with the built-in functionality. These demos may be
run by typing demoX into the command prompt, where X
is a number between 3 and 19. To look at the source code
for that demo, type show demoX. It is highly recommended
that new users run each demo and take a close look at its
source code. This show command works for any function in
OURMINE, not just the demos.

A. REFERENCES
[1] Jacob Eisenstein and Randall Davis. Visual and

linguistic information in gesture classification. In
ICMI, pages 113–120, 2004. Avaliable from
http://iccle.googlecode.com/svn/trunk/share/

pdf/eisenstein04.pdf.

[2] Eibe Frank, Mark Hall, and Bernhard Pfahringer.
Locally weighted naive bayes. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence,
pages 249–256. Morgan Kaufmann, 2003.

[3] R. Kohavi, D. Sommerfield, and J. Dougherty. Data
minining using mlc++: A machine learning library in
c++. In Tools with AI 1996, 1996.

[4] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering, May
2008.

[5] R. Loui. Gawk for ai. Class Lecture. Available from
http://menzies.us/cs591o/?lecture=gawk.

[6] Tim Menzies, Jeremy Greenwald, and Art Frank.
Data mining static code attributes to learn defect
predictors. IEEE Transactions on Software
Engineering, January 2007. Available from
http://menzies.us/pdf/06learnPredict.pdf.

[7] I. Mierswa, M. Wurst, and R. Klinkenberg. Yale:
Rapid prototyping for complex data mining tasks. In
KDD’06, 1996.

[8] J. R. Quinlan. Learning with Continuous Classes. In
5th Australian Joint Conference on Artificial
Intelligence, pages 343–348, 1992. Available from
http:

//citeseer.nj.nec.com/quinlan92learning.html.

[9] O. Ritthoff, R. Klinkenberg, S. Fischer, I. Mierswa,
and S. Felske.

[10] Burak Turhan, Tim Menzies, Ayse B. Bener, and
Justin Di Stefano. On the relative value of
cross-company and within-company data for defect
prediction. Empirical Software Engineering, 2009.
Available from http://menzies.us/pdf/08ccwc.pdf.

[11] Ian H. Witten and Eibe Frank. Data mining. 2nd
edition. Morgan Kaufmann, Los Altos, US, 2005.

