Applications of Simulation and AI Search: Assessing the Relative Merits of
Agile vs Traditional Software Development

Bryan Lemon, Aaron Riesbeck, Tim Menzies, Justin Price, Joseph D’ Alessandro,
Rikard Carlsson, Tomi Prifiti, Fayola Peters, Hiuhua Lu, Dan Port*
Lane Department of Computer Science and Electrical Engineering, West Virginia University
*Information Technology Management, University of Hawaii
bryan @bryanlemon.com, tim @menzies.us, { ariesbeck |tprifti[hlu3 } @ mix.wvu.edu
{justin.n.price|jdalessa57|ricca742|fayolapeters } @ gmail.com,dport @hawaii.edu

Abstract

We implemented Boehm-Turner’s model of agile
and plan-based software development. That tool is
augmented with an Al search engine to find the key
factors that predict for the success of agile or tra-
ditional plan-based software developments. According
to our simulations and Al search engine: (1) in no
case did agile methods perform worse than plan-based
approaches; (2) in some cases, agile performed best.
Hence, we recommend that the default development
practice for organizations be an agile method.

The simplicity of this style of analysis begs the
question: why is so much time wasted on evidence-less
debates on software process when a simple combina-
tion of simulation plus automatic search can mature
the dialogue much faster?

1. Introduction

There are too many examples in software engi-
neering of positions being defended without empirical
evidence. For example, in the 1990s, the third author
published extensively on the supposed benefits of rule-
based [1] and object-oriented programming [2] without
hard evidence to back up those claims. Many other
prominent writers were just as unconstrained. In the
mid-1990s Booch [3], Rumbaugh [4] and Jacobson [5]
engaged in an high-profile and extended debate about
the merits of different styles of object-oriented mod-
eling. Nowhere in that debate was any empirical evi-
dence that one kind of model was easier to write/ read/
debug/ maintain than any other kind. That discussion is
now closed- but not because any participant won the
debate. Rather, a commercial company hired Booch
and Rumbaugh and Jacobson to create one unified
modeling language (UML [6]).

One explanation for this propensity to argue without
evidence is the “data drought” problem reported by
metrics-guru Norman Fenton. After years of advocat-
ing careful data collection [7], he now despairs of
that approach. At a keynote address in 2007' Fenton
shocked his audience by saying: “....much of the cur-
rent software metrics research is inherently irrelevant
to the industrial mix ... any software metrics program
that depends on some extensive metrics collection is
doomed to failure”. The COCOMO [8] experience
supports Fenton’s pessimism. After 26 years of trying,
Boehm et al. have only collected less than 200 sample
projects for the COCOMO database [9]. There are
many reasons for this data drought including lack
of data being collected or the business sensitivity
associated with the data, as well as differences in how
the metrics are defined, collected and archived. Also,
recently, we have seen a decreasing willingness for
organizations to share their operational data [10].

When data-based evidence is missing, model-based
evidence can fill in the gaps. Model-based methods can
be used to build an executable form of the intuitions
and mental models of domain experts. If part of a
model is not known with certainty, model variables
can become ranges, rather than point values.

Sometimes, software process models are difficult to
build. For example Raffo [11] spent two years carefully
building and tuning a software process model for a
North-Western software construction company. Also,
some software process models are hard to understand-
especially when the uncertainties associated with the
model lead to numerous, very wide, ranges. These
uncertainties can lead to voluminous output if the
model is used within some Monte Carlo rig. Analysts
may find the output of such models confusing, rather

1. http://promisedata.org/?cat=130

than clarifying.

Not all process models are problematic. With the
right automated support, software process modeling
can be very easy. Given a well-defined theory and
some automatic Al search tools, it is possible to collect
model-based evidence about the value of variants on
software processes. For example, our case study con-
cerns requirements prioritization policies. Such poli-
cies control the order in which a team implements the
requirements. The spectrum of these policies can be
characterized by two extremes:

« In traditional plan-based prioritization, the order-
ing is performed once, prior to starting the work.
« In agile projects, orderings may change often.

In highly dynamic environments, the standard argu-
ment is that agile is a better method for reacting to
the arrival of new requirements and/or existing require-
ments changing value. In the literature, the agile versus
plan-based debate is often cast as a “one or the other”
proposition. This is a false dichotomy that ignores de-
velopment practices that use interesting combinations
of of plan-based and agile development. A more nu-
anced view is offered by Boehm and Turner [12]. They
define five scales that can characterize the difference
between plan-based and agile methods: project size,
project criticality, requirements dynamism, personnel,
and organizational culture.

Previously, at ASE’08 [13], Port & Olkov & Men-
zies (hereafter, POM) studied the effects of differ-
ent prioritization policies while adjusting the rate at
which new requirements arrive and/or change value.
Griinbacher [14] criticized the POM model (version
1), noting that it explores only one of the five scales
proposed by Boehm and Turner.

An advantage of model-based evidential reasoning
is the ability to repeat a prior analysis. Once a model
limitation is apparent, the model can be changed and
re-simulated. For example, in the following study, the
POM model is extended along the lines proposed by
Griinbacher then explored using Al search engines.

Using the model and the Al search engine, we study
plan-based and agile policies in different contexts. We
found (1) no case where agile does worse than plan-
based; (2) in some cases, agile performs much better.
This leads to the following conclusion:

The default development methodology for an
organization should be agile.

Also, we show that (sometimes) model-based rea-
soning about software processes is easy:

e The revised model was implemented in eight

weeks by a graduate Al class working ~20% of
their time on this task. This team had no experi-

ence in processing modeling and little experience
with the implementation language (LISP).

o The team ran the simulations on a CPU farm of
20 Linux machines. The results reported in this
paper could be generated in one overnight run.

The simplicity of our analysis begs the question: why
is so much time wasted on evidence-less debates when
a simple combination of simulation plus automatic
search can mature the dialogue much faster?

2. Simulator Specifications

2.1. POM2: Summary

POM2 shuffles requirements through four stages:

1) They are initially in the “to do” heap;

2) Next the requirements are revealed to a team;

3) Subsequently a team moves the requirement to
their implementation plan;

4) Finally the implemented requirement may move
to a list of completed requirements.

Step 4 is optional: if a project suffers from early
termination, some requirements may never reach com-
pletion. Within POM2:

o Requirements have costs and values.

o Projects have trees of requirements;

e Teams implement different sub-trees but may be
reliant on requirements from other sub-trees;

o Teams sizes (# of members) may differ;

e Teams work in iterations and each iteration
implements a small number of requirements.

o A team’s plan is the set of requirements to be
implemented in the next iteration.

o The size of each plan is determined by budgetary
considerations.

o When the plan is done, teams fill up the plan
again by moving requirements from their re-
quirements sub-trees.

o The project ends if the requirements sub-
trees is empty or management orders early
termiantion.

e Teams order the requirements in their plans
using a requirements prioritization policy.

POM2’s inputs are shown at the top of Figure 1. These
inputs include project size (number of personnel in all
teams), project criticality, requirements dynamism,
personnel types, and organizational culture. These
scales effect the processing within POM2:

e In the case of high criticality systems,
requirements cost more to develop.

o In the case of high requirements dynamism,
the requiirements’ cost and values change fre-
quently.

« Different organizational cultures react differently
to those changes. Some cultures may frequently
re-prioritize requirements while other cultures
are more prone to ignore value changes, least that
disturbs the development plan.

The following description of POM?2 is somewhat
lengthy. Much of that discussion is a justification of
different decisions. The actual code of POM2, shown
in Figure 1 is quite short.

2.2. Differences to POM1

POM?2 differs from POMI1 as follows:

o« POMI assumed one team implemented the re-
quirements while, in POM?2, there are multiple
teams.

e POMI’s requirements had no dependents.
POM2’s requirements have dependents and a
parent requirement cannot start till all its child
requirements are finished.

o The POMI paper assumed small projects with
about 10 developers per project and a maximum
of 25 requirements. Within our POM2 simula-
tor, we work with projects involving up to 300
developers, we therefore expanded the maximum
number of requirements from 25 to 750 (%)O *
25 = 750)

2.3. Requirements, Trees, Heaps, and Projects

Within POM2, a project is divided into teams, each
of which implements a set of requirements. Each
requirement has a value and cost (assigned randomly
based on the value and cost scales described by Port et
al. [13]). These values may change over the lifetime of
a requirement, using the mechanics discussed below.

These requirements are stored in acyclic trees rep-
resenting the work breakdown structure. The tree de-
mands that all child-requirements must be completed
before a parent can be started. A requirement becomes
“ready” when all of its children are “completed.”
Initially, all leaf requirements are “ready,” since by
definition, they have no child that can block their start.

Initially, all teams are assigned different trees (this
tree becomes the team’s heap, from which new re-
quirements are pulled). A standard business situation
is that sometimes teams must wait for other teams
to finish some requirements. To model this situation,
the following mechanism is used to add inter-team
dependency between requirements. This mechanism is
controlled by the “inter-dependency” variable within
our simulator. The inter-team dependencies are gener-
ated as follows:

INPUTS:
criticality:

.82 <= criticality <= 1.26 (defined in $2.6.1)
criticality modifier:

2.0 <= criticality modifier <= 10.0 (defined in §2.6.1)
culture:

0 <= culture <= 100 (defined in §2.6.3)
initial known:

4 <= initial known <= .7 (defined in §2.3)
inter-dependency:

0 <= inter-dependency <= 100 (defined in §2.3)
size:

3 <= size <= 300 (defined in §2.6.4)
team size:

1.0 <= team size <= 44.0 (defined in §2.6.4)
dynamism:

1.0 <= dynamism <= 50.0 (defined in §2.6.2)

OUTPUTS:
performance score:
0 <= score <=1 (defined in §2.7)

while X < numberO fTrials do
tasks := generateT asks(size)
teams := generateTeams(tasks, teamSize)
teams.apply Dependancy(inter Dependancy)
teams.applyCriticality(criticality, modi fier)
stopping At := iterationsToComplete(2 to 6)
while iteration < stoppingAt do
for all team in teams do
team.budget+=(TotalCost/6)
AwvailableT asks := null
for all task in team do
if noDependencies&&no Children then
if notCompleted then
AvailableT asks.append(task)
end if
end if
end for
AvailableT asks.applySorting Policy(type)
for all task in AvailableTasks do
if budget — task.cost) < 0 then
break
else
budget := budget — task.cost
task.completed := true
end if
end for
if budget > 0 then
if AvailableTasks is empty then
budget := 0
end if
end if
team.discover NewT asks(\)
for all task € team do
change := (N(0, o) * culture)
task.value += (maxTaskV alue x change)
end for
end for
end while
end while

Figure 1: POM2 Pseudo Code.

o For all requirements at the same level in a tree,
one dependency is added to and from another
tree, at the same level. Approaching generation
in this manner removes the possibility of cyclic
dependencies (these cannot be completed).

o At the leaves of the tree, there are many re-
quirements, so the addition of one to/from de-
pendency has little impact on the completion
rate of requirements. Higher in the tree, where
there are fewer requirements, even one inter-
team dependency may significantly slow down the
requirement completion process.

This method best mimics a common structure seen in
industry: teams often share large sub-systems (require-
ments that use many sub-requirements) rather than very
small requirement assemblies.

Trees are generated as follows. Nodes are assigned
children according to an exponential distribution: (50,
24, 12, 6, 3, 1.5)% of nodes have (0,1,2,3,4,5) nodes
(respectively). Note that we have no theoretical jus-
tification for this distribution. Our literature searches
did not find papers describing the average structure of
a software project and the number of dependents for
each requirements. We return to this issue below.

As a software project progresses it is not unusual
for a development team to discover that they have new
requirements to complete. We model this as follows:

o If the size of the project (number of personnel)
is set to 200, the number of requirements for the
project will be set to 500 (these ratios come from
the literature review of the original POM paper).

« From these 500 example requirements, we deter-
mine, before the simulation begins, the number
of new requirements that will be added at each
project iteration. If we determine that we will
add 6 requirements after the first iteration we will
randomly generate these additional requirements
before the simulation starts. These requirements
are initially labeled as “hidden” and are marked
“visible” when the simulator encounters the iter-
ation for which they were added.

2.4. Iterations

Teams maintain a plan, which is a set of require-
ments that have been pulled from their heap. Ini-
tially some percentage of requirements are pulled from
the heap and placed in the plan, these represent the
known set of requirements at the beginning of the
software project. This percentage is controlled by the
“initial known” variable within our simulator. Plans
are processed in iterations. Within our model, the total

maximum number of iterations is 6, but it is entirely
possible for a project to end early. Such early termi-
nations are very common in iterative projects if (for
example) management decides that the resources of
an organization should be transferred from an existing
project to a new one.

Early termination is modeled by assigning a proba-
bility of .9 that a project may continue after iteration
i. This means that at 6 iterations, a project has a
53% probability of finishing. This early termination
rule models the industry reality that many projects are
canceled before they’re originally planned end date.

The number of requirements that can be completed
in each iteration is controlled by the budget. Following
[13], the budget is defined as:

(total initial cost)

budget = (1)

number of iterations

Where “total initial cost” is computed from the cost
of the team’s plan, as it is known at the start of the
project, after criticality is applied (discussed below).

2.5. Prioritization Policies

POM2 explores three prioritization policies.

1) Plan Based (PB) : The Plan-based policy is
different from the other two methods. This policy
models a non-agile development method where
the order of requirements are sorted once at the
start of development using the ”caol:f numbers
assumed at the start of the project. While the
other policies sort at every iteration, the plan-
based policy only adjusts requirement values at
every iteration, “but does not resort them.” [13]

2) Agile (AG) : Agile policies sort requirements
(every iteration) only using value. According
to Cao et al. [15] this is the standard method
advocated by the agile community.

3) Agile2 (AG2) : The same as AG, but sorts on
value/cost. This is another standard method used
throughout the agile community.

POMI1 explored a fourth hybrid policy that combined
features of agile with plan-based methods. That pol-
icy assumed a linear structure of requirements and
there are technical difficulties with implementing that
structure over the trees of POM2. Hence, we leave
exploration of hybrid methods for future work.

2.6. Handling Boehm and Turner

POM?2 implements four of the five scales identified
by Boehm and Turner [16] that distinguished agile

1 2 3 4 5
Level very low | low nominal high very high
Impact none impact impact on | single life | many lives
on dis- | essential
cretionary | funds
funds
Cost 0.82 0.92 1.00 1.10 1.26

Figure 2: Effort multipliers on cost due to criticality.
Learned via regression from 161 projects. From CO-
COMO [8].

from traditional plan-based projects. These four scales
are:

¢ project criticality;

o requirements dynamism;

e organizational culture;

¢ size (total number of developers in all teams);
POM2 does not implement the fifth scale (personnel)
due to theoretical reasons, see below.

2.6.1. Criticality. Boehm and Turner [16] comment
that agile methods are untested on safety-critical prod-
ucts as they present potential difficulties with simple
design and lack of documentation. Conversely, plan-
based methods evolved to handle highly critical prod-
ucts which are hard to tailor down efficiently to low-
criticality products.

With this in mind, Boehm and Turner measure
criticality in terms of losses due to impact or defects
and ranges from “none” (best for agile development) to
“impact on discretionary funds” to “impact on essential
funds” to “loss of single life” to “loss of many lives”.
Thus, plan-based methods are best suited to projects
that must be carefully planned, lest defects cause loss
of many lives.

According to the COCOMO research [17] the effect
criticality has on cost is displayed in Figure 2. POM2
assumes that all requirements performed by one team
are of equal criticality (this reflects the industrial stan-
dard that specialist teams work on particular portions
of the code base). We assume that X% of the teams are
affected by the criticality, where X = 2...10. Within
our simulator, we refer to X as the criticality modifier.
We adjust the cost of each requirement in a selected
teams tree as follows:

cost’ = cost x X ¢riticality)

2.6.2. Dynamism. Project dynamism measures how
frequently new requirements are created and how of-
ten existing requirements change value. As dynamism
increases, we discover more new requirements and the
value of the requirements becomes more variable.
Boehm and Turner measure dynamism in terms of
the percent of requirements changed each month and

has the range 50% (best for agile) to 1 (best for
planned-based).

To implement this factor, the POM1 assumptions for
dynamism [13] are adopted:

o Initially, we only mark
30% <40 N(0,1) <70

of the requirements in the project tree as “visible.”
At each iteration, for each team, we make visible

new = Poisson(\)

more hidden requirements in the tree.

o Another parameter controlling dynamism is o. At
each iteration, every uncompleated requirement
(in the plan or in the project tree) is visited, and
and its value is alterd by:

value' += maz RequirementV alue * N (0, o)
3)
o Note that POM2 links ¢ and A are linked such
that high o values implies high \ values (and vice
versa). Specifically, after setting o, we use
o g
10

There are some special cases of the above pro-
cess that requires further discussion. If the dynamism
parameter tells a team to find a “new” number of
requirements, but there are not that many “visible” or
“ready” requirements, then a team’s plan may cost less
to complete than the budget for that iteration. In the
case where there is some remaining budget, and there
are no requirements that can be completed, the budget
is burned. We call this “twiddling thumbs” where a
team of employees ceases to work while they wait on
the completion of work from another team.

In another case, a team may encounter a situation
where their remaining budget is not large enough
to complete the next available requirement. If this
happens, the budget is kept and carried over to the
next iteration. This is accomplished by maintaining two
numbers: totalAccumulatedBudget and totalSpentBud-
get. Budget is burned by setting the toralSpentBudget
to the totalAccumulatedBudget. At the start of each
iteration, totalAccumulatedBudget is incremented by
the budget for the iteration.

Before continuing, we digress to discuss another
method (which we do not use) for handling leftover
budgets. We considered allowing a team to work on
requirements from other teams. However, Brook’s Law
[18] (adding programmers to a late requirement makes
it later) convinced us of the folly of that approach.
Teams are specialists in the quirks and capabilities of
their own code base. An outsider coming in to work

temporarily on a small part of another team’s code base
can be quite unproductive (since they do not know the
quirks of that code). Further, they can slow up the
remaining team (while they teach the newcomer the
tricks of that code).

2.6.3. Culture. For a fully agile project, changing
requirement values means resorting the requirements in
the plan to ensure that most cost-effective and valuable
requirement is completed first. However, as discussed
in this section, the corporate culture may inhibit that
resorting process.

According to Boehm and Turner, culture is mea-
sured in terms of the percent of the staff thriving on
chaos and has the range 90% (best for agile),70,50,30,
10 (best for plan-based). At culture = 90%, the
changes to a requirements value described above (see
Dynamism) are used when resorting for the next
iteration. However, at culture = 10%, developers are
loathed to change the initial project plan since this
introduces a degree of disorder into their work life.

We therefore distinguish between the true value and
the accepted of requirement, calculated as follows:

accepted = value + (value x N (0, o) * culture) (4)

As the percent thriving on chaos decreases, “culture”
drops to 0 and the accepted value remains as the
old value. Note that the accepted value is used to
resort (exception: not for the plan-based policy, which
never resorts) the requirements, but when performance
statistics are gathered, we use the true value.

2.6.4. Size. Size is measured in terms of the number
of personnel and has the range 3 (typically, best for
agile), 10, 30, 100, 300 (typically, best for plan-based).
The size of a POM2 project is picked at random from
this range and the number of requirements is then set
to size * 2.5.

We planned to build teams using the results of [19]
who report that the size of software development teams
has (min, mean, sd) = (1, 8,20). However, this leads
to a large number of single-person teams. We modified
that result slightly in consultation with some of our
NASA colleagues. POM2 repeatedly selects team size
randomly from the distribution of Figure 3 until the
total team size exceeds size.

2.6.5. Personnel. Having described the scales imple-
mented in POM2, we now discuss the theoretical
problems that lead to an unimplemented personnel
scale. Boehm and Turner describe project personnel
using the Cockburn mixtures model. In summary, the
mixtures model divides programmers into three groups:

X = # of personnel | Y = frequency of X
1 3
3 9 I
6 | 18 NI
9 | 28 I
12 | 22 I
15 18 I
18 | 15 I
21 | 12 IS
24 g N
27 3 |
30 2 1
33 I |
36 1 1
39 [|
42 11

Figure 3: Distribution of team sizes.

Alpha: The most productive, most flexible pro-
grammers. Alpha programmer are able to
revise a method, breaking its rules to fit an
unprecedented new situation.

Beta: With training, Beta programmers are able
to perform discretionary method steps such
as sizing stories to fit increments, composing
patterns, compound refactoring, or complex
COTS integration.

Gamma: May have technical skills, but gamma
programmers are unable or unwilling to col-
laborate or follow shared methods

Applying the conventions of the Boehm and Turner
personnel scale, lower personnel values indicate more
alpha programmers on the team.

We planned to use the COCOMO effort multipli-
ers [8] to derive a cost delta for requirements im-
plementation (the more alphas on the team, the less
the development effort). Strangely, however, when we
applied those effort multipliers, the net effect was
nearly zero. To see “zero effect”, consider the CO-
COMO multipliers relating to programmer and analyst
capability:

capability \ very low low nominal high very high
acap= analyst 1.42 1.19 1.00 0.85 0.71
pcap= programmer 1.34 1.15 1.00 0.88 0.76

After averaging the rows, combining the lows and
the highs, and expressing the results as ratios of the
very high values, we arrive at the following “slow-
down factors” representing the effects of using dif-
ferent kinds of programmers: {1.6,1.22,1} for using
{gamma, beta, alpha} programmers, respectively. With
these factors, we had planned to shrink the budget
for an iteration according to how many less-than-good
programmers were assigned to the iteration.

budget = budget/(1.6 x v+ 1.22 % 5 + «). Q)

where v and 3 and « are the ratios of different kinds
of assigned programmers.

Boehm and Turner define personnel to range 1
to 5 where each step defines ratios of alpha, beta,
and gamma programmers. For example, as shown in
Figure 4, if personnel = 5 then 65% of the team
comprises alpha programmers. The last row of that
figure demonstrates “zero effect”. This row shows the
weighed sum of the ratio of programmer types as
calculated by Equation 5. Note that the weighted sums
are nearly all the same. That is, the net effect of these
personnel types on productivity is almost constant. For
that reason, POM2 ignores the productivity dimension
and we will explore this issue in future work.

Boehm & Turner’s size scale
programmer types 1 2 3 4 5
« % alpha | 45% 50% 55% 60% 65%
16] % beta | 40% 30% 20% 10% 0%
¥ % gamma | 15% 20% 25% 30% 35
M: using Equation 5 118 119 120 121 121

SU

Figure 4: Boehm & Turner’s personnel scale selects for
different ratios of alpha, beta, and gamma programmers
of a project.

2.7. Performance Score

As POM2 requirements are completed, they are
marked “completed.” At the end of an iteration, all
completed requirements are moved to a “done” set,
and requirements left in the plan are passed to the
next iteration. As each new requirement is added
to the “done” set, statistics are kept on the team’s
performance:

1) Sum of costs (of completed requirements)
2) Sum of values (of completed requirements)

By tracking these two statistics on a (X,Y) plane,
for X = 1...N, we can visualize the time-varying
performance of the team: When the project is finished,
the plot can be compared to an optimal frontier,
obtained by sorting all the “done” requirements using
the final % for all those requirements. Note that
the sort used to generate the optimal frontier relies on
information not available halfway through the simu-
lation (specifically, the ~——ro ffe Z:C'Zl fssziremem). The
Optimal Frontier works on the same set of require-
ments, except that those requirements Uc;’lffe pairs are
updated to their new value before the simulation starts.
No method can do better than the optimal frontier.
Scoring works as follows. If a project finishes after
completing, say 100 requirements, then we would

score the run as follows:

1 Take the final <umulative valuc geperated by the

project at requirement 100.

Very low dynamisms: ¢ =0, A =0

700 fagz —— R
600 | pg .
500 |- P AN E
400 | JE N
300 |) /) -
200 - F /A \ A
100 | ! ‘

Frequency

70 80 90 100
Score

Medium dynamism: ¢ = 0.15, A = 0.015

700
600
500
400
300
200
100

0 -
50 60 70 80 90 100
Score

High dynamism: o0 =2, A = 0.2

Frequency

700
600
500
400
300
200
100}
0 L=

Frequency

Score

Figure 5: Distribution of Performance scores, controlling
o and)\, while choosing at random for other model
inputs.

2 Divide that by the cumulativevalue foyre from
cumulative cost

the optimal frontier at 100 requirements.

The performance scores generated in this way are
shown in Figure 5. Note that, in those results, the
agile projects that sort using just value always perform
worse than the agile2 projects that use value/cost
(the blue plots always score lower than the red plots).
This is an interesting result since, according to Cao
and Ramesh [15], sorting on just value is a common
agile practice. In a personal communication, Alistair
Cockburn has stressed the need adjust priorities using
value and cost.

Two other interesting features of Figure 5, are:

« Agile methods do not perform better than plan-
based when dynamism is low (see top plot).

o The median performance of plan-based decreases
as dynamism increases (the green curve moves
further to the right).

That is, while there is no advantage of use agile for
low dynamism situations, agile methods can adapt to
increasing dynamism (while plan-based cannot). This
leads to the following conclusion: organizations should
adopt agile2 processes as their default methodology.

3. Searching

The Figure 5 results are interesting, but they are a
two-dimensional summary of a ten-dimensional space:

e one output value;
« one choice of prioritization policy;
« cight input values.

It is possible that that the general finding that agile2
works as well, or better than plan-based does not hold
for regions within that 10-D space. Before adopting the
above conclusion, we need to find any special regions
in the 10-D of POM2.

We define these regions as follows: Given a model
with inputs to a model that are a set of feature; =
range;, find the smallest subsets that most change
the model output. Each such subset is special region
since it is here where the score changes most. Our
preferred tool for this analysis is KEYS [20]. KEYS
is a combination of a greedy search and a Bayesian
ranking method called BORE (short for “best” or
“rest”). The greedy search starts to explore the domain.
Assume that the model has N accessible states which
are the inputs to the model (in our case, our sates are
assignments to the Boehm and Turner scales). These
inputs are randomized from a distribution {X;,i =
1...N}. A collection of inputs to the model is called
a treatment.

{z1,xa,...,xN} = treatment (6)

After M number of initial samples, a second phase
starts and one of the inputs is fixed to a desired
range X; = M;. This is performed for each of
the input variables (in our case, the Boehm scales)
until the stopping criteria is met. Keys stops if the
improvement from the previous round is less than
5%. The range is selected using the BORE heuristic
(described below). At the next run the treatment =
{fized} | J{randomizede}. KEYS’ pseudo-code is
shown in Figure 6.

At its core, KEYS uses the BORE heuristic to rank
ranges. BORE takes N inputs that have been scores
with outputs. For this study, we used the performance
scores generated by the method of §2.7. It assumes that
any numeric values have been converted into a set of
bins. For our work, we divide the Boehm Turner scales
into ten equal width ranges.

while Flized_Inputs # Total_Inputs do
for I =1 to N do
Selected[1...(I — 1)] := best decisions so far

Guessed := random settings to the remaining mitigations

Input := Selected U Guessed
Scores := Score(Input)
end for
Top_Range := Bore(Scores)
Fixzed_Inputs += 1
Selected(Fized_Inputs)
end while
return Selected

= Top_Range

Figure 6: KEYS pseudo-code

These N inputs are then split into two groups - the
10% best (with highest value) and the 90% rest [21].
The probability that a input range is found in best is
then determined by using Bayes theorem. The theorem
uses evidence E and a prior probability P(H) for
hypothesis H € {best,rest}, to calculate a posteriori
probability P(H|E) = P(E|H)P(H)/P(E). When
applying the theorem, likelihoods are computed from
observed frequencies (hereafter, freq). These likeli-
hoods (hereafter, like) are then normalized to create
probabilities. This normalization cancels out P(F) in
Bayes theorem. For example, after N = 10, 000 runs
are divided into 1,000 best solutions and 9,000 rest,
the value for X; is in a certain range might appear 10
times in the best solutions, but only 5 times in the rest.
Therefore:

P(best)

P(rest)
freq(E|best)
freq(E|rest)
like(best|E) =
() =

() =

1000/10000 = 0.1

9000/10000 = 0.9

10/1000 = 0.01

5/9000 = 0.00056

freq(E|best)P(best) = 0.001
freg(E|rest)P(rest) = 0.000504

like(best|E)
like(best|E)+like(rest|E) — = 0.66

like(rest|E
P(best|E

With this setup the model is sensitive to small frequen-
cies. For example, the computed value of 0.66 hides
the fact that the range was only seen 15 times in 10,000
samples. To penalize such samples, we introduce a
support term into the calculations. This support term
should be large if a range is frequent; i.e. the like value
suffices as a support measure. Hence, when KEYS
looks for ranges that most effect output, it uses:

like(best|E)?

P(best|E t(best|E) =
(best|E) support(best| £) like(best|E) + like(rest|E)
O]

In other work (under review, submitted to ASE
2009) we show that BORE+KEYS is surprisingly
powerful at finding these regions. Empirically, we
have shown that KEYS can out-perform an interesting
range of alternate search engines such as simulated
annealing, A-STAR, and MaxWalkSat.

Note: ranges run bin; <= value < bin;41

bin 6 bin 7 bin 8

criticality .82 .86 91 95 1.0 1.04 1.08 1.13 1.17 1.22

criticality modifier 2.0 2.8 3.6 4.4 52 6.0 6.8 7.6 8.4 9.2

culture 0 10 20 30 40 50 60 70 80 90

initial known 40 43 46 49 52 .55 .58 .61 .64 .67
inter-dependency 0 10 20 30 40 50 60 70 80 90

size (total personnel) 3.0 32.7 62.4 92.1

team size (people per team) 1.0 5.1 9.2 133 17.4 21.5 25.6 29.7 33.8 37.9

policy / dynamism

plan-based / very low
c=A=0

criticality
criticality modifier
culture

initial known
inter-dependency
size

team size

89

plan-based / medium
o =0.15,A = 0.015

criticality
criticality modifier
culture

initial known
inter-dependency
size

team size

21

plan-based / very-high
c=2,2=0.2

criticality
criticality modifier
culture

initial known
interdependency
size

team size

22

agile 2 /very low
o=2=0

criticality
criticality modifier
culture

initial known
interdependency
size

team size

12

agile 2/ medium
o =0.15,A = 0.015

criticality
criticality modifier
culture

initial known
interdependency
size

team size

20

19

agile 2 / very high
oc=2,2=0.2

criticality
criticality modifier
culture

initial known
interdependency
size

team size

15

18

._.

—_ = A~
—
w

11 5 2 1

17

20

Figure 7: Results. The top table shows the division of each numeric inputs divided into ten bins. The rest of this figure
show the percent frequencies with which a range appears in the treatments found by KEYS. Results taken from 1000
repeats for each pair of policy/dynamism. Darker colors denote higher frequencies.

4. Results

Figure 7 shows the ranges found in KEYS’ treat-
ments, while randomly selecting prioritization policies
and the eight inputs on POM2. The results are split be-
tween two prioritization policies (AG2 and plan-based)
and three levels of requirements dynamism (low,
medium, high). Each combination of policy*dynamism
was run 1000 times (resulting in 6*1,000=6,000 runs).

Notice that, in all cases, the treatments found
by KEYS increased the performance scores reported
in §2.7 by a statistically significant amount (Mann-
Whitney, 95%).

The columns in Figure 7 refer to discrete ranges
of the input space, called bins. Each bins covers
one-tenth of the maximum range on an input. For
example, the binl column refers to results for (say)
.82 < criticality < .86.

Each cell in Figure 7 shows the percent frequency
of that bin occurring in the treatments found by KEYS
in the 1000 run. Empty cells were never found in
treatments. Darker cells show more frequent values.

In the subsequent discussion, we ignore most effects
that do not occur in the majority (over 50%) of the
runs. There are several majority-case effects in Figure 7
that deserve our attention. Firstly, there are some strong
negative results that hold across all dynamisms and
prioritizations. One input (criticality modifier) was
never selected by KEYS. Two inputs (¢nitial known
and inter — dependancy) were never selected in the
majority case (> 50% of the runs).

Secondly, with respect to agile2, there were frequent
effects found for total size of all personnel, the team
size of individual projects, and organizational culture:

e In 72 to 100% of our agile2 runs, KEYS selected
for the smallest possible total team size variables
(size = binl; i.e. about 3 to 20 people).

o If we add up the percentages for culture in
bin7,bin8, bin9, binl10 then for (medium, high
dynamism), cultural factors appeared in (80,72)%
respectively of the treatments found by KEYS.
This effect is predicted by theory: recalling Equa-
tion 4, the higher the culture value, the more
likely it is that teams will react to changing
requirements values.

« Another somewhat smaller effect for agile2 can
be found for the size of individual teams. KEYS
found that for medium and very high dynamism,
it is useful to have individual team sizes in
bin2,bin3, bind, binb (i.e. about 5 to 17 people).

Curiously, smallest size teams (size = binl; i.e. below
5 people) was never selected by KEYS. We conclude
that agile fails for very small teams working with a

Medium dynamism: ¢ = 0.15, A = 0.015

700 fagz —— R

600 | 7B g

5 S0 r g

A

8 00 | / \ g

g 300 | (. \ .
& Y,

200 | - b

100 / .

0 — 1 1 1 L]

50 60 70 80 90 100
Score

High dynamism: ¢ = 2, A\ = 0.2

700 fag2 —— p
600 |- PB .

500 | E
// \\

400 | / \ i

300 \ g

200 / \ A

Frequency
~—

100 F _ .
0 =2 ‘ ‘ ‘
50 60 70 8 90 100

Score

Figure 8: 1000 runs of KEYS controlling o and A\ while
using 5-th size (3 < size < 32.17) and top 5 — th
criticality (> 1.22) and choosing at random for the other
inputs.

large number of other small teams when programmers
spend so much time interfacing with other teams that
they cannot get anything done themselves.

Thirdly, Figure 7 shows that many results are very
similar; e.g. all the agile2 results offer nearly the
same pattern. In fact, KEYS and Figure 7 show us
that POM2 contains two major divisions of its 10-
dimensional space:

« In division one, we find all all the agile2 results,
as well as the low dynamism results for plan-
base prioritization share the same distrubution.
This division is characterized by best treatments
mentioning very small total team size and high
values on the culture scale.

o In division two, we find the medium and high
dynamism in plan-based prioritization results de-
viate from the above distribution. This division is
characterized by best treatments mentioning very
high criticality ranges.

In terms of testing our general conclusion (about agile
being as good or better than plan-based), the place to
run tests is in the union of the two divisions: at very
high criticality and very small overall team size. The
results of those runs are shown in Figure 8. Clearly,
in the union of those two regions, agile2 produces
much larger median scores than plan-based. This figure
lends support to the general conclusion of this paper.
If management is given a choice between agile2 and

plan-based methods, they should adopt agile2.

5. Conclusion

Building software process models can be compli-
cated by a drought of data associated with software
projects. When data is scarce, model-based evidence
can be used to make a reasoned case for reconfigu-
ration of a project. If some uncertainty exists about a
value in the model, that value can be represented as a
range of possibilities.

Executing models containing ranges of possibilities
can pose comprehension problems. If used carelessly,
analysts can become confused by an information over-
dose. Consequently, it is useful to augment a simu-
lation engine with a search engine that can find the
most interesting regions within the model input/output
space.

This paper was a case study with combination of
simulator (POM2) and search engine (KEYS). The
original version of POM dealt only with dynamism.
This new POM2 version includes concepts such as
organizational culture, project criticality and develop-
ment by multiple large teams. Our Al search engine
explored the state space of our model to find regions
that significantly improved the output performance
score of the model (value of completed tasks, as a
function of how soon they were delivered). We found
no case where plan-based out-perform agile2. In fact,
sometimes agile2 performed much better than plan-
based (Figure 8). We therefore recommend that:

The default development process for an or-
ganization be agile2.

Notice that while Figure 8 explores one interesting
region within POM2, it does not explore all possible
combinations of subsets of ranges of that model. Such
an analysis is beyond the scope of this short paper.
However, if management ever finds themselves work-
ing in a particular part of the POM2 space, our models
could be used to repeat an analysis like Figure 8 (i.e.
to assess different policies for those particular projects
in that particular space).

Note also that in two areas, POM2 found limits
in software engineering theory. In order to mature
the conclusions of this paper, two issues need to be
addressed:

« What is the effect of mixtures of different types
of programmers on a project? In Figure 4, we
showed one calculation that concluded that mix-
tures had a zero effect on a project. This is
an unexpected result and one that needs further
investigation.

o What are the patterns of dependencies between
requirements? Lacking any guidance from the lit-
erature, POM2 built its network of dependencies
between tasks using the methods of §2.3. More
work is required to uncover the expected patterns
of dependencies in real-world projects.

Finally, we do not know why so much time is
wasted on evidence-less debates in SE. Very simple
simulations/search engines can automatically explore
the nuances of a debate. Using such automated tools,
it is possible to make interesting conclusions with
minimal machinery and effort. Our model definitions
took just days of work; the implementation required a
few weeks of work; and the runs to gather our data
took just one night (we used a lab of 20 Linux boxes
for our simulations). Consequently, our conclusion is
that evidence-less debates:

« should be strongly deprecated;
« could be replaced, if possible, with debates that
use model-based evidence.

We used model based reasoning by applying the KEYS
search engine to the POM2 model. We concluded that
agile2 performs as good or much better than plan-based
development.

References

[1] T. Menzies, J. Black, J. Fleming, and M. Dean,
“An expert system for raising pigs,” in The first
Conference on Practical Applications of Pro-
log, 1992, available from http://menzies.us/pdf/
ukapril92.pdf.

[2] P. Haynes and T. Menzies, “C++ is Better than
Smalltalk?” in Tools Pacific 1993, 1993, pp. 75—
82.

[3] G. Booch, Object-Oriented Design with Applica-
tions (second edition). Benjamin/ Cummings,
1994.

[4] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorenson, Object-Oriented Modeling and
Design. Prentice-Hall, 1991.

[5] I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard, Object-Oriented Software Engi-
neering: A Use Case Driven Approach. Addison-
Wesley, 1992.

[6] G. Booch, I. Jacobsen, and J. Rumbaugh, Ver-
sion 1.0 of the Unified Modeling Language, Ra-
tional, 1997, http://www.rational.com/ot/uml/1.0/
index.html.

[7]1 N. E. Fenton and S. Pfleeger, Software Metrics: A
Rigorous & Practical Approach (second edition).
International Thompson Press, 1995.

[8] B. Boehm, E. Horowitz, R. Madachy, D. Reifer,
B. K. Clark, B. Steece, A. W. Brown, S. Chu-
lani, and C. Abts, Software Cost Estimation with
Cocomo II. Prentice Hall, 2000.

[9] T. Menzies, O. Elrawas, J. Hihn, M. F. anm
B. Boehm, and R. Madachy, “The business case
for automated software engineerng,” in ASE ’07:
Proceedings of the twenty-second IEEE/ACM in-
ternational conference on Automated software
engineering. New York, NY, USA: ACM, 2007,
pp- 303-312, available from http://menzies.us/
pdf/07casease-v0.pdf.

[10] T. Menzies, S. Williams, O. Elrawas, D. Baker,
B. Boehm, J. Hihn, K. Lum, and R. Madachy,
“Accurate estimates without local data?” Software
Process Improvement and Practice (to appear),
2009.

[11] D. Raffo, “Personal communication,” 2005.

[12] B. Boehm and R. Turner, “Using risk to bal-
ance agile and plan-driven methods,” Computer,
vol. 36, no. 6, pp. 57-66, June 2003.

[13] D. Port, A. Olkov, and T. Menzies, “Using sim-
ulation to investigate requirements prioritization
strategies,” in Automated Software Engineering,
2008. ASE 2008. 23rd IEEE/ACM International
Conference on, Sept. 2008, pp. 268-277.

[14] P. Grunbacker, “Personal communication,” 2008.

[15] L. Cao and B. Ramesh, “Requirements engineer-
ing practices: An empirical study,” IEEE Soft-
ware, vol. 25, no. 1, pp. 60-67, 2008.

[16] B. T. Boehm, “Balancing agility and discipline:
Evaluating and integrating agile and plan-driven
methods,” in proceedings 26th International Con-
ference on Software Engineering (ICSE), 2004,
pp- 718-719.

[17] S. Chulani, B. Boehm, and B. Steece, “Bayesian
analysis of empirical software engineering cost
models,” Software Engineering, IEEE Transac-
tions on, vol. 25, no. 4, pp. 573-583, Jul/Aug
1999.

[18] F. Brooks, The Mythical Man-Month: Essays on
Software Engineering, 2nd ed. Reading, MA:
Addison-Wesley, 1995.

[19] P. C. Pendharkar and J. A. Rodger, “An empirical
study of the impact of team size on software de-
velopment effort,” Inf. Technol. and Management,
vol. 8, no. 4, pp. 253-262, 2007.

[20] T. Menzies, O. Jalali, and M. Feather, “Optimiz-
ing requirements decisions with keys,” Proceed-
ings PROMISE 08 ICSE, 2008.

[21] R. Clark, “Faster treatment learning,” Master’s
thesis, Portland State University, 2005.

