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ABSTRACT 
Often, the explanatory power of a learned model must be traded off against model performance. In the case of predict-
ing runaway software projects, we show that the twin goals of high performance and good explanatory power are 
achievable after applying a variety of data mining techniques (discrimination, feature subset selection, rule covering 
algorithms). This result is a new high water mark in predicting runaway projects. Measured in terms of precision, this 
new model is as good as can be expected for our data. Other methods might out-perform our result (e.g. by generating 
a smaller, more explainable model) but no other method could out-perform the precision of our learned model. 
 
Keywords: Explanation, Data Mining, Runaway 
 
1. Introduction 
Every teacher knows that generating succinct explana-
tions means skipping over tedious details. Such explana-
tions can be quickly communicated, but can miss the 
details needed to apply that knowledge in a real world 
setting.  

An analogous situation occurs with data miners. All 
data miners are performance systems; i.e. they can reach 
conclusions about a test case. However, only some data 
miners are explanation systems that offer a high-level 
description of how the learned model functions.  

The ability to explain how a conclusion was reached is 
a very powerful tool for helping users to understand and 
accept the conclusions of a data miner. Despite this, 
sometimes explanatory power must be decreased in order 
to increase the efficacy of the predictor. For example, 
previously Abe, Muzono, Takagi, et al. used a Näive 
Bayes classifier to generate a predictor for runaway 
software projects [1–3]. That model performs well but, as 
shown below, cannot easily explain how it reaches its 
conclusions. 

This paper repairs the explainability of that prior result. 
Using an iterative exploration of data mining techniques 
(cross-validation, different rule learners, discretization, 
feature subset selection), we found a particular combina-
tion of methods that yielded succinct explanations of 
how to predict for runaway software projects while 

out-performing the Näive Bayes classifier. In hold-out 
experiments, this new model exhibited perfect precision; 
i.e. precision = 1.0. Other methods might be able to 
out-perform this new result (e.g. by finding a more suc-
cinct and explainable model) but no other method could 
be more precise (since "!! precision ! 1). 

The rest of this paper is structured as follows. First, the 
software runaway problem is defined and the explanation 
problems of prior results are discussed. Next, the general 
problem of explaining a learned model is explored using 
a range of data miners. And examples from the software 
engineering literatures (in summary, the best performing 
models may be very poor at explaining how those models 
make their conclusions). A class of data miners called 
rule learners will then be introduced and applied to our 
data via various treatments (some combination of discre-
tizer, feature selector, and learner). The subsequent dis-
cussion will review (a) related work; (b) the external va-
lidity of these results; as well as (c) general principles of 
building explainable models via data mining. 

2. Runaway Software 
Glass defines a “runaway software project” as “a project 
that goes out of control primarily because of the diffi-
culty of building the software needed by the system” [4]. 
For Glass “out of control” means “schedule, cost, or 
functionality that was twice as bad as the original estimates”. 
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Requirements Estimation Planning Team Organi-
zations 

Management  

R1 R2 R3 R4 R5 E1 E2 E3 E4 E5 P1 P2 P3 P4 P5 P6 O1 O2 O3 M1 M2 M3 class 
0 0 0 0 0 2 3 3 2 0 2 0 0 0 0 0 2 1 0 0 0 0 ok 
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 ok 
0 0 0 0 3 0 0 2 3 0 0 0 0 0 2 0 0 0 0 0 0 0 ok 
3 3 2 2 3 0 0 2 2 0 2 2 0 0 0 1 2 0 0 0 0 0 ok 
0 0 0 0 2 0 0 0 0 0 0 2 0 2 2 0 0 0 0 0 2 0 ok 
0 3 2 0 0 2 2 2 0 2 0 2 0 0 0 0 0 0 0 0 0 2 ok 
0 0 2 3 2 0 0 0 0 0 0 2 0 3 0 0 0 0 0 0 0 0 ok 
0 2 3 3 0 1 0 2 0 0 2 2 0 0 2 2 0 0 1 3 0 0 ok 
0 2 0 2 3 0 0 0 0 0 2 2 0 2 2 0 0 0 0 0 0 2 ok 
0 0 0 0 2 0 2 2 0 0 0 2 0 0 2 0 0 0 0 2 0 0 ok 
0 3 3 2 0 0 0 3 3 0 0 0 0 0 0 0 0 0 2 0 0 0 ok 
0 2 2 2 0 0 2 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 ok 
0 2 0 2 0 0 0 0 0 0 2 3 3 0 2 2 2 2 0 2 2 1 ok 
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ok 
0 2 2 2 2 0 2 2 0 0 0 0 0 0 0 0 3 2 0 3 0 0 ok 
0 0 0 0 2 0 2 0 2 3 3 2 0 2 3 2 3 2 0 2 2 2 ok 
0 0 0 0 0 0 2 0 0 0 2 2 2 3 2 2 0 0 0 2 2 0 ok 
0 0 0 0 1 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 ok 
0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ok 
0 2 3 2 3 0 0 0 0 0 3 0 0 0 3 0 2 0 0 0 3 3 ok 
0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ok 
3 2 3 3 2 2 1 3 2 1 0 2 2 2 0 1 3 1 2 2 2 0 ok 
2 2 0 2 3 0 0 2 3 0 2 0 2 2 3 2 0 0 0 0 2 3 runaway
2 2 3 3 3 2 2 3 2 3 3 3 3 2 3 2 3 3 0 2 2 2 runaway
3 2 0 0 3 0 0 0 0 0 3 0 0 3 3 0 0 0 0 0 0 0 runaway
0 2 3 2 2 3 0 2 2 1 0 2 0 0 2 2 0 2 2 2 0 2 runaway
0 2 2 2 2 0 3 2 3 3 0 2 2 0 0 2 2 2 0 0 0 0 runaway
2 3 3 2 2 0 0 3 3 2 3 0 3 0 2 3 2 0 2 0 2 2 runaway
3 2 3 2 0 3 2 2 2 0 0 2 2 2 3 0 2 0 2 0 3 3 runaway
2 2 3 3 2 0 0 2 0 2 2 2 2 2 2 0 3 0 2 0 2 0 runaway
0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 0 0 3 3 runaway
2 3 3 3 2 2 3 3 3 3 3 3 3 2 3 3 3 3 2 3 3 0 runaway

Figure 1. Data used in this study, collected using the methods. For an explanation of the columns features, see Figure 2 [1] 
 

Requirements  features relate to the understanding and commitment of the requirements among the project members 
R1: Ambigious requirements 
R2: Insufficient explanation of the requirements 
R3: Misunderstanding of the requirements 
R4: Lack of commitment regarding requirements between the customer and the project members; 
R5: Frequent requirement changes 
 
Estimation features relate to the technical methods for carrying out the estimation, and the commitment between project members and customers:  
E1: Insufficient awareness of the importance of the estimation;  
E2: Insufficient skills or knowledge of the estimation method;  
E3: Insufficient estimation of the implicit requirements;  
E4: Insufficient estimation of the technical issues;  
E5: Lack of stake holders’ commitment of estimation.  
 
Planning features relate to the planning or scheduling activity and the commitment to the project plan among project members:  
P1: Lack of management review for the project plan;  
P2: Lack of assignment of responsibility;  
P3: Lack of breakdown of the work products;  
P4: Unspecified project review milestones;  
P5: Insufficient planning of project monitoring and controlling;  
P6: Lack of project members’ commitment for the project plan.  
 
Team organization features relate to the state of the projects; e.g. the fundamental skills or experience and morale of project members:  
O1: Lack of skills and experience;  
O2 ]: Insufficient allocation of resources;  
O3 ]: Low morale.  
 
Project management factors about management activities:  
M1: Project manager lack of resource management throughout a project;  
M2: Inadequate project monitoring and controlling;  
M3: Lack of data needed to keep objective track of a project.  

Figure 2. Explanation of the features seen in Figure 1 
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Many software projects suffer from runaways:  
! In 2001, the Standish group reported that 53% of 

U.S. software projects ran over 189% of the original es-
timate [5]. This 189% is not the 200% required by Glass’ 
definition, but it is close enough and large enough to be 
alarming.  

! Figure 1 shows data from 31 real-world projects, 10 
of which (32%) are classified as “runaway”.  

Figure 1 was collected by [1–3] as follows:  
! Questions covering the various aspects of software 

development (see Figure 2) areas were delivered to de-
velopment companies and collected one month later. 
These projects are actual industrial software development 
projects of embedded systems in the period 1996 to 
1998.  

! The questions were distributed to the project man-
agers or project leaders of various target projects. The 
detail and purpose of the questionnaire was explained. 
Answers were coded strongly agree, Agree, Neither 
agree nor disagree, and Disagree as 3, 2, 1, and 0, respec-
tively.  

! All of these projects had completed their develop-
ment. As a result, some of the projects could be classified 
as “runaways”. Takagi et al. took care to ensure that all 
developers held a consensus view that some prior project 
had been a runaway. Also, to be classified as a runaway, 
the researchers used other objective measures such as 
cost and duration.  

Using manual methods, Takagi et al. [1] found four 
features from Figure 3 (e3,e5,p3,p5) that seemed prom-
ising predictors for runaways. The coefficients of those 
terms (found via logistic regression) were combined as 
follows:  

5222.23228.13964.0
5577.13834.8)5,3,5,3(

ppp
eeppeeX
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Unlike prior results [4,6,7], this model is operational; 
it is possible to precisely characterize the strengths and 
weaknesses of its performance:  

! For high and low values of P(runaway|X), Equation 
1 is a perfect predictor for runaways in Figure 1. No pro-
ject with #!! 0.03 is a “runaway” and no project with #!" 

0.81 is “ok”. This is the majority (
22
33=67%) of the data in 

Figure 1.  

! In the minority case (
11
33 ), P is mid-range 

(0.03<P(runaway|X)<0.81) and Equation 1 yields incor-

rect predictions in 
4

11 rows.  

While an important result, Equation 1 has several 

drawbacks:  
! Not automatic: Equation 1 was created after a man-

ual inspection of the data by a team of skilled mathema-
ticians. Such a manual analysis is hard to reproduce or 
apply to a new data set. Subsequent work by Abe, Takagi, 
et al. [2] automated the method with a Näive Bayes clas-
sifier, but this compromised the explainability of the pre-
dictive model (see below).  

! Only explores one subset: Takagi et al. did not 
compare the feature subset {e3,e5,p3,p5} with other fea-
ture subsets. Hence, while they showed that this subset 
was useful, they did not demonstrate that it was the most 
useful subset.  

! Ambiguous: At low and high P values, Equation 1 
sends a clear signal about what is, and is not, a poten-
tially runaway project. However, at middle-range P val-
ues, Equation 1’s conclusions are ambiguous and, hence, 
hard to explain.  

3. The Explanation Problem  
Learning explainable models is harder than it may appear. 
This section offers examples where learned models per-
form well, but explain themselves poorly. 

3.1 Learning Latent Features 
Numerous data mining methods check if the available 
features can be combined in useful ways. In this way, 
latent features within a data set can be discovered. 

For example, principal components analysis (PCA) [8] 
has been widely applied to resolve problems with struc-
tural code measurements; e.g. [9]. PCA identifies the 
distinct orthogonal sources of variation in data sets, while 
mapping the raw features onto a set of uncorrelated fea-
tures that represent essentially the same information 
contained in the original data. For example, the data 
shown in two dimensions of Figure 3 (left-hand-side) 
could be approximated in a single latent feature (right- 
hand-side). 

Since PCA combines many features into fewer latent 
features, the structure of PCA-based models may be very 
simple. For example, previously [10], we have used PCA 
and a decision tree learner to find the following predictor 
for defective software modules:  

 
Figure 3. The two features in the left plot can be transferred 
to the right plot via one latent feature 
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if domain1  ! 0.180  
then NoDefects  
else if domain1 > 0.180  
        then if domain1  ! 0.371 then NoDefects  
        else if domain1 > 0.371 then Defects  

Here, “domain1” is one of the latent features found by 
PCA. This tree seems very simple, yet is very hard to 
explain to business clients users since “domain1” is cal-
culated using a very complex weighted sum (in this sum, 
v(g),ev(g),iv(g) are McCabe or Halstead static code met-
rics [11,12] or variants on line counts):  
domain1= 0.241*loc+0.236*v(g)

+0.222*ev(g)+0.236*iv(g)+0.241*n
+0.238*v#0.086*l+0.199*d

+0.216*i+0.225*e+0.236*b+0.221*t
+0.241*lOCode+0.179*lOComment

+0.221*lOBlank+0.158*lOCodeAndComment
+0.163*uniqOp+0.234*uniqOpnd
+0.241*totalOp+0.241*totalOpnd

+0.236*branchCount
(2) 

As we shall see below, other learners can yield effec-
tive models that are simpler to explain without using 
complex latent features. 

3.2 Ensemble Learning 
Data mining for SE means summarizing the complex 
behavior of a group of developers struggling to build 
intricate artifacts. Data mining over such complex 
multi-dimensional data often requires fusing together the 
results from multiple learners [13]. Such ensembles may 
perform well but, as we shall see, are hard to explain. 

In basic ensemble method (BEM), l learners are run on 
various subsets of the available data. These learners use 
 EQ x\s\do5(j)(r\,s) that returns the probability of the 
target classes s. BEM returns the mean probability:  

$ %
1

1ˆ ,
l

BEM j
j

x x r s
l #

# &               (3) 

The linear generalized ensemble method (GEM) re-
turns a weighted sum of the conclusions of each learner x 
in the ensemble.  

$ % $ %
1

,
l

j jGEM
j

x a a x
#

# & r s!            (4) 

where !j is the normalized performance score of xj on the 
training data (so learners that performed the worst, con-
tribute the least). 

For some data sets, the combination rule is non-linear 
and complex. For example, Toh et al. [13]’s variant of 
Equation 4 uses a Jacobian matrix for x " with different 
coefficients for each feature r$%r and target class s&%s. 
These coefficients are learned via multivariate polyno-

mial regression. Toh et al. report that their resulting en-
semble performs better than simpler schemes. However, 
it may be harder to explain the ensemble since that ex-
planation must cover:  

! The learning methods used to generate xj; 
! The combination rule that computes x "; and  
! The regression method used to tune the coefficients 

used in the combination method.  
Such an explanation is not required if the users are 

willing to accept the conclusions of the learner, without 
explanation. However, for data sets as small Figure 1, it 
seems reasonable to expect that a simple explanation of 
runaway projects should be possible. Also, if managers 
are to use the results of the learner as part of their delib-
erations, they need some succinct structures that they can 
reflect over. 

3.3 Näive Bayes Classifiers 
It is hardly surprising that complex latent features (e.g. 
Equation 2) or intricate combinations of multiple learners 
(e.g. Equation 4) are hard to explain. What is surprising 
is how hard it is to explain the results of even a single, 
supposedly simple, learner. For example, this section 
offers a complete description of how a Näive Bayes clas-
sifiers makes its conclusions. The reader is asked to con-
sider how many users would understand this description 
(in our experience, we have yet to meet a single one). 

A Näive Bayes classifier [14] is based on Bayes’ 
Theorem. Informally, the theorem says next=old*new i.e. 
what we’ll believe next comes from how new evidence 
effects old beliefs. More formally:  

P(H|E)= 
P(H)
P(E) '

i
 P(Ei|H)            (5) 

i.e. given fragments of evidence Ei and a prior prob-
ability for a class P(H), the theorem lets us calculate a 
posterior probability P(H|E).  

When building predictors for runaways, the posterior 
probability of each hypothesis class (H%{“ok” or “run-
away”}) is calculated, given the features extracted from a 
project such “ambiguous requirements” or “low morale” 
or any other of the features shown in Figure 2. The clas-
sification is the hypothesis H with the highest posterior P 
(H|E). 

Näive Bayes classifiers are called “näive” since they 
assume independence of each feature. While this as-
sumption simplifies the implementation (frequency 
counts are required only for each feature), it is possible 
that correlated events are missed by this “näive” ap-
proach. Domingos and Pazzani show theoretically that 
the independence assumption is a problem in a vanish-
ingly small percent of cases [15]. This explains the re-
peated empirical result that, on average, Näive Bayes 
classifiers perform as well as other seemingly more so  
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phisticated schemes (e.g. see Table 1 in [15]). 
Equation 5 offers a simple method for handling miss-

ing values. Generating a posterior probability means of 
tuning a prior probability to new evidence. If that evi-
dence is missing, then no tuning is needed. In this case 
Equation 5 sets P(Ei|H)=1 which, in effect, makes no 

change to P(H). 
When estimating the prior probability of hypothesis H, 

it is common practice [16] to use an M-estimate as fol-
lows. Given that the total number of hypothesis is C, the 
total number of training instances is I, and N(H) is the 
frequency the hypothesis H within I, then  

CmI
mHNHP

(!
!

#
)()(               (6)

 

Here m is a small non-zero constant (often, m=1). 
Three special cases of Equation 6 are:  

! For high frequency hypothesis in large training sets, 
N(H) and I are much larger than m and m·C, so Equation 

6 simplifies to P(H)= 
N(H)

I , as one might expect.  

! For low frequency classes in large training sets, 
N(H) is small, I is large, and the prior probability for a 

rare class is never less than 
1
I ; i.e. the inverse of the 

number of instances. If this were not true, rare classes 
would never appear in predictions.  

! For very small data sets, I is small and N(H) is even 
smaller. In this case, Equation 6 approaches the inverse 

of the number of classes; i.e. 
1
C. This is a useful ap-

proximation when learning from very small data sets 
when all the data relating to a certain class has not yet 
been seen.  

The prior probability calculated in Equation 6 is a 
useful lower bound for P(Ei|H). If some value v is seen 
N(f=v|H) times in feature f ’s observations for hypothesis 
H, then 

P(Ei|H)= 
N(f=v|H)+l!P(H)

N(H)+l            (7) 

Here, l is the L-estimate and is set to a small constant 
(Yang &Webb [16] recommend l=2). Two special cases 
of are:  

! A common situation is when there are many exam-
ples of an hypothesis and numerous observations have 
been made for a particular value. In that situation, N(H) 
and N(f=v|H) are large and Equation 7 approaches 
N(f=v|H)

N(H) , as one might expect.  

! In the case of very little evidence for a rare hy-
pothesis, N(f=v|H) and N(H) are small and Equation 7 

approaches 
l·P(H)

l ; i.e. the default frequency of an ob-

servation in a hypothesis is a fraction of the probability 

of that hypothesis. This is a useful approximation when 
very little data is available.  

For numeric features it is common practice for Näive 
Bayes classifiers to use the Gaussian probability density 
function [17]:  

$ %
$ %

2

2

21
2

x

g x e
)

*

+*

"
"

#              (8) 

where {$,%} are the feature’s {mean, standard deviation}, 
respectively. To be precise, the probability of a continu-
ous feature having exactly the value x is zero, but the 
probability that it lies within a small region, say '!± &/2, 
is &×g(x). Since & is a constant that weighs across all pos-
sibilities, it cancels out and needs not be computed. 

Näive Bayes classifiers are frustrating tools in the data 
mining arsenal. They exhibit excellent performance, but 
offer few clues about the structure of their models. The 
means and standard deviations for Figure 1 are shown in 
Figure 44. Note that this figure is an incomplete charac-
terization of Figure 1. For example, row 1 of Figure 4 
suggests that r1 (“ambiguous requirements”) for “ok” is 
a Gaussian distribution with a mean of 0.27 and a stan-
dard deviation of 0.86. A visual inspection of column one 
values for “ok” projects in Figure 1 shows that this is not 
true: r1 is usually zero except in two cases where it takes 
the value of three.  

One method of handling non-Gaussians like P(r1=X|ok) 
is Johns and Langley’s kernel estimation technique [18]. 
This technique approximates a continuous distribution 
sampled by n observations as the sum 
of multiple Gaussians with means of multiple Gaussians 
with means 

, -1 2, ,..., nob ob ob

, -1 2, ,...,ob ob obn  and standard deviation 
 

 P(ok) = 0.68 P(runaway) = 0.32 

feature mean sd mean sd 
r1 0.2727 0.8624 1.35 1.0500
r2 0.9545 1.0650 1.65 0.8078
r3 0.9545 1.1571 1.95 1.3500
r4 0.8864 1.0759 1.65 1.0500
r5 1.4091 1.2670 1.90 1.0440
e1 0.3182 0.6998 1.00 1.2649
e2 0.7273 1.0082 1.00 1.2649
e3 0.8182 1.0824 1.65 1.0500
e4 0.5455 0.9642 1.65 1.2460
e5 0.2727 0.7497 1.40 1.2806
p1 0.6818 0.9833 1.80 1.3077
p2 0.9545 0.8516 1.50 1.1619
p3 0.3409 0.7744 1.80 1.1225
p4 0.6818 0.9833 1.35 1.0500
p5 0.7500 0.9857 2.25 1.0062
p6 0.4545 0.7820 1.70 1.1874
o1 0.6818 1.0824 1.65 1.2460
o2 0.3636 0.7100 1.30 1.3454
o3 0.2273 0.5979 1.00 1.0000
m1 0.6136 0.9762 0.60 0.9950
m2 0.4773 0.8323 1.50 1.1619
m3 0.5455 0.9404 1.50 1.2845  

Figure 4. Means and standard deviations from Figure 1 
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1
n

* #  In this approach, to create a highly skew dis-

tribution like P(r1=X|ok), multiple Gaussians would be 
added together at r1=0. Conclusions are made by asking 
all the Gaussians which class they believe is most likely. 

3.4 Näive Bayes and Software Engineering 
NäiveBayes classifiers are widely used in the SE litera-
ture for several reasons. NäiveBayes classifiers summa-
rize the training data in one frequency table per class. 
Hence, they consume very little memory and can quickly 
modify their knowledge by incrementing the frequency 
count of feature ranges seen in new training examples. 
Also, many studies (e.g. [15,19,20]) report that Näive 
Bayes exhibit excellent performance compared to other 
learners. 

For example, recently Menzies, Greenwald & Frank 
[21] have built predictors for software detectors using a 
Näive Bayes classifier and two explanation systems- the 
OneR rule learner and the J4.8 decision tree learner. In 
that study, the learner with the worst explanation power 
(Näive Bayes) had the best performance, by far. For the 
data sets explored by Menzies, Greenwald & Frank, the 
median advantage of Näive Bayes, the C4.5 decision tree 
learner [22], and the OneR rule learner [23] over the 
other learners was 52.4%, 0%,-16.7%, respectively (see 
Figure 5). On analysis, Menzies, Greenwald & Frank 
concluded that Näive Bayes worked so well because of 
the the product calculation of Equation 5. They reasoned 
as follows. Many static code features have similar infor-
mation content. Hence, minor changes in how the train-
ing data was sampled yielded different “best” features for 
predicting defects. The best predictions come from 
mathematical methods like Näive Bayes that accumulate 
the signal from many code features (using Equation 5’s 
product rule). Decision tree learners like C4.5 and rule 

method median    

oneR -16.7 -100% 
 

 
100%

j48 0.0 -100% 
 

 
100%

Näive 
Bayes 52.4 -100% 

 

 
100%

Figure 5. Quartile charts from Menzies, Greenwald & 
Frank [21]. The charts show the differences when learners 
were applied to the same the training and test data 
Performance was measured using recall; i.e. the percent of the defec-
tive modules found by the learners. The the upper and lower quartiles 
are marked with black lines. The median is marked with a black dot. 
Vertical bars are added to mark (i) the zero point and (ii) the minimum 
possible value and (iii) the maximum possible value. The median per-
formance of Näive Bayes was much higher than the other methods. 

learners like OneR, on the other hand, do not perform 
well in this domain since they assume hard and fast 
boundaries between what is defective and what is not. 

In summary, when mining software engineering data, 
there are many reasons to start with a Näive Bayes clas-
sifier. Abe, Muzono, Takagi, et al. [2] used such classifi-
ers to extend their prior work on runaway software pro-
jects [1,3]. However, this classifier was only a perform-
ance system. not an explanation system, so it could not 
offer insights into, say, how to best change a software 
project in order to avoid runaways. As shown above, 
Näive Bayes classifiers do not generate such succinct 
generalizations. This is a problem since what developers 
really want to know is what should be done to avoid 
runaway status.  

3.5 Discussion of the Explanation Problem 
As the mathematics gets more elaborate, it becomes 
harder to explain a Näive Bayes classifier to a typical 
business user:  

! Many users are not trained mathematicians. Hence, 
they may be confused by Equation 5, Equation 6, Equa-
tion 7 and Equation 8. 

! Presenting the internal statistics (e.g. Figure 4) is 
uninformative, at least for the business users we have 
worked with.  

! The problem is compounded if the data is 
non-Gaussian (like Figure 1) since this requires explain-
ing kernel estimation. 

! Worse, a standard Näive Bayes classifier (with our 
without kernel estimation) can not answer business-level 
questions such as “what minimal changes should be 
make to most decrease the odds of runaway projects?”  

To be fair, Näive Baye’s explanation problems are 
seen in other kinds of data miners:  

! The problems with PCA and ensemble-based learn-
ers were discussed above.  

! Tree learners such as C4.5 [22] or CART [24] exe-
cute in local top-down search, with no memory between 
different branches. Hence, the same concept can be need-
lessly repeated many times within the tree. Such trees 
can be cumbersome, needlessly large, and difficult to 
understand.  

! Clustering algorithms [25] and nearest neighbor 
methods [26,27] do not condense their working memory 
into succinct descriptions. Rather, inferences on new 
information are made by a query over all the old infor-
mation.  

! Simulated annealers [28] learn constraints to an in-
put space that results in higher values in the output space. 
However, there is no generalization or summarization in 
a simulated annealer such as which subset of the input 
space is most important to control.  

! Neural networks store their knowledge as weights 
distributed across a network. Concepts have no centralized 
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location so it is impossible to inspect, say, all the infor-
mation about one idea at one location in a network [29]. 

The problem of explaining the performance of these 
learners to end-users has been explored extensively in the 
literature (see the review in [30]). Often, some 
post-processor is used to convert an opaque model into a 
more understandable form:  
! Towell and Shavlik generate refined rules from the 

internal data structures of a neural network [29].  
! Quinlan implemented a post-processor to C4.5 called 

C45 rules that generates succinct rules from cumbersome 
decision tree branches via (a) a greedy pruning algorithm 
followed by (b) duplicate removal then (c) exploring sub-
sets of the rules relating to the same class [22].  
! TARZAN was another post-processor to C4.5 that 

searched for the smallest number of decisions in decision 
tree branches that (a) pruned the most branches to unde-
sired outcomes while (b) retaining branches leading to 
desired outcomes [31].  

4. Learning Methods 
4.1 Rule Learners 
Rather than patch an opaque learner with a post-proces-
sor, it may be better to build learners than directly gener-
ate succinct high-level descriptions of a domain. For 
example, RIPPER [32] is one of the fastest rule learners 
known in the literature. The generated rules are of the 
form condition ./ conclusion:  

#1 1 2 2 ...
conclusioncondition

Feature Value Feature Value Class# 0 # 0 /$%%%%%%%%&%%%%%%%%'  

The rules generated by RIPPER perform as well as 
C45rules, yet are much smaller and easier to read [32]. 

Rule learners like RIPPER and PRISM [33] generate 
small, easier to understand, symbolic representations of 
the patterns in a data set. PRISM is a less sophisticated 
learner than RIPPER and is not widely used. It was ini-
tially added to this study to generate a lower bound on 
the possible performance. However, as we shall see, it 
proved surprisingly effective. 
1. Find the majority class C 
2. Create a R with an empty condition that predicts for class C.  
3. Until R is perfect (or there are no more features) do  

(a) For each feature F not mentioned in R  
• For each value v1F, consider adding F=v to the condition of R  

(b) Select F and v to maximize 
p
t  where t is total number of exam-

ples of class C and p is the number of examples of class C se-
lected by F=v. Break ties by choosing the condition with the 
largest p.  

(c) Add F=v to R  
4. Print R  
5. Remove the examples covered by R.  
6. If there are examples left, loop back to (1)  

Figure 6. PRISM pseudo-code 

Like RIPPER, PRISM is a covering algorithm that 
runs over the data in multiple passes. As shown in the 
pseudo-code of Figure 6, PRISM learns one rule at each 
pass for the majority class (e.g. in Figure 6, at pass 1, the 
majority class is ok). All the examples that satisfy the 
condition are marked as covered and removed from the 
data set. PRISM then recurses on the remaining data.  

The output of PRISM is an ordered decision list of 
rules where rulej is only tested if all conditions in rule$(j 
fail. PRISM returns the conclusion of the first rule with a 
satisfied condition. 

One way to visualize a covering algorithm is to imag-
ine the data as a table on a piece of paper. If there exists a 
clear pattern between the features and the class, define 
that pattern as a rule and cross out all the rows covered 
by that rule. As covering recursively explores the re-
maining data, it keeps splitting the data into:  

! What is easiest to explain, and  
! Any remaining ambiguity that requires a more de-

tailed analysis.  
PRISM is a näive covering algorithm and has prob-

lems with residuals and over-fitting. If there are rows 
with similar patterns and similar frequencies occur in 
different classes, then:  

! These residual rows are the last to be removed for 
each class;  

! So the same rule can be generated for different 
classes.  

In over-fitting, a learner fixates on spurious signals 
that do not predict for the target class. PRISM’s 
over-fitting arises from part 3.a of Figure 6 where the 
algorithm loops through all features. If some feature is 
poorly measured, it might be noisy (contains spurious 
signals). Ideally, a rule learner knows how to skip over 
noisy features.  

RIPPER addresses residuals and over-fitting problem 
three techniques: pruning, description length and rule-set 
optimization for a full description of these techniques, 
see [34]. In summary:  

! Pruning: After building a rule, RIPPER performs a 
back-select to see what parts of a condition can be de-
leted, without degrading the performance of the rule. 
Similarly, after building a set of rules, RIPPER performs 
a back-select to see what rules can be deleted, without 
degrading the performance of the rule set. These 
back-selects remove features/rules that add little to the 
overall performance. For example, back pruning could 
remove the residual rules.  

! Description length: The learned rules are built 
while minimizing their description length. This is an in-
formation theoretic measure computed from the size of 
the learned rules, as well as the rule errors. If a rule set is 
over-fitted, the error rate increases, the description length 
grows, and RIPPER applies a rule set pruning operator.  

! Rule set optimization tries replacing rules straw- 
man alternatives (i.e. rules grown very quickly by some 
näive method). 
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4.2 Performance Measures 
Our results are presented in terms of the following per-
formance measures. Suppose we have some historical log, 
like Figure 1 that can comment on the correct classifica-
tion of each row. By comparing the historical log with 
the output of the learner, we can define several measures 
of success. Let {A,B,C,D} denote the true negatives, false 
negatives, false positives, and true positives (respectively) 
found by a binary detector (binary detectors work on data 
sets with two classes, like Figure 1). A,B,C,D can be 
combined in many ways. For example, accuracy (or acc) 
is the percentage of true positives (D) and negatives (A) 
found by the detector.  

acc=accuracy=(A+D)/(A+B+C+D)      (9) 

Also, recall (or pd) comments on how much of the 
target was found.  

pd=recall=D/(B+D)                 (10) 

Precision (or prec) comments on how many of the in-
stances that triggered the detector actually containing the 
target concept.  

prec=precision=D/(D+C)            (11) 

The f-measure is the harmonic mean of precision and 
recall. It has the property that if either precision or recall 
is low, then the f-measure is decreased. The f measure is 
useful for dual assessments that include both precision 
and recall.  

2 prec pdf measure
prec pd
( (

" #
!

           (12) 

All these measures fall in the range "! {pd,prec,f,acc} 
!1. Also, the larger these values, the better the model.  

4.3 Experiments with the Learning Methods 
Various combinations of the learning method described 
above were applied to Figure 1. The results are shown in 
Figure 7. In all 13 treatments where applied to Figure 1. 
Each treatment is some combination of a data filter, a 
learner, and a assessment method. This section discusses 
how each treatment was designed using results from the 
proceeding treatments. 

Before moving on, we call attention to the accuracy 
results of Figure 7. Observe how accuracy can be a re-
markably insensitive performance measure; i.e. it re-
mained roughly constant, despite large changes in recall 
and precision. This result has been seen in many other 
data sets [21,35]. Hence, accuracy is deprecated by this 
paper. 

4.3.1 Cross-Validation 
Treatment a is a simple application of RIPPER to Figure 
1. The learned theory was applied back on the training 
data used to generate it; i.e. all of Figure 1. As shown  

 
 

 bins learner #features #tests
a n/a ripper 22 1 
b n/a ripper 22 10 
c n/a nb 22 10 
d 3 ripper 22 10 
e 3 nb 22 10 
f 3 prism 22 10 
g 3 ripper 1 (r1) 10 
h 3 ripper 2 (r1 + p5) 10 
i 3 bayes 1 (r1) 10 
j 3 bayes 2 (r1 + p5) 10 
k 3 prism 1 (r1) 10 
l 3 prism 2 (r1 + p6) 10 
m 3 prism 3 (r1 + p6 + o3) 10 

Figure 7. Results from this study. The four plots, shown at 
top, come from the 13 treatments shown at bottom 

in Figure 7, this produced one of the largest f-measures 
seen in this study. 

Treatment a assessed a learned model using the data 
that generated it. Such a self-test can lead to an 
over-estimate of the value of that model. Cross-valida-
tion, on the other hand, assesses a learned model using 
data not used to generate it. The data is divided into, say, 
10 buckets. Each bucket is set aside as a test set and a 
model is learned from the remaining data. This learned 
model is then assessed using the test set. Such 
cross-validation studies are the preferred evaluation 
method when the goal is to produce predictors intended 
to predict future events [17].  

In treatment b, a cross-validation experiment was ap-
plied to the data. The treatment b results shows how 
badly treatment a overestimated the performance: 
changing the training data by as little as 10% nearly 
halved the precision and recall. Clearly, the conclusions 
from the self-test from this data set are brittle; i.e. unduly 
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altered by minor changes in the training data. 
Treatment c illustrates the explanation vs performance 

trade-off discussed in the introduction. As mentioned 
above, the output from rule learners can be far easier to 
explain than the output of treatment c; i.e. a Näive Bayes 
classifier (with kernel estimation) running on data sets 
with non-Gaussian distributions like Figure 1. So, if op-
timizing for explainability, an analyst might favor rule 
learners over Bayes classifiers. On the other hand, Figure 
7 shows treatment c out-performing treatment b, espe-
cially in terms of recall. So, if optimizing for perform-
ance an analyst might favor a Bayes classifier.  

Note that treatment c uses the method favored by the 
previous high water mark in this research [2]. In the se-
quel, we show how this study found data mining methods 
that significantly out-perform that prior work. 

4.3.2 Discretization 
Treatments d,e and f explore discretization. Discretiza-
tion clumps together observations taken over a continu-
ous range into a small number of regions. Humans often 
discretize real world data. For example, parents often 
share tips for “toddlers”; i.e. humans found between the 
breaks of age=1 and age=3. Many researchers report that 
discretization improves the performance of a learner 
since it gives a learner a smaller space to reason about, 
with more examples in each part of the space [16,20], 
[36,37]. 

Discretization can generally be described as a process 
of assigning data attribute instances to bins or buckets 
that they fit in according to their value or some other 
score. The general concept for discretization as a binning 
process is dividing up each instance of an attribute to be 
discretized into a number distinct buckets or bins. The 
number of bins is most often a user-defined, arbitrary 
value; however, some methods use more advanced tech-
niques to determine an ideal number of bins to use for the 
values while others use the user-defined value as a start-
ing point and expand or contract the number of bins that 
are actually used based upon the number of data in-
stances being placed in the bins. Each bin or bucket is 
assigned a range of the attribute values to contain, and 
discretization occurs when the values that fall within a 
particular bucket or bin are replaced by identifier for the 
bucket into which they fall. 

After Gama and Pinto [38], we say that discretization 
is the process of converting a continuous range into a his-
togram with k break points b1…bk where 2i 3 j : bi 4 b j . 
The histogram divides a continuous range into bins (one 
for each break) and many observations from the range 
may fall between two break points bi and bi+1 at fre-
quency counts ci. 

Simple discretizers are unsupervised methods that 
build their histograms without exploiting information 

about the target class; e.g.  
! equal width: 2i, j : bi " bi"1$ %# b j " b j"1$ %;  
! equal frequency: 2i, j : ci # c j$ %. For Näive Bayes 

classifiers working on n instances, Yang & Webb [16] 
advocate equal frequency with ci=cj= n.  

For example, Figure 1 holds 32 instances so a b=3 
equal frequency discretion hopes to place 32

3)10 values 

into each part of the histogram. However, Figure 1 does 
not have ten instances for each feature value so, as shown 
in Figure 8, a skewed histogram is generated.  

More sophisticated discretizers are supervised methods 
that build their histograms using knowledge of the target 
class. Specifically, the continuous range is explored 
looking for a break that is a cliff; i.e. a point where the 
class frequencies are most different above and below the 
cliff. Once a top-level cliff is found, this method usually 
recurses into each region above and below the cliff to 
find the next best sub-cliff, sub-sub-cliff, and so on.  

For example, the Fayyad & Irani [37] supervised dis-
cretizer assumes that the best cliff is the one that most 
divides target classes. In terms of information theory, this 
can be measured using entropy; i.e. the number of bits 
required to encode the class distribution. If the classes in 
a sample of n instances occur at frequencies counts 
c1,c2,..., then the entropy of that sample is 

$ % 1 1 2 2
1 2 2 2, ... ...

c c c cEnt c c log log
n n n n

5 6 5 6# " ( " ( "7 8 7 8
9 : 9 :

 

If a break divides n numbers into two regions of size 
n1,n2, then the best cliff is the one that minimizes the 
sum of the entropy below and above the cliff; i.e. 
n1
n ·Ent1+

n2
n ·Ent2. 

Various discretizers were explored, with disappointing 
results:  

! Yang & Webb’s rule (ci= n= 33)6) was not 
useful here since our data has less than 6 distinct values 
per feature.  

! Fayyad&Irani’s method reduced most features to a 
single bin; i.e. it found no information gain in any parts 

feature range frequency  
o3 0 24 !!!!!!!!!!!!!!!!!

 1 1 ! 
 2,3 7 !!!!!!! 

p6 0 19 !!!!!!!!!!!!!!! 
 1,2 10 !!!!!!!!!! 
 3 3 !!! 

r1 0,1 23 !!!!!!!!!!!!!!!! 
 2 5 !!!! 
 3 4 !!!! 

Figure 8. Some 3bin results from Figure 1 
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of our ranges.  
! Best results were seen with a simple 3bin equal fre-

quency scheme (i.e. |b|=3) in Treatment f where PRISM 
achieved precisions as high as the RIPPER self-test 
(treatment a). However, the same experiment saw the 
worst recall.  

! The same 3bin scheme offered little help to RIP-
PER or Näive Bayes (see treatments d,e).  

Since the precision results were the most promising 
seen to date, 3bin was retained for the rest of our ex-
periments. Other methods were then employed to achieve 
the benefits of 3bin (high precision) without its associ-
ated costs (low recall). 

4.3.3 Feature Subset Selection 
The remaining treatments (g,h,i,j,k,l,m) explore how dif-
ferent feature subsets change the performance of the 
learning. A repeated result in the data mining community 
is that simpler models with equivalent or higher per-
formance can be built via feature subset selection algo-
rithms that intelligently prune useless features [19]. Fea-
tures may be pruned for several reasons:  

! They may be noisy; i.e. contain spurious signals 
unrelated to the target class;  

! They may be uninformative; e.g. contain mostly one 
value, or no repeating values;  

! They may be correlated to other variables- in which 
case, they can be pruned since their signal is also present 
in other variables.  

The reduced feature set has many advantages: 
! Miller has shown that models generally containing 

fewer variables have less variance in their outputs [39].  
! The smaller the model, the fewer are the demands 

on interfaces (sensors and actuators) to the external en-
vironment. Hence, systems designed around small mod-
els are easier to use (less to do) and cheaper to build.  

! In terms of this article, the most important aspect of 
learning from a reduced features set is that it produces 
smaller models. Such smaller models are easier to ex-
plain (or audit).  

One such feature subset selector is Kohavi & Johns’ 
WRAPPER algorithm [40]. Starting with the empty set, 
WRAPPER adds some combinations of features and asks 
some target learner to build a model using just those fea-
tures. WRAPPER then grows the set of selected features 
and checks if a better model comes from learning over 
the larger set of features. 

If we applied WRAPPER to our three learners (RIP-
PER, PRISM, Näive Bayes), then WRAPPER’s search 
through the 22 features of Figure 1 could require 
3•222=12,582,912 calls to a learner. In practice, a heuris-
tic search drastically reduced this search space. WRAP-
PER stops when there are no more features to select, or 
there has been no significant improvement in the learned 
model for the last five additions (in which case, those last 
five additions are deleted). Technically speaking, this is a 
hill-climbing forward select search with a “stale” param- 

 feature PRISM Näive 
Bayes 

RIPPER average

group #1 : 
 usually selected 

r1 10 10 6 8.7

  o3 7   7 
  p5  8 4 6 
 p6 8 1  4.5
group #2:  
sometimes selected 

m3  3  3 

  r2   2 2 
  p2  2 1 1.5
 e1 1 2 1 1.3
 o2 1 2 1 1.3
 e2   1 1 
group #3:  
rarely selected 

e3   1 1 

  m2 1   1 
  o1 1   1 
 p1  1 1 1 
 p3   1 1 
 p4  1  1 
 r3 1   1 
 r4 
group #4:  
never selected 

r5 

  e4 
  e5 
 m1 

Figure 9. Number of times WRAPPER selected features in 
ten experiments on 90% samples of the data 

eter set to 5. For data sets as small as Figure 1, WRAP-
PER terminates in an under a minute (but for large data 
sets, other feature selectors would be required-see [19] 
for a survey). 

Figure 9 shows the results of running 10 WRAPPER 
experiments on Figure 1 (discretized via 3bin) for our 
three learners. In each experiment, 10% of Figure 1 (se-
lected at random) was ignored:  

! Group #1 shows the features that, on average, were 
selected in the majority of ten runs (on average, 6 times 
or more).  

! Group #2 shows the features that were selected 2 to 
5 times.  

! Group #3 shows the features that were selected only 
once.  

! Group #4 shows the features that were never se-
lected.  

There are only three features in Group #1 suggesting 
that many of the Figure 1 features could be ignored. This 
has implications for the cost of data collection and the 
explaining runaway projects:  

Data collection could be constrained to just Group #1, 
and perhaps p6 (which PRISM selected eight times). 
Such a constrained data collection program would be 
cheaper to conduct, especially over a large organization.  

! Figure 10 shows a rule predicting runaway projects 
found by PRISM using just the features recommend by 
WRAPPER (r1, p6, o3) on 3bin discretized data. The 
figure shows that just using the top-ranked features of  
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1: If o3 = 1 then ok 
2: If r1 = 0,1 and p6 = 1 then ok 
3: If r1 = 3  and p6 = 1,2 then ok 
4: If r1 = 0,1 and p6 = 1,2 and o3 = 0 then ok 
5: If r1 = 1,2 then runaway 
6: If p6 = 3 then runaway 
7: If r1 = 3   and p6 = 0 then runaway 
8: If r1 = 0,1 and p6 = 1,2 and o3 = 2,3 then runaway 
9: If r1 = 0,1 and p6 = 1,2 and o3 = 0 then runaway 

Figure 10. Rules generated by treatment m 

Figure 9 yields a very succinct, easy to explain model. 
Treatments g,h,...m show the results of applying the 

top-ranked features to the discretized data. For each 
learner, if WRAPPER usually selected N features, then 
that learner was tested in a 10-way cross-validation using 
the top ranked feature, the second-top ranked features, 
and so on up to using N features. 

4.3.4 Best Results 
The best results were obtained in treatment m. That 
treatment applied PRISM using the three features usually 
selected by WRAPPER+PRISM: r1, o3, p6. This re-
sulted in Figure 10.  

Figure 8 showed r1 {0,1}, ! p6 {1,2}, ! o3=0 is a fre-
quent pattern in our data. Hence, after a covering algo-
rithm removes all other more interesting structures, the 
residual rows can contain this frequent pattern. This, in 
turn, means that identical rules could be generated for 
different classes; e.g. rules 4&9 of Figure 10 (this is the 
residual rule problem discussed above). 

It is important to read these rules top to bottom since a 
rule fires only if all the rules above it fail. In practice, 
this means that the residual rule 9 is never used (it is 
blocked by rule 4). 

A 10-way cross-validation study showed that this rule 
generation method yields an average precision, recall, 
and f-measure across the 10-way of 1, 0.85, and 0.92 
(respectively). This result is actually much better than it 
appears. To achieve average precisions and recalls of 1 
and 0.85 in such a 10-way is something of an accom-
plishment. In a 10-way cross-validation on the 33 records 
of Figure 1, the test set is of size three or four. In such a 
small test set, a single outlier project can have a large and 
detrimental result on the collected statistics. 

4.3.5 User Studies 
To test the explainability of Figure 10, we ran a session 
with eight software engineers managing large software 
verification projects. 

Pseudocode for Näive Bayes (with kernel estimation) 
and PRISM (Figure 6) was introduced. PRISM was 
summarized this way: “each rule handles some examples, 
which are then removed, and the algorithm repeats on the 
remaining data.” 

Within an hour, the engineers were hand-simulating 
PRISM. Using a pen and ruler, all the rows of Figure 1 
that matched rule #1 (in Figure 10) were identified and 

crossed off. The rows that matched rule #2 were identi-
fied, then crossed off. The engineers stopped after simu-
lating PRISM’s activities on two or three rules, making 
comments like “I see what is going on- the learner is 
finding and handling the most obvious next thing.” Sig-
nificantly, none of the engineers tried to apply Näive 
Bayes; i.e. m-estimates, l-estimates, the approximation, 
and the Gaussians of kernel estimation. 

In summary, the simplicity of PRISM the rules of Fig-
ure 10 allowed them to be explained to one focus group, 
all within a one hour session.  

5. Discussion 
5.1 Related Work 
This research aims at producing a precise, explainable, 
operational definition of a runaway project. Other work 
in this area is less precise and not operational. 

For example, in 1997, Glass [4] had informally sam-
pled several high-profile software disasters and found the 
following features to be predictive for runaways:  

! Project objectives not fully specified (in 51% of the 
sample);  

! Bad planning and estimating (48%);  
! Technology new to the organization (45%);  
! Inadequate/no project management methodology 

(42%);  
! Insufficient senior staff on the team (42%);  
! Poor performance by suppliers of hard-

ware/software (42%)  
! Other-performance (efficiency) problems (42%) 
Glass did not offer a clear operational method for com-

bining their features into an effective predictor. Other 
work carefully documented the software risk problem, 
but did not offer automatic tool support:  

! Jiang et al. [6] studied 40 features collected from 
questionnaires posted to personnel with recent experi-
ence with an IS project. Their study is an exemplary ex-
ample of software engineering research: after clearly 
defined six hypotheses about software risk, they identify 
those hypotheses not supported by their data.  

! Ropponen & Lyytinen [7] studied self-reported data 
from 83 project managers and 1,110 projects to find 26 
software risk components: six scheduling and timing 
risks; four system functionality risks; three subcontract-
ing risks; four requirements management risks; four re-
source usage and performance risks; and five personnel 
management risks.  

Both reports have the same limitations: their conclu-
sions contain a somewhat ill-defined and manual proce-
dure for managers to explore the above risks. For exam-
ple, both reports list risks and their weighted contribution 
to total risk. However, no combination rule is offered on 
how to best combine evidence of multiple risks. 

Another aspect that sets this work apart from other 
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studies is reproducibility. Neither the Jiang et al. nor 
Ropponen & Lyytinen [7] studies are reproducible since 
they did not made their data available to other research-
ers. Reproducibility is an important methodological prin-
ciple in other disciplines since it allows a community to 
confirm, refute, or even improve prior results. In our 
view, in the field of software engineering, there are all 
too few examples of reproduced, and extended, results*. 
This current report began when the second and third au-
thors published their data [1] and defined a research 
challenge: how to better explain the results of their 
learning to developers [2]. We would strongly encourage 
software engineering researchers to share data, define 
challenges, and to take the time to rework the results of 
others. 

5.2 External Validity 
This study has produced:  

1). A recommended feature subset for predicting run-
aways (r1,p6,o3);  

2). A recommended model that combines those fea-
tures (Figure 10); and  

3). A recommended method for generating that subset 
and that model:  

! 3bin discretization;  
! a WRAPPER around PRISM;  
! 10-way cross-validation using PRISM on the sub-

sets found by WRAPPER.  
It is good practice to question the external validity of 

these recommendations. 
WRAPPER selected different features than the manual 

method that produced Equation 1. That is, the recom-
mended feature subset learned by our recommended 
method is different to that found by our earlier work. 
This raises a concern about external validity: why do our 
conclusions keep changing?   

We endorse the conclusions of this study over our 
prior work [1] for two reasons. Firstly, this study ex-
plored far more feature subsets that before:  

! Equation 1 was generated after a manual analysis of 
a few features. 

! Figure 10 was generated after an automatic search 
through thousands of subsets.  

Secondly, the results of this study perform better than 
our prior results:  

! Equation 1 offers ambiguous conclusions in the 
range (0.03<P(runaway|X)<0.81).  

! Figure 10 offers categorical conclusions about the 
runaway status of a project. Further, it does so with 
perfect precision.  

A more serious validity threat comes from the data 
used in this study. Any inductive process suffers from a 

sampling bias; i.e. the conclusions of the study are a 
function of the data used in that study. In that regard, we 
have evidence that our results are stable across small to 
medium-sized changes to our project sample. In a 
10-way cross-validation experiment, 10% of the data (in 
our case, 3 to 4 records) is set aside and the model is 
learned from the remaining information. Our learned 
model had an average precision of 1.0 in a 10-way; i.e. 
the precision of our model remained perfect, despite a 
10% change in the training data. 

Also, Figure 1 does not show all the data available to 
this study. Some of the data available to this research 
group is proprietary and cannot be generally released. In 
order to check the external validity of our methods, these 
ten extra records were not analyzed until after we 
reached the above conclusions regarding the recom-
mended data mining method for this data. When our 
recommended method was applied to Figure 1, plus the 
extra ten records, WRAPPER still found the features 
shown in Figure 9. Further, the performance of the rule 
set learned from the extended data had the same proper-
ties as Figure 10; i.e.  

! It out-performed NäiveBayes;  
! It exhibited perfect precision (precision=1.0) over 

the 10-way cross-validation.  
In summary, despite the data set size changing by a 

small to medium amount (-10% to +33%), there is:  
! No instability in the recommended features;  
! No instability in the performance of the recom-

mended model;  
! No instability in the recommended method.  

5.3 Method Selection for Quirky Data 
Several times we found that certain widely regarded 
methods (RIPPER; discretization using Fayyad&Irani; 
discretization with Yang & Webb’s n rule) did not 
yield the best results for this data set. The reason for this 
is simple: software engineering data sets are often small:  

! Figure 1 is one table with only 22*33 cells;  
! Elsewhere we have published results on even 

smaller data sets [41,42]. 
It is hard to know apriori what are the quirks of small 

software engineering data sets. Hence, we recommend 
trying many methods, even supposedly out-dated ones. 
For example, in this study, a very simple rule-learner 
(PRISM) produced the best performance while being 
most understandable to our users. 

More generally, Fayyad [43] argues persuasively that 
data mining should be viewed as a small part of the 
knowledge and data discovery (KDD) cycle shown in Fig-
ure 11. For example, in this report we used discretization 
and feature subset-selection for pre-processing and selec-
tion steps shown in Figure 11. Also, we looped through the 
KDD cycle 13 times: each time, the results from the pre-
vious round informed our work for the next round. 

*Exception: see the reports of the PROMISE workshop http://promis-
edata.org/repository/papers.html 
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Figure 11. The KDD (Knowledge Discovery in Databases) 
cycle, adapted from [43] 

5.4 Data Mining Methods 
Based on this work, and certain standard texts in the data 
mining field [17,43], we offer the following advice to 
other researchers data mining on SE data. 

It is important to understand the goals of the data 
mining task. If the learned model only needs to perform, 
and not explain then any data mining method might do 
ranging from  

! Näive Bayes classifiers  
! To clustering algorithms, decision tree learners, 

neural nets, etc  
! Or, as explored in Equation 4, ensembles of the 

above.  
The simplest of the above is Näive Bayes. Such classi-

fiers scale to very large data sets and, in many domains, 
have performed very well [15,19,20]. Also, in at least 
one SE domain [21], they far out-performed other meth-
ods. 

However, if the goal is to generate an explainable the-
ory, then:  
! Many business users do not have the background 

required to understand mathematical-based learners. For 
such users, the rule learners (e.g. RIPPER) may be most 
useful since they produce succinct summaries of the data. 
! It is useful to reduce the range of number variables 

with discretization. Once reduced, the learned model can 
be simpler since it only needs to comment on a few dis-
crete ranges rather than the entire number line.  

! It is also useful to reduce the number of features 
with feature subset selection. A repeated result in the 
literature [19,39,40] is that the majority of the features 
can be pruned away and the resulting model is either 
simpler, performs better or both. For example, in this 
case study, the best performance and the most suc-
cinct/explainable model were found using just 3/22 of the 
available data.  

As to the choice of feature subset selector:  
! Hall and Holmes [19] compare WRAPPER to sev-

eral other variable pruning methods including the princi-
pal component analysis (PCA) method used by Roppo-
nen & Lyytinen and Munson [9] (amongst others). Fea-
ture selection methods can be grouped according to (a) 
whether or not they make special use of the target vari-
able in the data set such as “runaway”; (b) whether or not 
pruning uses the target learner. PCA does not make spe-
cial use of the target variable. Also, unlike other pruning 
methods, WRAPPER does use the target learner as part 
of its analysis. Hall and Holmes found that PCA was one 
of the worst performing methods (perhaps because it 
ignored the target variable) while WRAPPER was the 
best (since it can exploit its special knowledge of the 
target learner).  

! For large data sets, WRAPPER can be too slow. 
When WRAPPER is not possible, see the conclusion of 
the Hall & Holmes study [19] for recommendations on 
two other feature subset selection methods.  

! If the data set is small enough (e.g. Figure 1), use 
WRAPPER around a rule learner. WRAPPER is the 
slowest feature subset selector but it is the only one that 
can tune itself to the target learner.  

Regarding performance measures, we have two rec-
ommendations:  

! Comparing the f-measures in treatment a and b of 
Figure 7, it is clear that self-tests can over-estimate the 
value of a learned model. Hold-out sets are the recom-
mended way to assess a learned model.  

! Accuracy is a widely used measure for assessing a 
learned theory. Figure 7 shows that it can be remarkably 
uninformative. In that figure, large changes in precision 
and recall make very little impact on the accuracy. Hence, 
we strongly recommend against the use of accuracy.  

The above issues are widely discussed in the data 
mining literature (e.g. [17,43–45]). Nevertheless, our 
reading of the literature is that multiple traversals of the 
KDD cyclic application using a range of techniques (e.g. 
different learners, discretizers, and feature subset selec-
tors) is quite rare. Often researchers take one learner, 
apply it once, then report the conclusion. Also, despite 
many positive empirical studies, feature selection is 
rarely seen in software engineering (exceptions: [21,46]). 
Further, it is still standard practice for software engineers 
to present their data mining results in terms of accuracy 
of non-hold-out experiments (e.g. [47]). We hope our 
results encourage a change in that standard practice. 

6. Conclusions 
Intuitively, it seems reasonable that optimizing for per-
formance can compromise explainability. Software en-
gineering data can be complex, noisy, or confusing. Such 
complex data may require complex and arcane learning 
strategies; e.g. the defect data sets studied by Menzies, 
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Greenwald, and Frank. Complex and arcane learning 
strategies will be hard to explain. That is, good perform-
ance in a learned model may imply poor explanatory 
power, especially for real world software engineering 
data. 

This paper is a counter-argument to such pessimism. 
We show that at least for predicting runaway software 
projects, certain standard data mining methods resulted 
in models with both:  

! High performance: i.e. precision=1.0; and  
! Good explainability: i.e. small rule sets, under-

standable by our users;  
This result is a new high water mark in predicting 

runaway projects. This new predictor out-performs prior 
results in several ways:  

! Our results are fully reproducible: the data for our 
analysis comes from Figure 7; the software used is freely 
available*.  

! Prior work by other researchers [4–7] has carefully 
documented the influence of features on software risk, 
but did not offer an operational model (by “operational”, 
we mean that the model can generate performance statis-
tics like Figure 7).  

! As to our own prior results, the logistic regression 
method [1] required some manual intervention on the 
part of the analyst. In contrast to that, the techniques de-
scribed here are automatic. Also, due to ambiguities in 
the middle P ranges of Equation 1, or the inner com-
plexities of our Näive Bayes classifier [2], our prior 
mathematical results were much harder to explain than 
the new rules of Figure 10.  

! Comparing treatment c and treatment m in Figure 7, 
we see that our new data mining method (treatment m: 
3bin, WRAPPER, PRISM) has similar recall but much 
higher precision than our old data mining method (treat-
ment c: NäiveBayes [2]).  

! Measured in terms of precision, this new model is 
as good as can ever be expected for our data. Other com-
bination data mining methods could out-perform our re-
sult (e.g. by generating a smaller, more explainable 
model with higher recall) but no other method could be 
more precise (since precision’s maximum value is 1.0).  

! Prior results conducted a manual exploration of a 
few subsets of the features [1]. Here, we employed a 
feature subset selector that explored thousands of feature 
subsets. Hence, we have far more confidence that the 
following factors are most useful in recognizing run-
aways: ambiguous requirements; low morale; lack of 
project members’ commitment to the project plan. 
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