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Abstract—When AI search methods are applied to soft-
ware process models, then appropriate technologies can be
discovered for a software project. We show that those rec-
ommendations are greatly affected by the business context
of its use. For example, the automatic defect reduction tools
explored by the ASE community are only relevant to a subset
of software projects, and only according to certain value
criteria. Therefore, when arguing for the value of a particular
technology, that argument should include a description of the
value function of the target user community.

Keywords-software economics; artificial intelligence

I. INTRODUCTION

There are many software engineering (SE) technologies

that a manager might apply in the hope of improving their

software development project. Some of these technologies

are paper-based methods like the checklists proposed by

orthogonal defect classification [1]. Other technologies are

tool-based such as using the new generation of functional

programming languages or execution and testing tools [2]

or automated formal analysis [3]. Yet other technologies

are more process-based including process improvement ini-

tiatives, changing an organization’s hiring practices, or a

continual renegotiation of the requirements as part of an

agile software development cycle [4].

SE technologies can be inappropriately applied to projects

if a project manager do not assess the technology’s benefits

against its associated drawbacks. For example, using less-

skilled developers is tempting (since there are so many of

them), but the resulting product may be more defect-prone.

As a result, products might get to market faster but contain

too many defects.

In theory, software process models can be used to model

the trade-offs associated with different technologies. How-

ever, such models can suffer from tuning instability. Large

instabilities make it hard to recognize important influences

on a project. For example, consider the following simplified

COCOMO [5] model,

effort = a · LOCb+pmat · acap (1)

While simplified, the equation presents the core assump-

tion of COCOMO; i.e. that software development effort is

exponential on the size of the program. In this equation,

(a, b) control the linear and exponential effects (respectively)

on model estimates; while pmat (process maturity) and

acap (analyst capability) are project choices adjusted by

managers. Equation 1 contains two features (acap, pmat)

and a full COCOMO-II model contains 22 [5].

Baker [6] reports a study that learned values of (a, b)
for a full COCOMO model using Boehm’s local calibration

method [7] from 30 randomly selected samples of 90% of

the available project data. The ranges varied widely:

(2.2 ≤ a ≤ 9.18) ∧ (0.88 ≤ b ≤ 1.09) (2)

Such large variations make it possible to misunderstand the

effects of project options. Suppose some proposed technol-

ogy doubles productivity, but a moves from 9 to 4.5. The

improvement resulting from that change would be obscured

by the tuning variance.

Previously we have reported some success with stochastic

AI tools that search through the space of possible tunings

within process models [8]–[12]. This approach returned

conclusions about the project that were stable across the

entire space of possibilities. For example, in two studies [8],

[9] we found that automated defect removal tools (such

as those discussed at the ASE conference) were often

required to achieve minimum defects/ development effort/

development time1. Elsewhere [10], [11], we have used this

tool to comparatively assess different proposed changes to

a project.

Our prior reports did not compare the recommendations

found by different AI search methods. Nor did we explore

the effect of changing the value function that models user

goals. Here, we compare half a dozen AI methods and

apply the best one to four case studies. Next, we repeat

that analysis using a different value function.

The results were very surprising. Prior to this research,

we had a pre-experimental intuition that concepts of value

might change the organization of a project. However, we

suspected that some things would remain constant (e.g.,

condoning the use of execution testing tools).

This turned out not to be the case. For the two value

functions explored here, if one function approves of X then

the other usually approves of not X . This result that value

can change everything should motivate much future work

on the business context of our tools.

1Time refers to calendar months required to complete a project while
effort refers to the number of staff hours within those months. For example,
4 people working for one year takes time = 12 months and effort = 48
months.
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II. RELATED WORK

This work was inspired by Barry Boehm’s 2004 ASE

keynote [13] in which he advocated assessing SE tools

by their value to a stake-holder, rather than just via their

functionality. More specifically, one of the value functions

used in this report was developed by Boehm and Huang [14].

In his description of value-based SE, Boehm favors con-

tinuous optimization methods to conduct cost/benefit trade-

off studies. Tuning instability can confuse such continuous

optimization methods. For example, the results of gradient

descent methods can be misleading if the coefficients on the

partial functions are very uncertain.

In our view, uncertainty in software process models is

a very under-explored area. For example, the variance of

Equation 2 remained undiscovered for 26 years until Baker,

at our suggestion, looked for it. Much of the related work on

uncertainty in software engineering uses a Bayesian analysis.

For example, Pendharkar et al. [15] demonstrate the utility

of Bayes networks in effort estimation while Fenton and Neil

explore Bayes nets and defect prediction [16] (but unlike this

paper, neither of these teams links defect models to effort

models). We elect to take a non-Bayesian approach since

most of the industrial and government contractors we work

with use parametric models like COCOMO.

Other related work is the search-based SE approach advo-

cated by Harman [17]. Search-Based Software Engineering

(SBSE) uses optimization techniques from operations re-

search and meta-heuristic search (e.g., simulated annealing

and genetic algorithms) to hunt for near-optimal solutions

to complex and over-constrained software engineering prob-

lems. Harman takes care to distinguish AI search-based

methods from those seen in standard numeric optimizations.

Such optimizers usually offer settings to all controllables.

This may result in needlessly complex recommendations

since a repeated empirical observation is that many model

inputs are noisy or correlated in similar ways to model

outputs [18]. Such noisy or correlated variables can be

pruned away to generate simpler solutions that are easier and

quicker to understand. In continuous domains, there is much

work on feature selection [19] and techniques like principal

component analysis [20] to reduce the number of dimensions

reported by an analysis. Comparative studies report that

discrete AI-based methods can do better at reducing the size

of the reported theory [18].

The SBSE approach can and has been applied to many

problems in software engineering (e.g., requirements en-

gineering [21]) but most often in the field of software

testing [2]. Harman’s writing inspired us to try simulated

annealing to search the what-ifs in untuned COCOMO

models [9]. SA is a widely-used algorithm, perhaps due to

the simplicity of its implementation and its very low memory

requirements. Our results, shown below, indicate that several

other algorithms out-perform SA (at least, on our models).

This result strongly suggests that proponents of SA should

try a broader range of search engines.

The paper compares SEESAW to five AI search algo-

rithms. These half a dozen algorithms hardly represent an

exhaustive list of possibilities. For example, Gu et al. [22]

list hundreds of optimization algorithms and no single con-

ference paper can experiment with them all. However, we

make one comment as to why the above list does not include

integer programming methods. Coarfa et al. [23] found

that integer programming-based approaches ran an order

of magnitude slower than discrete methods like SEESAW.

Similar results were reported by Gu et al. where discrete

methods ran 100 times faster than integer programming [22].

Our research grew out of a frustration with standard

methods to reduce tuning variance. Previously, we have tried

reducing that variance in various ways:

• Feature selection to prune spurious details [24];

• Instance selection to prune irrelevancies [25];

• Extended data collection.

Despite all that work, the variance observed in our models

remains very large. Even the application of techniques such

as instance-based learning have failed to reduce variance

in our effort predictions [26]. Feature subset selection has

also been disappointing: while it reduces the median perfor-

mance variance somewhat (in our experiments, from 150%

to 53% [25]), the residual error rates are large enough

that it is hard to use the predictions of these models as

evidence for the value of some proposed approach. Lastly,

further data collection has not proven useful. Certainly,

there is an increase in the availability of historical data on

prior projects2. However, Kitchenham [27] cautions that the

literature is contradictory regarding the value of using data

from other companies to learn local models.

Having failed to tame tuning variance, despite years of

research, we turned to alternate methods.

III. DODGING TUNING VARIANCE

In order to tame prediction variance, we need to under-

stand its source. The predictions of a model about a software

engineering project are altered by project variables P and

tuning variables T :

prediction = model(P, T ) (3)

For example, in Equation 1, the tuning options T are the

range of (a, b) and the project options P are the range

of pmat (process maturity) and acap (analyst capability).

Based on the definitions of the COCOMO model we can

say that the ranges of the project variables are P = 1 ≤
(pmat, acap) ≤ 5. Further, given the cone of uncertainty

associated with a particular project p, we can identify the

subset of the project options p ⊆ P relevant to a particular

project. For example, a project manager may be unsure of

2see http://promisedata.org.data/data and http://www.isbsg.org/.
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the exact skill level of team members. However, if she were

to assert “my analysts are better than most”, then p would

include {acap = 4, acap = 5}.

Our approach assumes that the dominant influences on

the prediction are the project options p (and not the tuning

options T ). Under this assumption, the predictions can be

controlled by

• Constraining p (using some AI tool);

• While leaving T unconstrained (and sampling t ∈ T

using Monte Carlo methods).

Specifically, we seek a treatment rx ⊆ p that maximizes the

value of a model’s predictions where value is a domain-

specific function that scores model outputs according to user

goals:

arg max
x

⎛
⎝AI search︷ ︸︸ ︷

rx ⊆ p , t ⊆ T, value(model(rx, t))︸ ︷︷ ︸
Monte Carlo

⎞
⎠ (4)

This approach is somewhat different from standard meth-

ods for decision support for software process models.

From [28], we define standard practice as:

1) Collect domain knowledge.

2) Build an initial model based on step 1 including as

yet unknown parameters. Note that these unknowns

represent a range of tuning options.

3) Tune model by (e.g.) regression on local data.

4) Conduct sensitivity analysis on the tuned models.

These four steps can take quite some time and, at least in our

experience with more complex versions of Equation 1, may

result in models with large tuning instabilities. The sensi-

tivity analysis, if conducted using gradient descent methods,

will not be successful for our models since the gradients

exhibit the very large variances of Equation 2. Hence,

another method that need not wait for time-consuming (and

possibly pointless) local data collection and tuning:

1) Check the literature for software process models where

the dominant influences on predictions are the project

options P , not the tuning options T .

2) Map project options to model input options.

3) Sample those models using AI tools to constrain the

project options, while sampling the tuning options

with Monte Carlo methods (i.e., Equation 4).

One heuristic for checking the literature in step 1 is to avoid

overly elaborate models whose authors may have extended

the model far beyond what can be supported with the

available data. We suspect a “Goldilocks” principle might

be appropriate:

• Tiny models offer trite conclusions and are insensitive

to important project features.

• Very large models may need much data collection to

constrain the tunings.

• In between there may exist some models that are “just

right”; i.e., big enough to draw interesting conclusions,

scale prec: have we done this before?
factors flex: development flexibility
(exponentially resl: any risk resolution activities?
decrease team: team cohesion
effort&cost) pmat: process maturity

upper acap: analyst capability
(linearly pcap: programmer capability
decrease pcon: programmer continuity
effort&cost) aexp: analyst experience

pexp: programmer experience
ltex: language and tool experience
tool: tool use
site: multiple site development

sced: length of schedule

lower rely: required reliability
(linearly data: secondary memory storage requirements
increase cplx: program complexity
effort&cost) ruse: software reuse

docu: documentation requirements
time: runtime pressure
stor: main memory requirements

pvol: platform volatility

Figure 1. The COCOMO “scale factors” and “effort multipliers”
change effort and cost by an exponential and linear amount (respectively).
Increasing these values has the effect described in column one.

aa: automated analysis
etat: execution-based testing and tools

pr: peer-reviews

Figure 2. The COQUALMO defect removal methods. Increasing these
values decreases delivered defects.

but small enough such that the internal tuning variance

does not dominate the variance results from input

project options.

We make no claim that all process models are “just right”

and, hence, can be controlled via Equation 4. Some pro-

cess models can be quite complex and include: discrete-

event models [29], [30]; system dynamics models [31];

state-based models [32]–[34]; rule-based programs [35]; or

standard programming constructs such as those used in

Little-JIL [36], [37]. These rich modeling frameworks allow

the representation of detailed insights into an organization.

However, the effort required to tune them is non-trivial.

In terms of the Goldilocks principle, we suspect that many

process models may not be near the “right size” and will

require extensive tuning before they can be used for decision

making. Fortunately, we have found that the USC COCOMO

and COQUALMO models [38] are “just right”. In all our

studies [8]–[12] we have found that prediction variance can

be controlled by only constraining project options while

letting the tuning variance remaining unchecked. Hence, we

use these models for our research. One advantage of these

models is that they are fully described in the literature. The

same can not be said for other commercial models such

as PRICE TRUE PLANNING [39], SLIM [40], or SEER-

SEM [41]. Also, at least for the COCOMO effort model,

there exist baseline results [42].
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IV. MODEL DETAILS

COCOMO offers effort and time predictions while CO-

QUALMO offers defect predictions. Using the models we

can represent the project options P and tuning options T of

Equation 3 as follows.

A. Project Options: P

COCOMO and COQUALMO’s features are shown in

Figure 1 and Figure 2. The features have a range taken from

{very low, low, nominal, high, very high, extremely high}
or

{vl = 1, l = 2, n = 3, h = 4, vh = 5, xh = 6}

These features include manual methods for defect removal.

High values for peer reviews (or pr, see Figure 2) denote

formal peer group review activities (participants have well

defined and separate roles, the reviews are guided by exten-

sive review checklists/root cause analysis, and reviews are a

continuous process guided by statistical control theory [43]).

COQUALMO also models automatic methods for defect

removal. Chulani [44] defines the top half of automated

analysis as:

4 (high): intermediate-level module and inter-module

code syntax and semantic analysis. Simple require-

ments/design view consistency checking.

5 (very high): More elaborate requirements/design view

consistency checking. Basic distributed-processing and

temporal analysis, model checking, symbolic execution.

6 (extremely high): Formalized3 specification and veri-

fication. Temporal analysis, model checking, symbolic

execution.

The top half of execution-based testing and tools is:

4 (high): Well-defined test sequence tailored to organiza-

tion (acceptance / alpha / beta / flight / etc.) test. Basic

test coverage tools, test support system.

5 (very high): More advanced tools, test data preparation,

basic test oracle support, distributed monitoring and

analysis, assertion checking. Metrics-based test process

management.

6 (extremely high): Highly advanced tools: oracles, dis-

tributed monitoring and analysis, assertion checking.

Integration of automated analysis and test tools. Model-

based test process management.

In the sequel, the following observation will become impor-

tant: Figure 1 is much longer than Figure 2. This reflects a

modeling intuition of COCOMO/COQUALMO: it is better

to prevent the introduction of defects (using changes to

Figure 1) than to try and find them, once they have been

introduced (using Figure 2).

3Consistency-checkable pre- conditions and post-conditions, but not
necessarily mathematical theorems.

B. Tuning Options: T

For COCOMO effort multipliers (the features that that

affect effort/cost in a linear manner), the off-nominal ranges

{vl=1, l=2, h=4, vh=5, xh=6} change the prediction by some

ratio. The nominal range {n=3}, however, corresponds to an

effort multiplier of 1, causing no change to the prediction.

Hence, these ranges can be modeled as straight lines y =
mx + b passing through the point (x, y)=(3, 1). Such a line

has a y-intercept of b = 1 − 3m. Substituting this value of

b into y = mx + b yields:

∀x ∈ {1..6} EMi = mα(x− 3) + 1 (5)

where mα is the effect of α on effort/cost.

We can also derive a general equation for the features

that influence cost/effort in an exponential manner. These

features do not “hinge” around (3,1) but take the following

form:

∀x ∈ {1..6} SFi = mβ(x− 6) (6)

where mβ is the effect of factor i on effort/cost.

COQUALMO contains equations of the same syntactic

form as Equation 5 and Equation 6, but with different

coefficients. Using experience for 161 projects [5], we can

find the maximum and minimum values ever assigned to m

for COQUALMO and COCOMO. Hence, to explore tuning

variance (the t ∈ T term in Equation 4), all we need to do

is select m values at random from the min/max m values

ever seen. An appendix to this document lists those ranges.

C. Case Studies: p ⊆ P

We use p to denote the subset of the project options pi ⊆
P relevant to particular projects. The four particular projects

p1, p2, p3, p4 used as the case studies of this paper are shown

in in Figure 3:

• OSP is the GNC (guidance, navigation, and control)

component of NASA’s Orbital Space Plane;

• OSP2 is a later version of OSP;

• Flight and ground systems reflect typical ranges seen

at NASA’s Jet Propulsion Laboratory.

Some of the features in Figure 3 are known precisely (see

all the features with single fixed settings). But many of the

features in Figure 3 do not have precise settings (see all the

features that range from some low to high value). Sometimes

the ranges are very narrow (e.g., the process maturity of JPL

ground software is between 2 and 3), and sometimes the

ranges are very broad.

Figure 3 does not mention all the features listed in

Figure 1 inputs. For example, our defect predictor has inputs

for use of automated analysis, peer reviews, and execution-

based testing tools. For all inputs not mentioned in Figure 3,

ranges are picked at random from (usually) {1, 2, 3, 4, 5}.
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ranges fixed settings
project pi feature low high feature setting

prec 1 2 data 3
p1=OSP: flex 2 5 pvol 2
Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

p2=OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 3 5 tool 2
p3=JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2

p4=JPL data 2 3 sced 3
ground cplx 1 4

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 3. Four case studies. Numeric values {1, 2, 3, 4, 5, 6} map to
very low, low, nominal, high, very high, extra high. This data comes from
experienced NASA managers summarizing over real-world projects.

D. Value

If there exist multiple possible treatments, a value func-

tion is required to rank alternatives. The value function

should model the goals of the business users who are making

project decisions about some software development. At the

end of this paper, we compare results from two very different

value functions.

1) “BFC” = Better, Faster, Cheaper: Ideally, software is

built with fewer defects D, using less effort E, and in shorter

time T . A value function for this goal can be modeled as

the Euclidean distance to minimum effort, time, defects:

bfc =

√
fT̄ 2 + cĒ2 +

(
bD̄

(
1 + 1.8rely−3

))2
(7)

valuebfc =
1

bfc
(8)

In the above, value is highest when defects and effort and

development time are lowest. Also, 0 ≤ (b, f, c) ≤ 1 rep-

resents the business importance of (better, faster, cheaper).

For this study, we use b = f = c = 1. In other work, we

have explored the effects of using other b, f, c values [12].

In Equation 7, T̄ , Ē, D̄ are the time, effort, and defect

scores normalized zero to one. Equation 7 models the

business intuition that defects in high reliability systems

and exponentially more troublesome than in low reliability

systems:

• If reliability moves from very low to very hight (1 to

6), the term 1.8rely−3 models a function that (a) is

ten times larger for very high than very low reliability

systems; and (b) passes through 1 at rely = 3 (so

systems with nominal reliability do not change the

importance of defects).

2) “XPOS” = Risk Exposure: The BFC value function is

somewhat idealistic in that it seeks to remove all defects by

spending less money on faster developments. An alternate

value function comes from Huang and Boehm [14]. This

alternate value function, which we call “XPOS”, models the

situation where a software company must rush a product to

market, without compromising too much on software quality.

Based on Huang’s Ph.D. dissertation [45], we operationalize

XPOS as follows.

Huang defines business risk exposure (RE) as a combi-

nation of software quality investment risk exposure (REq)

and market share erosion risk exposure (REm). We invert

that expression to yield valueXPOS (so an exposed project

has low value):

RE = REq + REm (9)

valueXPOS =
1

RE
(10)

REq values high-quality software and therefore prioritizes

quality over time. REq is composed of two primary compo-

nents: probability of loss due to unacceptable quality Pq(L)
and size of loss due to unacceptable quality Sq(L). Pq(L)
is calculated based on defects. Sq(L) is calculated based on

complexity (the COCOMO cplx feature), reliability (rely),

and a cost function. Sc is a value from a Pareto-valued table

based on rely. We choose the project months estimate as

the basis of this cost function.

REq = Pq(L) ∗ Sq(L) (11)

Pq(L) =
defects

defectsvl

(12)

Sq(L) = 3
cplx−3

2 · PM · Sc (13)

In Equation 12, defectsvl is the lower bound on defects

for that project.

In Equation 13 the cplx−3

2
term is similar to the D̄

coefficient inside Equation 7: if complexity changes below
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or above 3, then it reduces or adds (respectively) to the un-

acceptable quality risk. However at cplx = 3, the multiplier

is one (i.e., no effect).

REm values a fast time-to-market and therefore prioritizes

time over quality. REm is calculated from PM and reliability

(rely). Mc is a value from a exponential-valued table based

on rely.
REm = PM · Mc (14)

V. SEARCHING FOR rx

Our search runs two phases: a forward select and a back

select phase. The forward select grows rx, starting with the

empty set. At each round i in the forward select one or more

ranges (e.g., acap = 3) are added to rx. The resulting rx

set found at round i is denoted ri
x.

The forward select ends when the search engine cannot

find more ranges to usefully add to ri
x. Before termination,

we say that the open features at round i are the features in

Figure 1 and Figure 2 not mentioned by any range in ri
x.

The value of ri
x is assessed by running the model N times

with:

1) all of ri
x

2) any t ∈ T , selected at random

3) any range at random for open features.

In order to ensure minimality, a back select checks if the

final rx set can be pruned. If the forward select caches the

simulation results seen at each round i, the back select can

perform statistical tests to see if the results of round i − 1
are significantly different from round i. If the difference is

not statistically significant, then the ranges added at round i

are pruned away and the back select recurses for i− 1. We

call the un-pruned ranges the selected ranges and the point

where pruning stops the policy point.

For example, in Figure 4, the policy point is round 13 and

the decisions made at subsequent rounds are pruned by the

back select. That is, the treatments returned by our search

engines are all the ranges ri
x for 1 ≤ i ≤ 13. The selected

ranges are shown in a table at the bottom of the figure and

the effects of applying the conjunction of ranges in r13
x can

be seen by comparing the values at round=0 to round=13:

• Defects/KLOC reduced: 350 to 75;

• Time reduced: 16 to 10 months;

• Effort reduced: 170 to 80 staff months.

A. Alternate Search Methods

This paper implements the forward select using SA,

MaxWalkSat, SEESAW, BEAM, A-STAR and ISAMP.

SA: In our initial experiments [9], we ran forward/back

selects as a post-processor to a simulated annealer. Consider

a typical SA run that has explored 10,000 variants on

some solution. A side-effect of that run is 10,000 sets of

inputs, each scored with a value function. Our tool “STAR”

classified the outputs into 10% best values and 90% rest.

All the ranges from all the features were then sorted into
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Decisions made from round=1 to round=13:

round0: rx = ∅
round1 added {pmat=3}
round2: added {resl=4}
round3: added {team=5}
round4: added {aexp=4}
round5: added {docu=3}
round6: added {plex=4}

round7: added {rely=3}
round8: added {stor = 3}
round9: added {time = 3}
round10: added {tool = 4}
round11: added {sced = 2}
round12: added {site = 4}
round13: added {acap = 5}

Figure 4. Example forward and back select results.

a list of length R according to how much more frequently

they appeared in best than rest. The forward select was then

called using the first i items 1 ≤ i ≤ R.

MaxWalkSat is a local search algorithm [46]. Given a

random selected treatment, MaxWalkSat attempts n mod-

ifications to randomly selected features. Sometimes (con-

trolled by the α parameter), the modification is “smart”: for

the selected feature, the algorithm chooses the range that

minimizes the value of the current solution. The rest of the

time (i.e., at probability 1−α), a random range is chosen for

the feature. Occasionally, MaxWalkSat will reset to a new

randomly selected initial solution and, after N attempts, the

best solution is returned. Our implementation used n = 50,

α = 0.5, and N = 10.

SEESAW is a variant of MaxWalkSat we first reported

in [12]. While searching the ranges of a feature, this

algorithm exploits the monotonic nature of Equation 5

and Equation 6. SEESAW ignores all ranges except the

minimum and maximum values for a feature in p. Like

MaxWalkSat, the feature chosen on each iteration is made

randomly. However, SEESAW has the ability to delay bad

decisions until the end of the algorithm (i.e., decisions where

constraining the feature to either the minimum or maximum

value results in a worse solution). These treatments are then

guaranteed to be pruned during the back select.

ISAMP is a fast stochastic iterative sampling method that

extends a treatment using randomly selected ranges. The

algorithm follows one solution, then resets to try other paths

(our implementation resets 20 times). The algorithm has

proved remarkably effective at scheduling problems, perhaps
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because it can rapidly explore more of the search space [47].

To avoid exploring low-value regions, our version of ISAMP

stores the worst solution seen so far. Any conjunction whose

value exceeds that of the worst solution is abandoned, and

the new “worst value” is stored. If a conjunction runs out

of new ranges to add, then the “worst value” is slightly

decreased. This ensures that consecutive failing searches

do not permanently raise the “worst value” by an overly

permissive amount.

Our remaining algorithms use some variant of tree search.

Each branch of the tree is a different treatment (a conjunction

of ranges) of size i. In terms of the forward select search de-

scribed above, the y-axis statistics of Figure 4 are collected

whenever branches of size i are extended to size i + 1.

BEAM search extends branches as follows. Each branch

forks once for every new option available to that range. All

the new leaves are sorted by their value and only the top

N ranked branches are marked for further expansion. For

this study we used N = 10 and the y axis of Figure 4 was

reported using the median values seen in the top N branches.

A-STAR runs like BEAM, but the sort order is determined

by the sum f (the cost of reaching the current solution) plus

g (a heuristic estimate of the cost to reach the final solution).

Also, unlike BEAM, the list of options is not truncated so

a termination criterion is needed (we stop the search if the

best solution so far has not improved after m iterations). For

this study, we used Equation 7 for g and the percentage of

the features with ranges in the current branch as f .

VI. EXPERIMENTS

A. Comparing Algorithms

We ran 20 forward selects on the case studies of Figure 3

using BFC followed by back selects (t-tests pruned round

i if it was statistically the same at 95% confidence as

round i − 1). Separate statistics were collected for the

defects/effort/time predictions seen at the policy point in

the 20*4 trials. The top-ranked algorithm(s) had statistically

different and lower defects/effort/time predictions than any

other algorithm(s).

Figure 5 shows how many times each algorithm was top-

ranked. Note that the maximum value possible is 4 (i.e.,

once for each Figure 3 case study). In those results, the two

stand-out worst algorithms are MaxWalkSat and ISAMP and

the two stand-out best algorithms are SEESAW and BEAM.

algorithm Defects months time

SEESAW 4 4 3
BEAM 0 3 3
A-star 0 1 1

SA 0 1 1
MaxWalkSat 0 0 0

ISSAMP 0 0 0

Figure 5. Number of times algorithm found to be top-ranked from 20
repeats of forward/back selecting over the four case studies of Figure 3.

data set defects time effort

flight 80% 39% 72%
ground 85% 38% 73%

osp 65% 4% 42%
ops2 26% 22% 5%

median 73% 30% 57%

Figure 6. Percent reductions (1− final/initial) achieved by SEESAW
on the Figure 3 case studies. The initial values come from round 0 of the
forward select. The final values come from the policy point. Note that all
the initial and final values are statistically different (Mann-Whitney, 95%
confidence).

The performance of these two is sometimes equivalent (e.g.,

in time, both algorithms achieved an equal number of top

ranks). However, we cannot recommend BEAM search for

this domain:

• BEAM runs 10 times slower than SEESAW.

• SEESAW performs better than BEAM in some cases

(e.g. in defects, BEAM is never top-ranked).

Figure 5 shows a great difference between MaxWalkSat

and SEESAW results. As mentioned above, the difference

between these two algorithms is very small: SEESAW

assumed that the local search state space was monotonic,

so it only explored minimum and maximum values for each

feature. This single domain heuristic resulted in a dramatic

performance improvement. This is not a new result: AI

research in the 1980s [48] showed the value of combining

domain-general “weak” heuristic algorithms (e.g., A-STAR,

BEAM search) with domain-specific “strong” heuristics such

as the monotonicity assumption exploited by SEESAW.

However, even if it is not a new finding, it should remind

researchers not to depend too heavily on off-the-shelf al-

gorithms. As shown here, a little algorithm tweaking with

domain knowledge can go a long way.

Figure 6 shows the percent reductions achieved by SEE-

SAW on the four case studies of Figure 3. SEESAW’s

treatments can reduce project defect/time/effort estimates by

73, 30, and 57% (respectively). That is, even if SEESAW

cannot offer a major reduction in the development time, it

can advise how to reduce defects and development effort

by over half. Based on Figure 6, we would recommend

using SEESAW before all the project decisions are made,

otherwise there is very little for it to work with. For example,

SEESAW’s worst performance was with the OSP2 case

study. As shown in Figure 3, this project has the most

amount of fixed settings, so SEESAW only has a small range

of options it can explore.

B. Effects of Changing the Value Function

Our prior ASE report on this work [49] used simulated

annealing to find treatments. That work reported that, in all

studied cases, automated defect removal tools were always

found in the learned treatments.

The poor performance of SA in Figure 6 means we must

revisit those conclusions, using SEESAW rather than SA.
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value defect

Data Range B=BFC X=XPOS B
B+X

removal

manual automatic
ground rely = 4 70 20 77

aa = 6 70 25 73 hi in B
resl = 6 65 40 61
etat = 1 35 65 35 lo in X
aexp = 5 45 85 34

pr = 1 35 80 30 lo in X
aa = 1 25 60 29 lo in X

data = 2 25 70 26
rely = 1 15 70 17

flight rely = 5 65 25 72
flex = 6 80 50 61
docu = 1 55 85 39
site = 6 55 85 39
resl = 6 45 70 39
pr = 1 45 70 39 lo in X

pvol = 2 45 75 37
data = 2 35 60 36
cplx = 3 45 90 33
rely = 3 15 60 20

OSP pmat = 4 85 45 65
resl = 3 45 70 39
ruse = 2 40 65 38
docu = 2 25 90 21

OSP2 sced = 2 100 0 100
sced = 4 0 80 0

Figure 7. Frequency (in percents) of feature ranges seen in 20 repeats
of SEESAW, using two different goal functions: BFC and XPOS. The last
two columns comment on any defect reduction feature. Not shown in this
figure are any feature ranges that occur less than 50% of the time.

Figure 7 shows the ranges seen in SEESAW’s treatment

(after a back select). The BFC and XPOS columns show

the percent frequency of a range appearing when SEESAW

used our different value functions. These experiments were

repeated 20 times and only the ranges found in the majority

(more than 50%) of the trials are reported.

The results are divided into our four case studies: ground,

flight, OSP, and OSP2. Within each case study, the results

are sorted by the fraction BFC
BFC+XPOS

. This fraction ranges

0 to 100 and:

• If close to 100, then a range is selected by BFC more

than XPOS.

• If close to 0, then a range is selected by XPOS more

than BFC.

The right-hand columns of Figure 7 flag the presence of

manual defect remove methods (pr=peer reviews) or au-

tomatic defect removal methods (aa=automated analysis;

etat=execution testing tools). Note that high levels of auto-

matic defect removal methods are only frequently required in

ground systems, and only when valuing BFC. More usually,

defect removal techniques are not recommended. In ground

systems, etat = 1, pr = 1, and aa = 1 are all examples of

SEESAW discouraging rather than endorsing the use defect

removal methods. That is, in three of our four case studies, it

is more important to prevent defect introduction than to use

after-the-fact defect removal methods. In ground, OSP, and

OSP2, defect removal methods are very rare (only pr = 1
in flight systems).

Another important aspect of Figure 7 is that there is

no example of both value functions frequently endorsing

the same range. If a range is commonly selected by BFC,

then it is usually not commonly accepted by XPOS. The

most dramatic example of this is the OSP2 results of

Figure 7: BFC always selects (at 100%) the low end of a

feature (sced=2) while XPOS nearly always selects (at 80%

frequency) the opposite high end of that feature.

In summary, perceptions of value can change everything.

Techniques that seem useful to one kind of project/value

function may be counter-indicated for another. One charac-

terization of the Figure 7 results is that, for some projects,

it is preferable to prevent defects before they arrive (by

reorganizing the project) rather than try to remove them

afterwards using (say) peer review, automated analysis, or

execution test tools.

VII. CONCLUSIONS

There are many different SE technologies that can be

applied to a project. Such technologies can be defined as

conjunctions of inputs to software process models. Technol-

ogy X is preferred to technology Y if X’s inputs lead to

better output scores that Y .

Assessing the value of different SE technologies via

process models is complicated by tuning instabilities. For

several years, we have tried to reduce this problem using a

variety of techniques. The failure of that work has prompted

research on alternate methods. We dodge the model tuning

problem by searching for conclusions that are stable across

the space of possible tunings. Our tool uses AI to search

for different project options. Each option is scored by a

Monte Carlo run that selects tuning options at random from

the space of possible options. For models where project

values (and not tuning values) are the dominant influence

on predictions, this combined method finds critical project

options without requiring local tuning data. This is a very

different approach to standard software process modeling

where local data is essential to model tuning.

This paper certified that our current preferred search

engine (SEESAW) runs as well (or better) than several

alternatives. When we applied SEESAW with two different

value functions, the treatments found by SEESAW changed

dramatically. In particular, most projects worked best when

they were organized to stop defects entering the code base

rather than using some automated analysis method to remove

them, after they have been introduced.

This work has significant implications for the ASE com-

munity. Based on this work we argue that it is no longer

enough to just propose (say) some automated defect reduc-

tion tool. Rather, the value of ASE tools for a software

project needs to be carefully assessed with respect to the

core values of that project.
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APPENDIX

This appendix lists the minimum and maximum m values

used for Equation 5 and Equation 6. In the following, mα

and mβ denote COCOMO’s linear and exponential influ-

ences on effort/cost, and mγ and mδ denote COQUALMO’s

linear and exponential influences on number of defects.

Their are two sets of effort/cost multipliers:

1) The positive effort EM features, with slopes m+
α , that

are proportional to effort/cost. These features are: cplx,

data, docu, pvol, rely, ruse, stor, and time.

2) The negative effort EM features, with slopes m−

α , are

inversely proportional to effort/cost. These features are

acap, apex, ltex, pcap, pcon, plex, sced, site, and tool.

Their m ranges, as seen in 161 projects [38], are:(
0.073 ≤ m+

α ≤ 0.21
)
∧

(
−0.178 ≤ m−α ≤ −0.078

)
(15)

In the same sample of projects, the COCOMO effort/cost

scale factors (prec, flex, resl, team, pmat) have the range:

−1.56 ≤ mβ ≤ −1.014 (16)

Similarly, there are two sets of defect multipliers and scale

factors:

1) The positive defect features have slopes m+
γ and are

proportional to estimated defects. These features are

flex, data, ruse, cplx, time, stor, and pvol.

2) The negative defect features, with slopes m−

γ , that are

inversely proportional to the estimated defects. These

features are acap, pcap, pcon, apex, plex, ltex, tool,

site, sced, prec, resl, team, pmat, rely, and docu.

COQUALMO divides into three models describing how

defects change in requirements, design, and coding. These

tunings options have the range:

requirements

{
0 ≤ m+

γ ≤ 0.112
−0.183 ≤ m−

γ ≤ −0.035

design

{
0 ≤ m+

γ ≤ 0.14
−0.208 ≤ m−

γ ≤ −0.048

coding

{
0 ≤ m+

γ ≤ 0.14
−0.19 ≤ m−

γ ≤ −0.053

(17)

The tuning options for the defect removal features are:

∀x ∈ {1..6} SFi = mδ(x− 1)
requirements : 0.08 ≤ mδ ≤ 0.14

design : 0.1 ≤ mδ ≤ 0.156
coding : 0.11 ≤ mδ ≤ 0.176

(18)

where mδ denotes the effect of i on defect removal.
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