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Abstract “Faster, Better, Cheaper” (FBC) was a systems
development methodology used by NASA in the 1990s.
While usually a deprecated practice, we find that, with certain
caveats, it is a viable approach. To determine this we utilized
a stochastic AI tool to determine the behavior of FBC for sev-
eral case studies. In these case studies we compare results of
using FBC with that of other optimization policies. In our
tests, FBC is as advantageous a policy to use with projects
as other policies, while avoiding their apparent downfalls.

Keywords Software engineering · Predictor models ·
COCOMO · Faster Better Cheaper · Simulated annealing ·
Software processes

1 Introduction

“Faster, Better, Cheaper” (FBC) was a systems develop-
ment philosophy adopted by the NASA administration in
the mid- to late-1990s that led to some dramatic successes
such as Mars Pathfinder as well as a number highly publi-
cized mission failures, such as the Mars Climate Orbiter &
Polar Lander. It was later on blamed for several other project
failures at NASA.

FBC was advocated in the 1990s by the then-administra-
tor of NASA, Daniel Goldin, as a method for reducing the
expenditure of NASA. FBC was in-line with the direction
that the Clinton administration’s approach of doing more for
less. FBC was initially successful: projects that usually cost

O. El-Rawas · T. Menzies (B)
LCSEE Department, West Virginia University,
Morgantown, WV, USA
e-mail: tim@menzies.us

O. El-Rawas
e-mail: orawas@gmail.com

over a billion were implemented at one-fourth of that cost
(e.g. Mars Pathfinder). However, subsequent failures (Mars
Climate Orbiter and Polar Lander; the Columbia Shuttle
disaster) led to much criticism of FBC. This failure had led to
a suggestion by many experts that only two aspects of FBC
can be optimized for at the same time. The phrase “Faster,
Better, Cheaper: pick any two” arose from this suggestion,
presenting the idea that FBC is not a viable optimization
scheme.

We ask the question of whether FBC can simultaneously
achieve all three of its objectives. Previous papers by
El-Rawas [11] and Menzies et al. [23] explored the validity
of the general consensus on “Faster, Better, Cheaper: Pick
any two”. It was found that “Faster, Better, Cheaper” (FBC)
is indeed feasible when maintaining a balanced concern and
concentration on the quality aspects of a project. For that
study we used a stochastic AI tool we named STAR. In this
paper we seek to pose three separate questions regarding the
use of our tool (STAR) and FBC:

• Is STAR stable enough to rely on?
• How appropriate is STAR for conducting these studies?
• Do previous results presented in [11,23] hold? Does using

additional case studies produce similar results, further
validating the use of FBC?

Specifically we wish to test three assertions:

[H1] The stochastic nature of STAR does not render it
unusable and unreliable for the purposes of decision
making.

[H2] There are instances where the possible best case value
for an attribute in not linear on the attribute settings.
This suggests the need to explore the whole range of
possibilities using tools like STAR.
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[H3] Not considering all aspects of a software project can
be dangerous. This supports FBC as a viable policy
to follow.

We will start out by presenting FBC, followed by a brief
background section. This will be followed by a description
of STAR, our stochastic tool, followed by presenting the case
studies and methods used. Finally, we present the results
obtained regarding the questions posed above.

2 “Faster, Better, Cheaper”

In the 1990s, the main approach to implementing FBC within
NASA was to downsize projects and reduce their cost and
complexity, concentrating on producing missions in volume.
Reducing funding naturally meant that less verification and
testing was possible within budget and schedule constraints.
The reasoning behind this, however, was to be able to produce
a larger volume of unmanned missions, which would counter-
act the expected higher rate of mission failure. This would,
optimally, yield more successful missions as well as more
scientific data produced by these projects. Another focus in
this policy was allowing teams to take acceptable risks in
projects to allow for cost reduction, and possibly using new
technology that could reduce cost while possibly providing
more capabilities. This was accompanied by the new view,
being pushed at NASA by Goldin, that “it’s ok to fail” [39],
which was rather misunderstood. This new policy was meant
to eliminate huge budget missions of the past, that upon pos-
sible failure would yield large losses. Project cost used to
routinely exceed the $1 billion mark, while the first FBC
project, the Mars Pathfinder, was completed for a fraction of
the cost, netting at about $270 million [10].

Some within NASA, like 30-year veteran Frank Hoban,
who viewed these new policies as a necessary break from tra-
ditional policies that were very risk averse, supported these
policies [10]. The additional cost reduction, accompanied
by the additional risk, was to allow for a path to cheap and
commercial space flight. Even given the reduced funding,
the Mars Pathfinder mission, along with other first-genera-
tion FBC missions, was a success. This fueled enthusiasm to
apply FBC across all of NASA to further reduce spending per
mission as well cutting the work force by one-third. FBC was
extended to be applied on manned space missions as well,
where funding was also reduced. Coming into a space shuttle
program that was starting to age and in need of updates, the
new policies imposed cuts in funding from 48% of the NASA
budget to 38% [18], further straining that program. Further-
more, a single prime contractor (Lockheed Martin) was used
for missions in another bid to reduce cost and managerial
complexity [41,42].

This move produced opposition within NASA, where tra-
ditionally issues pertaining to the shuttle were designated
LOVC (Loss of Vehicle and Crew) and given priority over
all other issues, including cost. However, the cost cuts and
layoffs that ensued damaged morale leading to a string of
early retirements of veteran scientists, skilled engineers, and
managers [18].

Despite this, additional projects were planned including
Mars Climate Orbiter and Polar Lander. These two projects
were more aggressive implementations of FBC, especially
when it came to the Faster-Cheaper part of those policies.
Costs of the Orbiter and the Lander were brought down to
$125 million and $165 million, respectively [40]. This was
much less than the previous Pathfinder mission (which itself
cost slightly less than $300 million) and a huge reduction
from the previous Viking Mars missions (cost about $935
million in 1974 Dollars, equivalent to $3.5 billion in 1997
dollars). The success of these missions would have strength-
ened FBC within NASA and JPL, and been seen to break
new ground in terms of mission completion with the reduced
staff and budget [13].

Both of these missions failed. Using a single contractor
had weakened quality assurance and caused loss of vehicle.
These flaws were software issues that could have easily been
rectified if they had been discovered on the ground (e.g. a fail-
ure to convert from imperial to metric units, causing the loss
of the Climate Orbiter [31]). The Mars Program Independent
Assessment Team Report [42] found that these missions were
under-staffed, under-funded by at least 30%, and too tightly
scheduled.

Elsewhere, across the Atlantic in the UK, another Mars
mission to deliver a lander, designated the Beagle 2, was
under way. This mission was also developed cheaply, apply-
ing the same concepts in design and implementation that
NASA was at the time using. The lander, however, was
declared lost after not establishing contact after separation
from the mars express vehicle [30].

One other failure that FBC was blamed for was the Colum-
bia Shuttle disaster in 2003. This was post-Goldin, at a point
where NASA had realized the excessive cost cutting and staff
reducing policies needed to be changed. After that disas-
ter, critics quickly pointed the finger to these missions being
under-funded due to FBC. There were many calls, especially
politically, for throwing FBC “in the waste basket” [9,15].
These criticisms turned NASA away from FBC towards pol-
icies concentrating on two of the three aspects of FBC.

Having shown the history of the rise of infamy of FBC,
we will proceed to briefly present some background knowl-
edge relating to the studies conducted. This will include the
software engineering models and the tool that we use in our
study (STAR). We will also briefly present the case studies
being used.
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3 Background

3.1 Software models

The software models used in this paper are USC COCOMO
based. The COCOMO models represent FBC in the follow-
ing manner:

• Faster is represented by a “Months” model, which esti-
mates the total development months needed for a software
project.

• Better is represented by a “Defects” model, which esti-
mates the number of delivered defects per KLOC (thou-
sand lines of code).

• Cheaper is represented by a “Effort” model, which esti-
mates the effort that is needed for a software project in
person-months, and hence can be used to estimate the
cost of the development of the project.

Note that for all the models, lower is better. The tool com-
bines estimates with utility weights { f, b, c} (short for Faster,
Better, Cheaper) using the following formula:

score =
√

f · M2 + b · D2 + c · E2
√

f + b + c
(1)

This score value represents the Euclidean distance to the
normalized values of the predictions of development effort
“E”; total development months “M”; and “D”, the number
of delivered defects per KLOC. This is the utility function
that is used in order to assess any given set of “policies” that
might be presented to be implemented in a given software
project. Given that we normalize the predictions min–max to
0–1, then Eq. 1 has the range one to zero and lower scores are
better. STAR searches for the minimal set of project changes
that most reduces this score. Hence, STAR can be used as a
tool for assessing policies produced under FBC because of
its ability to use the score function to combine score from
different aspects of a software project.

By adjusting the various values of ( f, b, c), we can com-
pare the effects of methodologies that emphasize different
project goals:

• BF=“better, faster” i.e. c = 0 and b = f = 1;
• BC=“better, cheaper” i.e. f = 0 and b = c = 1;
• CF=“cheaper, faster” i.e. b = 0 and f = c = 1;
• FBC =“faster, better, cheaper” i.e. b = f = c = 1.

Regarding the COCOMO II model, Boehm et al. [6] advo-
cated a certain functional form for generating software devel-
opment effort estimates. In that form, the development effort
is linear on a set of effort multipliers EMi and exponential

on a set of scale factors SF j :

e f f or t = A · KSLOCB+0.01·∑ j β j SF j ·
∏

i

αi EMi (2)

The particular effort multipliers and scale factors recom-
mended by Boehm et al. are shown in Table 1. While Boehm
et al. offer default values for the Eq. 2 variables, linear regres-
sion on local data can tune the αi ,β j values to the particulars
of a local site. Also, if there are insufficient data for a full
tuning of α,β, then a coarse grain tuning can be achieved
by just adjusting the A, B1 linear and exponential tuning
parameters.

A problem that has been under-explored in the literature is
tuning variance. In data-starved domains, there is insufficient
data to produce precise tunings. For example, At PROMISE
2005, we have reported very large tuning variance in the
post-tuning values of α and β [29]. Baker [3] offers a similar
finding. After thirty 90% random samples of that data, the
A, B ranges found during tuning were surprisingly wide:

(2.2 ≤ A ≤ 9.18) ∧ (0.88 ≤ B ≤ 1.09) (3)

We are not the only research group to be concerned about tun-
ing variance. At PROMISE 2007, Korte and Port [20] explore
the variance of automatically learned effort predictors. They
comment that this variance is large enough to confuse stan-
dard methods for assessing different predictive model gen-
erators.

Since 2005 [7,28], we have been trying to reduce tun-
ing variance using feature subset selection (FSS). However,
despite years of work, we now report that FSS reduces but
does not tame the variance of A, B,α,β.

Having failed to tame tuning variance, we have been
exploring a new approach. The STAR tool [11,24,26] that
we describe below checks for stable conclusions within the
space of possible tunings.

3.2 STAR

STAR uses Table 2 as the inputs to a Monte Carlo simu-
lation over a set of software models. STAR contains not
only the COCOMO effort E estimator [6] but also the
COCOMO development months M estimator [6, pp. 29–57],
and COQUALMO D defects estimator [6, pp. 254–268].
These estimators generate the {E, M, D} variables used by
Eq. 1 in the introduction.

We use COCOMO & COQUALMO since the space of
possible tunings within these models is well defined. Hence,
it is possible to explore this tuning space. Recall from Eq. 2

1 We will use uppercase B to denote the COCOMO linear tuning vari-
able of Eq. 2 and lower b to denote the business utility associated with
defect predictions of Eq. 1.
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Table 1 Features of the COCOMO and COQUALMO models used in this study

Definition Low-end= {1, 2} Medium= {3, 4} High-end= {5, 6}

Defect removal features

Execution-based testing
and tools (etat)

All procedures and tools used for
testing

None Basic testing at
unit/integration/sys-
tems level; basic test
data management

Advanced test oracles,
assertion checking,
model-based testing

Automated analysis (aa) E.g. code analyzers, consistency and
traceability checkers, etc

Syntax checking with
compiler

Compiler extensions
for static code
analysis, basic
requirements and
design consistency,
traceability checking

Formalized specification
and verification, model
checking, symbolic
execution, pre/post
condition checks

Peer reviews (pr) All peer group review activities None Well-defined sequence
of preparation,
informal assignment
of reviewer roles,
minimal follow-up

Formal roles plus extensive
review checklists/root
cause analysis, continual
reviews, statistical process
control, user involvement
integrated with life cycle

Scale factors

flex Development flexibility Development process
rigorously defined

Some guidelines,
which can be relaxed

Only general goals defined

pmat Process maturity CMM level 1 CMM level 3 CMM level 5

prec Precedentedness We have never built
this kind of software
before

Somewhat new Thoroughly familiar

resl Architecture or risk resolution Few interfaces defined
or few risks
eliminated

Most interfaces defined
or most risks
eliminated

All interfaces defined or all
risks eliminated

team Team cohesion Very difficult
interactions

Basically co-operative Seamless interactions

Effort multipliers

acap Analyst capability Worst 35% 35–90% Best 10%

aexp Applications experience 2 months 1 year 6 years

cplx Product complexity E.g. simple read/write
statements

E.g. use of simple
interface widgets

E.g. performance-critical
embedded systems

data Database size (DB bytes/SLOC) 10 100 1000

docu Documentation Many life-cycle phases
not documented

Extensive reporting for each
life-cycle phase

ltex Language and tool-set experience 2 months 1 year 6 years

pcap Programmer capability Worst 15% 55% Best 10%

pcon Personnel continuity (% turnover per
year)

48% 12% 3%

plex Platform experience 2 months 1 year 6 years

pvol Platform volatility( frequency of major changes
frequency of minor changes

)
12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely Required reliability Errors are slight
inconveniences

Errors are easily
rectifiable

Errors can risk human life

ruse Required reuse None Multiple program Multiple product lines

sced Dictated development schedule Deadlines moved to
75% of the original
estimate

No change Deadlines moved back to
160% of original estimate

site Multi-site development Some contact: phone,
mail

Some email Interactive multi-media

stor Required % of available RAM N/A 50% 95%

time Required % of available CPU N/A 50% 95%

tool Use of software tools Edit, code, debug Integrated with life cycle
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Table 2 The four NASA case studies

Project Ranges Values Project Ranges Values

Feature Low High Feature Setting Feature Low High Feature Setting

OSP: Orbital space plane prec 1 2 data 3 OSP2 prec 3 5 flex 3

flex 2 5 pvol 2 pmat 4 5 resl 4

resl 1 3 rely 5 docu 3 4 team 3

team 2 3 pcap 3 ltex 2 5 time 3

pmat 1 4 plex 3 sced 2 4 stor 3

stor 3 5 site 3 KSLOC 75 125 data 4

ruse 2 4 pvol 3

docu 2 4 ruse 4

acap 2 3 acap 4

pcon 2 3 pcap 3

apex 2 3 pcon 3

ltex 2 4 apex 4

tool 2 3 plex 4

sced 1 3 tool 5

cplx 5 6 cplx 4

KSLOC 75 125 site 6

JPL flight software rely 3 5 tool 2 JPL ground software rely 1 4 tool 2

data 2 3 sced 3 data 2 3 sced 3

cplx 3 6 cplx 1 4

time 3 4 time 3 4

stor 3 4 stor 3 4

acap 3 5 acap 3 5

apex 2 5 apex 2 5

pcap 3 5 pcap 3 5

plex 1 4 plex 1 4

ltex 1 4 ltex 1 4

pmat 2 3 pmat 2 3

KSLOC 7 418 KSLOC 11 392

Numeric values {1, 2, 3, 4, 5, 6} map to {very low, low, nominal, high, very high, extra high}

that the COCOMO model includes {A, B,α,β} tuning val-
ues. Many of these variables are shared with the COQUAL-
MO defect predictor which also has a separate set of tuning
variables, which we will call γ . Using 26 years of publica-
tions about COCOMO-related models, we inferred the min-
imum and maximum values yet seen for {A, B,α,β, γ }. For
example, the A, B min/max values come from Eq. 3. We
use the variable T to store the range of possible values for
these tuning variables (see previous section for the space of
tunings).

STAR runs as follows: First, a project P is specified as
a set of min/max ranges to the input variables of STAR’s
models:

• If a variable is known to be exactly x , then min =
max = x .

• Else, if a variable’s exact value is not known but the range
of possible values is known, then min/max is set to the
smallest and largest value in that range of possibilities.

• Else, if a variable’s value is completely unknown then
min/ min is set to the full range of that variable in Table 1.

Second, STAR’s simulated annealer2 seeks constraints on
the project options P that, normally, most reduce the score
of Eq. 1 (for examples of P , see Table 2). For finding the

2 Simulated annealers randomly alter part of the some current solu-
tion. If this new solution scores better than the current solution, then
current = new. Else, at some probability determined by a tempera-
ture variable, the simulated annealer may jump to a sub-optimal new
solution. Initially, the temperature is “hot” so the annealer jumps all
over the solution space. Later, the temperature “cools” and the annealer
reverts to a simple hill-climbing search that only jumps to new better
solutions. For more details, see [19].
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worst policies, STAR had to be slightly adapted to look for
the policies that most increased Eq. 1. A particular subset of
P ′ ⊆ P is scored by using P ′ as inputs to the COCOMO and
COQUALMO. When those predictive models run, variables
are selected at random from the min/max range of possible
tunings T and project options P .

In practice, the majority of the variables in P can be
removed without effecting the score; i.e. our predictive mod-
els exhibit a keys effect where a small number of variables
control the rest [22]. Finding that minimal set of variables
is very useful for management since it reveals the least they
need to change in order to most improve the outcome. Hence,
after simulated annealing, STAR takes a third step.

In this third step, a Bayesian sensitivity analysis finds
the smallest subset of P ′ that most effects the output. The
scores seen during simulated annealing are sorted into the
(10,90)% (best,rest) results. Members of P ′ are then ranked
by their Bayesian probability of appearing in best . For exam-
ple, 10,000 runs of the simulated annealer can be divided
into 1,000 lowest best solutions and 9,000 rest. If the range
rely = vh appears ten times in the best solutions, but only
five times in the rest , then

E = (reply = vh)

Prob(best) = 1,000/10,000 = 0.1
Prob(rest) = 9,000/10,000 = 0.9

f req(E |best) = 10/1,000 = 0.01
f req(E |rest) = 5/9,000 = 0.00056
like(best |E) = f req(E |best) · Prob(best) = 0.001
like(rest |E) = f req(E |rest) · Prob(rest) = 0.000504

Prob(best |E) = like(best |E)
like(best |E)+like(rest |E) = 0.66

(4)

Equation 4 is a poor ranking heuristic since it is distracted
by low-frequency ( f req) evidence. For example, note how
the probability (Prob) of E belonging to the best class is
moderately high even though its support is very low; i.e.
Prob(best |E) = 0.66 but f req(E |best) = 0.01. To avoid
such unreliable low-frequency evidence, we augment Eq. 4
with a support term. In Eq. 5, likelihood (like) is chosen as
our support term. Support should increase as the frequency
of a range increases, i.e. like(x |best) is a valid support mea-
sure since it does exactly so. High support would indicate a
higher number of examples that “support” that E can be part
of the best set. STAR1 hence ranks ranges via

Prob(best |E) ∗ support (best |E)

= like(x |best)2

like(x |best) + like(x |rest)
(5)

After ranking members of P ′, STAR imposes the top i th
ranked items of P ′ as model inputs, then runs the mod-
els 100 times. This continues until the scores seen using
i + 1 items are not statistically different to those seen using
i (t-tests, 95% confidence). STAR returns items 1..i of P ′

as the least set of project decisions that most reduce effort,
defects, and development time. We call these returned items
the policy.

Note that STAR constrains the project options P but not
the tuning options T . Hence, STAR’s generated policy con-
tains subsets of the project options P that most improve
the score despite variations in the tunings T . This approach
means we can reuse COCOMO models without using local
tuning data. The following is a description that further details
the manner in which STAR operates:

1. SAMPLE: To sample the ranges from the models, STAR
runs the simulated annealer K1 times. Note that here, we
sample across the ranges of all the attributes. While most
of the time we sample randomly across the range, we also
have a heuristic optimization called extreme sampling.
This form of sampling works in the following manner:
for x % (x is set to 5 by default), STAR samples only the
extremums of the attributes.

2. DISCRETIZE: The data seen in the K1 samples are then
discretized into D = 10 bins. Discretization converts a
continuous range into a histogram with n break points
b1 . . . bn where

(
∀i < j : bi ≤ b j

)
. After discretization,

many observations can fall into the same range between
bi and bi+1 at frequency counts ci . This study used equal
width discretization; i.e.

∀i, j : (bi − bi−1) =
(
b j − b j−1

)

3. CLASSIFY: The ranges are then classified into those seen
in BEST% best or rest.

4. RANK: The ranges are then ranked in increasing order
using Support-Based Bayesian Ranking using Eq. 5.

5. PRUNE: Also called the back select stage. STAR runs
K2 experiments with the models where the top-ranked
ranges 1..X are pre-set, and the remaining ranges can be
selected at random.

6. REPORT: STAR returns the 1..X settings that optimize
the best for the fitness function being used according to
the weights applied to effort, defects, development time,
and threats. These settings are determined by iterating
back from the minimum point achieved towards the first
point that is statistically similar to the minimum point.
This statistical difference is tested via a standard t-test.

To run our experiments, we had to apply our engineering
judgment to set the parameters. The following are the default
values:

K1 = 10,000, K2 = 1,000, D = 10, B E ST = 10%

Previously [24] we have shown that this approach (that
does not use local tuning) generates estimates very similar to
those generated by “LC” method proposed by Boehm (that
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does tune the model to local data) [4]. We have explained
this effect as follows: Uncertainty in the project options P
and the tuning options T contribute to uncertainty in the esti-
mates generated by STAR’s models. However, at least for
the COCOMO and COQUALMO models used by STAR,
the uncertainty created by P dominates that of T . Hence,
any uncertainty in the output can be tamed by constraining
P , and not T .

3.3 Case studies and methods

We use two categories of projects in this paper to study FBC.
The one category includes three projects of various sizes.
Designated Small, Medium, and Large, they corresponded to
projects of size ranges 7 ≤ KLOC ≤ 13, 70 ≤ KLOC ≤
130, and 700 ≤ KLOC ≤ 1,300, respectively. These pro-
jects are open ended and are used to study whether there is
an influence of project size purely on our study. Open ended
here means that there are no project limitations that are pre-
determined but that the only limitation is the default limits
of the models and the size of the projects.

The second category are the NASA project templates that
we have previously used and are presented in Table 2. These
studies represent the NASA software, at increasing levels of
specificity:

• Flight is a general description of flight software at
NASA’s Jet Propulsion Laboratory.

• Ground is a general description of ground software at
NASA’s Jet Propulsion Laboratory.

• OSP is a specific flight system: the GNC (guidance, navi-
gation, and control) component of NASA’s 1990s Orbital
Space Plane;

• OSP2 is a later version of OSP.

Table 2 describes the details of flight, ground, OSP, and
OSP2. Note that Table 2 does not mention all the features
listed in Table 1 inputs. For example, our defect predictor
has inputs for use of automated analysis, peer reviews, and
execution-based testing tools. For all inputs not mentioned
in Table 2, values are picked at random from the full range
of Table 1.

One aspect to note from Table 2 is the number of open
options not specified in the description of the projects. Some
of the features in Table 2 are known precisely (see all the fea-
tures with single values). But many of the features in Table 2
do not have precise values (see all the features that range
from some low to high value). Sometimes the ranges are very
narrow (e.g., the process maturity of JPL ground software is
between 2 and 3), and sometimes the ranges are very broad.

Having presented the models, the tool (STAR) and the
case studies used in this paper, we will proceed to present
our results. These results aim to answer the questions that

we posed previously in the introduction regarding STAR and
its use, as well as regarding previous results.

4 Results

Our results are presented in this section in two stages. In
stage one we apply some sanity checks to ensure that our
tool is adequate and not unnecessarily engineered. In stage
two (Sect. 4.3), we return to our assessment of FBC policies.
Note that for these two stages, we use two distinct categories
of projects, as mentioned in the preceding section:

• Three open-ended projects of various sizes: Small,
Medium, and Large.

• The NASA project templates that we have previously
used, and are presented in Table 2. These projects
are derived from actual NASA projects that have used
COCOMO-based models for effort estimation. These
projects include flight, ground, OSP, and OSP2.

In diversifying the types of case studies used, we aim at
observing results that can span across multiple project types.

4.1 Stability, control, and validity

STAR is in essence a stochastic tool that randomly gener-
ates examples to learn from. Given this random nature, we
posed the question of whether STAR can produce fairly stable
results. In order to determine the stability of STAR in choos-
ing policies, three open-ended projects, of different sizes,
were created. We ran the three of those in STAR using FBC,
with each case running ten times to account for the random
variation in the results. This was repeated twice: one with
the intention of choosing the best policies, and the other the
worst policies. This was repeated for our NASA projects as
well. All the projects used are briefly described in Sect. 3.

Tables 3 through 6 present the stability results. The results
show that STAR seems to be quite stable in choosing both
the best policies and the worst policies to apply. This is indi-
cated by the large amount of policies that are chosen at a
high percentage rate. However, the policy generation is not
equally stable across the board. In the case of the open-ended
projects (small, medium, and large), the results presented in
Tables 3 and 4 for the Small project seem to be less stable,
generating a larger range of policies compared with Medium
and Large. This makes sense in small open-ended projects,
as the projects would be more sensitive to the small details
within a project, which is reflected in the models as well.
Take the case of the COCOMO II model:

• Equation 2 shows that when the size (KLOC) of the pro-
ject decreases, the effort multipliers will inherently have
a larger relative effect on the effort of a project.
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Table 3 The most common
policies selected as bad policies
to apply to the generic
open-ended projects

Note that policies picked less
than 50% of the time have been
omitted

Large Medium Small

Policy % Used Policy % Used Policy % Used Policy % Used

acap=1.0 100 acap=1.0 100 acap=1.0 100 auto=2.0 80

apex=1.0 100 apex=1.0 100 apex=1.0 100 data=4.5 80

auto=1.0 100 auto=1.0 100 auto=1.0 100 pvol=4.5 80

ett=1.0 100 ett=1.0 100 ett=1.0 100 time=5.5 80

flex=1.0 100 flex=1.0 100 ltex=1.0 100 auto=1.5 70

ltex=1.0 100 ltex=1.0 100 pcap=1.0 100 docu=4.5 70

pcap=1.0 100 pcon=1.0 100 pcon=1.0 100 stor=5.5 70

pcon=1.0 100 peer=1.0 100 peer=1.0 100 cplx=5.5 60

peer=1.0 100 plex=1.0 100 plex=1.0 100 ett=1.5 60

plex=1.0 100 pmat=1.0 100 prec=1.0 100 ett=3.0 60

pmat=1.0 100 prec=1.0 100 rely=1.0 100 time=5.0 60

prec=1.0 100 rely=1.0 100 resl=1.0 100 auto=3.0 50

rely=1.0 100 resl=1.0 100 sced=4.0 100 data=4.0 50

resl=1.0 100 sced=4.5 100 sced=4.5 100 ett=2.0 50

site=1.0 100 sced=5.0 100 sced=5.0 100 ett=2.5 50

team=1.0 100 site=1.0 100 site=1.0 100 peer=2.0 50

sced=4.5 90 team=1.0 100 team=1.0 100 plex=1.5 50

tool=1.0 80 tool=1.0 100 flex=1.0 90 ruse=5.5 50

sced=5.0 50 pcap=1.0 90 pmat=1.0 90

sced=4.0 70 tool=1.0 90

• On the other hand, if the size was large, the scale factors
would have a much larger effect, meaning that the effort
multipliers that would be included in the policies need to
have a large effect on the project to “make the grade”.

In the case of stability for the NASA projects, we see a
different stability result in Tables 5 and 6, where the more spe-
cific a project is the more restricted and stable are its results,
for both searching for good and bad policies. The reason for
this is that more specified projects tend to have a smaller
search space, causing smaller policy sets to be created by
STAR.

Having shown the stability of STAR, we will move on to
briefly study the attribute ranges that STAR selects. This will
help explore whether STAR is too elaborate and exhaustive,
given the general assumption that the software models are
linear.

4.2 Range analysis

We ask the question of whether an AI tool that covers the full
range of attributes is necessary or not. The alternative might
be a much simpler method that only explores the extremes.
Other works such as the work of [26] seem to suggest that
the nature of the models in use allow us to simply overlook
the ranges of the attributes while simply concentrating on the
maxima and minima of the attributes.

Figure 1 presents the stable policies for the open-ended
projects. The shaded cells indicate the range for the partic-
ular attribute in that row, which in this case are the default
values indicated in the COCOMO II model. Also “!” and
“"” show the locations of the best and worst stable policy,
respectively. Figures 2 and 3 represent the stable policies for
the NASA projects. These stable results have been made to
overlap the results of medium-size projects, since most of the
NASA projects fall in that category. The light gray cells indi-
cate the model ranges that are not within the project range,
while the dark gray cells indicate the ranges of attributes
within the project. “!” and “"” represent the open-ended
medium-sized project’s stable results, while “#” and “$”
represent the NASA project’s stable results, best and worst,
respectively.

We have used a tool called SEESAW [26,27] to explore
the maxima and minima of attributes, avoiding intermediate
attribute values. Looking at Fig. 1, we can see that there is
support for this operating assumption made by SEESAW in
that most of the attributes (mainly those attributes that are
proportional to COCOMO II Effort) seem to propagate to
either extreme. Note, however, that there is also counter evi-
dence to that presented in these tables. The obvious evidence
is the fact that there seems to be policies that are not on the
extreme, especially for the medium and small open-ended
projects. Not only that, but such evidence occurs also in the
specific projects in Figs. 2 and 3:
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Table 4 The most common
policies selected as good
policies to apply to the generic
open-ended projects

Note that policies picked less
than 50% of the time have been
omitted

Large Medium Small

Policy % Used Policy % Used Policy % Used

acap=5.0 100 acap=5.0 100 pcap=5.0 100

apex=5.0 100 apex=5.0 100 acap=5.0 100

flex=6.0 100 auto=6.0 100 apex=5.0 100

ltex=5.0 100 flex=6.0 100 flex=6.0 100

pcap=5.0 100 ltex=5.0 100 ltex=5.0 100

pcon=5.0 100 pcap=5.0 100 pcon=5.0 100

plex=5.0 100 pcon=5.0 100 plex=5.0 100

pmat=6.0 100 plex=5.0 100 prec=6.0 100

prec=6.0 100 pmat=6.0 100 sced=1.0 100

resl=6.0 100 prec=6.0 100 sced=1.5 100

site=6.0 100 resl=6.0 100 site=6.0 100

team=6.0 100 sced=1.0 100 team=6.0 100

sced=1.0 90 sced=1.5 100 auto=6.0 90

auto=6.0 80 site=6.0 100 pmat=6.0 90

sced=1.5 80 team=6.0 100 resl=6.0 90

ett=6.0 60 peer=6.0 80 cplx=1.5 80

peer=6.0 60 rely=5.0 80 ett=6.0 80

rely=5.0 60 cplx=1.5 70 docu=1.0 70

tool=5.0 70 cplx=1.0 60

data=2.5 60 data=2.5 60

docu=1.5 60 peer=6.0 60

ett=6.0 60 sced=2.0 60

docu=1.0 50 docu=1.5 50

pvol=2.0 50

pvol=2.5 50

rely=5.0 50

time=3.5 50

tool=5.0 50

• In Fig. 2, notice that there are policies that are ignored
when analyzing these projects for the worst case scenar-
ios, such as cplx and ruse.

• In Fig. 3 there are two instances where a policy is set at
a median value. In OSP, time is set to high (in the table
referred to as “4”), even though its range extends from
nominal to extremely high. Also, for OSP2, sced at one
point is set to nominal, a setting that is not an extreme for
that attribute.

This seems to suggest that there is a need to explore the
full range of the attributes, using tools like STAR, in order
to obtain the best policies. Another piece of evidence is the
fact that there are several attributes that are not set in the
medium and large projects. This indicates that sometimes
the whole range of an attribute can be ignored, including
the extremes. So not only is there a need to evaluate the

whole of the range to evaluate what value of the attribute is
needed, but also to evaluate whether a value needs to be
set for that attribute. In addition, this suggests that, even
though the COCOMO II models are supposed to be linear,
there might be non-linear behavior in them which causes this
behavior.

4.3 The viability of FBC

The previous two sections were “sanity checks” that we were
using the right tool for this analysis. Having passed these
checks, we can now return to the main point of this paper:
the analysis of the viability and utility of FBC. In this section
we will compare the performance of FBC with other “pick
any two” policies mentioned in Sect. 2. The observations
we will make are based on the quartile charts and Mann–
Whitney ranking [21] presented in Figs. 4, 5 and 6. In our
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Table 5 The most common
policies selected as bad policies
to apply for NASA projects

Note that policies picked less
than 50% of the time have been
omitted

Flight Ground OSP OSP2

Policy % Used Policy % Used Policy % Used Policy % Used

acap=3.0 100 acap=3.0 100 docu=2.0 100 ltex=2.0 100

auto=1.0 100 pmat=2.0 100 ett=1.0 100 auto=1.0 100

plex=1.0 100 auto=1.0 100 ltex=2.0 100 ett=1.0 100

ltex=1.0 100 pcon=1.0 100 acap=2.0 100 peer=1.0 100

pcon=1.0 100 ltex=1.0 100 apex=2.0 100 prec=3.0 100

site=1.0 100 site=1.0 100 pcon=2.0 100 pmat=4.0 95

pcap=3.0 100 flex=1.0 100 auto=1.0 100 docu=3.0 95

resl=1.0 100 resl=1.0 100 prec=1.0 100 sced=2.0 75

ett=1.0 100 ett=1.0 100 resl=1.0 100 pmat=4.5 50

flex=1.0 100 pcap=3.0 100 tool=2.0 100

rely=3.0 100 team=1.0 100 team=2.0 100

apex=2.0 100 apex=3.0 100 peer=1.0 100

team=1.0 100 prec=1.0 100 pmat=1.0 100

prec=1.0 100 peer=1.0 100 sced=1.0 80

peer=1.0 100 plex=1.0 95 flex=2.0 75

pmat=2.0 90 rely=1.0 55 cplx=5.0 60

stor=3.0 50

results, a row gets a lower rank if its median value is higher
than the other rows (i.e. lower is better), in addition to being
statistically significantly different.

These charts show the normalized median results, as well
as the second and third quartiles, accompanied by the ranking
of each of the policy schemes. The first and fourth quartiles
are not included in the charts in order to negate the effect of
outliers. Two results that we will present here are that

• FBC does well most of the time. Even though it does not
get the absolute best results always, it is able to compete
with the other policies in.

• FBC does not fail catastrophically by “cutting corners”.
This will be made more clear in our analysis.

Note that some of the results presented here reiterate
results that were mentioned in O. El-Rawas’ thesis [11], and
that the study method used in that document for studying
FBC is also used in this section.

For Figs. 4, 5 and 6, the first presents the quartile charts and
rankings for FBC and its derivate policies for the open-ended
projects, and the latter two for the NASA projects. “Derivate
policies”, in this context, means those that are geared to opti-
mizing for two of the software project assessment factors
[e.g. Cheaper, Faster (FC)] rather than the triple goals of
FBC (Faster, Better, Cheaper).

When observing these figures, we can see that FBC does
well in general, especially compared with “do nothing’: “do

nothing” is a baseline result that is produced for each of
the projects without applying any policies to them, and is
supposed to represent how the project would end up given its
current shape and assuming all future decisions are randomly
chosen.

The results presented in Figs. 4 through 6 show the FBC
rarely out does its derivate policies; however, it does man-
age to stay close in terms of results, ranking close to the top
according to the Mann–Whitney rankings, and rarely ranking
last behind all of the “pick any two” policies. This result in
addition suggests that FBC is a viable policy to follow that
does not have a large cost side effects.

Furthermore, FBC is capable of avoiding model- and
project-specific catastrophic side effects. Some examples of
such side effects include the following:

• For the open-ended projects in Fig. 4, as well as OSP
and OSP2 in Fig. 5, BC fails badly with regard to months
(development time), even though it ranks first and has
the lowest normalized median estimates for defects in all
the cases but one. In fact, BC does worse than “do noth-
ing” with OSP2 months, which is to say that development
time would have been better off in that case had we done
nothing.

• For OSP and OSP2 in Fig. 5, CF (Cheaper, Faster) fails
badly with defects introduced, despite the fact that it ranks
at the top with months and effort in three of the four pro-
jects.
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Table 6 The most common
policies selected as good
policies to apply for NASA
projects

Note that policies picked less
than 50% of the time have been
omitted

Flight Ground OSP OSP2

Policy % Used Policy % Used Policy % Used Policy % Used

pcon=5.0 100 plex=4.0 100 sced=1.0 100 peer=6.0 100

prec=6.0 100 resl=6.0 100 apex=3.0 100 auto=6.0 100

pmat=3.0 100 flex=6.0 100 team=3.0 100 pmat=5.0 100

ltex=4.0 100 team=6.0 100 peer=6.0 100 ett=6.0 100

site=6.0 100 prec=6.0 100 ltex=4.0 100 ltex=5.0 100

flex=6.0 100 acap=5.0 100 auto=6.0 100 prec=5.0 100

acap=5.0 100 pcon=5.0 100 resl=3.0 100 docu=4.0 95

resl=6.0 100 ltex=4.0 100 prec=2.0 100 sced=2.5 70

plex=4.0 100 apex=5.0 100 flex=5.0 100

apex=5.0 100 site=6.0 100 acap=3.0 100

team=6.0 100 pcap=5.0 100 pcon=3.0 100

pcap=5.0 95 pmat=3.0 95 ett=6.0 100

data=3.0 90 time=3.5 85 pmat=4.0 100

time=3.5 90 ett=6.0 75 tool=3.0 90

stor=4.0 85 stor=3.5 65 sced=1.5 65

pmat=2.5 80 data=2.5 65 cplx=6.0 60

data=2.5 80 stor=4.0 60 apex=2.5 60

time=4.0 70 data=3.0 60 prec=1.5 60

rely=5.0 70 rely=4.0 60 tool=2.5 60

peer=6.0 70 time=4.0 60 cplx=5.5 60

stor=3.5 65 pmat=2.5 60 acap=2.5 55

ett=6.0 55 peer=6.0 55 time=3.5 55

auto=6.0 50 auto=6.0 55 pcon=2.5 50

team=2.5 50

One interesting occurrence that we notice is that BF does
not seem to fail catastrophically. In this case, we argue that
this is due to the nature of the relationship between the effort
and the months models. More specifically, it is due to the fact
that effort (or rather the vast majority of the effort calculation)
is included in the derivation equations of months. This infers
that by reducing months we are subsequently reducing effort,
but reducing effort does not necessarily reduce months. One
example of that are the results for BC for OSP2. These show
BC ranking first for effort in Fig. 6, while simultaneously
ranking even worse than “do nothing” for months (develop-
ment time). Hence, we can state that BF in this case is acting
as a pseudo-FBC due to this inter-model dependence.

With the above results and observations, we are able to
assert that FBC is indeed a viable policy to follow. They also
show the possible disastrous outcome of neglecting any one
aspect of a project, at least for development time (months)
and quality (defects). In fact, we can speculate that the reason
FBC failed historically at NASA was because it was not
implemented fully, as demonstrated by the deterioration in
quality that caused the failure of major missions.

5 Threats to validity

The results and methods presented in this paper have sev-
eral threats to their validity which would invalidate them.
For instance, all the analyses in this paper are done under
the assumption that COCOMO and its related models
(COQUALMO) are models that are able to provide us with
close estimates. We also assume that we truly know the tun-
ing limits of these models. These assumptions threaten the
construct validity, where undermining these models would
invalidate this study.

However, we base our analysis on COCOMO and COQU-
ALMO for several reasons. These are mature models which
have been developed, refined, and constrained over a very
long period of time. The range of tuning options explored by
STAR are taken from 30 years of modeling experience and
regression studies of hundreds of projects [5]. COCOMO and
COQUALMO have been selected and tested by a large com-
munity of academic and industrial researchers led by Boehm
(this large group has meet annually since 1985). Unlike other
models such as PRICE TRUE PLANNING [33], SLIM [35],
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Fig. 1 Policy ranges open
ended: This figure shows the
ranges of policies for the
open-ended size projects. The
gray filled cells represent the
allowed range, and filled
triangle and open triangle the
policies chosen while searching
for good and bad policies,
respectively

Ratings
Attributes Large Medium Small

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

prec
Scale flex

Factors resl
(COCOMO II) team

pmat
rely
data
cplx
ruse

Effort docu
Multipliers time

(COCOMO II) stor
pvol
acap
pcap
pcon
apex
plex
ltex
tool
site
sced

Defect auto
Removal peer

(COQUALMO) ett

Fig. 2 Policy ranges part 1:
This figure shows the ranges for
flight and ground. The dark gray
filled cells represent the allowed
range, and filled square and
open square the policies chosen
while searching for good and
bad policies, respectively. This
figure is overlapped over the
results for medium projects
from Fig. 3

Ratings
Attributes flight ground

1 2 3 4 5 6 1 2 3 4 5 6

prec
Scale flex

Factors resl
(COCOMO II) team

pmat
rely
data
cplx
ruse

Effort docu
Multipliers time

(COCOMO II) stor
pvol
acap
pcap
pcon
apex
plex
ltex
tool
site
sced

Defect auto
Removal peer

(COQUALMO) ett

Fig. 3 Policy ranges part 2:
This figure shows the ranges for
OSP and OSP2. The dark gray
filled cells represent the allowed
range, and filled square and
open square the policies chosen
while searching for good and
bad policies, respectively. This
figure is overlapped over the
results for medium projects
from Fig. 3

Ratings
Attributes OSP OSP2

1 2 3 4 5 6 1 2 3 4 5 6

prec
Scale flex

Factors resl
(COCOMO II) team

pmat
rely
data
cplx
ruse

Effort docu
Multipliers time

(COCOMO II) stor
pvol
acap
pcap
pcon
apex
plex
ltex
tool
site
sced

Defect auto
Removal peer

(COQUALMO) ett
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Fig. 4 Results for applying the
best policies for the different
target functions of FBC. Note
that the mean values are
normalized

Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
defects Small 1 BC 0.14

1 CF 0.22
1 BF 0.37
1 FBC 0.37
2 do nothing 82.61

Medium 1 BC 0.08
2 BF 0.16
3 FBC 0.28
4 CF 1.14
5 do nothing 96.02

Large 1 BC 0.01
2 BF 0.38
2 CF 0.43
2 FBC 0.85
3 do nothing 95.62

months Small 1 CF 2.01
1 BF 3.02
1 FBC 3.02
2 BC 32.66
3 do nothing 64.32

Medium 1 CF 1.8
1 BF 2.52
1 FBC 3.6
2 BC 40.65
3 do nothing 94.96

Large 1 CF 2.57
1 BF 5.48
2 FBC 7.53
3 BC 38.36
4 do nothing 97.09

effort Small 1 CF 0.74
2 FBC 1.47
3 BF 2.33
4 BC 4.3
5 do nothing 77.03

Medium 1 CF 0.81
1 BF 0.91
2 FBC 1.92
3 BC 2.67
4 do nothing 96.76

Large 1 CF 1.58
2 BF 2.77
3 BC 2.9
4 FBC 3.83
5 do nothing 95.14

50%

or SEER-SEM [17], the COCOMO family of models are fully
described in the literature. Also, at least for the effort model,
there exist baseline results [8]. Further, we work extensively
with government agencies writing software. Amongst those
agencies, these models are frequently used to generate and
justify budgets.

The internal validity is threatened by basing this study on
a limited dataset of real-world projects sourced from a lim-
ited set of development environments, mainly NASA. We
included other open-ended size-based project templates as
well. However, it could be argued that seven distinct project

templates are not enough to conduct our study. It is important
to recall here that these project templates are in fact used to
generate super sets of thousands of related projects. These
super sets are in turn used by our search-based tool (STAR)
for the study. This is similar to the method used by Shepperd
and Kadoda [38] to generate projects, the only distinction
being that, while we use seven templates, only one was used
in that study.

In addition to the above arguments, we have some
evidence that the above potential threats to validity do not
compromise our conclusions. In fact, we argue that these
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Fig. 5 Results for applying the
best policies for the different
target functions of FBC on
NASA project templates. Note
that the mean values are
normalized (part1)

Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
defects flight 1 BC 0.33

2 FBC 1.43
2 CF 1.7
2 BF 3.11
3 do nothing 91.11

ground 1 BC 0.34
2 BF 0.42
3 FBC 0.47
3 CF 0.67
4 do nothing 87.75

OSP 1 BC 1.18
2 FBC 2.9
3 BF 3.28
4 CF 58.36
5 do nothing 96.64

OSP2 1 FBC 0.34
1 BF 0.67
2 BC 4.61
3 CF 49.69
4 do nothing 62.71

months flight 1 CF 11.2
1 BF 11.62
1 FBC 11.62
2 BC 16.6
3 do nothing 95.02

ground 1 CF 8.46
2 BF 11.44
2 FBC 11.44
3 BC 15.42
4 do nothing 95.52

OSP 1 CF 16.85
2 FBC 22.47
2 BF 23.03
3 BC 65.17
4 do nothing 95.75

OSP2 1 BF 28.12
2 CF 36.46
3 FBC 43.71
4 do nothing 65.58
5 BC 83.33

50%

conclusions are supported by historical data, where among
the 146 missions launched during the FBC-Goldin era at
NASA, 136 missions actually succeeded [1] (that is a suc-
cess rate of about 93%).

We argue that the publicized catastrophic failures of FBC
were due to not using that policy as intended, but rather using
it as CF (Cheaper, Faster). This falls in line with our results:
using CF obviously compromised quality in well-defined and
constrained projects (in this case OSP and OSP2).

6 Future work

Given the above discussion concerning the validity of the
models, one possible future direction could be one where we

attempt to work independent of models and move closer to
case based reasoning (CBR) approaches. One way to do this
could be using Figs. 2 and 3 and deriving a distance measure
between a given project and one that is in the database with
known real world or simulated values. This would allow us to
circumvent the process of simulating the given project under
certain models. What we have done so far for evaluating a
project is to

1. randomly set undetermined settings in a project to a value
that is within project parameters

2. run a simulation of the project
3. repeat 1 and 2 several thousand times in order to account

for random variance, and obtain the median values.
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Fig. 6 Results for applying the
best policies for the different
target functions of FBC on
NASA project templates. Note
that the mean values are
normalized (part2)

Normalized
Case Rank (Mann median 2nd quartile, median,

estimated study Whitney 95%) what estimate 3rd quartile
effort flight 1 FBC 5.27

1 CF 5.27
1 BF 5.34
2 BC 7.89
3 do nothing 91.94

ground 1 CF 3.78
2 FBC 5.2
2 BF 5.59
3 BC 7.36
4 do nothing 91.06

OSP 1 CF 12.2
2 BC 20.59
3 BF 27.21
3 FBC 30.28
4 do nothing 97

OSP2 1 BC 6.1
2 FBC 29.14
3 CF 35.15
3 BF 36.7
4 do nothing 74.13

50%

By attempting to change our approach to one closer to
CBR, we could break free of our model dependence, while
at the same time reducing the amount of computation and ver-
ification needed potentially giving us significant speedups,
as well as additional dataset exposure.

7 Related work

Much of the related work on uncertainty in software engi-
neering uses Bayesian analysis. For example, Pendharkar et
al. [34] demonstrate the utility of Bayes networks in effort
estimation while Fenton and Neil explore Bayes nets and
defect prediction [12] (but unlike this paper, neither of these
teams links defect models to effort models). We elect to take
a non-Bayesian approach since most of the industrial and
government contractors we work with use parametric mod-
els like COCOMO.

The process simulation community (e.g. Raffo and
Menzies [36]) studies models far more elaborate than CO-
COMO or COQUALMO. While such models offer more
detailed insight into an organization, the effort required to
tune them is non-trivial. For example, Raffo spent 2 years
tuning one such model to one particular site [37].

Other related work is the search-based SE approach
advocated by Harmon and Wegener [14]. Search-Based
Software Engineering (SBSE) uses optimization techniques
from operations research and meta-heuristic search (e.g.
simulated annealing and genetic algorithms) to hunt for
near-optimal solutions to complex and over-constrained soft-
ware engineering problems. The SBSE approach can and

has been applied to many problems in software engineering
(e.g. requirements engineering [16]) but most often in the
field of software testing [2]. Harmon’s writing inspired us
to try simulated annealing to search the what-ifs in untuned
COCOMO models [25]. However, we found that SEESAW
ran much faster and produced results with far less variance
than simulated annealing. In addition to the above-related
work, a recent ICSP’09 paper by Orrego et al. [32] has
explored the merits of software reuse in the context of NASA
projects using the same USC models that we use in this paper.
For that study the same stochastic AI methods were used and
showed that software reuse does not always benefit a project,
recommending a case-by-case evaluation of the appropriate-
ness of software reuse.

8 Conclusion

This paper provides a resolution to the apparent perception
that FBC (Faster, Better, Cheaper) is not a viable software
systems development policy. In fact, we argue that FBC is
indeed a viable policy: this is supported by historical data,
where among the 146 missions launched during the FBC-
Goldin era at NASA, 136 missions actually succeeded [1]
(that is a success rate of about 93%), in addition to being
demonstrated in our study. We argue that the publicized
catastrophic failures of FBC were due to not using that policy
as intended, but rather using it as CF (Cheaper, Faster).

We started out this study by stating three statements that
we wanted to establish through this study:
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[H1] STAR, despite its stochastic nature, is stable enough.
More generally, the stochastic nature of a tool does not
render it unusable.

[H2] There are instances where the possible best case value
for an attribute in the COCOMO models is not on the
extremes of its range. This suggests the need to explore
the whole range.

[H3] Not considering all aspects of a software project can
be dangerous. This supports FBC as a viable policy to
follow.

Having discussed the concept of “Faster, Better, Cheaper”
and its history, we presented a stochastic AI tool which we
used to run several simulations in the absence of proper model
tuning. Following this, we presented our studies. Concerning
[H1], we presented a study that showed that STAR is able to
choose certain solutions very consistently, making STAR a
stable tool to use. We moved on to [H2] to show that the
effort in exploring the entire attribute range is worth it. We
found that there are instances where intermediate values are
chosen, which support [H2].

Having established the testbed being used, we moved on
to [H3]. By presenting a study done on several projects, and
by comparing FBC to other policies, we were able to uncover
downfalls to non-fully inclusive policies. In fact, these down-
falls were serious enough at times that doing nothing to the
project would have been better. In doing so, we showed that
not only is FBC viable, but that it would be reckless not to
take into consideration all aspects of a software project when
it is being developed.

Our final recommendation is that FBC should be consid-
ered a viable policy, despite its current lack of credibility, if
it is implemented by regarding all the factors in FBC (Faster,
Better, Cheaper) as equally important.
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