
Case-Based Reasoning vs Parametric Models
for Software Quality Optimization

Adam Brady
Lane Department of CS&EE
West Virginia University, USA

adam.m.brady@gmail.com

Tim Menzies
Lane Department of CS&EE

West Virginia University, USA,
tim@menzies.us

ABSTRACT

Background: There are many data mining methods but few com-
parisons between them. For example, there are at least two ways
to build quality optimizers, programs that find project options that
change quality measures like defects, development effort (total staff
hours), and time (elapsed calendar months). In the first way, we
construct a parametric model to represent prior software projects.
In the second way, we just apply case-based reasoning to reason
directly from historical cases.

Aim: To assess case-based reasoning vs parametric modeling for
quality optimization.

Method: We compared the W case-based reasoner against the
SEEWAW parametric modeling tool.

Results: W is easy to explain and fast to build. It makes no
parametric assumptions and hence can be rapidly applied to project
data in many formats. SEESAW is an elaborate tool that can only
process project data expressed in a particular ontology (i.e. just the
COCOMO attributes). It is also slower to execute than W . In 24
different tests comparing W and SEESAW, W always performs at
least as well as SEESAW. In 6 of those tests W performed statisti-
cally better (all tests used Mann-Whitney, 95% confidence). Lastly,
like any CBR method, it comes with a built-in maintenance strategy
(just add more cases).

Conclusion: The W case-based reasoning tool is recommended
over the SEESAW parametric modeling tool for purposes of quality
optimization (except in the case where there is no local data).

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management—Software quality
assurance; D.2.9 [Software Engineering]: Management—Time
Estimation; I.2.6 [Artificial Intelligence]: Learning—Analogies

Keywords

Effort Estimation, Analogy, Optimization, Parametric modeling,
Software Quality, COCOMO, Case Based Reasoning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE ’10 Timisoara, Romania
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
How should we reason about software projects? Should we ex-

trapolate from old data to build a parametric model; e.g. using a
Bayes net [9], or the linear equations of COCOMO [5, 7]? Or is it
best to reason directly from data, without an intervening parametric
model, using case-based reasoning (CBR) [26]?

This is a difficult question to answer, unless we restrict ourselves
to a particular context. In this paper, we adopt the context of soft-
ware quality optimization; i.e. adjusting a software project such
that we improve quality attributes such as the defects (number of
delivered defects), the months (calendar time to delivery) and the
effort (staff time, in person months, required for that delivery). This
quality optimization task is different from effort estimation. Effort
estimators just predict measures on the current project while qual-
ity optimizers seek changes that most improve a project.

Quality optimization is a non-linear problem. Improving any one
goal can harm the others. For example:

• If management rushes projects to completion, they decrease
months but can increase defects.

• Projects that adopt elaborate quality assurance procedures
can reduce defects but at the cost of increased effort.

A quality optimizer must therefore trade-off between reducing months
and defects and effort. This paper will compare two quality opti-
mizers:

1. SEESAW is an AI algorithm that explores parametric models
of software development, based on COCOMO.

2. W is a case-based reasoning algorithm that does the same
task as SEESAW, without using a parametric model.

SEESAW was first introduced in [18] and has been applied to nu-
merous domains [10, 16, 17, 20–22]. W was first introduced in [8]
but that report includes no comparisons with other quality optimiz-
ers. This paper compares W ’s case-based reasoning against SEE-
SAW’s parametric models. Compared to SEESAW:

• W finds similar or better optimizations.
• W is simpler to code: 200 lines of AWK as opposed to the

5000 lines of LISP code used in SEESAW.
• W is faster to run: the following experiments took minutes

for W , but hours for SEESAW.
• W is simpler to maintain since, in CBR, “maintenance” means

nothing more than “add more cases”.
• W makes no use of an underlying model and is therefore free

of all the assumptions of parametric modeling. Hence it can
be quickly applied to more data sets. For example, SEESAW
requires data to be in the COCOMO format but W has been
applied to numerous data sets in other formats [8].



We conclude from these results that, for the task of quality opti-
mization, W ’s case-based reasoning methodology is recommended
over SEESAW’s parametric modeling. The one exception to this
would be that if there is no local data, then W cannot function
and SEESAW should be used. While we offer no conclusion on
the general merits of case-based reasoning compared to parametric
modeling, these results should encourage further experimentation
on the matter.

2. BACKGROUND
The debate between case-based reasoning and model-based meth-

ods can be conducted on at least two levels:

1. At one level, it is an engineering-based discussion that as-
sesses these approaches on criteria like ease of implementa-
tion, runtime speed, and the observed output performance.

2. At another level of assessment, we can assess case-based vs
model-based in terms of their cognitive implications.

Since most of this paper is about level (1), the rest of this section
discusses level (2).

Platonic model-based reasoning is meant to seek out universal
truths. For example, Newton’s agenda was to find a set of equa-
tions (e.g. F = ma) that can be applied universally on earth, as
well as to well as distant planets and stars. He succeeded. In 1846,
rival astronomers John Adams (in England) and Urbain Leverrier
(in France) raced to find a previously unseen planet that was dis-
turbing the orbit of Uranus. Neptune was first sighted by Adams,
then Leverrier, after both men pointed their telescopes at the precise
point in the sky indicated by Newton’s equations.

We dream of the day that our SE models will achieve the same
universality of Newton’s equations. To date, we have not been suc-
cessful. Researchers like Boehm developed parametric models that
predict development effort for software. In Boehm’s COCOMO
parametric model (the 1981 version [5]):

Effort = a ∗ Locb ∗
∏

i

βixi (1)

where xi are one of the effort multipliers shown in Figure 1 (at top)
and βi is a coefficient that controls the influence of xi.

Such learning combines expert intuition with automatic reason-
ing. Expert intuitions define the general form of the parametric
model, while automated data mining fills in the details of that model.
For example, the goal of data mining over parametric models is
to take local data and learn appropriate values for the tunable at-
tributes. In the above model, those tunable attributes are (a, b,βi).

Based on linear regression over historical data [5, 7], Boehm of-
fers values to (a, b,βi) to three significant figures. Previously [15],
we have reported that such precision is somewhat optimistic since
βi has a very large variance. The plot at the bottom of Figure 1
shows the βi values learned from twenty 66% samples (selected at
random) of the NASA93 data set from the PROMISE repository.
While some of the coefficients are stable (e.g. the white circles of
loc remains stable around 1.1), the coefficients of other attributes
are highly unstable:

• The (max −min) range of some of the coefficients is very
large; e.g. the upside down black triangles of stor ranges
from −2 ≤ βi ≤ 8.

• Consequently, nine of the coefficients in Figure 1 jump from
negative to positive.

We have seen instability in other datasets, including the COC81
data used by Boehm to derive Equation 1 [15]. This is an troubling

upper: acap: analysts capability
in theory pcap: programmers capability
β < 0 aexp: application experience

modp: modern programming practices
tool: use of software tools

vexp: virtual machine experience
lexp: language experience

middle sced: schedule constraint
data: data base size

lower: turn: turnaround time
in theory virt: machine volatility
β > 0 stor: main memory constraint

time: time constraint for cpu
rely: required software reliability
cplx: process complexity
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Figure 1: COCOMO 1 effort multipliers, and the sorted coeffi-
cients found by linear regression from twenty 66% sub-samples
(selected at random) from the NASA93 PROMISE data set;
from [15]. Prior to learning, training data was linearized in
the manner recommended by Boehm (x was changed to log(x);
for details, see [15]). During learning, a greedy back-select re-
moved attributes with no impact on the estimates: hence, some
of the attributes have less than 20 results. After learning, the
coefficients were unlinearized.

observation. It seems that while Newton’s equations let us pre-
cisely locate Neptune, Boehm’s equations cannot point us exactly
at which project attributes will lead to lower effort.

Parametric modeling assumes that (i) one parametric form (e.g.
Equation 1) is universal across multiple domains and (ii) that form
is tuned to the local situation by adjusting some tuning attributes.
An opposite approach to parametric models is case-based reason-
ing (CBR). In CBR, there are no universally-applicable parametric



models. Rather, every conclusion is dependent on the particulars
of the task at hand. CBR is based on a theory of reconstructive
memory. According to this theory, humans do not remember things
as they actually happened. Rather, “remembering” is an inference
process, characterized by Bartlett as:

... a blend of information contained in specific traces
encoded at the time it occurred, plus (retrieval time)
inferences based on knowledge, expectations, beliefs,
and attitudes derived from other sources [4].

Bartlett’s work was ignored when first published (1932) but today
it is highly influential; e.g. experts in psychology & law caution
reconstructive memory means that leading questions can signifi-
cantly alter a report given by a human witness [14].

In AI research, Janet Kolodner [13] used reconstructive mem-
ory to characterize expert explanations. To support her claim, she
offered a set of transcripts of experts explaining some effect. Her
reading of those transcripts was that the experts do not use verbatim
recalling when discussing the past. Rather, they reconstruct an ac-
count of their expertise, on the fly, in response to a particular query.
CBR inference is usually characterized [1] in four steps:

1. Retrieve: Find the most similar cases to the target problem.
2. Reuse: Adapt our actions conducted for the past cases to

solve the new problem.
3. Revise: Revise the proposed solution for the new problem

and verify it against the case base.
4. Retain: Retain the parts of current experience in the case base

for future problem solving.

Figure 2: Four steps of CBR, from http://www.
peerscience.com/intro_cbr.htm.

Having verified the results from our chosen adapted action on the
new case, the new case is added to the available case base. The last
step allows CBR to effectively learn from new experiences. In this
manner, a CBR system is able to automatically maintain itself.

In terms of cognitive theory, CBR challenges notions of reason-
ing as model-building. The mantra of CBR is “don’t think, remem-
ber”. That is, when faced with some new situation:

• Do not reason it out using some underlying model (e.g. New-
ton’s equations or Boehm’s parametric models).

• Rather, respond to a new situation via an on-demand survey
of past experiences [23].

CBR challenges the premise of the PROMISE conference series.
Currently, this conference bills itself as “Predictive Models in Soft-
ware Engineering”. This title assumes that model building is the
best way to analyze software engineering. However, if model-heavy
methods like COCOMO do worse than model-lite CBR methods,
then we would need to rethink the premise of PROMISE.

(Note that we call CBR model-lite, but not model-free. For more
on this distinction, see the Discussion section, below.)

3. QUALITY OPTIMIZATION
The above discussion motivates a comparison between paramet-

ric model-based methods and CBR. To make that comparison, we
need to explore the same task with two different approaches. Ac-
cordingly, this section describes quality optimization using SEE-
SAW’s parametric models or W ’s case-based reasoning.

One thing that may not be apparent from the following discus-
sion is the relative complexity of the two systems. Based on recent
experience with teaching graduate AI, we assert that building and
assessing SEESAW is a term project while W can be implemented
in two weekly homework assignments (week1 implements some
basic data loading and nearest neighbor measures; week2 extends
that code to complete W ).

3.1 SEESAW
Since 2007, we have applied AI algorithms over parametric mod-

els of software development (based on COCOMO) [18] to imple-
ment quality optimizers. We found this to be a challenging task
since it must execute over partial descriptions of projects and, in
the case of parametric models, over models with uncertain internal
parameters (like the ranges shown in Figure 1).

In order to address this challenge, we need to understand the
nature of those models. In parametric modeling, the predictions of
a model about a software engineering project are altered by project
variables P and tunable attribute coefficients T :

prediction = model(P, T ) (2)

In the simplified COCOMO model of Equation 3, the tuning op-
tions T are the range of (a, b) and the project options P are the
range of pmat (process maturity) and acap (analyst capability).

effort = a · LOCb+pmat · acap (3)

Based on the definitions of the COCOMO model we can say that
the ranges of the project attributes are P = 1 ≤ (pmat, acap) ≤ 5.
Further, given the cone of uncertainty associated with a particular
project p, we can identify the subset of the project options p ⊆ P
relevant to a particular project. For example, a project manager
may be unsure of the exact skill level of team members. However,
if she were to assert “my analysts are better than most”, then p
would include {acap = 4, acap = 5}.

SEESAW seeks a treatment rx ⊆ p that maximizes the value
of a model’s predictions where value is a domain-specific function
that scores model outputs according to user goals:

argmax
x






AI search
︷ ︸︸ ︷

rx ⊆ p , t ⊆ T, value(model(rx, t))
︸ ︷︷ ︸

Monte Carlo




 (4)

The intuition of Equation 4 was that, when faced with tuning vari-
ance like that seen in Figure 1, we should search for conclusions



that are stable across the space of possible tunings. SEESAW as-
sumed that the dominant influences on the prediction are the project
options p (and not the tuning options T ). Under this assumption,
the predictions can be controlled by:

• Constraining p (using some AI tool)
• Leaving T unconstrained (and sampling t ∈ T using Monte

Carlo methods)

The parametric models used by SEESAW’s models come from CO-
COMO. These attributes have a range taken from {very low, low,
nominal, high, very high, extremely high} or

{vl = 1, l = 2, n = 3, h = 4, vh = 5, xh = 6}

In COCOMO-II model [7], Boehm divided the attributes into
two sets: the effort multipliers and the scale factors. The effort
multipliers affect effort/cost in a linear manner. Their off-nominal
ranges {vl=1, l=2, h=4, vh=5, xh=6} change the prediction by some
ratio. The nominal range {n=3}, however, corresponds to an effort
multiplier of 1, causing no change to the prediction. Hence, these
ranges can be modeled as straight lines y = mx+b passing through
the point (x, y)=(3, 1). Such a line has a y-intercept of b = 1−3m.
Substituting this value of b into y = mx+ b yields:

∀x ∈ {1..6} EMi = mα(x− 3) + 1 (5)

where mα is the effect of α on effort/cost.
We can also derive a general equation for the scale factors that

influence cost/effort in an exponential manner. These features do
not “hinge” around (3,1) but take the following form:

∀x ∈ {1..6} SFi = mβ(x− 6) (6)

where mβ is the effect of factor i on effort/cost.
Along with COCOMO-II, Boehm also defined the COQUALMO

defect predictor. COQUALMO contains equations of the same syn-
tactic form as Equation 5 and Equation 6, but with different co-
efficients. Using experience from 161 projects [7], we can find
the maximum and minimum values ever assigned to m for CO-
QUALMO and COCOMO. Hence, to explore tuning variance (the
t ∈ T term in Equation 4), all we need to do is select m values at
random from the min/max m values ever seen. An appendix to this
document lists those ranges.

Initially, we implemented the AI search of Equation 4 using
simulated annealing [17, 18, 21]. Subsequent work demonstrated
that the recommendations found in this way did better than nu-
merous standard process improvement methods [20]. Later imple-
mentations were based on a state-of-the-art theorem prover [10].
SEESAW searches within the ranges of project attributes to find
constraints that most reduce development effort, development time
(measured in calendar months), and defects. Figure 3 shows SEE-
SAW’s pseudo-code. The code is an adaption of Kautz & Selman’s
MaxWalkSat local search procedure [13]. The main changes are
that each solution is scored via a Monte Carlo procedure (see score
in Figure 3) and that SEESAW seeks to minimize that score (since,
for our models it is some combination of defects, development ef-
fort, and development time in months).

SEESAW first combines the ranges for all project attributes. These
constraints range from Low to High values. If a project does not
mention a feature, then there are no constraints on that feature, and
the combine function (line 4) returns the entire range of that feature.
Otherwise, combine returns only the values from Low to High. In
the case where a feature is fixed to a single value, then Low = High.
Since there is no choice to be made for this feature, SEESAW ig-
nores it. The algorithm explores only those features with a range

1 function run (AllRanges, ProjectConstraints) {
2 OutScore = -1
3 P = 0.95
4 Out = combine(AllRanges, ProjectConstraints)
5 Options = all Out features with ranges low < high
6 while Options {
7 X = any member of Options, picked at random
8 {Low, High} = low, high ranges of X
9 LowScore = score(X, Low)
10 HighScore = score(X, High)
11 if LowScore < HighScore
12 then Maybe = Low; MaybeScore = LowScore
13 else Maybe = High; MaybeScore = HighScore
14 fi
15 if MaybeScore < OutScore or P < rand()
16 then delete all ranges of X except Maybe from Out
17 delete X from Options
18 OutScore = MaybeScore
19 fi
20 }
21 return backSelect(Out)
22 }
23 function score(X, Value) {
24 Temp = copy(Out) ;; don’t mess up the Out global
25 from Temp, remove all ranges of X except Value
26 run monte carlo on Temp for 100 simulations
27 return median score from monte carlo simulations
28 }

Figure 3: Pseudocode for SEESAW

of Options where Low < High (line 5). In each iteration of the
algorithm, it is possible that one acceptable value for a feature X
will be discovered. If so, the range for X is reduced to that single
value, and the feature is not examined again (line 17). SEESAW
prunes the final recommendations (line 21). This function pops off
the N selections added last that do not significantly change the final
score (t-tests, 95% confidence). This culls any final irrelevancies in
the selections. The score function shown at the bottom of Figure
6 calls COCOMO/COQUALMO models 100 times, each time se-
lecting random values for each feature Options. The median value
of these 100 simulations is the score for the current project settings.
As SEESAW executes, the ranges in Options are removed and re-
placed by single values (lines 16-17), thus constraining the space
of possible simulations.

While a successful prototype, SEESAW has certain drawbacks:

• Model dependency: SEESAW requires a model to generate
the estimates. Hence, the conclusions reached were only as
good as this model so using this tool requires an initial, pos-
sibly time-consuming, model validation process.

• Data Dependency: SEESAW can only process project data
in a format compatible with the underlying model. In prac-
tice, this limits the scope of the tool.

• Arbitrary Design: SEESAW handles two dozen cases using
rules designed using “engineering judgment”; i.e. they are
not based on any theoretical or empirical results in the lit-
erature (for example, “do not increase automatic tools usage
without increasing analyst capability”). The presence of such
ad hoc rules makes it harder to verify that the tool is correct.

• Performance: SEESAW uses tens of thousands of iterations,
with several effort estimates needed calculated for each iter-
ation. This resulted in a performance disadvantage.

• Size and Maintainability: Due to all the above factors, the
SEESAW code base has proved difficult to maintain.

We have found that these factors limit the widespread use of quality
optimizers:

• In the three years since our first paper [18], we have only



coded one software process model (COCOMO), which in-
herently limits the scope of our investigations.

• No other research group has applied these techniques.

These problems motivated an exploration of alternate approaches
to quality optimization.

3.2 W
The standard procedure for CBR is to report the median class

value of some local neighborhood. This neighborhood is typi-
cally defined as the Euclidean distance from a defined project in
n-dimensional space with n project features [26]. W works simi-
larly, but defines a project as a range of values:

• From a range of project values, cases are retrieved that match
a specific amount of overlap with the defined project ranges.
A case’s overlap is defined as the percentage of attributes that
fall within the specified ranges of the defined project.

• From these selected similar cases, the cases are sorted by a
measure of utility to determine the better examples.

• From these sorted ranges, a contrast set is learned. The top 5
"best" cases (those with the best utility measure) are placed
into a set labeled "best". The next 15 ranked cases are placed
into a set labeled "rest", for a combined total of 20 cases.

• From the contrast set, W selects the features that best select
for the region with the best utility measurements.

In the above, better is determined by some domain-specific predi-
cate. In the case of effort, defect, and month estimations, this utility
is the normalized euclidean distance from the lowest possible cost
for all three factors.

3.2.1 Contrast Sets
Once a contrast set learner is available, it is a simple matter to

add W to CBR. W finds contrast sets using a greedy search, where
candidate contrast sets are ranked by the frequency of which they
appear in the "best" set squared divided by how often the candidate
appears in both the "best" and "rest" sets. A simple strategy to score
more favorably towards attributes that occur most often in the best
case is to square the number of times. Taking this heuristic one
step further, given an attribute x, we can penalize x’s occurrence in
the "rest" by dividing the sum of the frequency counts in best and
rest [16], the ensuring rare attributes are weighted appropriately:

like =
freq(x|best)2

freq(x|best) + freq(x|rest)
(7)

From this measure we need only sort each attribute by it’s like
score to prioritize our recommendations

3.2.2 The W Algorithm
CBR systems input a query q and a set of cases. They return the

subset of cases C that is relevant to the query. In the case of W :

• Each case Ci is a historical record of one software project,
plus the development effort required for that project. Within
the case, the project is described by a set of attributes which
we assume have been discretized into a small number of dis-
crete values (e.g. analyst capability ∈ {1, 2, 3, 4, 5} denoting
very low, low, nominal, high, very high respectively).

• Each query q is a set of constraints describing the particulars
of a project. For example, if we are interested in a sched-
ule over-run for a complex, high reliability project that has
only minimal access to tools, then those constraints can be
expressed in the syntax of Figure 4.

@project example
@attribute ?rely 3 4 5
@attribute tool 2
@attribute cplx 4 5 6
@attribute ?time 4 5 6

Figure 4: W ’s syntax for describing the input query q. Here,
all the values run 1 to 6. 4 ≤ cplx ≤ 6 denotes projects with
above average complexity. Question marks denote what can
be controlled- in this case, rely, time (required reliability and
development time)

1. Set i = 0 and q′i = q
2. Let Foundi be the test cases consistent with q′i (i.e. that do not

contradict any of the attribute ranges in q′i).
3. Let Efforti be the median efforts seen in Foundi.
4. If Found is too small then terminate (due to over-fitting). After

Shepperd [26], we terminated for |Found| < 3.
5. If i > 1 and Efforti < Efforti−1, then terminate (due to

no improvement).
6. Print q′i and Efforti.
7. Set i = i+ 1 and q′i = qi−1 ∪ Si

8. Go to step 2.

Figure 5: Revising q to learn q′.

W seeks q′ (a change to the original query) that finds another
set of cases C′ such that the median effort values in C′ are less
than that of C (the cases found by q). W finds q′ by first dividing
the data into two-thirds training and one-third testing. Retrieve and
reuse are applied to the training set, then revising is applied to the
test set.

In the retrieve step, the initial query q is used to find the N train-
ing cases nearest to q using a Euclidean distance measure where all
attribute values are normalized from 0 to 1.

In the reuse (or adapt) step, the N cases are sorted by effort
and divided into the K1 best cases (with lowest efforts) and K2

rest cases. For this study, we used K1 = 5,K2 = 15. Then
we seek the contrast sets that select for the K1 best cases with the
better estimates. All the attribute ranges that the user has marked
as “controllable” are scored and sorted by Equation 7. This sorted
order S defines a set of candidate q′ queries that use the first i-th
entries in S:

q′i = q ∪ S1 ∪ S2... ∪ Si

According to Figure 2, after retrieving and reusing comes revis-
ing (this is the “verify” step). When revising q′, W prunes away
irrelevant ranges using the algorithm of Figure 5.

On termination, W recommends changing a project according to
the set q′ − q. For example, in Figure 4, if q′ − q is rely = 3 then
this treatment recommends that the best way to reduce the effort for
this project is to reject rely = 4 or 5.

Formally, the goal of W is find the smallest i value such that
q′i selects cases with the more of the better estimates. The reader
might protest that the generation of some succinct human-readable
construct like q′i means that W is not a “real” case-based reasoner.
In that view, the distinguishing feature of CBR is that its reasoning
is instance-based and it never generates any generalizations.

In reply, we observe that W is not the only system that extends
standard CBR with some generalization tools. Watson [27] reviews
numerous CBR systems that, for example, run decision tree learn-
ers over their case library in order to automatically generate an in-
dex to the cases. Also, once a system can read a case library, com-



pute distance calculations, and generate a sorted list of the nearest
neighbors, implementing Figure 5 and Equation 7 is only a few
dozen lines of code. That is, W is such a small extension to stan-
dard CBR that it would be somewhat pedantic to declare that it is
not “real” CBR.

4. COMPARING W TO SEESAW
In order to compare W and SEESAW, both systems require sim-

ilar inputs. SEESAW can only handle models in the COCOMO
format. Hence, we restrict ourselves to data in that format (see [8]
for examples of W running on a much broader set of inputs).

The inputs required for this study are:

• W needs a set of historical cases. We used the NASA93
dataset available from http://promisedata.org/data.
This dataset represents 93 different NASA projects collected
from the 1980’s and 1990’s represented as feature vectors
describing each project in COCOMO format. NASA93 data
only contains historical information for project effort. De-
velopment time (measured in calendar months) and defects
were added in using the COCOMO/COQUALMO models.

• Both SEESAW and W need an objective function that guides
their search. In this study, the objective function rewarded
minimization of the sum of defects and effort and months
(after these values had been normalized to the same range).

• Both SEESAW and W need a set of project constraints that
tune their conclusions to particular projects. We used the
project constraints of Figure 6.

Figure 6 comes from our debriefing of NASA program managers
and shows different kinds of NASA mission:

• Ground and flight represent typical ranges for most NASA
projects at the Jet Propulsion Laboratory (JPL);

• OSP represents the guidance, navigation, and control aspects
of NASA’s 1990 Orbital Space Plane;

• OSP2 represents a second, later version of OSP with a more
limited scope of COCOMO attributes.

The values column in that figure shows settings that cannot be
changed; e.g. for OSP, the required reliability is fixed at rely = 5.
On the other hand, the low and high ranges in that figure define the
space of possible recommendations for that project. For instance,
the reliability of the JPL flight software can vary from a ranking of
3 (nominal) to 5 (very high).

W used Figure 6 to set its initial query q0. SEESAW used Fig-
ure 6 to guide a set of simulations around its parametric models.
For each case study, 1000 times, inputs were selected at random,
constrained by Figure 6 (so the inputs for case study X conformed
to the description of X shown in that figure).

In order to offer a fair comparison between SEESAW and W , we
proceeded as follows. Recall that W has a training component that
implements retrieve, reuse, and revise (described around Figure 5).
A test component was implemented that copied the code used for
retrieve. This test component was modified such that it executed
on a different test set that contained no data used in training.

Given that rig, for each case study in Figure 6, we repeated the
following process 50 times.

• The available data (NASA93) was divided into a train and
test sets (of sizes 66%:33%). The division was random so
that each time, different instances appeared in train and test.

• The median and spread values for effort, months, and defects
were collected from the train set. These medians and spreads
were recorded as the before values.

ranges values
project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
rely 3 5 tool 2

JPL data 2 3 sced 3
flight cplx 3 6

software time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

ranges values
project feature low high feature setting

prec 3 5 flex 3
OSP2 pmat 4 5 resl 4

docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Figure 6: The four NASA case studies. Numeric values {1, 2,
3, 4, 5, 6} map to {very low, low, nominal, high, very high, extra
high}.



Medians

EFFORT (total staff months)
Before After Change

Algorithm b a (b-a)/a
Ground SEESAW 269 197 27%

W 269 184 32%
Flight SEESAW 258 252 2%

W 258 208 19%
OSP SEESAW 270 195 28%

W 270 210 22%
OSP2 SEESAW 291 269 8%

W 291 227 22%

DEFECTS
Before After Change

Algorithm b a (b-a)/a
Ground SEESAW 2666 2107 21%

W 2666 2035 24%
Flight SEESAW 2812 3138 -12%

W 2812 3017 -7%
OSP SEESAW 3180 2688 15%

W 3180 2867 10%
OSP2 SEESAW 2612 7797 -119%

W 2612 2271 13%

MONTHS (elapsed calendar time)
Before After Change

Algorithm b a (b-a)/a
Ground SEESAW 16.7 13.5 19%

W 16.7 13.7 18%
Flight SEESAW 16.0 13.7 14%

W 16.0 14.5 9%
OSP SEESAW 16.2 14.4 11%

W 16.2 14.2 12%
OSP2 SEESAW 16.5 14.6 12%

W 16.5 14.2 14%

Spreads

EFFORT (total staff months)
Before After Change

Algorithm b a (b-a)/a
Ground SEESAW 526 99 81%

W 526 125 76%
Flight SEESAW 567 204 64%

W 567 165 71%
OSP SEESAW 350 114 67%

W 350 100 71%
OSP2 SEESAW 824 418 49%

W 824 299 64%

DEFECTS
Before After Change

Algorithm b a (b-a)/a
Ground SEESAW 5979 1670 72%

W 5979 1784 70%
Flight SEESAW 6292 3457 45%

W 6292 2347 63%
OSP SEESAW 5250 2949 44%

W 5250 2011 62%
OSP2 SEESAW 6527 6216 5%

W 6527 3777 42%

MONTHS (elapsed calendar time)
Before After Change

Algorithm b a (b-a)/a
Ground SEESAW 10.5 7.3 30%

W 10.5 4.1 61%
Flight SEESAW 10.3 9.4 9%

W 10.3 7.0 32%
OSP SEESAW 10.1 6.8 33%

W 10.1 5.9 42%
OSP2 SEESAW 11.8 7.2 39%

W 11.8 6.8 42%

Figure 7: Average results in 50 runs. “Before” reports values from the training data. “After” reports values after applying SEESAW
or W . “Median” is the 50th percentile. “Spread” is the (75 - 25)th percentile. The last column in each group (labelled “Change”)
shows the relative change in effort, defect, months found by W or SEESAW. A negative amount in this column denotes an optimiza-
tion failure (increased defect, effort, months). Rows highlighted in grey indicate when one half of a comparison has a statistically
significantly different, and better, result than the other.

• Each quality optimizer (W and SEESAW) was run sepa-
rately. The W algorithm used the train set while SEESAW
used its internal models. In either case, the quality optimizer
returned a set of recommendations on how to change the
project in order to reduce effort, defects, and development
time (measured in calendar months).

• These recommendation were assessed in the same way: by
passing them to W ’s test component which retrieved relevant
cases from the test set.

• The median and spread values for effort, months, and defects
were collected from the instances retrieved from the test set.
These were recorded as the after values.

The results were reported in terms of median and spread. We say
that the median of a set of numbers are the 50th-percentile value
while the spread is difference between the 75th and 25th per-
centile value. The median is a measure of central tenancy while
the spread is a measure of uncertainty around the median. Decreas-
ing the spread means that the predictions fall within a narrower
range. We report spread rather than other measures like standard
deviation since we wish to avoid any inappropriate assumptions of
symmetrical distributions.

5. RESULTS
Average median and spread results over the 50 trials are shown in

Figure 7. The last column in each group (labeled “Change”) shows
the relative change in effort, defect, months found by W or SEE-
SAW. A negative amount in this column denotes an optimization
failure (increased defect, effort, months). Note that such negative
results occur only in a small minority of results.

The gray rows indicate any member of a pair that was both statis-
tically significantly different and had a lower 50th percentile value.
Note that for most pairs, the results are not statistically significantly
different (Mann-Whitney, 95% confidence level).

Before commenting on SEESAW vs W , we first note that our
results should encourage more use of quality optimization. Observe
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Figure 8: Range of changes in median and spread generated
by applying the recommendations of either W or SEESAW.
The median observed changes were (15, 61.5)% for (medians,
spreads), respectively. For the sake of brevity, this graph ig-
nores the -119% outlier value seen in OSP2 defects.

that, in the majority of cases, quality optimization works regardless
of how it is implemented (e.g. CBR vs parametric models). In the
52 experiments of Figure 7, positive quality improvements were
seen for 49/52 = 94% experiments (the 3 exceptions are in the
defect results of Flight and OSP2).

Another result that should encourage more use of quality op-
timizers is the reduction in the spreads. In all experiments the
amount of uncertainty in the median estimates was reduced. As
shown in Figure 8, the reduction in the spread was usually over
61%. This is a major advantage of quality optimizers since un-
certainty is an serious issue that plagues the managers of software
engineering projects.

The spread reductions were larger than the median reductions.
As shown in Figure 8, the expected median reduction in any qual-



ity estimate was only 15%. Note that if this were otherwise, then
that would be a somewhat damning critique of current software
engineering practices. To see this, consider the implications of
quality optimizers finding recommendations that resulted in an or-
der of magnitude reduction in effort and defects and development
time. That would suggest that the managers of software engineer-
ing projects are routinely missing changes that would significantly
improve their projects.

Another feature to note is that, with only a few exceptions, the
median optimizations obtained from case-based reasoning or para-
metric modeling are very similar. For example, in median MONTHS
results (top right of Figure 7), within each pair of treatments, the
change in the median months values is very similar:

• 19 vs 18% change (for Ground)
• 14 vs 9% change (for Flight)
• 11 vs 12% change (for OSP)
• 12 vs 14% change (for OSP2)

That is, projects can contain an an inherent set of constraints that
cannot be changed, even by smart algorithms. Certainly, we can
fine tune the structure of a project to obtain some improvements in
effort, defects, and months but managers should not expect a magic
silver bullet that offers orders of magnitude improvement in their
software process.

Turning now to the main point of this paper, we conducted sta-
tistical tests on each pair of W vs SEESAW improvements in me-
dian/spread for each query. A Mann Whitney U test (95% con-
fidence) was performed on the two sets of reduction distributions
from each comparison. The statistical tests are summarized in Fig-
ure 9. Note that, in the majority case ( 18

24
), W ’s case-based reason-

ing performs as well as SEESAW ′s parametric modeling.

Algorithm Wins Losses Ties
W 6 0 18
SEESAW 0 6 18

Figure 9: Win/Loss/Tie table for statistically significant reduc-
tions across all goals with the Nasa Flight, Ground, OSP, and
OSP2 projects.

Also, when the performance results were different, case-based
reasoning did better than parametric modeling ( 6

24
)- sometimes spec-

tacularly so, Observe the median DEFECT OSP2 results (last line,
top row, middle of Figure 7): SEESAW’s recommendations re-
sulted in a dramatic increase in the number of delivered defects
(2612 to 7797). This result shows that W ’s modest decrease in
defects (13%) is actually far better than those found by the other
approach.

In summary, the simple case-based reasoning of W performs just
as well, or better, than SEESAW’s elaborate parametric modeling.

6. DISCUSSION

6.1 Search-based Software Engineering
Previously [10], we have explored the connection of SEESAW

to search-based SE (SBSE) [11]. In summary, SBSE uses opti-
mization techniques from operations research and meta-heuristic
search (e.g., simulated annealing and genetic algorithms) to hunt
for near-optimal solutions to complex and over-constrained soft-
ware engineering problems. SBSE has been applied to many prob-
lems in software engineering (e.g., requirements engineering [12])
but most often in the field of software testing [2]. Harman’s writ-
ing inspired us to try simulated annealing (SA) to search the what-
ifs in untuned COCOMO models [18]. For quality optimization,

however, we found that search methods taken from the constraint
satisfaction literature out-perform SA [10].

6.2 Model-lite
We said above that CBR was model-lite, but not model-free. We

hesitate to call CBR model-free, lest we incur the wrath of Janet
Kolodner or Roger Shank [24]. Kolodner and Shank regard CBR
as a model of human cognition where knowledge in a context-
dependent manner, according to the task at hand. This construct
may differ from context to context but the search mechanisms by
which the construct is built (CBR) is constant.

To expand on that point, we note that “model” has at least two
definitions:

1. A hypothetical description of a complex entity or process.
2. A plan to create, according to a model or models.

The first definition is closest to Shepperd’s definition of “model-
based systems”. According to Shepperd [25] software effort esti-
mation methods separate into “human-centric” techniques and “model-
based” techniques. In the former, humans produce their recom-
mendations without using some externalizable representation. In
the latter, a variety of techniques may be used which, according
to Shepperd, divide into algorithmic/parametric models (like CO-
COMO) and induced prediction systems (which include regression,
rule induction, CBR, and many others).

We can marry Shepperd’s view with that of Kolodner and Shank
by specializing the definition of model-based systems. Extend-
ing Shepperd’s ontology, we say that model-based systems can be
sorted according to how much modeling they assume prior to in-
duction. At one end of that sort order, we have parametric mod-
els like COCOMO. We call these model-heavy since they conform
to the first definition of “model”, shown above. At the other end
of that sort are the model-lite methods like CBR. These model-
lite methods conform to the second definition of “model”. Note
that this second definition is closest to Kolodner and Shank’s view
on CBR; i.e. the CBR model is a recipe for generating context-
dependent knowledge.

7. CONCLUSION
Advocates of reconstructive memory such as Barlett [4], Kolod-

ner [13], or Shank [24] argue that we make it up as we go along. In
case-based reasoning (CBR), inference repeats every time there is a
new query. Our reading of the papers at this conference is that, ex-
cept for a few papers that deal with reasoning-by-analogy (e.g. [3]),
most of this community avoids the model-lite approach of CBR.

Proponents of parametric models argue that there exist domain-
independent models which can be tuned to local details. In this
approach, reasoning can take the form of a data miner learning val-
ues for tune-able attributes of a parametric model like Equation 1.
In this way, learning can happen once and users can use the tuned
model for all future queries.

Unfortunately, these supposedly domain-independent models (like
COCOMO) suffer from massive internal variance (see Figure 1).
Previously, we have tried to manage internal variance of this prob-
lem with SEESAW: an AI algorithm that sought stable conclusions
across the space of possible tunings within a parametric model.
While a successful prototype, SEESAW has disadvantages:

• Dependency on a particular parametric model
• A requirement that all the data be in a format acceptable to

that model
• Too many arbitrary internal design decisions
• Slow runtimes



• A code base that proved too large to maintain, modify, and
add support for more models

With a result supporting CBR, this paper finds little to recommend
from SEESAW over the W case-based reasoning tool. Standard
CBR applies a query q to find relevant examples from a set of cases
C using the retrieve-reuse-revise-retain loop of Figure 2. W ex-
tends standard CBR by learning an adaption of q, called q′, that
retrieves better quality examples. Based on the analysis of [8] and
this paper, we recommend W on several grounds:

• W finds similar, or better, results than SEESAW (see Fig-
ure 9).

• W is simpler to code: 200 lines of AWK as opposed to the
5000 lines of LISP code used in SEESAW.

• W is faster to run: the above experiments took minutes for
W , but hours for SEESAW.

• W is simpler to maintain since, in CBR, “maintenance” means
nothing more than “add more cases”.

• W makes no use of an underlying model and is therefore free
from the assumptions of parametric modeling. Hence it can
be applied to more data sets. For example, SEESAW requires
data to be in the COCOMO format but W has been applied
to numerous data sets in other formats [8].

Having said that, there is one situation where we’d recommend
SEESAW over W . Like all CBR systems, W needs cases. If there
is no local data, then SEESAW would be the preferred (only) op-
tion.

What then should we say about the premise of PROMISE; i.e.
that “modeling” is an appropriate method for understanding SE
projects? Our answer is two-fold. Firstly, there is insufficient
evidence in this paper to make the conclusion that CBR always
beats model-heavy methods like parametric models. Neverthless,
these results clearly motivate further exploration and comparison
between the value of CBR and model-heavy techniques. For ex-
ample, at our lab we are exploring very fast clustering methods to
support scaling CBR to very large data sets.

Secondly, there are at least two kinds of “models.” In the tradi-
tional model-heavy definition, models are specific products that can
be applied to multiple domains. In the CBR model-lite definition,
a model is a process that generates many products, each of which
is customized to the particulars of a local domain. In this paper and
[19] we have seen the following advantages of CBR: easy imple-
mentation, fast runtimes, easy maintenance, able to be applied to
more data, and out-performance of model-heavy methods. If these
advantages apply in other problem domains, we speculate that the
future of PROMISE will be “models-as-process” and not “models-
as-products”.
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APPENDIX

This appendix lists the minimum and maximum m values used for
Equation 5 and Equation 6. In the following, mα and mβ denote
COCOMO’s linear and exponential influences on effort/cost, and
mγ and mδ denote COQUALMO’s linear and exponential influ-
ences on number of defects.

Their are two sets of effort/cost multipliers:

1. The positive effort EM features, with slopes m+
α , that are pro-

portional to effort/cost. These features are: cplx, data, docu,
pvol, rely, ruse, stor, and time.

2. The negative effort EM features, with slopes m−

α , are inversely
proportional to effort/cost. These features are acap, apex, ltex,
pcap, pcon, plex, sced, site, and tool.

Their m ranges, as seen in 161 projects [6], are:
(

0.073 ≤ m+
α ≤ 0.21

)

∧
(

−0.178 ≤ m−

α ≤ −0.078
)

(8)

In the same sample of projects, the COCOMO effort/cost scale fac-
tors (prec, flex, resl, team, pmat) have the range:

−1.56 ≤ mβ ≤ −1.014 (9)

Similarly, there are two sets of defect multipliers and scale factors:

1. The positive defect features have slopes m+
γ and are propor-

tional to estimated defects. These features are flex, data, ruse,
cplx, time, stor, and pvol.

2. The negative defect features, with slopes m−

γ , that are in-
versely proportional to the estimated defects. These features
are acap, pcap, pcon, apex, plex, ltex, tool, site, sced, prec,
resl, team, pmat, rely, and docu.

COQUALMO divides into three models describing how defects
change in requirements, design, and coding. These tunings options
have the range:

requirements

{

0 ≤ m+
γ ≤ 0.112

−0.183 ≤ m−

γ ≤ −0.035

design

{

0 ≤ m+
γ ≤ 0.14

−0.208 ≤ m−

γ ≤ −0.048

coding

{

0 ≤ m+
γ ≤ 0.14

−0.19 ≤ m−

γ ≤ −0.053

(10)

The tuning options for the defect removal features are:

∀x ∈ {1..6} SFi = mδ(x− 1)
requirements : 0.08 ≤ mδ ≤ 0.14

design : 0.1 ≤ mδ ≤ 0.156
coding : 0.11 ≤ mδ ≤ 0.176

(11)

where mδ denotes the effect of i on defect removal.


