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ABSTRACT
BACKGROUND: Defect predictors learned from static code mea-
sures can isolate code modules with a higher than usual probability
of defects.
AIMS: To improve those learners by focusing on the defect-rich
portions of the training sets.
METHOD: Defect data CM1, KC1, MC1, PC1, PC3 was sepa-
rated into components. A subset of the projects (selected at ran-
dom) were set aside for testing. Training sets were generated for a
NaiveBayes classifier in two ways. In sample the dense treatment,
the components with higher than the median number of defective
modules were used for training. In the standard treatment, modules
from any component were used for training. Both samples were run
against the test set and evaluated using recall, probability of false
alarm, and precision. In addition, under sampling and over sam-
pling was performed on the defect data. Each method was repeated
in a 10-by-10 cross-validation experiment.
RESULTS: Prediction models learned from defect dense compo-
nents out-performed standard method, under sampling, as well as
over sampling. In statistical rankings based on recall, probability of
false alarm, and precision, models learned from dense components
won 4-5 times more often than any other method, and also lost the
least amount of times.
CONCLUSIONS: Given training data where most of the defects
exist in small numbers of components, better defect predictors can
be trained from the defect dense components.

Categories and Subject Descriptors
I.5 [learning]: machine learning; D.2.8 [software engineering]:
product metrics

General Terms
Algorithms, experimentation, measurement

Keywords
defect prediction, sampling, defect dense components, ceiling ef-
fect
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1. INTRODUCTION
It is widely believed that some internal properties of software

(e.g., metrics) have relationship with the external properties (e.g.,
defects). Many prediction models have been proposed based on
software metrics. For example, Menzies et al. [20] performed de-
fect predictions for five NASA projects using static code metrics.
In their work, probability of detection (recall) and probability of
false alarm (pf) are used to measure the accuracy of a defect pre-
diction model. Their models generate the average results of recall
= 71% and pf = 25%, using a Naive Bayes classifier.

Zhang and Zhang [40] pointed out that the Menzies et al. re-
sults are not satisfactory when precision is considered. They found
that high recall and low pf do not necessarily lead to high preci-
sion. In reply, Menzies et al. [19] noted that for the defect data in
the PROMISE repository, the percentage of modules with defects
is low. They showed that, for such data, it is difficult to achieve
both high precision and high recall (that mathematical argument is
reproduced in §3.1).

This paper disputes the conclusions of Menzies et al. We achieve
better defect predictors with an approach that originated in the fol-
lowing observation:

With software projects, most of the defects occur in a
minority of components.

In the general research community, this is not a new observation.
It has been repeatedly demonstrated that most defects occur in a
small number of components (e.g. see [9]). However, within the
PROMISE community, this is a new finding. To the best of our
knowledge, this effect has not been reported previously, even though
the PROMISE defect data sets have been the subject of intense
scrutiny (perhaps this community has been so focused on the learner
that they miss important aspects of the data).

What is new in this paper is the recognition that we can exploit
this distribution to build better defect predictors. We test the spec-
ulation that if we focus more on the densely defective components,
we might generate better defect predictors.

The rest of this paper explores this possibility. In the follow-
ing, we say that a software project is divided into components and
components have modules. In this terminology:

• The module is the smallest unit of compilation; e.g. a func-
tion in “C”, or a method in “JAVA”;

• A component is a large groupings of many modules.

Typically, one project contains dozens to hundreds of components,
and each component contains dozens to hundreds of modules.

Using this terminology, we can summarize our findings as fol-
lows: training on densely defective components produces better
defect predictors than otherwise.



2. BACKGROUND
Before we present our specific results, this section reviews the

general area of defect prediction.
One method for assessing software is to extrapolate the curve

of post-release failures. In this reliability engineering approach,
analysts use knowledge of how the frequency of failures seen in
a running system changes over time [26, 15]. Given a history of
defects in a running system, reliability engineers extrapolate a re-
liability growth curve that predicts the future probability of failure
on demand of a developing system. Such curves can predict how
long before a system reaches a required level of reliability.

Reliability engineering assumes that the system is running; i.e.
not until the entire system is assembled. It is undesirable to delay
software rework until after the system is running since the longer a
defect remains in code, the more expensive it is to remove [4].

Prior to building a fully functioning system, software engineers
build modules then, usually, apply some quality assurance (QA)
technique to assess the quality of those modules (those techniques
include inspections, unit tests, static source code analyzers, etc). A
record of the results of those QA techniques is a defect log. Note
that this log can accumulate from very early in the development
cycle (i.e. even before the entire system is running).

Defect predictors can be learned from these historical logs, if the
logs contain tables of data. In those tables:

• Rows describe data from one module; a.k.a. “functions” or
“methods” or “procedures”.

• Columns describe static code features such as lines of code
measures, the McCabe measures, and the Halstead measures.
The class label “defective” is also a column, whose values are
either true or false

For these data sets, the data mining goal is to learn a binary pre-
dictor for defective modules from past projects that can be applied
to future projects.

2.1 How can these defect predictors be used?
Defect predictors can be used to adjust QA budgets that are in-

appropriately focused on the wrong parts of the code.
During development, developers skew their limited quality assur-

ance (QA) budgets towards artifacts they believe most require extra
QA. For example, it is common at NASA to focus QA more on the
on-board guidance system than the ground-based database storing
scientific data collected from a satellite.

This skewing process can introduce an inappropriate bias to QA.
If the QA activities concentrate on project artifacts, say A,B,C,D,
then that leaves blind spots in E,F,G,H,I,.... Blind spots can com-
promise high assurance software. Leveson remarks that in modern
complex systems, unsafe operations often result from an unstud-
ied interaction between components [14]. For example, Lutz and
Mikulski [17] found a blind spot in NASA deep-space missions:
most of the mission critical in-flight anomalies resulted from errors
in ground software that fails to correctly collect in-flight data.

To avoid blind spots, one option is to rigorously assess all aspects
of all software modules. But this is impractical. Software project
budgets are finite and QA effectiveness increases with QA effort:

• A linear increase in the confidence C of finding faults takes
exponentially more effort. For example, to detect one-in-a-
thousand module faults, moving C from 90% to 94% to 98%
takes 2301, 2812, and 3910 black box tests (respectively)1.

1A randomly selected input will find a fault with probability x.
Voas observes [35] that after N random black-box tests, the chance

• The infamous state space explosion problem imposes strict
limits on how much a system can be explored via automatic
formal methods [21]. Lowry et.al. [16] and Menzies and Cu-
kic [18] offer numerous other examples where assessment
effectiveness is exponential on effort.

Exponential costs quickly exhausts finite QA resources. Hence,
blind spots can’t be avoided and must be managed. Standard prac-
tice is to apply the best available assessment methods on the sec-
tions of the program that the best available domain knowledge de-
clares is the most critical. We endorse this approach. Clearly, criti-
cal sections require the best known assessment methods, in hope of
minimizing the risk of safety or mission critical failure occurring
post deployment. However, this focus on certain sections can blind
us to defects in other areas which, through interactions, may cause
similarly critical failures. Therefore, the standard practice should
be augmented with a lightweight sampling policy like defect pre-
dictors that (a) explores the rest of the software and (b) raises an
alert on parts of the software that appear problematic. This sam-
pling approach is incomplete by definition. Nevertheless, it is the
only option when resource limits block complete assessment.

2.2 But Does It Work?
Compared to certain reports of standard industrial practice, de-

fect predictors are better than humans are identifying which mod-
ules will require further QA. Previously we have reported studies
where defect predictors had probabilities of detection (recall) and
probabilities of false alarm (pf) of (recall,pf)=(71%,25%), on aver-
age [20]. These values are higher than known results from man-
ual inspection methods. For example, a panel at IEEE Metrics
2002 [31] concluded that manual software reviews can find ≈60%
of defects2. In other work, Raffo found that the defect detection
capability of industrial review methods can vary from

Recall = TR(35, 50, 65)%

for full Fagan inspections [6] to

Recall = TR(13, 21, 30)%

for less-structured inspections [30] (note: “TR(a, b, c)” is a trian-
gular distribution with min/mode/max of a, b, c).

Defect prediction can also be faster than human-intensive meth-
ods. Static code features can be automatically and cheaply ex-
tracted from source code, even for very large systems [27]. By
contrast, other methods such as manual code reviews are labor-
intensive. Depending on the review methods 8 to 20 LOC/minute
can be inspected and this effort repeats for all members of the re-
view team, which can be as large as four or six [22].

Also, there are industrial reports where this style of defect pre-
diction was found pragmatically useful by industry:

• Defect predicting technology has been commercialized in the
Predictive tool and sold across the United States. One com-
pany used it to manage safety critical software for fighter
aircraft (the software controlled a lithium ion battery, which
can overcharge and possibly explode). After applying a more
expensive tool for structural code coverage was applied, the

of the inputs not revealing any fault is (1−x)N . Hence, the chance
C of seeing the fault is 1 − (1 − x)N which can be rearranged to
N(C, x) = log(1−C)

log(1−x) . For example, N(0.90, 10−3) = 2301.
2That panel supported neither Fagan’s claim [7] that inspections
can find 95% of defects before testing or Shull’s claim that special-
ized directed inspection methods can catch 35% more defects that
other methods [32].



company ran Predictive on the same code base. Predictive
produced consistent results with the more expensive tools
while being able to faster process a larger code base than
the more expensive tool [34].

• Defect predictors developed at NASA [20] have been ap-
plied to software development companies in another country
(in Turkey). When inspection teams focused on the modules
that trigger the defect predictors, they found up to 70% of the
defects using 40% of the effort (measured in staff hours) [2].

• A subsequent study on the Turkish software compared how
much code needs to be inspected using random selection vs
selection via our defect predictors. Using random testing,
87% of the files would have to be inspected in order to de-
tect 87% of the defects. However, if the inspection process
was restricted to the 25% of the files that trigger the defect
predictors, then 88% of the defects could be found. That is,
the same level of defect detection (after inspection) can be
achieved using 87−25

87 = 71% less effort [1].

2.3 Building Better Detectors
There are several proposals for improving defect predictors. One

argument is to augment these static code attributes with social met-
rics describing patterns of interactions between developers. This
has proved useful in some domains [28] but not in others [36].

Another approach is to use other static code measures such as
churn (the rate at which the code base changes) [10]. As far as we
are aware, there is no definitive result showing that some static code
measures are better than any other.

As to use of better data mining algorithms, the current state of
the art is curiously static:

• Khoshgoftaar and Seliya [12] performed an extensive study
on NASA JM1 and KC2 datasets using 25 classification tech-
niques with 21 static code metrics. They observed low pre-
diction performance, and they did not see much improvement
by using different classification techniques.

• Lessmann et al. report an extensive study on the statistical
differences between 19 data miners commonly used for de-
fect prediction [13]. The learners’ performance was remark-
ably similar: all but four shared top ranking in their analysis.

Recently, Milton and Menzies et. al. have had some success
with tuning data miners to the local business goals. Their WHICH
learner performs a stochastic beam search across combinations of
attribute ranges to maximize a domain-specific scoring function.
In a study with one scoring function, WHICH significantly out-
performed standard methods like C4.5 and Naive Bayes [33].

While the WHICH study is indeed interesting, it only wins by
changing the rules of the game. In standard defect prediction, the
learned detectors are assessed via their precision, false alarm rate,
or recall (probability of detection). Note that by “standard defect
prediction” we mean every piece of research referenced in this pa-
per (with the sole exception of WHICH) and every defect predic-
tion paper ever published at PROMISE. Therefore, having noted
the WHICH experiments, the rest of this paper will only explore
standard defect prediction.

3. THE CEILING EFFECT
The high water mark in this field has been static for several years.

For example, for four years we have been unable to improve on
our 2006 results [20]. Other studies report the same ceiling effect:
many methods learn defect predictors that perform statistically in-
significantly different to the best results. After a careful study 19

data miners for learning defect predictors seeking to maximize the
area under the curve of detection-vs-false alarm curve, [13] con-
cludes

...the importance of the classifier model is less than
generally assumed ... practitioners are free to choose
from a broad set of models.

If better data miners do not offer improvements, perhaps it is
time to explore other approaches. If we cannot improve the data
miners, perhaps we can improve the data? To understand this ap-
proach, in this section:

• we review the mathematics of defect prediction. This mathe-
matical analysis will highlight the importance of the neg/pos
ratio. The neg/pos ratio expresses the percentage of defec-
tive modules in the training set: if a training set contains 10%
defective modules, then neg/pos = 9.

• we then present experiments that carefully select the training
data in order to change the neg/pos ratio.

3.1 Defect Prediction Mathematics
Let {A, B, C, D} denote the true negatives, false negatives, false

positives, and true positives (respectively) found by a binary detec-
tor. Certain standard measures can be computed from A, B, C, D:

pd = recall = D/(B + D)
pf = C/(A + C)
prec = precision = D/(D + C)
acc = accuracy = (A + D)/(A + B + C + D)
bal = balance = 1−

p
recall2 + (1− pf)2

f −measure = 2 ∗ recall ∗ prec/(recall + precision)
neg/pos = (A + C)/(B + D)

The last measure (neg/pos) is most important to the subsequent
discussion. The following expression offers a relationship between
prec, recall, pf . Note that this relationship changes according to
the ratio of the target class in the training data; i.e. the neg

pos ratio.

prec =
D

D + C
=

1

1 + C
D

=
1

1 + neg/pos · pf/recall
(1)

which can be rearranged to

pf =
pos

neg
·
(1− prec)

prec
· recall (2)

Menzies et al. [19] called this expression Zhangs’ equation after
the authors of the paper that first reported it [40]. Observe how,
when recall is fixed then the false alarm rate becomes controlled
by precision and a fixed constant determined by the data set being
examined; i.e. when (α = neg/pos) and recall = 1 then:

pf = α ·
1− prec

prec
(3)

From this equation, it is clear that for any targeted recall value,
increasing precision requires decreasing false alarm rates; e.g. for
prec ∈ {0.5, 0.70, 0.9, 0.95}, pf becomes {1, 0.43, 0.11, 0.005},
respectively. As neg/pos increases, high recall&precision is only
possible when pf becomes vanishingly small. For example, in the
ranges 0.65 ≤ prec, recall ≤ 0.8, Zhangs’ equation reports that
pf falls into the following ranges:

• 0.023 ≤ pf ≤ 0.062 for neg/pos = 7;
• 0.0108 ≤ pf ≤ 0.0287 for neg/pos = 15;
• 0.007 ≤ pf ≤ 0.0017 for neg/pos = 250;



Figure 1: The change of precision with pf and pd when
neg/pos = 15

In our experience [23, 20, 24], such small pf values are not
achievable, at least with the defect data in the PROMISE reposi-
tory. Figure 1 illustrates how precision changes with pf and pd
values, assuming neg/pos = 15.

In summary, Zhangs’ equation represents a fundamental limit on
our ability to improve defect predictors for domains where the de-
fective modules are relatively infrequent. This analysis is highly
pertinent to the PROMISE defect data sets that have neg/pos ra-
tios up to 249. That is, unless we can do something about these
neg/pos ratios, the mathematics of defect prediction assert that
further improvements in defect prediction will require relaxing the
goal of building defect predictors with high precision and high re-
call.

3.2 Changing the neg/pos Ratio
One obvious way to change neg/pos ratio is to over-sample

or under-sample the training data. Both methods might be useful
in data sets with highly imbalances class distributions. In over-
sampling, randomly selected instances from the minority class are
copied. In under-sampling, instances are selected until the com-
bined number of instances with other classes is equal to the num-
ber of instances with the desired goal. Over-sampling typically
grows the size of the dataset while under-sampling results in a much
smaller dataset.

At PROMISE’08, Menzies et al. [25] reported the following sam-
pling experiment. Different sampling policies (over-sampling, under-
sampling, and "no treatment") were applied to the NASA datasets
using 10-way cross-validation. For the “no treatment” experiments,
the raw data was used for training and testing without any adjust-
ment to the class frequencies.

In these studies, two data miners were used to evaluate known
over- and under- sampling results described in the literature [5, 11]:
a Naive Bayes classifier and the J48 decision tree learner [37, 29].
Other learners were not used since, as discussed above, Lessmann
et al. reported that experiments with other learners have yet to be
productive [13].

Menzies et al demonstrated in the paper that:

• "No treatment" performed as well as under-sampling
• Over-sampling did not improve classifier performance. This

result is consistent with Drummond & Holte’s sub-sampling
experiments [5] and the sub-sampling classification tree ex-
periments of Kamei et.al. [11].

f-measure 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 j48 / none 27 86 94 !
2 j48 / over 33 80 92 !
3 nb / none 33 69 81 !
4 nb / under 33 67 79 !
4 nb / over 33 67 79 !
5 j48 / under 30 53 79 !

0 50 100

Figure 2: Over- & under- & no sampling results. Sorted de-
scending by median f −measure results (f −measure is de-
fined in §3.1). The right-hand side show median values (as a
circle) within a 25% to 75% percentile range. The rank, shown
left-hand-side, come from the statistical analysis of Figure 3.
Three methods share top rank: NB/none, NB/under, j48/under.

rank treatment win loss ties
1 j48 / none 5 0 0
2 j48 / over 4 1 0
3 nb / none 3 2 0
4 nb / under 1 3 1
4 nb / over 1 3 1
5 j48/ under 0 5 0

Figure 3: Statistical tests on the Figure 2 results: sorted in as-
cending order on the number of losses (so better methods ap-
pear at the top of the table. First column shows a compari-
son of one treatment against the others. Two treatments have
the same rank if their median ranks are statistically different
(Mann-Whitney, 95% confidence).

• Curiously, throwing away data (i.e. under-sampling) did not
degrade the performance of the learner. In fact, in the case
of j48, throwing away data improved the median balance,
as defined in §3.1, performance from around 40% to over
70%. The implications of this “under-sampling is ok” result
are discussed in [25].

In order to maintain consistency with the main experiment of
this paper, we replicated the experiment described in [25] using
the same data sets. The results were evaluated using f-measure,
which is the weighted average of the performance of a treatment
based on precision and recall. Figure 2 shows the results of the
replicated experiment with f-measures.

Figure 2 and Figure 3 highlight the fact that over- and under-
sampling methods did not necessarily improve prediction perfor-
mance when f-measure was considered. Here we can see that,
again, "no treatment" was not only competitive with the other two,
it was the best treatment.

In summary, under-sampling/over-sampling approaches do not
appear to be promising. However, for rigor, in the remaining sec-
tions of this article we will test them alongside the proposed method:
learning prediction models from defect-dense components.

4. BREAKING THROUGH THE CEILING

4.1 The Distribution of Defects
In this paper, we exploit the naturally occurring distributions in-

side defect data sets. A repeated result [38, 39] is that in a large
software system, the distribution of defects are skewed - that a
small number of modules accounts for a large proportion of the
defects. For example:



• In Eclipse 3.0, 20% of the largest packages are responsi-
ble for 60.34% of the pre-release defects (defects found six
months before the release) and 63.49% of post-release de-
fects (defects found six months after the release).

• At the file level, 20% of the largest Eclipse 3.0 files are re-
sponsible for 62.29% pre-release defects and 60.62% post-
release defects.

• These results are consistent with those reported by other re-
searchers such as Fenton and Ohlsson [8] and Andersson and
Runeson [3].

• We further find that the distribution of defects across modules
can be formally expressed using the Weibull function.

The skewed distribution of defects is also found in the PROMISE
defect datasets; i.e. a few modules (at the function/method level)
have a large number of defects and a large number of modules have
a few defects. As an example, Figure 4 shows the distribution of
defects over KC1 and PC3 modules from the PROMISE reposi-
tory. All modules are ranked by the number of defects they are
responsible for. Clearly the distributions are highly skewed- a few
modules have many defects and most modules have 0 or 1 defect.
We find that the top 5% “most defective” PC3 modules contain
68.34% of the defects, the top 10% “most defective” PC3 mod-
ules contain 98.84% of the defects. For KC1, the top 5% modules
contain 55.81% defects and the top 10% modules contain 77.90%
defects. Furthermore, we find that the distribution of defects also
follows the Weibull distribution.

For the PROMISE defect datasets, we also perform component-
level analysis. For each data set, components are extracted (using a
unique identifier) containing both defective and non-defective mod-
ules (also labeled with a unique value). The data is shown in Table
1. We found that different components have different defect "den-
sities". For example:

• For PC3, 6 out of 29 (20.69%) "most-defective" components
contains 77.61% defects and 70% defective modules. The
NEG/POS ratios in these components range from 0.93 to
2.70, while for all modules in PC3, the overall NEG/POS
ratio is 8.77. Also, 14 out of 29 (48.28%) "most-defective"
components contains 98.07% defects and 97.50% of defec-
tive modules. The average NEG/POS ratio in these com-
ponents is 5.20. The defect dense components have much
smaller NEG/POS ratios.

• For KC1, 6 out of 18 (33.33%) "most-defective" compo-
nents contains 65.71% defects and 77.85% defective mod-
ules. These components have NEG/POS ratios ranging
from 0.7 to 4.7, while for all modules in KC1, the overall
NEG/POS value is 5.5. Also, 9 out of 18 (50%) compo-
nents contain 91.24% defects and 89.23% defective modules.
The average NEG/POS ratio in these components is 4.30.
The defect dense components have also smaller NEG/POS
ratios.

We obtained similar results for other NASA projects. In sum-
mary, most of the defects are found in the minority of components,
which have lower NEG/POS ratios.

4.2 Learning from Defect Dense Components
- An Experiment

The goal of this experiment is to assess the value of component-
level, rather than project-level, training for defect predictors. For
the component-level training, we will favor training data from com-
ponents with higher than usual defect frequencies.

Five NASA defect data sets from the PROMISE repository were
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Figure 4: The Distribution of Defects in KC1 and PC3

used: CM1, KC1, MC1, PC1, PC3. These data sets were chosen
because:

• They have been studied in the field extensively;
• They are widely available to the PROMISE community;
• They are projects comprised of numerous components.

The subset of components with high defect densities were extracted
as follows:

• If the number of defective modules per component exceeds
the median number of defective modules across all compo-
nents in that data set, it is labeled as a defect-dense compo-
nent.

For example, in Figure 5 the bottom horizontal line represents
the median number of defects in the KC1 and PC3 data sets. Com-
ponents existing above this line are labeled dense, while those ly-
ing under it are denoted as sparse.

A simple description of the experiment can be given as follows.
For each data set, dense components are extracted. When a dense
component is located, a Naive Bayes classifier is trained on all
modules within this component. Testing is conducted on modules
belonging to all components of that data set except the one used to
train the learner. Each defect-dense component is visited and used
in this fashion.

A more thorough explanation is given by the pseudocode in Fig-
ure 6. Lines 1 and 5 of Figure 6 illustrate the use of the 10 X 10-
way cross validation used in the experimental process. The stan-
dard 10 X 10-way cross validation operates by selecting 90% of
the data randomly for training, and the remaining 10% for test-
ing (this process is then repeated 10 times to guard against order
effects). Since the objective is to analyze the performance of train-
ing on components containing a high number of defective modules,
a minute alteration was made to cross-validation for this experi-
ment. A “pool” of training data was constructed by focusing on
only those instances within a dense component, as in line 3 of the
pseudocode. The available pool of testing instances, thus, are gath-
ered from the remaining components in the data set (line 4). This
is employed to prevent training and testing on modules within the



Project language #Defects #Modules #Defective Modules #Components #Defective Components #Dense Components
CM1 C++ 70 505 48 20 9 9
KC1 C++ 525 2107 325 18 18 9
MC1 C++ 79 9466 68 57 26 26
PC1 C++ 139 1107 76 29 17 14
PC3 C++ 259 1563 160 29 17 14

Table 1: The component data for NASA defect datasets.

 0

 10

 20

 30

 40

 50

 60

 70

 22292  22294  22296  22298  22300  22302  22304  22306  22308

Nu
m

be
r o

f D
ef

ec
tiv

e 
M

od
ul

es

Component

KC1 Defect Distribution

Defects per Component
Defect Median

 0

 10

 20

 30

 40

 50

 60

 70

 80

 33132  33134  33136  33138  33140  33142  33144  33146  33148  33150

Nu
m

be
r o

f D
ef

ec
tiv

e 
M

od
ul

es

Component

PC3 Defect Distribution

Defects per Component
Defect Median

Figure 5: Defect distributions of components found in the KC1
and PC3 data sets. Note that only a small number of compo-
nents contain a relatively high number of defective modules.

1 For run = 1 to 10
2 For each dense component C in data set D
3 Train = C
4 Test = D - C
5 For bin = 1 to 10
6 Test’ = 10% of Test (picked at random)
7 Train’ = 90% of Train (picked at random)
8 Naive Bayes (Train’, Test’)
9 end bin
10 end component
11 end run

Figure 6: The experiment on learning prediction models from
dense components. The experiment performs training on mod-
ules residing in dense components, and testing on modules con-
tained in all other components in the data set.

recall 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on Dense Components 31 69 91 !
1 Train on All Components 35 71 93 !

0 50 100

Figure 7: Recall values for learning on dense components com-
pared to learning on all components across all data sets, sorted
by statistical ranking via a Mann-Whitney test at 95% confi-
dence (row i in the table has a different rank to the one before
if it is statistically different to the results from all rows with the
next lowest rank; and the median is different).

pf 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on Dense Components 0 15 52 !
2 Train on All Components 0 26 65 !

0 50 100

Figure 8: PF values for learning on dense components com-
pared to learning on all components across all data sets, sorted
in the same manner as Figure 7.

same component. Lines 6 and 7 illustrate collecting 90% of the cur-
rent dense component’s instances as the final training set Train′,
and 10% of the modules from the available instances in components
not labeled dense as Test′.

Line 8 of Figure 6 executes the classifier (in this case, Naive
Bayes) on the previously created training and testing sets Train′

and Test′. The Naive Bayes classifier was utilized because of its
speed, and also for the fact that it has been shown to perform well
on PROMISE defect data against other learners [13].

Determining the benefits of training defect prediction models us-
ing fewer, but more densely-packed components also requires the
comparative analysis of learning from all components (and thus all
modules). In addition, we also compare the proposed method with
the over- and under- sampling methods. The experimental results
for five NASA datasets are shown in the following section.

4.3 Experimental Results
The metrics used in the analysis of comparing results from train-

ing on dense components over the traditional method of using all
components in the data set are recall, pf and precision.

Figure 7, Figure 8 and Figure 9 show statistical rankings of each
treatment, as well as quartile charts displaying the median and vari-
ance of each metric for the combined data sets, as a whole, used in
the experiment:

• The black circle in the center of each plot is the median;
• The line going from left to right from this circle shows the

second and third quartile respectively.
• Each chart is ranked (see left-hand-side column) by a Mann-



Project Recall Prob. False Alarm (Pf) Precision
0% 50% 100% 0% 50% 100% 0% 50% 100%

CM1

1 All .5.3.5 !
2 Over .9.3.9 !
2 Under .2.3.2 !
3 Dense !

1 Dense !
2 Over !
2 Under !
2 All !

1 All !
1 Over !
1 Under !
1 Dense !

KC1

1 Dense !
1 Under !
1 All !
1 Over !

1 All .5 !
1 Over !
1 Under !
1 Dense !

1 Dense !
1 All !
1 Under !
1 Over !

MC1

1 Over !
1 Under !
2 All !
3 Dense !

1 Over !
1 Under !
2 All !
3 Dense !

1 Dense !
1 All !
1 Under !
1 Over !

PC1

1 Dense !
2 Over !
2 All !
3 Under !

1 Dense !
2 Over !
2 All !
3 Under !

1 Dense !
2 All !
2 Under !
3 Over !

PC3

1 Under !
1 Over !
2 All !
2 Dense !

1 Dense !
2 Over !
2 Under !
3 All !

1 Dense !
1 Under !
1 All !
1 Over !

Table 2: Result statistics per data set. The numeric value next to each treatment represents its Mann-Whitney rank, to the right of
each treatment lies the quartile chart for each. Each metric is either sorted by ranking, or in the case of a tie, descending pd and
prec or ascending pf .

precision 2nd quartile
percentiles median,

Rank Treatment 25% 50% 75% 3rd quartile
1 Train on All Components 20 78 95 !
1 Train on Dense Components 12 75 96 !

0 50 100

Figure 9: Precision values for learning on dense components
compared to learning on all components across all data sets,
sorted in the same manner as Figure 7.

Whitney test (95% confidence).

We prefer quartile charts of performance to other summarization
methods for a multitude of studies, as they offer a very succinct
summary of a large number of experiments.

Over all the data sets studied here, training on dense components
(those containing a higher number of defective modules) yields
similar medians (for recall and precision). However, dramatic
gains are seen with pf : the median error rates decrease by nearly
half.

The overall results of Figure 7, Figure 8 and Figure 9 obscure
some interesting effects. If we look at the results for individual data
sets, as shown in Table 2, a more interesting result appears. This
table is divided into five data sets (CM1, KC1, MC1, PC1, PC3),
three evaluation criteria (recall, pf, precision), and four treatments
(dense, all, over, under). Quartile charts are shown, along with
a statistical analysis that ranks pairs of treatments:

• If two treatments score 1, 1, then there is no statistically sig-
nificant difference in their performance.

• If two treatments score 1, 2, then they are statistically differ-
ent and the first one has a better median than the other.

A summary of these statistical rankings is shown in Table 3.
Each treatment is assigned one of {+, 0,−} depending on if it
won, tied, lost in the statistical rankings of Table 2 (based on a
Mann-Whitney test at 95% confidence). For example, in CM1:

• The four treatments tied on precision;
• Training on all produced a better recall than training on

dense, over, and under;
• Training on dense produced a better pf than training on all,

over, and under.

The bottom of Table 3 shows a summary of these comparisons:
dense wins more than all (5/15 times vs 1/15 times), as well as
over and under samplings (5/15 times vs 0/15 times). dense
also loses less than all (4/15 times vs 8/15 times), as well as over
and under samplings (4/15 times vs 6/15 times)

In summary, in the majority cases, training on dense compo-
nents yielded statistically significantly better detectors than train-
ing on all components. Also, these detectors performs better than
those learned from over- and under- samplings.

5. CONCLUSION
A previously unexplored feature of the PROMISE defect data

sets are the small number of components containing most of the
defects. This skewed defect distribution has implications on our
data analysis of the PROMISE defect datasets. We have been re-
porting neg/pos ratios for those data sets as varying from 1 to 249
(see §3.1). This statistic is clearly incorrect since it is a mean value
across a highly skewed distribution:

• An entire project like CM1 may have a high overall neg/pos
ratio.

• This mean ratio does not characterize the neg/pos ratio of
individual components.

Mathematically, this skewed distribution is an interesting region
of the data since such components have lower neg/pos ratios which,
according to the maths of §3.1, means that they could (in theory)
yield detectors with high precision and recall.

To test this possibility, we restricted training to just the compo-
nents with higher than the median number of defective modules.
This was compared to training using all the data (which, according



data performance all dense over under
set measure components components sampling sampling

CM1 precision 0 0 0 0
recall + - - -

pf - + - -
KC1 precision 0 0 0 0

recall 0 0 0 0
pf 0 0 0 0

MC1 precision 0 0 0 0
recall - - 0 0

pf - - 0 0
PC1 precision - + - -

recall - + - -
pf - + - -

PC3 precision 0 0 0 0
recall - - 0 0

pf - + - -
summary + 1 5 0 0

0 6 6 9 9
- 8 4 6 6

Table 3: Each treatment is assigned one of {+, 0,−} depending on if it won, tied, lost in the statistical rankings of Table 1 (based on
a Mann-Whitney test at 95% confidence). Note that dense won most often, and lost the least amount of times compared to all other
treatments (4/15 vs. 8/15 and 6/15).

to our understanding of the literature, is the more usual treatment).
We found that training via dense sampling is useful for generat-
ing better defect prediction models. The improvements are not
startlingly better - the recall and precision mean values are close
to standard practice (see Table 2). Nevertheless, in the majority
cases, training on dense components yielded statistically signif-
icantly better detectors than other methods (training on all data,
over-sampling, and under-sampling).

Given the simplicity of the technique (just select training data
from a subset of the components), we recommended the proposed
method whenever it becomes apparent that components have dif-
ferent defect densities. Although for the very first project, we do
not know the proportions of defect dense components, the future
projects can benefit from defect prediction models learned from
the dense components in the first project.

This result has negative and positive implications. On the posi-
tive side, we have shown here that the skewed defect distributions
within a project can be exploited to generate better defect predic-
tors. On the negative side, it means that there are aspects of the
PROMISE data sets that have not been noticed in dozens of prior
publications. The PROMISE repository data is used widely in the
literature, usually in papers of the form “here is a new learner ap-
plied to data sets X,Y,Z from PROMISE”. Such papers may be so
focused on the learner that they miss important aspects of the data.
In the future, we would recommend visualizations of data before
applying data miners, lest we miss other important aspects of our
data.
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