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Abstract Solutions to non-linear requirements engineering problems may be “brit-
tle”; i.e. small changes may dramatically alter solution effectiveness. Hence, it is not
enough to just generate solutions to requirements problems- we must also assess so-
lution robustness. The KEYS2 algorithm can generate decision ordering diagrams.
Once generated, these diagrams can assess solution robustness in linear time. In ex-
periments with real-world requirements engineering models, we show that KEYS2
can generate decision ordering diagrams in O (N?). When assessed in terms of terms
of (a) reducing inference times, (b) increasing solution quality, and (c) decreasing
the variance of the generated solution, KEYS?2 out-performs other search algorithms
(simulated annealing, ASTAR, MaxWalkSat).
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1 Introduction

Consider a “requirements model” where stakeholders write:

Their various goals.

— Their different methods to reach those goals.

Their view of the possible risks that compromise those goals.
— What mitigations they believe might reduce those risks.

A “solution” to such models is a least cost set of mitigations that reduce the most
risks, thereby enabling the most requirements. In theory, software can find the solu-
tion that best exploits and most satisfies the various goals of our different stakehold-
ers. Such tools might find good solutions that were missed by stakeholders. Finding
solutions to these requirements models is a non-linear optimization problem (mini-
mize the sum of the mitigation costs while maximizing the number of achieved re-
quirements).

There are many heuristic methods that can generate solutions to non-linear prob-
lems (see Related Work, below). However, such heuristic methods can be brittle; i.e.
small changes may dramatically alter the effectiveness of the solution. Therefore, it
important to understand the neighborhood around the solution. A naive approach to
understanding the neighborhood might be to run a system N times then report:

— the solutions appearing in more than (say) % cases;
— results with a £95% confidence interval.

Note that both these approaches requires multiple runs of an analysis method. Multi-
ple runs are undesirable since, in our experience (Feather et al. 2008a), stakeholders
often ask questions across a range of “scenarios”; i.e. hard-wired constraints that can-
not be changed in that scenario. For example, three scenarios might be “what can be
achieved assuming a maximum budget of one, two, or five million dollars?”’. Scenario
analysis can be time consuming. Reflecting over (say) d = 10 possible decisions a sta-
tistically significant number of times (e.g. N = 20) requires up to 20 x 2! > 20,000
repeats of the analysis.

Therefore, this paper proposes a rapid method for exploring decision neighbor-
hoods. Decision ordering diagrams are a visual representation of the effects of chang-
ing a solution. We show below that:

Using these diagrams, the region around a solution can be explored in linear time.
A greedy Bayesian-based method called KEYS2 can generate the decision order-
ing diagrams in O (N?) time.

KEYS?2 yields solutions of higher quality that several other methods (simulated
annealing, MaxWalkSat, ASTAR).

Also, the variance of the solutions found by KEYS2 is less (and hence, better) than
those found by the other methods.

This paper is structured as follows:

— After some background notes on the solution robustness, we describe the DDP
requirements engineering tool used at NASA’s Jet Propulsion Laboratory (the case
studies for this paper come from real-world early lifecycle DDP models).
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— DDP inputs and outputs are then reviewed.

Next, decision ordering diagrams are introduced.

— We then define and compare five different algorithms for generating solutions from
DDP models: KEYS, KEYS2, Simulated Annealing, MaxWalkSat, ASTAR. Ex-
perimental results will show that KEYS2 out-performs the other methods (mea-
sured in terms of quickly generating high quality solutions that allow us to reflect
over solution robustness).

— Finally, we offer some notes on related work and conclusions.

This paper extends a prior publication (Jalali et al. 2008) in several ways:

That paper did not address concerns of solution robustness.

— That paper did not explore a range of alternate algorithms.

This paper introduces KEYS2, which is an improved version of KEYS.
— This paper offers extensive notes on related work.

2 Background

According to Harman (2007), understanding the neighborhood of solutions is an open
and pressing issue in search-based software engineering (SBSE). He argues that many
software engineering problems are over-constrained and no precise solution over all
variables is achievable; therefore partial solutions based on heuristic search meth-
ods are preferred. Solution robustness is a major problem for such partial heuris-
tic searches. The results of such partial heuristic search may be “brittle”; i.e. small
changes to the search results may dramatically alter the effectiveness of the solution
(Harman and Jones 2001).

When offering partial solutions, it is very important to also offer insight into the
space of options around the proposed solution. Such neighborhood information is
very useful for managers with only partial control over their projects since it can
give them confidence that even if only some of their recommendations are effected,
then at least the range of outcomes is well understood. Harman (2007) comments
that understanding the neighborhood of our solutions is an open and pressing issue in
search-based software engineering (SBSE):

“In some software engineering applications, solution robustness may be as im-
portant as solution functionality. For example, it may be better to locate an area
of the search space that is rich in fit solutions, rather than identifying an even
better solution that is surrounded by a set of far less fit solutions”.

“Hitherto, research on SBSE has tended to focus on the production of the fittest
possible results. However, many application areas require solutions in a search
space that may be subject to change. This makes robustness a natural second
order property to which the research community could and should turn its at-
tention (Harman 2007)”.

This paper reports a set of experiments on Al search for robust solutions. Our
experiments address two important concerns. Firstly, is demonstrating solution ro-
bustness a time consuming task? Secondly, is it necessary, as Harman suggests that

@ Springer



Autom Softw Eng

solution quality must be traded off against solution robustness? That is, in our search
for the conclusions that were stable within their local neighborhood, would we have
to reject better solutions because they are less stable across their local neighborhood?

At least for the NASA models described in the next section, both these concerns
are unfounded. KEYS2 terminates in hundredths of a second (where as our prior
implementations took minutes to terminate; Feather and Menzies 2002). Also, the
solutions found by KEYS2 where not only of highest quality, they were also exhibited
the lowest variance. Further, KEYS2 generates the decision ordering diagrams that
can assess solution robustness in linear time.

3 Requirements modeling using “DDP”’

This section introduces the DDP requirements modeling tool (Cornford et al. 2001;
Feather et al. 2008a). used to interactively document the “Team-X" early lifecycle
meetings at NASA’s Jet Propulsion Laboratory (JPL). These meetings are the source
of the real-world requirements models used in this paper.

At “Team X meetings, a large and diverse group of up to 30 experts from various
fields (propulsion, engineering, communication, navigation, science, etc.) meet for
very short periods of time (hours to days) to produce a “mission concept” document.
This document may commit the project to, say, solar power rather nuclear power or
a particular style of guidance software. All of the subsequent work is based on the
initial decisions documented in the mission concept.

DDP allows for the representation of the goals, risks, and risk-removing miti-
gations that belong to a specific project. During a Team X meeting, users of DDP
explore combinations of mitigations that cost the least and support the most num-
ber of requirements. DDP propagate influences over matrices. For example, here is a
trivial DDP model where mitigationl costs $10,000 to apply and each require-
ment is of equal value (100). Note that the mitigation can remove 90% of the risk.
Also, unless mitigated, the risk will disable 10% to 99% of requirements one and two
(respectively):

$10,000 0.1
— . — (requirement1 = 100)
mitigationl — riskl — . @))
— — (requirement2 = 100)
0.9 0 V99

The other numbers show the impact of mitigations on risks, and the impact of risks
on requirements. The core of DDP is two matrices: one for mitigations*risks and
another for risks*requirements.

DDP is used as follows. A dozen experts, or more, gather together for short, in-
tensive knowledge acquisition sessions (typically, 3 to 4 half-day sessions). These
sessions must be short since it is hard to gather together these experts for more than
a very short period of time. The DDP tool supports a graphical interface for the
rapid entry of the assertions. Such rapid entry is essential, time is crucial and no
tool should slow the debate. Therefore, DDP uses a lightweight representations for
its model. Such representations are essential for early lifecycle decision making since
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1. Requirement goals:

— Spacecraft ground-based testing & flight problem monitoring
— Spacecraft experiments with on-board Intelligent Systems Health Management (ISHM)

2. Risks:

— Obstacles to spacecraft ground-based testing & flight problem monitoring
— Customer has no, or insufficient, money available for our use
— Difficulty of building the models / design tools
— ISHM Experiment is a failure (without necessarily causing flight failure)
Usability, User/Recipient-system interfaces undefined
— V&V (certification path) untried and scope unknown
— Obstacles to Spacecraft experiments with on-board ISHM
— Bug tracking / fixes / configuration management issues, Managing revisions and upgrades (multi-
center tech. development issue)
— Concern about our technology interfering with in-flight mission

3. Mitigations:

— Mission-specific actions
— Spacecraft ground-based testing & flight problem monitoring
— Become a team member on the operations team
— Use Bugzilla and CVS
— Spacecraft experiments with on-board ISHM
— Become a team member on the operations team
— Utilize xyz’s experience and guidance with certification of his technology

Fig. 1 Sample DDP requirements, risks, mitigations

only high-level assertions can be collected in short knowledge acquisition sessions (if
the assertions get more elaborate, then experts may be unable to understand techni-
cal arguments from outside their own field of expertise). Therefore, DDP uses the
following lightweight ontology:

— Requirements (free text) describing the objectives and constraints of the mission
and its development process;

— Weights (numbers) of each requirements, reflecting their relative importance;

Risks (free text) are events that damage requirements;

Mitigations: (free text) are actions that reduce risks;

— Costs: (numbers) effort associated with mitigations, and repair costs for correcting
Risks detected by Mitigations;

— Mappings: directed edges between requirements, mitigations, and risks that cap-
ture quantitative relationships among them.

— Part-of relations structure the collections of requirements, risks and mitigations;

Note that DDP models are the same as the “requirements models” we defined in
the introduction. For examples of risks, requirements, and mitigations, see Fig. 1.
For an example of the network of connections between risks and requirements and
mitigations, see Fig. 2.

Sometimes, we are asked if the analysis of DDP requirements models is a real
problem. The usual question is something like: “With these ultra-lightweight lan-

@ Springer



Autom Softw Eng

W

Fig. 2 An example of a model formed by the DDP tool. Lines connect risks (middle) to requirements
(left). Lines connect mitigations (right) to the risks

guages, aren’t all open issues just obvious?” Such a question is usually informed by
the small model fragments that appear in the ultra-lightweight modeling literature.
Those sample model fragments are typically selected according to their ability to
fit on a page or to succinctly illustrate some point of the authors. Real world ultra-
lightweight models can be much more complex, paradoxically perhaps due to their
simplicity: if a model is easy to write then it is easy to write a lot of it. Figure 2, for
example, was generated in under a week by four people discussing one project. It is
complex and densely-connected (a close inspection of the left and right hand sides
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of Fig. 2 reveals the requirements and fault trees that inter-connect concepts in this
model) and it is, by no means, the biggest or most complex DDP model that has ever
been built.

We base our experimentation around DDP for three reasons. Firstly, one poten-
tial drawback with ultra-lightweight models is that they are excessively lightweight
and contain no useful information. DDP’s models are demonstrably useful (that is,
we are optimizing a real-world problem of some value). Clear project improvements
have been seen from DDP sessions at JPL. Cost savings in at least two sessions have
exceeded $1 million, while savings of over $100,000 have resulted in others (Feather
et al. 2008a). Cost savings are not the only benefits of these DDP sessions. Numer-
ous design improvements such as savings of power or mass have come out of DDP
sessions. Likewise, a shifting of risks has been seen from uncertain architectural ones
to more predictable and manageable ones. At some of these meetings, non-obvious
significant risks have been identified and subsequently mitigated.

Our second reason to use DDP is that we can access numerous real-world require-
ments models written in this format, both now and in the future. The DDP tool can be
used to document not just final decisions but also to review the rationale that led to
those decisions. Hence, DDP remains in use at JPL: not only for its original purpose
(group decision support), but also as a design rationale tool to document decisions.
Recent DDP sessions included:

— An identification of the challenges of intelligent systems health management
(ISHM) technology maturation (to determine the most cost-effective approach to
achieving maturation; Feather et al. 2008c);

— A study on the selection and planning of deployment of prototype software
(Feather et al. 2008b).

Our third, and most important reason to use DDP in our research is that the tool
is representative of other requirements modeling tools in widespread use. At its core,
DDP is a set of influences expressed in a hierarchy, augmented with the occasional
equation. Edges in the hierarchy have weights that strengthen or weaken influences
that flow along those edges. At this level of abstraction, DDP is just another form of
QOC (Shum and Hammond 1994) or a quantitative variant of Mylopoulos’ s qualita-
tive soft goal graphs (Mylopoulos et al. 1999).

4 Model inputs and outputs

Before describing experimental comparisons of different methods for generating de-
cision ordering diagrams, we will first offer more details on the DDP models.

4.1 Pre-processing

To enable fast runtimes, a simple compiler exports the DDP models into a form ac-
cessible by our algorithms. This compiler stores a flattened form of the DDP require-
ments tree. In our compiled form, all computations are performed once and added as

a constant to each reference of the requirement. For example, the compiler converts
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the trivial model of (1) into setupModel and model functions similar to those
in Fig. 3. The setupModel function is called only once and sets several constant
values. The model function is called whenever new cost and attainment values are
needed. The topology of the mitigation network is represented as terms in equations
within these functions. As our models grow more complex, so do these equations.
For example, our biggest model, which contains 99 mitigations, generates 1427 lines
of code. Figure 4 compares the largest model to four other real-world DDP models.

Currently it takes about two seconds to compile a model with 50 requirements,
31 risks, and 58 mitigations. This compilation only has to happen once, after which
we will run our 2191 what-if scenarios. While this is not a significant bottleneck, the
current compiler (written in unoptimized Visual Basic code) can certainly be sped up.
Experts usually change a small portion of the model then run 2/¢! what-if scenarios to
understand the impact of that change. Therefore, an incremental compiler (that only
updates changed portions) would run much faster than a full compilation of the entire
DDP model.

4.2 Objective function

When the model function is called, a pairing of the total cost of the selected mitiga-
tions and the number of reachable requirements (attainment) is returned. All of our
algorithms then use that information to obtain a “score” for the current set of mitiga-
tions. The two numbers are normalized to a single score that represents the distance
to a sweet spot of maximum requirement attainment and minimum cost:

score = \/ Cost + (attainment — 1)2 2)

x—min(x) <

Here, X is a normalized value 0 < [==—"=rees <

1. Hence, our scores ranges

0 < score < /2 and lower scores are better.
4.3 Decision ordering diagrams

The objective function described above summarizes one call to a DDP model. This
section describes decision ordering diagrams, which are a tool for summarizing the
results of thousands of calls to DDP models.

Consider some recommendation for changes to a project that requires decisions d
of size |d|. In the general case, d is a subset of the space of all solutions D (d € D).
When checking for solution robustness, or reflecting over modifications to d, a stake-
holder may need to consider up to d’ € N!¢| possibilities (and N = 2 for binary
decisions of the form “should I or should I not do this”). This can be a slow process,
especially if evaluating each decision requires invoking a complex and slow simula-
tor.

Decision ordering diagrams are a linear time method for studying the robustness
and neighborhood of a set of decisions. The diagrams assume that some method could
offer a linear ordering of the decisions x € d ranked from most-important to least-
important. They also assume that some method offers information on the effects of
applying the top-ranked 1 < x < |d| decisions (e.g. the median and variance seen in
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#include "model.h"

#define M_COUNT 2
#define O_COUNT 3
#define R_COUNT 2

struct ddpStruct

{

}i

float oWeight [O_COUNT+1];

float oAttainment [O_COUNT+1];
float oAtRiskProp[O_COUNT+1];

float rAPL[R_COUNT+1];

float rLikelihood[R_COUNT+1];

float mCost[M_COUNT+1];

float roImpact[R_COUNT+1] [O_COUNT+1] ;
float mrEffect [M_COUNT+1] [R_COUNT+1];

ddpStruct *ddpData;

void setupModel (void)

{

}

ddpData = (ddpStruct *) malloc(sizeof (ddpStruct)) ;

ddpData->mCost [1]1=11;
ddpData->mCost [2]=22;
ddpData->rAPL[1]=1;
ddpData->rAPL[2]=1;
ddpData->oWeight [1]=1;
ddpData->oWeight [2]=2;
ddpData->oWeight [3]1=3;
ddpData->roImpact[1][1] =
ddpData->roImpact[1][2] =
ddpData->roImpact[2] [1] =
ddpData->mrEffect[1][1] =
ddpData->mrEffect[1][2] =
ddpData->mrEffect[2][1] =

void model (float *cost, float

{

float costTotal, attTotal;
ddpData->rLikelihood[1] =

* (1 - m[1l] * ddpData-
* (1 - m[2] * ddpData-

ddpData->rLikelihood[2] =

* (1 - m[1l] * ddpData-

ddpData->0AtRiskProp[l] =
* ddpData->roImpact[1]

+ (ddpData->rLikelihood[2]

ddpData->oAtRiskProp[2] =

* ddpData->roImpact[1l]
ddpData->0AtRiskProp[3] =
ddpData->oAttainment[1] =

oo ocoooo

*att, float m[])

ddpData->rAPL[1]
>mrEffect [1][1])
>mrEffect[2] [1]);
ddpData->rAPL[2]
>mrEffect[1][2]);
(ddpDbata->rLikelihood[1]
[11)

(ddpData->rLikelihood[1]
[21);

0;

ddpData->oWeight [1]

* (1 - minvValue(l, ddpData->o0AtRiskProp([l]));

ddpData->oAttainment[2] =

ddpData->oWeight [2]

* (1 - minValue(l, ddpData->oAtRiskProp[2]));

ddpData->oAttainment [3] =

ddpData->oWeight [3]

* (1 - minvValue(l, ddpData->o0AtRiskProp([3]));

attTotal = ddpData->oAttainment[1]

+ ddpData->oAttainment[3];

costTotal = m[1l] * ddpData->mCost[1l] + m[2] * ddpData->mCost[2];

*cost = costTotal;
*att = attTotal;

* ddpData->roImpact([2][1]);

+ ddpData->oAttainment[2]

Fig. 3 A trivial DDP model after knowledge compilation
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lr;ifé:-,‘ls Details of five DDP Model | LOC | Objectives | Risks | Mitigations
modell.c 55 3 2 2
model2.c 272 1 30 31
model3.c 72 3 2 3
modeld.c | 1241 50 31 58
model5.c | 1427 32 70 99

Fig. 5 A decision ordering

diagram. The median and spread _Be"ems — median
plots show 50%-the percentile (more is better) - - spread
and the (75-50)%-th percentile
range (respectively) values ~ - - — o
generated from some objective >
function.
— median
Costs — - spread
(less is better)
X, X2
number of decisions made
the model’s objective function after applying solution {dj, ..., dy}). For example, the

decision ordering diagram of Fig. 5 shows such a linear ordering (this figure presents
benefit and cost results). In that figure:

— The x-axis denotes the number of decisions made.
— The y-axis shows performance statistics of an objective function seen after impos-
ing the conjunction of decisions 1 <i <x.

For performance, we run some objective function and report the median (50th per-
centile) and spread (the range given by the 75th percentile—the 50th percentile). We
use median and spread to avoid any parametric assumptions.

These diagrams can comment on the robustness and neighborhood of solution
{dy,...,d,} as follows:

— By considering the variance of the performance statistics after applying
{di,....dx}.

— By comparing the results of using the first x decisions to that of using the first x — 1
or x + 1 actions.

The neighborhood of a solution that uses decisions {dj, ..., dy} are solutions that
use the decisions {dj,...,dy+;}. Since j is bounded 0 < |d| — 1, this means that
reflecting over solution neighborhoods takes time linear on the number of decisions d.

Decision ordering diagrams are a natural representation for “trade studies”, the
activity of a multidisciplinary team to identify the most balanced technical solution
among a set of proposed viable solutions (Administration 2006). For example, mini-
mum costs and maximum benefits are achieved at point x, of Fig. 5. However, after
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applying only half the decisions (see x1) most of the benefits could be achieved, albeit
at a somewhat higher cost.
Decision ordering diagrams are useful under at least three conditions:

— The scores output by the objective functions are well-behaved; i.e. move smoothly
to a plateau.

— The decisions fame the variance; i.e. the spread falls to value much lower than then
median (otherwise, it is hard to show that decisions have any effect on the system
performance).

— The are generated in a timely manner. Fast runtimes are required in order to keep
up with fast moving discussion.

According to these definitions, Fig. 5 is a useful decision ordering diagram if it can
be generated in a timely manner.

It is an open issue if real worlds requirements models generate useful decision
ordering diagrams. The following experiments test if, in practice, decision ordering
diagrams generated from real world requirements models are timely to generate while
being well-behaved and tame.

5 Searching for solutions

Our experiments compare the results of numerous algorithms. We selected these com-
parison algorithms with much care. Numerous researchers have stressed the difficul-
ties associated with comparing radically different algorithms. For example, Uribe and
Stickel (1994) tried to make some general statement about the value of Davis-Putnam
proof (DP) procedures or binary-decision diagrams (BDD) for constraint satisfaction
problems. In the end, they doubted that it was fair to compare algorithms that perform
constraint satisfaction and no search (like BDDs) and methods that perform search
and no constraint satisfaction (like DP). For this reason, model checking researchers
like Holzmann (pers. communication) eschew comparisons of tools like SPIN (Holz-
mann 1997), which are search-based, with tools like NuSMV (Cimatti et al. 2002),
which are BDD-based. Hence we take care to only select algorithms which are similar
to KEYS.

In terms of the Gu et al. survey (Gu et al. 1997), our selected algorithms (simulated
annealing, ASTAR and MaxWalkSat) share four properties with KEYS and KEYS2.
They are each discrete, sequential, unconstrained algorithms (constrained algorithms
work towards a pre-determined number of possible solutions while unconstrained
methods are allowed to adjust to the goal space).

For full details on simulated annealing, ASTAR, and MaxFunWalk, see below. We
observe that these algorithms share the property that at each step of their processing,
they comment on all model inputs. KEYS2, on the other hand, explores the conse-
quences of setting only a subset of the possible inputs.

5.1 SA: Simulated Annealing

Simulated Annealing is a classic stochastic search algorithm. It was first described in
1953 (Metropolis et al. 1953) and refined in 1983 (Kirkpatrick et al. 1983). The al-
gorithm’s namesake, annealing, is a technique from metallurgy, where a material is
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1. Procedure SA

2. MITIGATIONS:= set of mitigations

3. SCORE:= score of MITIGATIONS

4. while TIME < MAX_TIME && SCORE < MIN_SCORE //minScore is a constant score

(threshold)
5 find a NEIGHBOR close to MITIGATIONS
6. NEIGHBOR_SCORE:= score of NEIGHBOR
7 if NEIGHBOR_SCORE > SCORE
8. MITIGATIONS:= NEIGHBOR
9. SCORE:= NEIGHBOR_SCORE
10. else if prob(SCORE, NEIGHBOR_SCORE, TIME, temp (TIME, MAX_TIME)) > RANDOM)
11. MITIGATIONS:= NEIGHBOR
12. SCORE:= NEIGHBOR_SCORE
13. TIME++

14. end while
15. return MITIGATIONS

Fig. 6 Pseudocode for SA

heated, then cooled. The heat causes the atoms in the material to wander randomly
through different energy states and the cooling process increases the chances of find-
ing a state with a lower energy than the starting position.

For each round, SA “picks” a neighboring set of mitigations. To calculate this
neighbor, a function traverses the mitigation settings of the current state and randomly
flips those mitigations (at a 5% chance). If the neighbor has a better score, SA will
move to it and set it as the current state. If it isn’t better, the algorithm will decide
whether to move to it based on the mathematical function:

prob(w, x, y, temp(y, 2)) = W ) 3)

(z—y)

temp(y,z) = “4)
If the value of the prob function is greater than a randomly generated number, SA
will move to that state anyways. This randomness is the very cornerstone of the Sim-
ulated Annealing algorithm. Initially, the “atoms” (current solutions) will take large
random jumps, sometimes to even sub-optimal new solutions. These random jumps
allow simulated annealing to sample a large part of the search space, while avoiding
being trapped in local minima. Eventually, the “atoms” will cool and stabilize and the
search will converge to a simple hill climber.

As shown in line 4 of Fig. 6, the algorithm will continue to operate until the num-
ber of tries is exhausted or a score meets the threshold requirement.

5.2 MaxFunWalk

The design of simulated annealing dates back to the 1950s. In order to benchmark
our own search engine (KEYS2) against a more state-of-the-art algorithm, we imple-
mented the variant of MaxWalkSat described below.

WalkSat is a local search method designed to address the problem of boolean
satisfiability (Kautz and Selman 1996). MaxWalkSat is a variant of that algorithm
that applies weights to each clause in a conjunctive normal form equation (Selman
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1. Procedure MaxFunWalk

2. for TRIES:=1 to MAX-TRIES

3 SELECTION:=A randomly generate assignment of mitigations

4. for CHANGED:=1 to MAX-CHANGES

5 if SCORE satisfies THRESHOLD return

6 CHOSEN:= a random selection of mitigations from SELECTION
7 with probability P

8. flip a random setting in CHOSEN

9 with probability (P-1)

10. flip a setting in CHOSEN that maximizes SCORE
11. end for

12. end for
13. return BESTSCORE

Fig. 7 Pseudocode for MaxFunWalk

et al. 1993). While WalkSat tries to satisfy the entire set of clauses, MaxWalkSat tries
to maximize the sum of the weights of the satisfied clauses.

In one respect, both algorithms can be viewed as a variant of simulated annealing.
Whereas simulated annealing always selects the next solution randomly, the WalkSat
algorithms will sometimes perform random selection while, other times, conduct a
local search to find the next best setting to one variable.

MaxFunWalk is a generalization of MaxWalkSat:

— MaxWalkSat is defined over CNF formulae. The success of a collection of vari-
able settings is determined by how many clauses are “satisfiable” (defined using
standard boolean truth tables).

— MaxWalkFun, on the other hand, assumes that there exist an arbitrary function
that can assess a collection of variable settings. Here, we use the DDP model as a
assessment function.

Note that MaxWalkFun = MaxWalkSat if the assessment is conducted via a logical
truth table.

The MaxFunWalk procedure is shown in Fig. 7. When run, the user supplies an
ideal cost and attainment. This setting is normalized, scored, and set as a goal thresh-
old. If the current setting of mitigations satisfies that threshold, the algorithm termi-
nates.

MaxFunWalk begins by randomly setting every mitigation. From there, it will
attempt to make a single change until the threshold is met or the allowed number of
changes runs out (100 by default). A random subset of mitigations is chosen and a
random number P between 0 and 1 is generated. The value of P will decide the form
that the change takes:

— P < «: A stochastic decision is made. A setting is changed completely at random
within the set CHOSEN.

— P > a: Local search is utilized. Each mitigation in CHOSEN is tested until one is
found that improves the current score.

The best setting of « is domain-specific. For this study, we used oo = 0.3.
If the threshold is not met by the time that the allowed number of changes is
exhausted, the set of mitigations is completely reset and the algorithm starts over.
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This measure allows the algorithm to avoid becoming trapped in local maxima. For
the DDP models, we found that the number of retries has little effect on solution
quality.

If the threshold is never met, MaxFunWalk will reset and continue to make
changes until the maximum number of allowed resets is exhausted. At that point,
it will return the best settings found.

As an additional measure to improve the results found by MaxFunWalk, a heuristic
was implemented to limit the number of mitigations that could be set at one time. If
too many are set, the algorithm will turn off a few in an effort to bring the cost factor
down while minimizing the effect on the attainment.

5.3 A* (ASTAR)

A* is a best-first path finding algorithm that uses distance from origin (G) and esti-
mated cost to goal (H) to find the best path (Hart et al. 1968). The algorithm is widely
used (Pearl 1984; Russell et al. 2003; Stout 1997; Hui et al. 2004).

A* is a natural choice for DDP optimization since the objective function described
above is actually a Euclidean distance measure to the desired goal of maximum at-
tainment and minimum costs. Hence, for the second potion of the ASTAR heuristic,
we can make direct use of (2).

The ASTAR algorithm keeps a closed list in order to prevent backtracking. We
begin by adding the starting state to the closed list. In each “round”, a list of neighbors
is populated from the series of possible states reached by making a change to a single
mitigation. If that neighbor is not on the closed list, two calculations are made:

— G = Distance from the start to the current state plus the additional distance between
the current state and that neighbor.

— H = Distance from that neighbor to the goal (an ideal spot, usually O cost and a
high attainment). For DDP models, we use (2) to compute H.

The best neighbor is the one with the lowest F = G 4+ H. The algorithm “travels” to
that neighbor and adds it to the closed list. Part of the optimality of the A* algorithm
is that the distance to the goal is underestimated. Thus, the final goal is never actu-
ally reached by ASTAR. Our implementation terminates once it stops finding better
solutions for a total of ten rounds. This number was chosen to give ample time for
ASTAR to become “unstuck” if it hits a corner early on.

5.4 KEYS and KEYS2

The core premise of KEYS and KEYS?2 is that the above algorithms perform over-
elaborate searches. Suppose that the behavior of a large system is determined by a
small number of key variables. If so, then a very rapid search for solutions can be
found by (a) finding these keys then (b) explore the ranges of the key variables.

As documented in our Related Work section, this notion of keys has been discov-
ered and rediscovered many times by many researchers. Historically, finding the keys
has seen to be a very hard task. For example, finding the keys is analogous to finding
the minimal environments of DeKleer’ ATMS algorithm (DeKleer 1986). Formally,
this logical abduction, which is an NP-hard task (Bylander et al. 1991).
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1. Procedure ASTAR

2. CURRENT_POSITION:= Starting assignment of mitigations
3. CLOSED[0]:= Add starting position to closed list
4.

5. while END:= false

6. NEIGHBOR_LIST:=1list of neighbors

7. for each NEIGHBOR in NEIGHBOR_LIST

8. if NEIGHBOR is not in CLOSED

9. G:=distance from start

10. H:=distance to goal

11. F:=G+H

12. if F<BEST F

13. BEST_NEIGHBOR:=NEIGHBOR

14. end for

15. CURRENT_POSITION:= BEST_NEIGHBOR

16. CLOSED[++] :=Add new state to closed list

17. if STUCK

18. END:= true

19. end while
20. return CURRENT_POSITION

Fig. 8 Pseudocode for ASTAR

Our method for finding the keys uses a Bayesian sampling method. If a model
contains keys then, by definition, those variables must appear in all solutions to that
model. If model outputs are scored by some oracle, then the key variables are those
with ranges that occur with very different frequencies in high/low scored model out-
puts. Therefore, we need not search for the keys—rather, we just need to keep fre-
quency counts on how often ranges appear in best or rest outputs.

KEYS contains an implementation of this Bayesian sampling method. It has two
main components—a greedy search and the BORE ranking heuristic. The greedy
search explores a space of M mitigations over the course of M “eras”. Initially, the
entire set of mitigations is set randomly. During each era, one more mitigation is
set to M; = X, X; € {true, false}. In the original version of KEYS (Menzies et al.
2008), the greedy search fixes one variable per era. A newer variant, KEYS2, fixes an
increasing number of variables as the search progresses (see below for details).

In KEYS (and KEYS2), each era e generates a set < input, score > as follows:

1. MaxTries times repeat:

— Selected[1...(e — 1)] are settings from previous eras.

— Guessed are randomly selected values for unfixed mitigations.
— Input = selected U guessed.

— Call model to compute score = ddp(input);

2. The MaxTries scores are divided into f% “best” and remainder become “rest”.

. The input mitigation values are then scored using BORE (described below).

4. The top ranked mitigations (the default is one, but the user may fix multiple miti-
gations at once) are fixed and stored in selected[e].

W

The search moves to era e + 1 and repeats steps 1-4. This process stops when
every mitigation has a setting. The exact settings for MaxTries and 8 must be set via
engineering judgment. After some experimentation, we used MaxTries = 100 and
B = 10. For full details, see Fig. 9.
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1. Procedure KEYS

2. while FIXED_MITIGATIONS != TOTAL_MITIGATIONS

3 for I:=1 to 100

4. SELECTED[1...(I-1)] = best decisions up to this step
5 GUESSED = random settings to the remaining mitigations
6 INPUT = SELECTED + GUESSED

7 SCORES= SCORE (INPUT)

8. end for

9. for J:=1 to NUM_MITIGATIONS_TO_SET

10. TOP_MITIGATION = BORE (SCORES)

11. SELECTED[FIXED_MITIGATIONS++] = TOP_MITIGATION

12. end for

13. end while
14. return SELECTED

Fig. 9 Pseudocode for KEYS

KEYS ranks mitigations using a support-based Bayesian ranking measure called
BORE. BORE (Clark 2005) (short for “best or rest”) divides numeric scores seen
over K runs and stores the top 10% in best and the remaining 90% scores in
the set rest (the best set is computed by studying the delta of each score to the
best score seen in any era). It then computes the probability that a value is found
in best using Bayes theorem. The theorem uses evidence E and a prior proba-
bility P(H) for hypothesis H € {best, rest}, to calculate a posteriori probability
P(H|E)= P(E|H)P(H)/P(E). When applying the theorem, likelihoods are com-
puted from observed frequencies. These likelihoods (called “like” below) are then
normalized to create probabilities. This normalization cancels out P(E) in Bayes
theorem. For example, after K = 10,000 runs are divided into 1,000 best solutions
and 9,000 rest, the value mitigation31 = false might appear 10 times in the best so-
lutions, but only 5 times in the rest. Hence:

E = (mitigation31 = false)
P (best) = 1000/10,000 = 0.1
P (rest) =9000/10,000 =0.9
freq(E|best) = 10/1000 = 0.01
freq(E|rest) = 5/9000 = 0.00056
like(best|E) = freq(E|best) - P (best) = 0.001
like(rest|E) = freq(E|rest) - P(rest) = 0.000504

like(best|E)

P (best|E) = =0.66
bestlE) = Fetbest E) + like(rest E)

&)

Previously (Clark 2005), we have found that Bayes theorem is a poor ranking heuris-
tic since it is easily distracted by low frequency evidence. For example, note how
the probability of E belonging to the best class is moderately high even though its
support is very low; i.e. P (best|E) = 0.66 but freq(E |best) = 0.01.

To avoid the problem of unreliable low frequency evidence, we augment (5) with
a support term. Support should increase as the frequency of a value increases, i.e.

@ Springer



Autom Softw Eng

like(best|E) is a valid support measure. Hence, step 3 of our greedy search ranks
values via
like(best| E)?

P(best|E {(best| E) = 6
(best|E) x support(best| E) = o e+ like(rest E) ©

For each era, KEYS samples the DDP models and fixes the top N = 1 settings.
KEYS2 assigns progressively larger values. In era 1, KEYS2 behaves exactly the
same as KEYS while in (say) era 3, KEYS2 will fix the top 3 ranked ranges. Since it
sets more variables at each era, KEYS2 terminates earlier than KEYS.

Note that decision ordering diagrams could be directly generated during execution,
just by collection statistics from the SCORES array used in line 7 of Fig. 9.

6 Results

Each of the above algorithms was tested on the five models of Fig. 4. Note that:

— Models one and three are trivially small. They were used them to debug our code,
but not in the core experiments. We report our results using models two, four and
five since they are large enough to stress test real-time optimization.

— Model 4 was discussed in Menzies et al. (2003) in detail. The largest, model 5 was
optimized previously in Feather and Menzies (2002). At that time (2002), it took
300 seconds to generate solutions using our old, very slow, rule learning method.

We also studied how well KEYS and KEYS2 scale to larger models. Further, we
instrumented KEYS and KEYS2 to generate decision ordering diagrams. The results
from all of these experiments are shown below.

6.1 Attainment and costs

We ran all of our algorithms 1000 times on each model. This number was chosen
because it yielded enough data points to give a clear picture of the span of results. At
the same time, it is a low enough number that we can generate a set of results in a
fairly short time span.

The results are pictured in Fig. 10. Attainment is along the x-axis and cost (in
thousands) is along the y-axis. Note that better solutions fall towards the bottom right
of each plot; i.e. lower costs and higher attainment. Also, better solutions exhibit less
variance; that is, the results are clumped closely together.

These graphs give a clear picture of the results obtained by our various algorithms.
Two methods are clearly inferior:

— Simulated annealing exhibits the worst variance, lowest attainments, and highest
costs.

— MaxFunWalk is better than SA (less variance, lower costs, higher attainment) but
its variance is still far too high to use in any critical situation.

As to the others:

— On larger models such as model4 and model5, KEYS and KEYS2 exhibit lower
variance, lower costs, and higher attainments than ASTAR.
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Fig. 10 1000 results of running five algorithms on three models (15,000 runs in all). The y-axis shows
cost and the x-axis shows attainment. The size of each model is measured in number of mitigations. Note
that better solutions fall towards the bottom right of each plot; i.e. lower costs and higher attainment. Also
better solutions exhibit less variance, i.e. are clumped tighter together

Model 2 (31 mitigations) Model 4 (58 mitigations) Model 5 (99 mitigations)
SA 0.577 1.258 0.854
MaxFunWalk 0.122 0.429 0.398
ASTAR 0.003 0.017 0.048
KEYS 0.011 0.053 0.115
KEYS2 0.006 0.018 0.038

Fig. 11 Runtimes in seconds, averaged over 100 runs, measured using the “real time” value from the Unix
times command. The size of each model is measured in number of mitigations (and for more details on
model size, see Fig. 4)

— On smaller models such as model2, ASTAR usually produces higher attainments
and lower variance than the KEYS algorithms (this advantage disappears on the
larger models). However, observe the results near the (0, 0) point of model2’s AS-
TAR results: sometimes ASTAR’s heuristic search failed completely for that model

6.2 Runtime analysis

Measured in terms of attainment and cost, there is little difference between KEYS
and KEYS2. However, as shown by Fig. 11, KEYS2 runs twice to three times as fast
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Runtime (secs) I?ET?{SSZ ]

model |expansion|model size[KEYS[KEYS2 runtimes (secs)
2 I 62| 001] 001] 1.07 L v —
2 2 124] 003 002] 123
4 1 139 004| 002] 229 7.5 [KEYS2 — e
5 1 201| 0.13| 0.04| 3.8
2 4 248 0.10] 005 2.09 5 S
4 2 278 0.17| 005 348
5 2 402| 050| 0.2 426 25 e g
2 8 496| 0.44| 014 321 W
4 4 556| 0.73| 0.16] 4.66 0 =3 E
5 4 804| 1.98| 038 521 ‘ ‘ :
4 8 112 2971 o052 571 0 500 1000 1500
5 8 1608| 8.06| 135 5.96 model size

Fig. 12 Runtimes KEYS vs KEYS2 (medians over 1000 repeats) as models increase in size. The “model”
number in column one corresponds to Fig. 4. The “expansion factor” of column two shows how much the
instance generator expanded the model. The “model sizes” of column three are the sum of mitigations,
requirements, and risks seen in the expanded model

as its predecessor. Interestingly, Fig. 11 ranks two of the algorithms in a similar order
to Fig. 10:

— Simulated annealing is clearly the slowest;
— MaxFunWalk is somewhat better but not as fast as the other algorithms.

As to ASTAR versus KEYS or KEYS2:

— ASTAR is faster than KEYS;
— and KEYS2 runs in time comparable to ASTAR.

Measured purely in terms of runtimes, there is little to recommend KEYS2 over
ASTAR. However, ASTAR’s heuristic guesses were sometimes observed to be sub-
optimal (recall the above discussion on the (0, 0) results in model2’s ASTAR results).
Such sub-optimality was never observed for KEYS2.

6.3 Scale-up studies

Figures 12 and 13 show the effect of changing the size of the model on the number
of times that the model is asked to generate a score for both KEYS and KEYS2. To
generate these graph, an instance generator was created that:

— Examined the real-world DDP models of Fig. 4;

— Extracted statistics related to the different types of nodes (mitigations or risks or
requirements) and the number of edges between different types of nodes;

— Used those statistics to build random models that were 1, 2, 4 and 8 times larger
than the original models.

Figure 14 shows the results of curve fitting to the plots of Figs. 12 and 13. The KEYS
and KEYS2 performance curves fit a low-order polynomial (of degree two) with very
high coefficients of determination (R%?>0.98).

Figure 14 suggests that we could scale either KEYS or KEYS2 to larger models.
However we still recommend KEYS2. The column marked Ing;gZ in Fig. 13 shows

the ratio of the number of calls made by KEYS vs KEYS2. As models get larger,
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Calls to model %YYSSZ

model|expansion|model size [ KEYS| KEYS2 model calls
2 1 62| 3100] 800 3.9 100,000 e —
2 2 124| 6200/ 1100 5.6
4 1 139| 5800| 1100] 53 75,000 [KEYS2 —— 4]
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Fig. 13 Number of model calls made by KEYS vs KEYS2 (medians over 1000 results) as models increase
in size. This figure uses the same column structure as Fig. 12

KEYS KEYS2
runtimes | model calls | runtimes | model calls
exponential 0.82 0.83 0.88 0.93
polynomial (of degree 2) 0.99 0.99 0.99 0.98

Fig. 14 Coefficients of determination R? of KEYS/KEYS2 performance figures, fitted to two different
functions: exponential or polynomial of degree two. Higher values indicate a better curve fit. In all cases,
the best fit is not exponential

the number of calls to the model are an order of magnitude greater in KEYS than
in KEYS2. If applied to models with slower runtimes than DDP, then this order of
magnitude is highly undesirable.

6.4 Decision ordering algorithms

The decision ordering diagrams of Fig. 15 show the effects of the decisions made by
KEYS and KEYS2. For both algorithms, at x = 0, all of the mitigations in the model
are set at random. During each subsequent era, more mitigations are fixed (KEYS
sets one at a time, KEYS2 an incrementally increasing number). The lines in each of
these plots show the median and spread seen in the 100 calls to the model function
during each round.

Note that the these diagrams are tame and well-behaved:

— Tame: The “spread” values quickly shrink to a small fraction of the median.
— Well-behaved: The median values move smoothly to a plateau of best performance
(high attainment, low costs).

On termination (at maximum value of x), KEYS and KEYS2 arrive at nearly identical
median results (caveat: for model2, KEYS2 attains slightly more requirements at a
slightly higher cost than KEYS). The spread plots for both algorithms are almost
indistinguishable (exception: in model2, the KEYS2 spread is less than KEYS). That
is, KEYS2 achieves the same results as KEYS, but (as shown in Fig. 11 and Fig. 12)
it does so in less time.

A core assumption of this work is the “keys” concept; i.e. a small number of
variables set the remaining model variables. Figure 15 offers significant support for
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Figure 15a: Internal Decisions on Model 2.
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Figure 15b: Internal Decisions on Model 4.
1500 T T KEIYSI. Mledlaln T 250 [ T § T T T T T T T T ]
KEYS - Spread ------- .
KEYS2 - Median --------- 200 F
L KEYS2 - Spread 4 -
o 1000 P s KEYS - Median
= g 150 F KEYS - Spread ------- T
2 £ KEYS2 - Median -
o 500 % 100 | KEYS2 - Spread E
50 - R
0 ey ooy gy L | L ! 0 : el T T S 1 1
1 10 20 30 40 50 60 70 80 90 1 10 20 30 40 50 60 70 80 90
Number of decisions made Number of decisions made

Figure 15c¢: Internal Decisions on Model 5.

Fig. 15 Median and spread of partial solutions learned by KEYS and KEYS2. X-axis shows the number
of decisions made. “Median” shows the 50-th percentile of the measured value seen in 100 runs at each
era. “Spread” shows the difference between the 75th and 50th percentile

this assumption: observe how most of the improvement in costs and attainments were
achieved after KEYS and KEYS2 made only a handful of decisions (often ten or
fewer).

On another matter, it is insightful to reflect on the effectiveness of different al-
gorithms for generating decision ordering diagrams. KEYS2 is the most direct and
fastest method. As mentioned above, all of the required information can be col-
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lected during one execution. On the other hand, simulated annealing, ASTAR, and
MaxWalkSat would require a post-processor to generate the diagrams:

— Given D possible decisions, At each era, KEYS and KEYS2 collects statistics on
partial solutions where 1,2, 3, ..., |d| variables are fixed (where d is the set of
decisions) while the remaining D — d decisions are made at random.

— ASTAR, Simulated Annealing, and MaxFunWalk work with full solutions since
at each step they offer settings to all d; € D variables. In the current form, they
cannot comment on partial solutions. Modified forms of these algorithms could add
in extra instrumentation and extra post-processing to comment on partial solutions
using methods like feature subset selection (Hall and Holmes 2003) or a sensitivity
analysis (Saltelli et al. 2000).

7 Related work
7.1 Early vs later life-cycle requirements engineering

The case studies presented in this paper come from the NASA Jet Propulsion Lab’s
Team X meetings. Team X conducts early life-cycle requirement discussions.

Once a system is running, released, and being maintained or extended, another
problem is release planning; i.e. what features to add to the next N releases. To solve
this problem, an inference engine must reason about how functionality extensions to
current software can best satisfy outstanding stakeholder requirements. The challenge
of release planning is that the benefits of added functionality must be weighed against
the cost of implementing those extensions.

Several approaches have been applied to this problem including:

— The OPTIMIZE tool of Ngo-The and Ruhe (2009), which combines linear pro-
gramming with genetic programming to optimize release plans for software
projects.

— The weighted Pareto optimal genetic algorithm approach of Zhang and Zhang
(2007).

(See also the earlier comparison of exact vs greedy algorithms by Bagnall et al. 2001).

Without further experimentation, we cannot assert that KEYS2 will work as well
on later life-cycle models (such as those used in release planning) as it did above
(on the earlier life-cycle Team X models). However, at this time, we can see no rea-
son why KEYS2 would not work as a non-linear optimizer of these later life-cycle
models. This could be a productive area for future work.

7.2 Other optimizers

As documented by the search-based SE literature (Clarke et al. 2003; Harman and
Jones 2001; Harman and Wegener 2004; Rela 2004) and Gu et al. (1997), there are
many possible optimization methods. For example:

— Gradient descent methods assume that an objective function F (X) is differentiable
at any single point N. A Taylor-series approximation of F(X) can be shown to
decrease fastest if the negative gradient (—A F(N)) is followed from point N.

@ Springer



Autom Softw Eng

— Sequential methods run on one CPU while parallel methods spread the work over
a distributed CPU farm.

— Discrete methods assume model variables have a finite range (that may be quite
small) while continuous methods assume numeric values with a very large (possi-
bly infinite) range.

— The search-based SE literature prefers meta-heuristic methods like simulated an-
nealing, genetic algorithms and tabu search.

— Some methods map discrete values true/false into a continuous range 1/0 and then
use integer programming methods like CPLEX (Mittelmann 2007) to achieve re-
sults.

— Other methods find overlaps in goal expressions and generate a binary decision
diagram (BDD) where parent nodes store the overlap of children nodes.

This list is hardly exhaustive: Gu et al. list hundreds of other methods and no single
paper can experiment with them all. All the algorithms studied here are discrete and
sequential. We are currently exploring parallel versions of our optimizers but, so far,
the communication overhead outweighs the benefits of parallelism.

As to the general class of gradient descent methods, we do not use them since
they assume the objective function being optimizing is essentially continuous. Any
model with an “if” statement in it is not continuous since, at the “if”” point, the pro-
gram’s behavior may become discontinuous. The requirements models studied here
are discontinuous about every subset of every possible mitigation.

As to the more specific class of integer programming methods, we do not explore
them here for two reasons. Coarfa et al. (2000) found that integer programming-
based approaches ran an order of magnitude slower than discrete methods like the
MaxWalkSat and KEYS2 algorithms that we use. Similar results have been reported
by Gu et al. where discrete methods ran one hundred times faster than integer pro-
gramming (Gu et al. 1997).

Harman offers another reason to avoid integer programming methods. In his
search-based SE manifest, Harman and Jones (2001) argues that many SE problems
are over-constrained and so there may exist no precise solution that covers all con-
straints. A complete solution over all variables is hence impossible and partial so-
lution based on heuristic search methods are preferred. Such methods may not be
complete; however, as Clarke et al. remark, “...software engineers face problems
which consist, not in finding the solution, but rather, in engineering an acceptable or
near-optimal solution from a large number of alternatives” (Clarke et al. 2003).

7.3 Models of requirements engineering

DDP is a ultra-lightweight modeling tool. The value of ultra-lightweight ontologies
in early life cycle modeling is widely recognized. For example Mylopoulos’ soft-goal
graphs (Mylopoulos et al. 1992, 1999) represent knowledge about non-functional re-
quirements. Primitives in soft goal modeling include statements of partial influence
such as helps and hurts. Another commonly used framework in the design ratio-
nale community is a “questions-options-criteria” (QOC) graph (Shum and Hammond
1994). In QOC graphs:

— Questions suggest options. Deciding on one option can raise other questions;
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— Options shown in a box denote selected options;
— Options are assessed by criteria;
— Criteria are gradual knowledge; i.e. they tend/reject to support options.

QOC:s can succinctly summarize lengthy debates; e.g. the 480 sentences uttered in
a debate on interface options can be displayed in a QOC graph on a single page
(MacLean et al. 1996). Saaty’s Analytic Hierarchy Process (AHP) (Saaty 1980) is a
variant of QOC.

While DDP shares many of the design aspects of softgoals & QOC & AHP, it
differs in its representations and inference method. As explained above around (1),
where as AHP and QOC and softgoals propagate influences over hierarchies, DDP
propagate influences over matrices.

7.4 Formal models of requirements engineering

Zave and Jackson (1997) define requirements engineering as finding the specification
S for the domain assumptions K that satisfies the given requirements R; i.e.

find S such that S + R @)

Jureta et al. (2008) (hereafter JMF) take issue with (7), saying that it implicitly as-
sume that K, S, R are precise and complete enough for the satisfaction relation to
hold. More specifically, IMF complain that (7) does not permit partial fulfillment of
(some) non-functional requirements. Also, the Zave and Jackson definition does not
allow any preference ordering of specification; over specification,. JMF offer a re-
placement ontology where classical inference is replaced with operators that supports
the generation and ranking of subsets of domain assumptions that lead to maximal
(w.r.t. size) subsets of the possible goals, and softgoal quality criteria.!

DDP reinterprets “I"" in (7) as an inference across numeric quantities, rather than
the inference over discrete logical variables suggested by Zave and Jackson. Hence, it
can achieve the same goals as JMF (ranking of partial solutions with weighted goals)
without requiring the JMF ontology.

7.5 Requirements analysis tools

There exist many powerful requirements analysis tools including continuous sim-
ulation (also called system dynamics) (Abdel-Hamid and Madnick 1991; Sterman
2000), state-based simulation (including petri net and data flow approaches) (Akhavi
and Wilson 1993; Harel 1990; Martin and Raffo 2000), hybrid-simulation (com-
bining discrete event simulation and systems dynamics) (Martin and Raffo 2001;
Donzelli and Iazeolla 2001; Setamanit et al. 2007), logic-based and qualitative-based
methods (Bratko 2001: Chap. 20; Iwasaki 1989), and rule-based simulations (Mi
and Scacchi 1990). One can find these models being used in the requirements phase

1According to JMF: “a salient characteristic of softgoals is that they cannot be satisfied to the ideal extent,
not only because of subjectivity, but also because the ideal level of satisfaction is beyond the resources
available to (and including) the system. It is therefore said that a softgoal is not satisfied, but satisfied”.
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(i.e. the DDP tool described below), design refactoring using patterns (France et al.
2003), software integration (Denno et al. 2003), model-based security (Jerjens and
Fox 2006), and performance assessment (Balsamo et al. 2004). Many researchers
have proposed support environments to help explore the increasingly complex mod-
els that engineers are developing. Gray et al. (2006) have developed the Constraint-
Specification Aspect Weaver (C-Saw), which uses aspect-oriented approaches (Fil-
man 2004) to help engineers in the process of model transformation. Cai and Sulli-
van (2005) describe a formal method and tool called Simon that “supports interactive
construction of formal models, derives and displays design structure matrices. .. and
supports simple design impact analysis”. Other tools of note are lightweight formal
methods such as ALLOY (Jackson 2002) and SCR (Heitmeyer 2002) as well as UML
tools that allow for the execution of life cycle specifications (e.g. CADENA, Childs
et al. 2006).

Many of the above tools were built to maximize the expressive power of the rep-
resentation language or the constraint language used to express invariants. What dis-
tinguishes our work is that we are willing to trade off representational or constraint
expressiveness for faster runtimes. There exists a class of ultra-lightweight model
languages which, as we show above, can be processed very quickly. Any of the tools
listed in the last paragraph are also candidate solutions to the problem explored in this
paper, if it can be shown that their processing can generate tame and well-behaved
decision ordering diagrams in a timely manner.

7.6 Other work on “keys”

Elsewhere (Menzies and Singh 2003), we have documented dozens of papers that
have reported the keys effect (that a small number of variables set the rest) under
different names including narrows, master-variables, back doors, and feature subset
selection:

— Amarel (1986) observed that search problems contain narrow sets of variables or
collars that must be used in any solution. In such a search space, what matters
is not so much how you get to these collars, but what decision you make when
you get there. Amarel defined macros encoding paths between narrows, effectively
permitting a search engine to jump between them.

— In a similar theoretical analysis, Menzies and Singh (2003) computed the odds of
a system selecting solutions to goals using complex, or simpler, sets of precondi-
tions. In their simulations, they found that a system will naturally select for tiny
sets of preconditions (a.k.a. the keys) at a very high probability.

— Numerous researchers have examined feature subset selection; i.e. what happens
when a data miner deliberately ignores some of the variables in the training data.
For example, Kohavi and John (1997) showed in numerous datasets that as few
as 20% of the variables are key—the remaining 80% of variables can be ignored
without degrading a learner’s classification accuracy.

— Williams et al. (2003) discuss how to use keys (which they call “back doors™)
to optimize search. Constraining these back doors also constrains the rest of the
program. So, to quickly search a program, they suggest imposing some set values
on the key variables. They showed that setting the keys can reduce the solution
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time of certain hard problems from exponential to polytime, provided that the keys
can be cheaply located, an issue on which Williams et al. are curiously silent.

— Crawford and Baker (1994) compared the performance of a complete TABLEAU
prover to a very simple randomized search engine called ISAMP. Both algorithms
assign a value to one variable, then infer some consequence of that assignment
with forward checking. If contradictions are detected, TABLEAU backtracks while
ISAMP simply starts over and re-assigns other variables randomly. Incredibly,
ISAMP took less time than TABLEAU to find more solutions using just a small
number of tries. Crawford and Baker hypothesized that a small set of master vari-
ables set the rest and that solutions are not uniformly distributed throughout the
search space. TABLEAU’s depth-first search sometimes drove the algorithm into
regions containing no solutions. On the other hand, ISAMP’s randomized sampling
effectively searches in a smaller space.

In summary, the core assumption of our algorithms are supported in many domains.

8 Conclusion

Requirements tools such as the DDP tool (used at NASA for early lifecycle discus-
sions), contain a shared group memory that stores all of the requirements, risks, and
mitigations of each member of the group. Software tools can explore this shared
memory to find consequences and interactions that may have been overlooked.

Studying that group memory is a non-linear optimization task: possible benefits
must be traded off against the increased cost of applying various mitigations. Harman
and Jones (2001) cautions that solutions to non-linear problems may be “brittle”—
small changes to the search results may dramatically alter the effectiveness of the
solution. Hence, when reporting an analysis of this shared group memory, it is vitally
important to comment on the robustness of the solution.

Decision ordering diagrams are a solution robustness assessment method. The di-
agrams rank all of the possible decisions from most-to-least influential. Each point
x on the diagrams shows the effects on imposing the conjunction of decisions
1 < j < x. These diagrams can comment on the robustness and neighborhood of
solution {dy, ..., d,} using two operators:

1. By considering the variance of the performance statistics after applying
{di,...,dx}.

2. By comparing the results of using the first x decisions to that of using the first
x — 1 orx+ 1 actions.

Since the diagrams are sorted, this analysis of robustness and neighborhood takes, at
most, time linear of the number of decisions. That is, theoretically, it takes linear time
to use a decision ordering diagram (see Sect. 4.3).

Empirically, it take low-order polynomial time to generate a decision ordering di-
agram using KEYS2. This algorithm makes the “key” assumption (that a small group
of variables set everything else) and uses Bayesian ranking mechanism to quickly find
those keys. As discussed above in the Related Work section, this assumption holds
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over a wide range of models used in a wide range of domains. This “keys” assump-
tion can be remarkably effective: our empirical results show that KEY?2 can generate
decision ordering diagrams faster than the other algorithms studied here. Better yet,
curve fits to our empirical results show that KEYS runs in low-order polynomial time
(of degree two) and so should scale to very large models.

Prior to this work, our two pre-experimental concerns were that:

— We would need to trade solution robustness against solution quality. More robust
solutions may not have the highest quality.
— Demonstrating solution robustness requires multiple calls to an analysis procedure.

At least for the models studied here, neither concern was realized. KEYS2 gener-
ated the highest quality solutions (lowest cost, highest attainments) and did so more
quickly than the other methods.

In Sect. 4.3 it was argued that decision ordering diagrams are useful when they are
timely to generate while being well-behaved and tame. KEYS2’s results are the most
timely (fastest to generate) of all of the methods studied here. As to the other criteria,
Fig. 15 shows that KEYS2’s decision ordering diagrams:

— Move smoothly to a plateau with only a small amount of “jitter”;
— Have very low spreads, compared to the median results.

That is, at least for the models explored here, KEYS2 generated decision ordering
diagrams they are both well-behaved and tame.

In summary, we recommend KEYS2 for generating decision ordering diagrams
since, apart from the (slightly slower) KEYS algorithm, we are unaware of other
search-based software engineering methods that enable such a rapid reflection of so-
lution robustness.
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