
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 1

Genetic Algorithms for Randomized Unit Testing
James H. Andrews, Member, IEEE, Tim Menzies, Member, IEEE, and Felix C. H. Li

Abstract—Randomized testing is an effective method for testing
software units. Thoroughness of randomized unit testing varies
widely according to the settings of certain parameters, such as
the relative frequencies with which methods are called. In this
paper, we describe Nighthawk, a system which uses a genetic
algorithm (GA) to find parameters for randomized unit testing
that optimize test coverage.

Designing GAs is somewhat of a black art. We therefore use a
feature subset selection (FSS) tool to assess the size and content of
the representations within the GA. Using that tool, we can reduce
the size of the representation substantially, while still achieving
most of the coverage found using the full representation. Our
reduced GA achieves almost the same results as the full system,
but in only 10% of the time. These results suggest that FSS
could significantly optimize meta-heuristic search-based software
engineering tools.

Index Terms—Software testing, randomized testing, genetic
algorithms, feature subset selection, search-based optimization,
testing tools

I. INTRODUCTION

SOftware testing involves running a piece of software (the
software under test, or SUT) on selected input data, and

checking the outputs for correctness. The goals of software
testing are to force failures of the SUT, and to be thorough.
The more thoroughly we have tested an SUT without forcing
failures, the more sure we are of the reliability of the SUT.

Randomized testing uses randomization for some aspects
of test input data selection. Several studies [1]–[4] have found
that randomized testing of software units is effective at forcing
failures in even well-tested units. However, there remains a
question of the thoroughness of randomized testing. Using
various code coverage measures to measure thoroughness,
researchers have come to varying conclusions about the ability
of randomized testing to be thorough [2], [5], [6].

The thoroughness of randomized unit testing is dependent
on when and how randomization is applied; e.g. the number
of method calls to make, the relative frequency with which
different methods are called, and the ranges from which nu-
meric arguments are chosen. The manner in which previously-
used arguments or previously-returned values are used in new
method calls, which we call the value reuse policy, is also
a crucial factor. It is often difficult to work out the optimal
values of the parameters and the optimal value reuse policy
by hand.

Manuscript received January 1, 2009; revised September 4, 2009.
J. Andrews and F. Li are with the Department of Computer Science,

University of Western Ontario, London, Ont., Canada, N6A 2B7. E-mail:
andrews@csd.uwo.ca.

T. Menzies is with the Lane Department of Computer Science and Electrical
Engineering, West Virginia University, Morgantown, WV 26506-610. E-mail:
tim@menzies.us.

This paper describes the Nighthawk unit test data generator.
Nighthawk has two levels. The lower level is a randomized
unit testing engine which tests a set of methods according
to parameter values specified as genes in a chromosome, in-
cluding parameters that encode a value reuse policy. The upper
level is a genetic algorithm (GA) which uses fitness evaluation,
selection, mutation and recombination of chromosomes to find
good values for the genes. Goodness is evaluated on the
basis of test coverage and number of method calls performed.
Users can use Nighthawk to find good parameters, and then
perform randomized unit testing based on those parameters.
The randomized testing can quickly generate many new test
cases that achieve high coverage, and can continue to do so
for as long as users wish to run it.

This paper also discusses optimization techniques for GA
tools like Nighthawk. Using feature subset selection tech-
niques, we show that we can prune many of Nighthawk’s
mutators (gene types) without compromising coverage. The
pruned Nighthawk tool achieves nearly the same coverage as
full Nighthawk (90%) and does so ten times faster. Therefore,
we recommend that meta-heuristic search-based SE tools
should also routinely perform subset selection.

A. Randomized Unit Testing

Unit testing is variously defined as the testing of a single
method, a group of methods, a module or a class. We will use
it in this paper to mean the testing of a group M of methods,
called the target methods. A unit test is a sequence of calls to
the target methods, with each call possibly preceded by code
that sets up the arguments and the receiver and with each call
possibly followed by code that stores and checks results (we
use “receiver” to refer to the calling method’s object; e.g. with
“t.add(3)”, the receiver is t).

Randomized unit testing is unit testing where there is
some randomization in the selection of the target method
call sequence and/or arguments to the method calls. Many
researchers [2], [3], [6]–[10] have performed randomized unit
testing, sometimes combined with other tools such as model
checkers. A key concept in randomized unit testing is that of
value reuse. We use this term to refer to how the testing engine
reuses the receiver, arguments or return values of past method
calls when making new method calls. In previous research,
value reuse has mostly taken the form of making a sequence
of method calls all on the same receiver object; in the research
reported in this paper, we employ value reuse on arguments
and return values as well as receivers.

In our previous research, we developed a GUI-based ran-
domized unit testing engine called RUTE-J [2]. To use RUTE-
J, users write their own customized test wrapper classes, hand-
coding such parameters as relative frequencies of method calls.
Users also hand-code a value reuse policy by drawing receiver0000–0000/00$00.00 c© 2002 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 2

and argument values from value pools, and placing return
values back in value pools. Finding good parameters quickly,
however, requires experience with the tool.

The Nighthawk system described here significantly builds
on this work by automatically determining good parameters.
The lower, randomized-testing, level of Nighthawk initializes
and maintains one or more value pools for all relevant types,
and draws and replaces values in the pools according to a
policy specified in a chromosome. Chromosomes specifies
relative frequencies of methods, method parameter ranges, and
other testing parameters. The upper, genetic-algorithm, level
searches for the parameter settings that increases the coverage
seen in the lower level. The information that Nighthawk
uses about the SUT is only information about type names,
method names, parameter types, method return types, and
which classes are subclasses of others; this makes its general
approach robust and adaptable to other languages.

Designing a GA means making decisions about what fea-
tures are worthy of modeling and mutating. For example, much
of the effort on this project was a laborious trial-and-error
process of trying different types of genes within a chromo-
some. To simplify that process, we describe experiments here
with automatic feature subset selection (FSS), which lead us
to propose that automatic feature subset selection should be a
routine part of the design of any large GA system.

B. Contributions and Paper Organization

The main contributions of this paper are as follows.
1) We describe Nighthawk, a novel two-level genetic-

random testing system that encodes a value reuse policy
in a manner amenable to meta-heuristic search.

2) We demonstrate the value of feature subset selection
(FSS) for optimizing genetic algorithms. Using FSS,
we can prune Nighthawk’s gene types while achieving
nearly the same coverage. Compared to full Nighthawk,
this coverage is achieved ten times faster.

3) We offer evidence for the external validity of our FSS-
based optimization: the optimization learned from one
set of classes (Java utils) also works when applied to
another set of classes (classes from the Apache system).

We discuss related work in Section II. Section III describes
our system, and gene type pruning using feature subset se-
lection is described in Section IV. Section V describes the
performance of optimized versions of Nighthawk on subject
software. Section VI describes threats to validity, and Section
VII concludes.

This paper differs from prior publications as follows:
• The original Nighthawk publication [11] studied its ef-

fectiveness only on classes from java.util.
• A subsequent paper [12] offered an FSS-based optimiza-

tion. That paper found ways to prune 60% of the gene
types when trying to cover the java.util classes.

• This paper shows that that FSS-based optimizer was sub-
optimal. We present here a better optimization method
that prunes 90% of the gene types (see §IV-D2). An
analysis of that optimized system in §IV-D3 revealed
further improvements. We have successfully tested the

optimized and improved version of Nighthawk on Apache
Commons Collections classes (see §IV-D4).

II. RELATED WORK

A. Randomized Unit Testing

“Random” or “randomized” testing has a long history, being
mentioned as far back as 1973 [13]; Hamlet [14] gives a good
survey. The key benefit of randomized testing is the ability to
generate many distinct test inputs in a short time, including
test inputs that may not be selected by test engineers but which
may nevertheless force failures. There are, however, two main
problems with randomized testing: the oracle problem and the
question of thoroughness.

Randomized testing depends on the generation of so many
inputs that it is infeasible to get a human to check all test
outputs. An automated test oracle [15] is needed. There are
two main approaches to the oracle problem. The first is
to use general-purpose, “high-pass” oracles that pass many
executions but check properties that should be true of most
software. For instance, Miller et al. [1] judge a randomly-
generated GUI test case as failing only if the software crashes
or hangs; Csallner and Smaragdakis [16] judge a randomly-
generated unit test case as failing if it throws an exception;
and Pacheco et al. [3] check general-purpose contracts for
units, such as one that states that a method should not throw
a “null pointer” exception unless one of its arguments is
null. Despite the use of high-pass oracles, all these authors
found randomized testing to be effective in forcing failures.
The second approach to the oracle problem for randomized
testing is to write oracles in order to check properties specific
to the software [2], [17]. These oracles, like all formal unit
specifications, are non-trivial to write; tools such as Daikon for
automatically deriving likely invariants [18] could help here.

Since randomized unit testing does not use any intelligence
to guide its search for test cases, there has always been
justifiable concern about how thorough it can be, given various
measures of thoroughness, such as coverage and fault-finding
ability. Michael et al. [5] performed randomized testing on
the well-known Triangle program; this program accepts three
integers as arguments, interprets them as sides of a triangle,
and reports whether the triangle is equilateral, isosceles, sca-
lene, or not a triangle at all. They concluded that randomized
testing could not achieve 50% condition/decision coverage of
the code, even after 1000 runs. Visser et al. [6] compared ran-
domized unit testing with various model-checking approaches
and found that while randomized testing was good at achieving
block coverage, it failed to achieve optimal coverage for a
measure derived from Ball’s predicate coverage [19].

Other researchers, however, have found that the thorough-
ness of randomized unit testing depends on the implementa-
tion. Doong and Frankl [7] tested several units using random-
ized sequences of method calls. By varying some parameters
of the randomized testing, they could greatly increase/decrease
the likelihood of finding injected faults. The parameters in-
cluded number of operations performed, ranges of integer
arguments, and the relative frequencies of some of the methods
in the call sequence. Antoy and Hamlet [8], who checked

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 3

the Java Vector class against a formal specification using
random input, similarly found that if they avoided calling some
of the methods (essentially setting the relative frequencies of
those methods to zero), they could cover more code in the
class. Andrews and Zhang [20], performing randomized unit
testing on C data structures, found that varying the ranges from
which integer key and data parameters were chosen increased
the fault-finding ability of the random testing.

Pacheco et al. [3] show that randomized testing can be
enhanced via randomized breadth-first search of the search
space of possible test cases, pruning branches that lead to
redundant or illegal values which would cause the system to
waste time on unproductive test cases.

Of the cited approaches, the approach described in this
paper is most similar to Pacheco et al.’s. The primary dif-
ference is that we achieve thoroughness by generating long
sequences of method calls on different receivers, while they
do so by deducing shorter sequences of method calls on a
smaller set of receivers. The focus of our research is also
different. Pacheco et al. focus on identifying contracts for
units and finding test cases that violate them. In contrast, we
focus on maximizing code coverage; coverage is an objective
measure of thoroughness that applies regardless of whether
failures have been found, for instance in situations in which
most bugs have been eliminated from a unit.

B. Analysis-Based Test Data Generation Approaches

Approaches to test data generation via symbolic execution
date back to 1976 [21], [22]; typically these approaches
generate a thorough set of test cases by deducing which
combinations of inputs will cause the software to follow given
paths. TESTGEN [23], for example, transforms each condition
in the program to one of the form e < 0 or e ≤ 0, and then
searches for values that minimize (resp. maximize) e, thus
causing the condition to become true (resp. false).

Other source code analysis tools have applied iterative
relaxation of a set of constraints on input data [24] and
generation of call sequences using goal-directed reasoning
[25]. Some recent approaches use model checkers such as Java
Pathfinder [26]. These approaches are sometimes augmented
with “lossy” randomized search for paths, as in the DART and
CUTE systems [10], [27], the Lurch system [28], and the Java
Pathfinder-based research of Visser et al. [6].

Some analysis-based approaches limit the range of different
conditions they consider; for instance, TESTGEN’s minimiza-
tion strategy [23] cannot be applied to conditions involving
pointers. In addition, most analysis-based approaches incur
heavy memory and processing time costs. These limitations are
the primary reason why researchers have explored the use of
heuristic and metaheuristic approaches to test case generation.

C. Genetic Algorithms for Testing

Genetic algorithms (GAs) were first described by Holland
[29]. Candidate solutions are represented as “chromosomes”,
with solution represented as “genes” in the chromosomes.
The possible chromosomes form a search space and are
associated with a fitness function representing the value of

solutions encoded in the chromosome. Search proceeds by
evaluating the fitness of each of a population of chromosomes,
and then performing point mutations and recombination on
the successful chromosomes. GAs can defeat purely random
search in finding solutions to complex problems. Goldberg
[30] argues that their power stems from being able to engage in
“discovery and recombination of building blocks” for solutions
in a solution space.

Meta-heuristic search methods such as GAs have often been
applied to the problem of test suite generation. In Rela’s review
of 122 applications of meta-heuristic search in SE [31], 44% of
the applications related to testing. Approaches to GA test suite
generation can be black-box (requirements-based) or white-
box (code-based); here we focus on four representative white-
box approaches, since our approach focuses on increasing
coverage, and is therefore also white-box.

Pargas et al. [32] represent a set of test data as a chromo-
some, in which each gene encodes one input value. Michael et
al. [5] represent test data similarly, and conduct experiments
comparing various strategies for augmenting the GA search.
Both of these approaches evaluate the fitness of a chromosome
by measuring how close the input is to covering some desired
statement or condition direction. Guo et al. [33] generate
unique input-output (UIO) sequences for protocol testing using
a genetic algorithm; the sequence of genes represents a se-
quence of inputs to a protocol agent, and the fitness function
computes a measure related to the coverage of the possible
states and transitions of the agent. Finally, Tonella’s approach
to class testing [34] represents the sequence of method calls
in a unit test as a chromosome; the approach features cus-
tomized mutation operators, such as one that inserts method
invocations.

D. Nighthawk

In work reported in [11], we developed Nighthawk, the
two-level genetic-random test data generation system explored
further in this paper, and carried out experiments aimed at
comparing it with previous research and finding the optimal
setting of program switches.

Unlike the methods discussed above, Nighthawk’s genetic
algorithm does not result in a single test input. Instead, it finds
settings to parameters which control aspects of randomized
testing. We designed Nighthawk by identifying aspects of
the basic randomized testing algorithm that would benefit
from being controlled by parameters, and then encoding each
parameter as a gene in a chromosome. Details of the design
of Nighthawk are presented in Section III.

Our initial empirical studies showed that, when run on the
subject software used by Michael et al. [5], Nighthawk reached
100% of feasible condition/decision coverage on average after
8.5 generations. They also showed that, when run on the
subject software used by Visser et al. [6] and Pacheco et al.
[3], Nighthawk achieved the same coverage in a comparable
amount of time. Finally, our studies showed that Nighthawk
could achieve high coverage (82%) automatically, when using
the best setting of system parameters, when run on the 16
Collection and Map classes from the java.util package in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 4

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18x

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

y

 0
 0.2
 0.4
 0.6
 0.8

 1

Probability of covering

Fig. 1. Spiky search space resulting from poor fitness function.

Java 1.5.0. These results encouraged us to explore Nighthawk
further. The full empirical results are described in [11].

E. Analytic Comparison of Approaches
Once a large community starts comparatively evaluating

some technique, then evaluation methods for different methods
become just as important as the generation of new methods.
Currently, there are no clear conventions on how this type
of work should be assessed. However, we can attempt some
analytic comparisons.

It is clear that there are situations in which a source code
analysis-based approach such as symbolic evaluation or model
checking will be superior to any randomized approach. For
instance, for an if statement decision of the form (x==742
&& y==113), random search of the space of all possible
x,y pairs is unlikely to produce a test case that executes the
decision in the true direction, while a simple analysis of the
source code will be successful. The question is how often
these situations arise in real-world programs. The Nighthawk
system of this paper cannot guess at constants like 742, but
is still able to cover the true direction of decisions of the
form x==y because the value reuse policies it discovers will
often choose x and y from the same value pool. It is therefore
likely that randomized testing and analysis-based approaches
have complementary strengths. Groce et al. [4] conclude that
randomized testing is a good first step, before model checking,
in achieving high quality software.

Genetic algorithms do not perform well when the search
space is mostly flat, with steep jumps in fitness score. Consider
the problem of finding integer inputs x and y that cover
the true direction of the decision “x==y”. If we cast the
problem as a search for the two values, and the score as
whether we have found two equal values, the search space
is shaped as in Figure 1: a flat plain of zero score with
spikes along the diagonal. Most approaches to GA white-
box test data generation use fitness functions that detect “how
close” the target decision is to being true, often using analysis-
based techniques. For instance, Michael et al. [5] use fitness
functions that specifically take account of such conditions by
measuring how close x and y are. Watkins and Hufnagel [35]
enumerate and compare fitness functions proposed for GA-
based test case generation.

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18hi

 0
 2

 4
 6

 8
 10

 12
 14

 16
 18

 20

lo

 0
 0.2
 0.4
 0.6
 0.8

 1

Probability of covering

Fig. 2. Smooth search space resulting from recasting problem.

In contrast, we recast the problem as a search for the best
values of lo and hi that will be used as the lower and upper
bound for random generation of x and y, and the score as
whether we have generated two equal values of x and y. Seen
in this way, the search space landscape still contains a spiky
“cliff”, as seen in Figure 2, but the cliff is approached on one
side by a gentle slope.

If the inputs in Figure 1 were floating-point numbers (not
integers), the search space would consist of a flat plain of zero
score with a thin, sharp ridge along the diagonal. In this case
the solution depicted in Figure 2 would yield only a small
improvement. This is where value pools come in. We draw
each parameter value from a value pool of finite size; each
numeric value pool has size s and bounds lo and hi, and is
initially seeded with values drawn randomly within lo to hi.
For the example problem, we will be more likely to choose
equal x and y as s becomes smaller, regardless of the value
of lo and hi and regardless of whether the values are integers
or floating-point numbers, because the smaller the value pool,
the more likely we are to pick the same value for x and y.

This approach generalizes to non-numeric data. Each type
of interest is associated with one or more value pools; the
number and size of which are controlled by genes. At any
time, a value in a value pool may be chosen as the receiver
or parameter of a method call, which may in turn change the
value in the pool. Also, at any time a value in a value pool may
be replaced by a return value from a method call. Which value
pools are drawn on, and which value pools receive the return
values of which methods, are also controlled by genes. A test
case may consist of hundreds of randomized method calls,
culminating in the creation of values in value pools which,
when used as parameters to a method call, cause that method
to execute code not executed before. Changing gene values
therefore makes this more/less likely to happen.

To the best of our knowledge, each run of previous GA-
based tools has resulted in a single test case, which is meant
to reach a particular target. A test suite is built up by aiming
the GA at different targets, resulting in a test suite that achieves
coverage of all targets. However, Frankl and Weiss [36] and
Siami Namin and Andrews [37] have shown that both size and
coverage exert an influence over test suite effectiveness, and
Rothermel et al. [38] have shown that reducing test suite size

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 5

2)

...

...

int

...

TreeMap

Value
pool 1

Value
pool i

Value
pool 1

Value
pool j

t . put (k , v);

...

...
3)

... ...

......

1)

Fig. 3. Value pool initialization and use. Stage 1: random values are seeded
into the value pools for primitive types such as int, according to bounds in
the pools. Stage 2: values are seeded into non-primitive type classes that have
initializer constructors, by calling those constructors. Stage 3: the rest of the
test case is constructed and run, by repeatedly randomly choosing a method
and receiver and parameter values. Each method call may result in a return
value, which is placed back into a value pool (not shown).

while preserving coverage can significantly reduce its fault
detection capability. Therefore, given a choice between three
systems achieving the same coverage, (a) which generates one
fixed set of test cases, (b) which generates many different test
cases slowly, and (c) which generates many different test cases
quickly, (c) is the optimal choice. A GA which generates one
test case per run is in class (a) or (b) (it may generate different
test cases on each run as a result of random mutation). In
contrast, Nighthawk is in class (c) because each run of the
GA results only in a setting of randomized testing parameters
that achieves high coverage; new high-coverage test suites can
then be generated quickly at low cost.

All analysis-based approaches share the disadvantage of re-
quiring a robust parser and/or an analyzer for source code, byte
code or machine code that can be updated to reflect changes
in the source language. As an example from the domain of
formal specification, Java 1.5 was released in 2004, but as
of this writing, the widely-used specification language JML
does not fully support Java 1.5 features [39]. Our approach
does not require source code or bytecode analysis, instead
depending only on class and method parameter information
(such as that supplied by the robust Java reflection mechanism)
and commonly-available coverage tools. For instance, our code
was initially written with Java 1.4 in mind, but worked seam-
lessly on the Java 1.5 versions of the java.util classes,
despite the fact that the source code of many of the units
had been heavily modified to introduce templates. However,
model-checking approaches have other strengths, such as the
ability to analyze multi-threaded code [40], further supporting
the conclusion that the two approaches are complementary.

III. NIGHTHAWK: SYSTEM DESCRIPTION

Our exploratory studies [11] suggested that GAs generating
unit tests should search method parameter ranges, value reuse
policy and other randomized testing parameters. This section
describes Nighthawk’s implementation of that search. We
outline the lower, randomized-testing, level of Nighthawk,

and then describe the chromosome that controls its operation.
We then describe the genetic-algorithm level and the end
user interface. Finally, we describe automatically-generated
test wrappers for precondition checking, result evaluation and
coverage enhancement.

A. Randomized Testing Level

Nighthawk’s lower level constructs and runs one test case.
The algorithm takes two parameters: a set M of Java methods,
and a GA chromosome c appropriate to M . The chromosome
controls aspects of the algorithm’s behavior, such as the
number of method calls to be made, and will be described
in more detail in the next subsection. We say that M is the
set of “target methods”. IM , the types of interest corresponding
to M , is the union of the following sets of types1:
• All types of receivers, parameters and return values of

methods in M .
• All primitive types that are the types of parameters to

constructors of other types of interest.
Each type t ∈ IM has an array of value pools. Each value pool
for t contains an array of values of type t. Each value pool for
a range primitive type (a primitive type other than boolean
and void) has bounds on the values that can appear in it.
The number of value pools, number of values in each value
pool, and the range primitive type bounds are specified by
chromosome c.

See Figure 3 for a high-level view of how the value pools
are initialized and used in the test case generation process.
The algorithm chooses initial values for primitive type pools,
before considering non-primitive type pools. A constructor
method is an initializer if it has no parameters, or if all
its parameters are of primitive types. A constructor is a
reinitializer if it has no parameters, or if all its parameters
are of types in IM . (All initializers are also reinitializers.) We
define the set CM of callable methods to be the methods in
M plus the reinitializers of the types in IM (Nighthawk calls
these callables directly).

A call description is an object representing one method call
that has been constructed and run. It consists of the method
name, an indication of whether the method call succeeded,
failed or threw an exception, and one object description for
each of the receiver, the parameters and the result (if any). A
test case is a sequence of call descriptions, together with an
indication of whether the test case succeeded or failed.

Nighthawk’s randomized testing algorithm is referred to as
constructRunTestCase, and is described in Figure 4. It takes
a set M of target methods and a chromosome c as inputs. It
begins by initializing value pools, and then constructs and runs
a test case, and returns the test case. It uses an auxiliary method
called tryRunMethod (Figure 5), which takes a method as
input, calls the method and returns a call description. In the
algorithm descriptions, the word “choose” is always used to
mean specifically a random choice which may partly depend
on c.

1In this section, the word “type” refers to any primitive type, interface, or
abstract or concrete class.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 6

Input: a set M of target methods; a chromosome c.
Output: a test case.
Steps:

1) For each element of each value pool of each primitive type in IM , choose an
initial value that is within the bounds for that value pool.

2) For each element of each value pool of each other type t in IM :
a) If t has no initializers, then set the element to null.
b) Otherwise, choose an initializer method i of t, and call

tryRunMethod(i, c). If the call returns a non-null value, place
the result in the destination element.

3) Initialize test case k to the empty test case.
4) Repeat n times, where n is the number of method calls to perform:

a) Choose a target method m ∈ CM .
b) Run tryRunMethod(m, c). Add the returned call description to k.
c) If tryRunMethod returns a method call failure indication, return k with

a failure indication.
5) Return k with a success indication.

Fig. 4. Algorithm constructRunTestCase.

Input: a method m; a chromosome c.
Output: a call description.
Steps:

1) If m is non-static and not a constructor:
a) Choose a type t ∈ IM which is a subtype of the receiver of m.
b) Choose a value pool p for t.
c) Choose one value recv from p to act as a receiver for the method call.

2) For each argument position to m:
a) Choose a type t ∈ IM which is a subtype of the argument type.
b) Choose a value pool p for t.
c) Choose one value v from p to act as the argument.

3) If the method is a constructor or is static, call it with the chosen arguments.
Otherwise, call it on recv with the chosen arguments.

4) If the call throws AssertionError, return a failure indication call description.
5) Otherwise, if the call threw another exception, return a call description with an

exception indication.
6) Otherwise, if the method return is not void, & the return value ret is non-null:

a) Choose type t ∈ IM that is a supertype of the the return value.
b) Choose a value pool p for t.
c) If t is not a primitive type, or if t is a primitive type and ret does not

violate the p bounds, then replace an element of p with ret.
d) Return a call description with a success indication.

Fig. 5. Algorithm tryRunMethod.

tryRunMethod considers a method call to fail if and only
if it throws an AssertionError. It does not consider other
exceptions to be failures, since they might be correct responses
to bad input parameters. We facilitate checking correctness
of return values and exceptions by providing a generator for
“test wrapper” classes. The generated test wrapper classes can
be instrumented with assertions; see Section III-E for more
details.

Return values may represent new object instances never
yet created during the running of the test case. If these new
instances are given as arguments to method calls, they may
cause the method to execute statements never yet executed.
Thus, the return values are valuable and are returned to the
value pools when they are created.

Although we have targeted Nighthawk specifically at Java,
note that its general principles apply to any object-oriented or
procedural language. For instance, for C, we would need only
information about the types of parameters and return values
of functions, and the types of fields in structs. struct
types and pointer types could be treated as classes with special
constructors, getters and setters; functions could be treated as
static methods of a single target class.

B. Chromosomes

Aspects of the test case execution algorithms are controlled
by the genetic algorithm chromosome given as an argument.
A chromosome is composed of a finite number of genes. Each

gene is a pair consisting of a name and an integer, floating-
point, or BitSet value. Figure 6 summarizes the different
types of genes that can occur in a chromosome. We refer
to the receiver (if any) and the return value (if non-void)
of a method call as quasi-parameters of the method call.
Parameters and quasi-parameters have candidate types:
• A type is a receiver candidate type if it is a subtype of

the type of the receiver. These are the types from whose
value pools the receiver can be drawn.

• A type is a parameter candidate type if it is a subtype
of the type of the parameter. These are the types from
whose value pools the parameter can be drawn.

• A type is a return value candidate type if it is a supertype
of the type of the return value. These are the types into
whose value pools the return value can be placed.

Note that the gene types candidateBitSet and
valuePoolActivityBitSet encode value reuse policies
by determining the pattern in which receivers, arguments and
return values are drawn from and placed into value pools.

It is clear that different gene values in the chromosome may
cause dramatically different behavior of the algorithm on the
methods. We illustrate this point with two concrete examples.

Consider an implementation of the “triangle” unit from [5].
If the value pool for all three parameter values contains 65536
values in the range -32768 to 32767, then the chance that the
algorithm will ever choose two or three identical values for the
parameters (needed for the “isosceles” and “equilateral” cases)
is very low. If, on the other hand, the value pool contains only
30 integers each chosen from the range 0 to 10, then the chance
rises dramatically due to reuse of previously-used values. In
general, the additional coverage this would give would depend
on the implementation, but is probably greater than zero.

Consider further a container class with put and remove
methods, each taking an integer key as its only parameter. If
the parameters to the two methods are taken from two different
value pools of 30 values in the range 0 to 1000, there is little
chance that a key that has been put into the container will be
successfully removed. If, however, the parameters are taken
from a single value pool of 30 values in the range 0 to 1000,
then the chance is very good that added keys will be removed,
again due to value reuse. A remove method for a typical data
structure executes different code for a successful removal than
it does for a failing one.

C. Genetic Algorithm Level

We take the space of possible chromosomes as a solution
space to search, and apply the GA approach to search it for
a good solution. We chose GAs over other metaheuristic ap-
proaches such as simulated annealing because of our belief that
recombining parts of successful chromosomes would result
in chromosomes that are better than their parents. However,
other metaheuristic approaches may have other advantages and
should be explored in future work.

The parameter to Nighthawk’s GA is the set M of target
methods. The GA performs the usual chromosome evaluation
steps (fitness selection, mutation & recombination). The GA
derives an initial template chromosome appropriate to M ,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 7

Gene type Occurrence Type Description
numberOfCalls One for whole chromosome int the number n of method calls to be made
methodWeight One for each method m ∈ CM int The relative weight of the method, i.e. the

likelihood that it will be chosen
numberOf-
ValuePools

One for each type t ∈ IM int The number of value pools for that type

numberOfValues One for each value pool of each type t ∈ IM
except for boolean

int The number of values in the pool

chanceOfTrue One for each value pool of type boolean int The percentage chance that the value true
will be chosen from the value pool

lowerBound,
upperBound

One for each value pool of each range prim-
itive type t ∈ IM

int or
float

Lower and upper bounds on pool values;
initial values are drawn uniformly from this
range

chanceOfNull One for each argument position of non-
primitive type of each method m ∈ CM

int The percentage chance that null will be
chosen as the argument

candidateBitSet One for each parameter and quasi-parameter
of each method m ∈ CM

BitSet Each bit represents 1 candidate type, signi-
fying if the argument will be of that type

valuePool-
ActivityBitSet

One for each candidate type of each pa-
rameter and quasi-parameter of each method
m ∈ CM

BitSet Each bit represents one value pool, and sig-
nifies whether the argument will be drawn
from that value pool

Fig. 6. Nighthawk gene types.

constructs an initial population of size p as clones of this
chromosome, and mutates the population. It then loops for the
desired number g of generations, of evaluating each chromo-
some’s fitness, retaining the fittest chromosomes, discarding
the rest, cloning the fit chromosomes, and mutating the genes
of the clones with probability m% using point mutations and
crossover (exchange of genes between chromosomes).

The evaluation of the fitness of each chromosome c proceeds
as follows. The random testing level of Nighthawk generates
and runs a test case, using the parameters encoded in c. It
then collects the number of lines covered by the test case.
If we based the fitness function only on coverage, then any
chromosome would benefit from having a larger number of
method calls and test cases, since every new method call
has the potential of covering more code. Nighthawk therefore
calculates the fitness of the chromosome as:

(number of coverage points covered) ∗ (coverage factor)
− (number of method calls performed overall)

We set the coverage factor to 1000, meaning that we are
willing to make 1000 more method calls (but not more) if
that means covering one more coverage point.

For the three variables mentioned above, Nighthawk uses
default settings of p = 20, g = 50,m = 20. These settings
are different from those taken as standard in GA literature
[41], and are motivated by a need to do as few chromosome
evaluations as possible (the primary cost driver of the system).
The population size p and the number of generations g
are smaller than standard, resulting in fewer chromosome
evaluations; to compensate for the lack of diversity in the
population that would otherwise result, the mutation rate m
is larger. The settings of other variables, such as the retention
percentage, are consistent with the literature.

To enhance availability of the software, Nighthawk uses the
popular open-source coverage tool Cobertura [42] to measure
coverage. Cobertura can measure only line coverage (each cov-
erage point corresponds to a source code line, and is covered
if any code on the line is executed). However, Nighthawk’s
algorithm is not specific to this measure.

D. Top-Level Application

The Nighthawk application takes several switches and a set
of class names as command-line parameters. Our empirical
studies [11] showed that it is best to consider the set of “target
classes” as the command-line classes together with all non-
primitive types of parameters and return values of the public
declared methods of the command-line classes. The set M of
target methods is computed as all public declared methods of
the target classes.

Nighthawk runs the GA, monitoring the chromosomes and
retaining the first chromosome that has the highest fitness ever
encountered. This most fit chromosome is the final output
of the program. After finding the most fit chromosome, test
engineers can apply the specified randomized test. To do this,
they run a separate program, RunChromosome, which takes
the chromosome description as input and runs test cases for
a user-specified number of times. Randomized unit testing
generates new test cases with new data every time it is run,
so if Nighthawk finds a parameter setting that achieves high
coverage, a test engineer can automatically generate a large
number of distinct, high-coverage test cases with RunChro-
mosome.

E. Test Wrappers

We provide a utility program that, given a class name,
generates the Java source file of a “test wrapper” class.
Running Nighthawk on an unmodified test wrapper is the same
as running it on the target class; however, test wrappers can
be customized for precondition checking, result checking or
coverage enhancement. A test wrapper for class X is a class
with one private field of class X (the “wrapped object”), and
one public method with an identical declaration for each public
declared method of class X. Each wrapper method passes calls
to the wrapped object.

To improve test wrapper precondition checking, users can
add checks in a wrapper method before the target method
call. When preconditions are violated, the wrapper method just
returns. To customize a wrapper for test result checking, the
user can insert any result-checking code after the target method
call; examples include normal Java assertions and JML [43]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 8

contracts. Switches to the test wrapper generation program
can make the wrapper check commonly-desired properties;
e.g. a method throws no NullPointerException unless
one of its arguments is null. The switch --pleb generates a
wrapper that checks the Java Exception and Object contracts
from Pacheco et al. [3]. Test wrapper generation is discussed
further in [11].

IV. ANALYSIS AND OPTIMIZATION OF THE GA

Our earlier work convinced us that Nighthawk was capable
of achieving high coverage. However, a pressing question
remains: is Nighthawk spending time usefully in its quest for
good chromosomes? In particular, are all the aspects of the
randomized testing level that are controlled by genes the best
aspects to be so controlled? If the answer to this question is
“no”, then the GA level of Nighthawk could be wasting time
mutating genes that have little effect on cost-effective code
coverage; furthermore, the randomized testing level could be
wasting time retrieving the values of genes and changing its
behavior based on them, when it could be using hard-coded
values and behavior. If this is the case, then further research
work, on areas like comparing GA search to other techniques
such as simulated annealing, could be a waste of time because
the GA under study is using useless genes.

In general, it could be the case that some types of genes
used in a GA are more useful and some are less useful. If this
is the case, then we need to identify the least useful genes,
determine if there is any benefit to eliminating them, and if
so, do so.

In order to check the utility of Nighthawk genes, we turn
to feature subset selection (FSS). As shown below, using FSS,
we were able to identify and eliminate useless genes, find a
better initial value for one major gene type, and come to a
better understanding of the tradeoffs between coverage and
performance of Nighthawk.

In this section, we first discuss the motivation of this work in
more detail, and then describe the FSS method we selected.
We describe the four major types of analysis activities we
undertook, and then describe how we iteratively applied them.
We end the section with conclusions about Nighthawk and
about FSS-based analysis of GAs in general.

A. Motivation

The search space of a GA is the product of the sets of
possible values for all genes in a chromosome. In the simplest
case, where all genes have R possible values and there are L
genes, the size of this search space is RL. The run time cost
to find the best possible chromosome is therefore proportional
to this size times the evaluation cost of each chromosome:

cost = RL ∗ eval (1)

Nighthawk’s chromosomes for the java.util classes range
in size from 128 genes to 1273 genes (recall that the num-
ber of genes is dependent on such things as the number
of target methods and the numbers of parameters of those
methods), and each gene can have a large number of values.
Nighthawk’s chromosomes store information related to the

for f ← 1 to |features| do
Mf = 0 // set all merits to 0

done
for i ← 1 to N do

randomly select instance R from group G
find nearest hit H // closest thing in the same group
find nearest miss M // closest thing in a different group
for f ← 1 to |features| do

Mf ←Mf − ∆(f,R,H)
N

+
∆(f,R,M)

N
done

done

Fig. 7. Binary RELIEF (two group system) for N instances for merit of
different features.

gene types of Figure 6. For example, for the public methods
of java.util.Vector, Nighthawk uses 933 genes, 392 of
which are valuePoolActivityBitSet genes, and 254 of
which are candidateBitSet genes. If we could discard
some of those gene types, then Equation 1 suggests that this
would lead to an improvement in Nighthawk’s runtimes.

We can get information about which genes are valuable by
recording, for each chromosome, the values of the genes and
the resulting fitness score of the chromosome. This leads to
a large volume of data, however: since the population is of
size 20, there are 20 vectors of data for each generation for
each unit being tested. We can interpret our problem as a data
mining problem. Essentially, what we need to know from this
data is what information within it is not needed to accurately
predict the fitness score of a chromosome.

Feature subset selection (FSS) is a data mining technique
that removes needless information. A repeated result is that
simpler models with equivalent or higher performance can be
built via FSS [44]. Features may be pruned for several reasons:
• Noisy: spurious signals unrelated to the target;
• Uninformative: contain mostly one value, or no repeating

values;
• Correlated to other variables: so, if pruned, their signal

will remain in other variables.
Apart from reduced runtimes, using fewer features has

other advantages. For example, smaller models can be simpler
to explain and understand. Also, Miller shows that models
generally containing fewer variables have less variance in their
outputs [45].

B. Selecting an FSS Method

The RELIEF feature subset selector [46], [47] assumes that
the data is divided into groups2 and tries to find the features
that serve to distinguish instances in one group from instances
in other groups. When RELIEF was applied to Nighthawk, the
instances stored results from one run of Nighthawk containing
gene values; the groups were the chromosome score, divided
into one of three groups defined below: “high plateau”, “the
hole” and “slopes”.

RELIEF is a stochastic instance-based scheme that operates
over a set of instances, divided into groups. The algorithm

2Technically, RELIEF assumes that instances have been classified using
some “class” attribute. However, to avoid confusion with the concept of
“class” discussed above, we will describe RELIEF in terms of “groups”.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 9

randomly selecting N reference instances R1..RN ; by default,
N = 250. For data sets with two groups, RELIEF can be
implemented using the simple algorithm of Figure 7. For each
instance, the algorithm finds two other instances: the “hit” is
the nearest instance to R in the same group while the “miss”
is the nearest instance to R in another group. RELIEF’s core
intuition is that features that change value between groups are
more meritorious than features that change value within the
same group. Accordingly, the merit of a feature (denoted Mf)
is increased for all features with a different value in the “miss”
and decreased for all features with different values in the “hit”.
The ∆ function of Figure 7 detects differences between feature
values. If a feature is discrete then the distance is one (if the
symbols are different) or zero (if the symbols are the same).
If a feature is numeric, then the distance is the difference in
value (normalized to 0...1). If a feature has a missing value,
then a Bayesian statistic is used to generate an estimate for
the expected value (see [46] for details). For a complex data
set with k > 2 groups, RELIEF samples the k nearest misses
and hits from the same or different groups.

Hall and Holmes [44] review and reject numerous FSS
methods. Their favorite method (called WRAPPER) is suitable
only for small data sets. For larger data sets, they recommend
RELIEF.

C. Analysis Activities

In our FSS analysis of Nighthawk, we iteratively applied
three distinct analysis activities, which we refer to as merit
analysis, gene type ranking, and progressive gene type knock-
out.

1) Merit Analysis: Using data from a run of Nighthawk on
a subject unit, merit analysis finds a “merit” score between
0.0 and 1.0 for each of the genes corresponding to the subject
unit (higher merits indicates that that gene was more useful in
producing a fit chromosome).

To prepare for merit analysis, we modified Nighthawk so
that each chromosome evaluation printed the current value of
every gene and the final fitness function score. (For the two
BitSet gene types, we printed only the cardinality of the set,
since we needed the data to be purely numeric.) The input to
the merit analysis, for a set of subject classes, is the output of
one run of the modified Nighthawk for 40 generations on each
of the subject classes; by 40 generations, the fitness score had
usually stabilized, and we did not want to bias our dataset by
including many instances with high score. Each subject class
therefore yielded 800 instances, each consisting of the gene
values and the chromosome score.

RELIEF assumes discrete data, but Nighthawk’s fitness
scores are continuous. We therefore discretized Nighthawk’s
output:
• The 65% majority of the scores are within 30% of the top

score for any experiment. We call this the high plateau.
• A 10% minority of scores are less than 10% of the

maximum score (called the hole).
• The remaining data slopes from the plateau into the hole.

We therefore assigned each instance to one of three groups
(plateau, slope and hole), and gave the data to RELIEF to seek

Rank Gene type t avgMerit
1 numberOfCalls 85
2 valuePoolActivityBitSet 83
3 upperBound 64
4 chanceOfTrue 50
5 methodWeight 50
6 numberOfValuePools 49
7 lowerBound 44
8 chanceOfNull 40
9 numberOfValues 40

10 candidateBitSet 34

Fig. 8. Nighthawk gene types sorted by avgMerit, the average RELIEF
merit over all genes of that type and all subject units.

features (in this context, genes) that distinguished between the
groups. This produced one merit figure for each feature (gene).

Each run therefore also yielded a ranked list R of all genes,
where gene 1 had the highest merit for this run, gene 2 had
the second highest merit, and so on. We define:
• merit(g, u) is the RELIEF merit score of gene g derived

from unit u.
• rank(g, u) is the rank in R of gene g derived from unit
u.

Note that higher/lower merits/rank indicate a more impor-
tant gene (respectively).

2) Gene Type Ranking: Nighthawk uses the ten gene types
listed in Figure 6. However, recall that each gene type t may
correspond to zero or more genes, depending on the unit under
test. In order to eliminate gene types, we need to rank them
based on the merit scores for the individual genes. We refer
to this activity as gene type ranking.

We used four gene type rankings in our analysis. Each was
based on assigning a numerical score to the gene type derived
from the merit scores of the genes of that type.
• bestMerit(t) is the maximum, over all genes g of type
t and all subject units u, of merit(g, u). Ranking by
bestMerit favors genes that showed high merit for some
unit.

• bestRank(t) is the minimum, over all genes g of
type t and all subject units u, of rank(g, u). Rank-
ing by bestRank favors genes that were important in
Nighthawk’s handling of some unit, regardless of their
absolute merit score.

• avgMerit(t) is the average, over all genes g of type t and
all subject units u, of merit(g, u). Ranking by avgMerit
favors genes that consistently showed high merit across
all units.

• avgRank(t) is the average, over all genes g of type t and
all subject units u, of rank(g, u). Ranking by avgRank
favors genes that were consistently important across all
units.

For example, Figure 8 shows the ten gene types from
Figure 6, ranked in terms of their avgMerit as defined above,
resulting from running the original version of Nighthawk
described in [11] on the first set of subject units. This ranking
places numberOfCalls at the top, meaning that it considers
genes of that type to be the most valuable; it also places
candidateBitSet at the bottom, meaning that it considers
genes of that type to be the most expendable.

However, note also Figure 9, which compares the ranks

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 10

Rank of gene type when ranked by measure
Gene type bestMerit bestRank avgMerit avgRank
numberOfCalls 4 7 1 1
valuePoolActivityBitSet 3 3 2 2
upperBound 2 2 3 3
chanceOfTrue 8 4 4 4
methodWeight 9 8 5 8
numberOfValuePools 5 9 6 6
lowerBound 10 5 7 5
chanceOfNull 6 10 8 9
numberOfValues 7 6 9 7
candidateBitSet 1 1 10 10

Fig. 9. Ranks of all gene types, when ranked by four measures computed from data on the first set of subject units.

of the gene types from the first set of subject units.
Some gene types, such as valuePoolActivityBitSet,
have fairly consistent ranks, whereas others, such as
candidateBitSet and numberOfCalls, have quite dif-
ferent ranks when different ranking measures are used.

3) Progressive Gene Type Knockout: To validate the rank-
ings found by gene type rankings, we conducted a progres-
sive gene type knockout experiment. We instrumented the
Nighthawk source code so that we could easily “knock out”
all genes of a given type, by replacing the code controlled
by that gene type by code that assumed a constant value for
each gene of that type. For example, if we chose to knock out
the numberOfCalls gene type, then no information about
the number of method calls to be made was contained in the
chromosome, and the randomized testing level made the same
number of calls in each case. The constant value chosen was
the initial value that the gene was set to before chromosome
evolution, which we had decided on based on our previous
experience with randomized unit testing.

We then ran Nighthawk on the subject units again, first with
all ten gene types, then with the lowest (least useful) gene type
in the gene type ranking knocked out, then with the lowest two
gene types knocked out, and so on until we were left with one
gene type not knocked out. We collected two result variables
from each run on each subject unit: the amount of time it
took, and the coverage achieved by the winning chromosome.
We then inspected the results using data visualization methods
in order to evaluate the tradeoffs in cost (time) and benefits
(coverage).

D. Analysis Procedure

1) Stage 1: Initial Analysis: In the first stage of our analy-
sis, we ran Nighthawk on the Java 1.5.0 Collection and Map
classes. These are the 16 concrete classes with public con-
structors in java.util that inherit from the Collection
or Map interface, which we used for our earlier experiments
[11]. The source files total 12137 LOC, and Cobertura reports
that 3512 of those LOC contain executable code.

We performed a merit analysis and gene type ranking
based on bestMerit and bestRank. We then proceeded with
progressive gene type knockout based on the bestMerit and
bestRank rankings of gene types. The results of this initial
progressive gene type knockout experiment were reported in
[12]. We showed that with only the best four gene types
according to the bestMerit ranking, or the best seven gene
types according to the bestRank ranking, we were able to

 75

 80

 85

 90

 95

 100

 105

 0 20 40 60 80 100 120

%
 m

ax
 c

ov
er

ag
e

fo
r 1

0
ge

ne
s

% max time for 10 genes

1
2
3
4
5
6
7
8
9

10

Fig. 10. Gene type elimination using avgMerit.

achieve 90% of the coverage achieved by all ten gene types,
in about 10% of the time.

2) Stage 2: Re-Ranking: We observed a large (around 10%)
drop in coverage occurred at the point at which we knocked
out the gene corresponding to numberOfCalls. This finding
cast doubt on the validity of the bestMerit and bestRank
rankings. After we re-ranked according to avgMerit, we
saw that numberOfCalls was the highest ranked, and that
the avgRank ranking largely agreed with this assessment.
We conducted a progressive gene type knockout study using
avgMerit, and tabulated the results.

In the following, each run was compared to the runtime and
coverage seen using all ten gene types and running for g =
50 generations. Figure 10 shows how the coverage changed,
as averaged over all 16 of the java.util classes that we
studied. Each point in Figure 10 represents one generation
when using the given number of genes; all points using the
same number of genes have the same shape and are connected
by a line. The X-axis value of each point is the amount of time
taken to complete that generation, as a percentage of the time
taken for 50 generations and all 10 gene types. The Y-axis
value is the amount of coverage achieved, as a percentage of
the coverage achieved for 50 generations and all 10 gene types.
A statistical comparison of the coverage measures with only
the top gene type and those with all ten gene types, over all
16 units, does show a statistically significant difference when
α = 0.05 (a paired Wilcoxon test yields p = 0.013).

To check if eliminating gene types from Nighthawk’s GA is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 11

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80 90

%
 m

ax
 c

ov
er

ag
e

 (
be

st
 ty

pe
)/

(1
0

ty
pe

s)

% time using (best type)/(10 types)

java.util classes

Fig. 11. Time vs coverage result, compared between one and ten gene types,
for the java.util classes.

cost-effective, we must consider both the coverage achievable
and the time taken to achieve that coverage. We therefore
made two runs of Nighthawk using (a) all the gene types
and using (b) just the top gene type ranked by avgMerit
(i.e. numberOfCalls). We then divided the runtime (clock
time as calculated using Java’s currentTimeMillis) and
coverage results from (b) by the (a) values seen after 50
generations, and plotted the results.

Figure 11 shows the results, with time percentage on the X
axis and coverage percentage on the Y axis, as averaged over
all the java.util classes. It indicates that, on average, 50
generations used 80% of the time taken for all 10 gene types,
but achieved over 95% of the coverage of all 10 gene types.
The dashed line shows that if we stop after 10% of the time,
we still achieve 92% of the coverage of all 10 gene types over
50 generations.

The results of this progressive gene type knockout pro-
cedure corroborated the rankings that we had derived using
the avgMerit and avgRank measures, lending support to
the validity of these measures as opposed to the bestMerit
and bestRank measures. We therefore continued to use only
avgMerit and avgRank in our subsequent research.

Eliminating gene types would simplify Nighthawk’s code,
because it would mean that fewer decisions and parameters
of the randomized-testing level would be controlled by genes
at the GA level. Figure 11 suggests that the cost of this
simplification could be a drop in coverage, but also that
it comes with greater efficiency. However, if efficiency is
our primary consideration, Figure 10 indicates that simply
stopping after fewer generations may be the best way to
achieve this.

3) Stage 3: Optimizing numberOfCalls:
The implication of the result regarding the
numberOfCalls gene type was that changing the
number of method calls made in the test case was most
important to reach higher coverage. What was the cause of
this importance? If it was due simply to the fact that we
had chosen a sub-optimal initial value for the number of
calls, then changing the initial value could result in a quicker
convergence to an optimal value. Moreover, a sub-optimal
initial value for numberOfCalls could have the effect of

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200

F
in

al
 n

um
be

rO
fC

al
ls

 v
al

ue

Number of callable methods in unit

final
k=5

k=50

Fig. 12. Finding the optimal initial number of calls.

skewing our FSS analysis, since numberOfCalls could
assume a skewed importance due to the need to change it.

Nighthawk assigns an initial value of k · |CM | to
numberOfCalls, where k is a constant and CM is the set
of callable methods. The motivation for this initial value is
that if there are more callable methods associated with the
unit under test, then we expect to have to make more method
calls in order to test them. In the version of Nighthawk studied
in [11], we set k to 5, based on our earlier experience with
randomized testing.

To investigate whether this initial value of
numberOfCalls was optimal, we generated a scatter
plot (Figure 12) plotting the number of callable methods
against the final value of numberOfCalls for the winning
chromosome found by Nighthawk for each of our subject
units. From this scatter plot, it became obvious that the initial
value was indeed sub-optimal: a value of 5 for k results in
the lower line in the figure, which is below the final value for
all but one of the subject units. A value of 50 for k results in
the upper line in the figure, which is much closer to the final
value for all units.

Based on this analysis, we changed the value of k to 50;
that is, we set the initial value of numberOfCalls to 50
times the number of callable methods. In the sequel, we refer
to Nighthawk with this change as Nighthawk version 1.1, and
the original Nighthawk as version 1.0.

4) Stage 4: Analyzing the Optimized Version: Because of
our concern that the sub-optimal initial numberOfCalls
value had skewed our previous analysis, we re-ran the merit
analysis using Nighthawk 1.1 and the java.util classes.

To corroborate our conclusions, we ran a merit analysis
using Nighthawk 1.1 and a new set of classes. The Apache
Commons Collection classes is a set of classes implement-
ing efficient data structures, developed by the open-source
Apache development community. We focused on the 36 con-
crete top-level classes in this effort. Two of these classes
(ExtendedProperties and MapUtils) tended to gener-
ate large numbers of files when Nighthawk was run on them;
we could have dealt with this by modifying the appropriate
test wrappers, but for greater consistency we decided to omit
them. We therefore ran a merit analysis using Nighthawk 1.1
and the other 34 concrete top-level classes.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 12

Rank of gene type when ranked by measure
java.util Apache

Gene type avgMerit avgRank avgMerit avgRank
numberOfCalls 3 3 1 2
valuePoolActivityBitSet 4 5 2 3
chanceOfTrue 1 1 3 1
numberOfValuePools 7 7 4 4
methodWeight 9 9 5 8
numberOfValues 6 6 6 7
upperBound 2 2 7 5
lowerBound 5 4 8 6
chanceOfNull 8 8 9 9
candidateBitSet 10 10 10 10

Fig. 13. Ranks of all gene types according to average merit and average gene rank, after running Nighthawk 1.1 on the java.util classes and the Apache
Commons Collections classes.

 85

 90

 95

 100

 0 20 40 60 80 100 120

%
 m

ax
 c

ov
er

ag
e

 (
be

st
 ty

pe
)/

(1
0

ty
pe

s)

% time using (best type)/(10 types)

Apache Commons Collections Classes

Fig. 14. Time vs coverage result, compared between one and ten gene types,
for the Apache classes.

We then performed a gene type ranking using only the
avgMerit and avgRank measures. The results of this rank-
ing, for both the java.util classes and the Apache Com-
mons Collections classes, are in Figure 13. Note that while
numberOfCalls is still ranked highly, now the gene type
chanceOfTrue emerges as the most influential gene type,
with upperBound and valuePoolActivityBitSet
also being influential for some classes3. However, as
noted even for Nighthawk 1.0 using the avgMerit and
avgRank rankings, the gene types candidateBitSet and
chanceOfNull were consistently not useful.

A progressive gene type knockout based on the avgMerit
gene type ranking supported the validity of that ranking:
knocking out the lowest-ranked gene types had almost no
effect on eventual coverage, while knocking out the higher-
ranked gene types had a small but more noticeable effect.

Furthermore, as shown in Figure 14, it is still the case that
we can achieve over 92% of the coverage achieved by all
10 gene types in 10% of the time if we use only the top-
ranked gene type and stop the genetic algorithm early. The
Figure 14 results were generated in the same manner as above
(in Figure 11):
• We made two runs using (a) all the gene types and using

(b) just the top gene type ranked by avgMerit (i.e.

3The possibility still exists that these new most influential genes were
also initialized wrongly. Informal investigation indicates not, but more formal
research is needed.

numberOfCalls).
• We then divided the runtime and coverage results from

(b) by the (a) values seen after 50 generations, and plotted
the results in Figure 14.

However, Figure 14 also shows that Nighthawk with only one
gene takes longer to run for 50 generations on the Apache
Commons classes than Nighthawk with all 10 genes, and
achieves less than 95% of the coverage. This suggests that in
the case of the Apache Commons classes, it is not advisable
to radically reduce the number of gene types considered.

E. Discussion

There are two main areas of implications for this work:
implications for Nighthawk itself, and implications for other
systems.

1) Implications for Nighthawk: On the surface, the results
reported above suggest that most gene types can be eliminated.
However, there are at least two mitigating factors. First, the
additional coverage achieved by using all ten gene types may
be of code that is difficult to cover, and thus this additional
coverage might be more valuable to the user than the raw
coverage numbers suggest. Second, the observations about
gene types might not carry over to other, different subject
units.

Nevertheless, the results show that it is very likely that
Nighthawk can be modified to give users a better range of
cost-benefit tradeoffs, for instance by eliminating gene types
or using early stopping criteria that take advantage of the
early plateaus in coverage seen in Figure 11. In particular,
the results suggest that the gene types candidateBitSet
and chanceOfNull were not useful. Translating this back
into the terms of Nighthawk’s randomized test input generation
algorithm, this means that when it is looking for a value to pass
to a parameter of class C, it should always draw parameter val-
ues from value pools in all the subclasses of C (the behaviour
resulting from the default value of candidateBitSet); fur-
thermore, it is sufficient for it to choose null as a parameter
3% of the time (the default value of chanceOfNull).

2) Implications for Other Systems: At the meta-heuristic
level, this work suggests that it may be useful to integrate
FSS directly into meta-heuristic algorithms. Such an inte-
gration would enable the automatic reporting of the merits
of individual features, and the automatic or semi-automatic
selection of features. If the results of this paper extend to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 13

Nighthawk 1.0 Nighthawk 1.1
Source file SLOC Nt RCt Coverage Nt RCt Coverage
ArrayList 150 48 15 140 (.93) 93 12 140 (.93)
EnumMap 239 5 8 7 (.03) 20 10 12 (.05)
HashMap 360 176 30 347 (.96) 136 25 347 (.96)
HashSet 46 39 22 44 (.96) 125 21 44 (.96)
Hashtable 355 157 25 325 (.92) 252 26 329 (.93)
IHashMap 392 134 34 333 (.85) 182 17 335 (.85)
LHashMap 103 129 25 96 (.93) 153 24 96 (.93)
LHashSet 9 24 16 9 (1.0) 69 15 9 (1.0)
LinkedList 227 53 17 225 (.99) 172 18 225 (.99)
PQueue 203 103 13 155 (.76) 120 14 147 (.72)
Properties 249 47 18 102 (.41) 79 35 102 (.41)
Stack 17 26 8 17 (1.0) 45 7 17 (1.0)
TreeMap 562 106 26 526 (.94) 227 28 525 (.93)
TreeSet 62 186 26 59 (.95) 124 27 59 (.95)
Vector 200 176 20 195 (.98) 36 19 196 (.98)
WHashMap 338 110 21 300 (.89) 201 24 300 (.89)
Total 3512 1519 324 2880 (.82) 2034 322 2883 (.82)
Per unit 220 95 20 127 20

Fig. 15. Results of running configurations of Nighthawk on the 16
java.util Collection and Map classes. SLOC: number of source lines
of code contained in the .java file of the unit, including inner classes. Nt:
time (sec) taken by Nighthawk to find the winning chromosome. RCt: time
(sec) taken by RunChromosome to generate and run 10 test cases based on
the winning chromosome. Coverage: source lines of code covered by the 10
test cases run by RunChromosome, as measured by Cobertura (the number
in parentheses is the ratio of lines covered).

other domains, this would lead to meta-heuristic algorithms
that improve themselves automatically each time they are run.

Also, on the theory-formation level, this work opens up the
possibility of more rapid turnover of the theoretical founda-
tions underlying present tools, as heuristic and meta-heuristic
aspects of given implementations are shown to be consistently
valuable or expendable. The expendability of Nighthawk’s
candidateBitSet and chanceOfNull gene types is an
example of this latter phenomenon.

V. PROPERTIES OF THE OPTIMIZED SYSTEM

We now present statistics on runs of versions of Nighthawk
on two subject software packages, in order to help evaluate
how cost-effective Nighthawk is, and to help compare version
1.0 of Nighthawk with version 1.1.

We collect statistics on Nighthawk using the following
procedure. For each subject unit, we run Nighthawk for 50
generations. In order to give engineers an accurate sense
of how long Nighthawk typically takes to find its highest
coverage, we record the time Nighthawk reported after first
achieving the highest coverage it achieved4. We take the
winning chromosome from Nighthawk, run 10 test cases based
on that chromosome using RunChromosome, and record how
long it takes. Finally, we run Cobertura’s report generation
script; we calculate how many lines of code are measurable
by Cobertura in the source file for the unit, and how many
lines are reported by Cobertura as having been covered. These
counts include inner classes.

In order to compare Nighthawk 1.0 with 1.1 (the version
using the more accurate initial value for numberOfCalls),
we ran the above procedure using 1.0 on the java.util
Collection and Map classes, and again using 1.1. The 1.0

4All empirical studies in this paper were performed on a Sun UltraSPARC-
IIIi running SunOS 5.10 and Java 1.5.0 11.

Source file SLOC Nt RCt Coverage
ArrayStack 37 6 6 37 (1.0)
BagUtils 14 52 7 14 (1.0)
BeanMap 212 19 76 138 (0.65)
BinaryHeap 149 123 18 148 (0.99)
BoundedFifoBuffer 89 6 11 89 (1.0)
BufferOverflowException 9 3 4 9 (1.0)
BufferUnderflowException 9 3 5 9 (1.0)
BufferUtils 12 2 6 12 (1.0)
ClosureUtils 34 3 10 22 (0.65)
CollectionUtils 329 301 45 211 (0.64)
ComparatorUtils 33 13 10 33 (1.0)
CursorableLinkedList 528 170 41 496 (0.94)
DefaultMapEntry 25 2 5 24 (0.96)
DoubleOrderedMap 521 164 26 480 (0.92)
EnumerationUtils 3 2 7 3 (1.0)
FactoryUtils 8 2 7 8 (1.0)
FastArrayList 519 334 49 481 (0.93)
FastHashMap 258 167 24 223 (0.86)
FastTreeMap 288 239 37 262 (0.91)
FunctorException 36 4 12 29 (0.81)
HashBag 5 8 9 5 (1.0)
IteratorUtils 114 455 54 97 (0.85)
LRUMap 44 76 28 44 (1.0)
ListUtils 64 53 10 28 (0.44)
MultiHashMap 138 36 20 128 (0.93)
PredicateUtils 31 64 9 31 (1.0)
ReferenceMap 297 161 23 247 (0.83)
SequencedHashMap 236 105 41 232 (0.98)
SetUtils 30 42 8 19 (0.63)
StaticBucketMap 214 324 36 199 (0.93)
SynchronizedPriorityQueue 11 2 4 9 (0.82)
TransformerUtils 39 3 11 27 (0.69)
TreeBag 10 10 10 10 (1.0)
UnboundedFifoBuffer 81 32 48 81 (1.0)
Total 4427 2986 717 3885 (.88)
Per unit 130 88 21

Fig. 16. Results of running Nighthawk 1.1 using 8 gene types on the 34
Apache Commons Collections classes studied. Column headings are as in
Figure 15.

results were reported originally in [11]; Figure 15 collects
these statistics and also those for 1.1.

A glance at the Nt columns in Figure 15 suggest that
version 1.1 of Nighthawk takes longer than version 1.0, but
statistical tests only weakly support the hypothesis that there
is a significant difference in run times (a paired Wilcoxon
test yields p = 0.07; a Shapiro-Wilk normality test on
the difference between the columns yields p = 0.14, not
rejecting the hypothesis of normality; and a paired t test
yields p = 0.08). There is no statistically significant difference
in either the runtime needed by RunChromosome (a paired
Wilcoxon test yields p = 0.98) or the coverage achieved (a
paired Wilcoxon test yields p = 0.60).

We conclude that for these subject units, the corrected value
of numberOfCalls did not result in either substantial extra
runtime or substantial extra coverage. Nighthawk was able to
find a winning chromosome after an average of at most 127
seconds per unit, or 58 seconds per 100 source lines of code.
RunChromosome was able to generate and run ten test cases
in an average of 20 seconds per unit, or 9.2 seconds per 100
source lines of code. These tests covered an average of 82%
of the source lines of code, a ratio which is not higher mainly
because of the poor performance of Nighthawk on the large
EnumMap unit. (In [11] we discuss why Nighthawk did poorly

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 14

on EnumMap and what we did to correct the problem.)
We also ran the evaluation procedure on the Apache

Commons Collections classes that we used in our opti-
mization research. As discussed in Section IV-E1, there
was strong evidence that the two low-ranked gene types
candidateBitSet and chanceOfNull were not cost-
effective. For this study, we therefore ran version 1.1 of
Nighthawk using the 8 other, highest-ranked gene types.
Figure 16 shows the resulting data. Nighthawk was able to find
a winning chromosome after an average of 88 seconds per unit,
or 67 seconds per 100 source lines of code. RunChromosome
was able to generate and run ten test cases in an average of
21 seconds per unit, or 16 seconds per 100 source lines of
code. These tests covered an average of 88% of the source
lines of code. Inspection of the units on which Nighthawk
did less well indicate that some of the missing coverage was
due to code that tested whether arguments were instances of
specific subclasses of java.util.Collection, such as
java.util.Set or java.util.Map.

One coverage tool vendor website [48] states that “code
coverage of 70-80% is a reasonable goal for system test of
most projects with most coverage metrics”, and suggests 90%
coverage during unit testing. Berner et al. [49], reporting
on a study of the commercial use of unit testing on Java
software, report unit test coverage of no more than 85% over
the source code of the whole system, on a variety of coverage
measures. We therefore consider the coverage levels achieved
by Nighthawk to be very good.

In summary, for the widely-used subject units we studied,
Nighthawk is able to find randomized testing parameters that
achieve high coverage in a reasonable amount of time; the
parameters that it finds allow programmers to quickly generate
many distinct test cases that achieve high coverage of the units
under test.

VI. THREATS TO VALIDITY

The representativeness of the units under test is the ma-
jor threat to external validity. We studied java.util and
Apache Commons data structure classes because these are
complex, heavily-used units that have high quality require-
ments. However, other units might have characteristics that
cause Nighthawk to perform poorly. Randomized unit testing
schemes in general require many test cases to be executed,
so they perform poorly on methods that do a large amount of
disk I/O or thread generation.

Nighthawk uses Cobertura, which measures line coverage,
a weak coverage measure. The results that we obtained
may not extend to stronger coverage measures. However,
the Nighthawk algorithm does not perform special checks
particular to line coverage. The question of whether code
coverage measures are a good indication of the thoroughness
of testing is still, however, an area of active debate in the
software testing community, making this a threat to construct
validity.

Also, time measurement is a construct va-
lidity threat. We measured time using Java’s
currentTimeMillis, which reports total wall clock

time, not CPU time. This may show run times that do not
reflect the testing cost to a real user.

VII. CONCLUSIONS AND FUTURE WORK

Randomized unit testing is a promising technology that has
been shown to be effective, but whose thoroughness depends
on the settings of test algorithm parameters. In this paper,
we have described Nighthawk, a system in which an upper-
level genetic algorithm automatically derives good parameter
values for a lower-level randomized unit test algorithm. We
have shown that Nighthawk is able to achieve high coverage
of complex, real-world Java units, while retaining the most
desirable feature of randomized testing: the ability to generate
many new high-coverage test cases quickly.

We have also shown that we were able to optimize and sim-
plify meta-heuristic search tools. Metaheuristic tools (such as
genetic algorithms and simulated annealers) typically mutate
some aspect of a candidate solution and evaluate the results.
If the effect of mutating each aspect is recorded, then each
aspect can be considered a feature and is amenable to the FSS
processing described here. In this way, FSS can be used to
automatically find and remove superfluous parts of the search
control.

Future work includes the integration into Nighthawk of
useful facilities from past systems, such as failure-preserving
or coverage-preserving test case minimization, and further
experiments on the effect of program options on coverage
and efficiency. We also wish to integrate a feature subset
selection learner into the GA level of the Nighthawk algorithm
for dynamic optimization of the GA. Further, we can see
a promising line of research where the cost/benefits of a
particular meta-heuristic are tuned to the particulars of a
specific problem. Here, we have shown that if we surrender
1
10 -th of the coverage, we can run Nighthawk ten times faster.
While this is an acceptable trade-off in many domains, it
may unsuitable for safety critical applications. More work is
required to understand how to best match meta-heuristics (with
or without FSS) to particular problem domains.

REFERENCES

[1] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Commun. ACM, vol. 33, no. 12, pp. 32–44,
December 1990.

[2] J. H. Andrews, S. Haldar, Y. Lei, and C. H. F. Li, “Tool support
for randomized unit testing,” in Proceedings of the First International
Workshop on Randomized Testing (RT’06), Portland, Maine, July 2006,
pp. 36–45.

[3] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the 29th International Con-
ference on Software Engineering (ICSE 2007), Minneapolis, MN, May
2007, pp. 75–84.

[4] A. Groce, G. J. Holzmann, and R. Joshi, “Randomized differential
testing as a prelude to formal verification,” in Proceedings of the
29th International Conference on Software Engineering (ICSE 2007),
Minneapolis, MN, May 2007, pp. 621–631.

[5] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating software test
data by evolution,” IEEE Transactions on Software Engineering, vol. 27,
no. 12, December 2001.

[6] W. Visser, C. S. Păsăreanu, and R. Pelánek, “Test input generation
for Java containers using state matching,” in Proceedings of the In-
ternational Symposium on Software Testing and Analysis (ISSTA 2006),
Portland, Maine, July 2006, pp. 37–48.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 1, NO. 1, JANUARY 2001 15

[7] R.-K. Doong and P. G. Frankl, “The ASTOOT approach to testing
object-oriented programs,” ACM Transactions on Software Engineering
and Methodology, vol. 3, no. 2, pp. 101–130, April 1994.

[8] S. Antoy and R. G. Hamlet, “Automatically checking an implementa-
tion against its formal specification,” IEEE Transactions on Software
Engineering, vol. 26, no. 1, pp. 55–69, January 2000.

[9] K. Claessen and J. Hughes, “QuickCheck: A lightweight tool for
random testing of Haskell programs,” in Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP
’00), Montreal, Canada, September 2000, pp. 268–279.

[10] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in Proceedings of the 13th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (ESEC/FSE), Lisbon,
September 2005, pp. 263–272.

[11] J. Andrews, F. Li, and T. Menzies, “Nighthawk: A two-level genetic-
random unit test data generator,” in IEEE ASE’07, 2007, available from
http://menzies.us/pdf/07ase-nighthawk.pdf.

[12] J. Andrews and T. Menzies, “On the value of combining fea-
ture subset selection with genetic algorithms: Faster learning
of coverage models,” in PROMISE 2009, 2009, available from
http://menzies.us/pdf/09fssga.pdf.

[13] W. C. Hetzel, Ed., Program Test Methods, ser. Automatic Computation.
Englewood Cliffs, N.J.: Prentice-Hall, 1973.

[14] R. Hamlet, “Random testing,” in Encyclopedia of Software Engineering.
Wiley, 1994, pp. 970–978.

[15] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, November 1982.

[16] C. Csallner and Y. Smaragdakis, “JCrasher: an automatic robustness
tester for Java,” Software Practice and Experience, vol. 34, no. 11, pp.
1025–1050, 2004.

[17] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Artoo: Adaptive
random testing for object-oriented software,” in Proceedings of the
30th ACM/IEEE International Conference on Software Engineering
(ICSE’08), Leipzig, Germany, May 2008, pp. 71–80.

[18] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123,
February 2001.

[19] T. Ball, “A theory of predicate-complete test coverage and generation,”
in Third International Symposium on Formal Methods for Components
and Objects (FMCO 2004), Leiden, The Netherlands, November 2004,
pp. 1–22.

[20] J. H. Andrews and Y. Zhang, “General test result checking with log file
analysis,” IEEE Transactions on Software Engineering, vol. 29, no. 7,
pp. 634–648, July 2003.

[21] L. A. Clarke, “A system to generate test data and symbolically execute
programs,” IEEE Transactions on Software Engineering, vol. SE-2,
no. 3, pp. 215–222, September 1976.

[22] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[23] B. Korel, “Automated software test generation,” IEEE Transactions on
Software Engineering, vol. 16, no. 8, pp. 870–879, August 1990.

[24] N. Gupta, A. P. Mathur, and M. L. Soffa, “Automated test data generation
using an iterative relaxation method,” in Sixth International Symposium
on the Foundations of Software Engineering (FSE 98), November 1998,
pp. 224–232.

[25] W. K. Leow, S. C. Khoo, and Y. Sun, “Automated generation of test
programs from closed specifications of classes and test cases,” in Pro-
ceedings of the 26th International Conference on Software Engineering
(ICSE 2004), Edinburgh, UK, May 2004, pp. 96–105.

[26] W. Visser, C. S. Păsăreanu, and S. Khurshid, “Test input generation with
Java PathFinder,” in Proceedings of the ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2004), Boston,
MA, July 2004, pp. 97–107.

[27] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated ran-
dom testing,” in Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation (PLDI), Chicago,
June 2005, pp. 213–223.

[28] D. Owen and T. Menzies, “Lurch: a lightweight alternative to model
checking,” in Proceedings of the Fifteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE’2003), San
Francisco, July 2003, pp. 158–165.

[29] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press, 1975.

[30] D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Ma-
chine Learning. Addison-Wesley, 1989.

[31] L. Rela, “Evolutionary computing in search-based software engineering,”
Master’s thesis, Lappeenranta University of Technology, 2004.

[32] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-data generation
using genetic algorithms,” Journal of Software Testing, Verification and
Reliability, vol. 9, pp. 263–282, December 1999.

[33] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian, “Computing
unique input/output sequences using genetic algorithms,” in 3rd Inter-
national Workshop on Formal Approaches to Testing of Software (FATES
2003), ser. LNCS, vol. 2931. Springer, 2004, pp. 164–177.

[34] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the
ACM/SIGSOFT International Symposium on Software Testing and Anal-
ysis (ISSTA 2004), Boston, Massachusetts, USA, July 2004, pp. 119–
128.

[35] A. Watkins and E. M. Hufnagel, “Evolutionary test data generation:
A comparison of fitness functions,” Software Practice and Experience,
vol. 36, pp. 95–116, January 2006.

[36] P. G. Frankl and S. N. Weiss, “An experimental comparison of the
effectiveness of branch testing and data flow testing,” IEEE Transactions
on Software Engineering, vol. 19, no. 8, pp. 774–787, August 1993.

[37] A. Siami Namin and J. Andrews, “The influence of size and coverage on
test suite effectiveness,” in International Symposium on Software Testing
and Analysis (ISSTA’09), Chicago, IL, USA, 2009, pp. 57–68.

[38] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An empirical
study of the effects of minimization on the fault detection capabilities of
test suites,” in Proceedings of the International Conference on Software
Maintenance (ICSM ’98), Washington, DC, USA, November 1998, pp.
34–43.

[39] D. R. Cok, “Adapting jml to generic types and java 1.6,” in Seventh
International Workshop on Specification and Verification of Component-
Based Systems (SAVCBS 2008), November 2008, pp. 27–34.

[40] K. Havelund and T. Pressburger, “Model checking Java programs
using Java PathFinder,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 366–381, 2000.

[41] K. A. DeJong and W. M. Spears, “An analysis of the interacting roles of
population size and crossover in genetic algorithms,” in First Workshop
on Parallel Problem Solving from Nature. Springer, 1990, pp. 38–47.

[42] Cobertura Development Team, “Cobertura web site,” accessed February
2007, cobertura.sourceforge.net.

[43] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, and G. T.
Leavens, “An overview of JML tools and applications,” International
Journal on Software Tools for Technology Transfer, vol. 7, no. 3, pp.
212–232, June 2005.

[44] M. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” IEEE Transactions On Knowledge And
Data Engineering, vol. 15, no. 6, pp. 1437– 1447, 2003.

[45] A. Miller, Subset Selection in Regression (second edition). Chapman
& Hall, 2002.

[46] K. Kira and L. Rendell, “A practical approach to feature selection,” in
The Ninth International Conference on Machine Learning. Morgan
Kaufmann, 1992, pp. pp. 249–256.

[47] I. Kononenko, “Estimating attributes: Analysis and extensions of relief,”
in The Seventh European Conference on Machine Learning. Springer-
Verlag, 1994, pp. pp. 171–182.

[48] S. Cornett, “Minimum acceptable code coverage,” 2006,
http://www.bullseye.com/minimum.html.

[49] S. Berner, R. Weber, and R. K. Keller, “Enhancing software testing
by judicious use of code coverage information,” in 29th International
Conference on Software Engineering (ICSE 2007), Minneapolis, MN,
USA, May 2007, pp. 612–620.

