
JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 1

Exploiting the Essential Assumptions of
Analogy-based Effort Estimation

Ekrem Kocaguneli, Student Member, IEEE, Tim Menzies, Member, IEEE,
Ayse Bener, Member, IEEE, and Jacky W. Keung, Member, IEEE

Abstract—
Background : There are too many design options for software effort estimators. How can we best explore them all?
Aim: We seek aspects on general principles of effort estimation that can guide the design of effort estimators.
Method: We identified the essential assumption of analogy-based effort estimation: i.e. the immediate neighbors of a project offer
stable conclusions about that project. We test that assumption by generating a binary tree of clusters of effort data and comparing the
variance of super-trees vs smaller sub-trees.
Results: For ten data sets (from Coc81, Nasa93, Desharnais, Albrecht, ISBSG, and data from Turkish companies), we found: (a) the
estimation variance of cluster sub-trees is usually larger than that of cluster super-trees; (b) if analogy is restricted to the cluster trees
with lower variance then effort estimates have a significantly lower error (measured using MRE and a Wilcoxon test, 95% confidence,
compared to nearest-neighbor methods that use neighborhoods of a fixed size).
Conclusion: Estimation by analogy can be significantly improved by a dynamic selection of nearest neighbors, using only the project
data from regions with small variance.

Index Terms—Software Cost Estimation, Analogy, k -NN

F

1 INTRODUCTION

Software effort estimates are often wrong by a factor of
four [1] or even more [2]. As a result, the allocated funds
may be inadequate to develop the required project. In
the worst case, over-running projects are canceled and
the entire development effort is wasted. For example:

• NASA canceled its incomplete Check-out Launch
Control System project after the initial $200M es-
timate was exceeded by another $200M [3].

• The ballooning software costs of JPL’s Mission Sci-
ence Laboratory recently forced a two-year delay [4].

It is clear that we need better ways to generate project
effort estimates. However, it is not clear how to do that.
For example, later in this paper we document nearly
thirteen thousand variations for analogy-based effort
estimation (ABE). Effort estimation is an active area of
research [5]–[8] and more variations are constantly being
developed. We expect many more variations of ABE, and
other effort estimation methods, to appear in the very
near future.

Recent publications propose data mining toolkits for
automatically exploring this very large (and growing)
space of options for generating effort estimates. For

• Ekrem Kocaguneli is with the Department of Computer Engineering,
Bogazici University. E-mail: ekrem.kocaguneli@boun.edu.tr

• Tim Menzies is with the Lane Department of Computer Science and
Electrical Engineering, West Virginia University. E-mail: tim@menzies.us

• Ayse Bener is with the Department of Computer Engineering, Bogazici
University. E-mail: bener@boun.edu.tr

• Jacky W. Keung is with the School of Computer Science and Engineering,
University of New South Wales. E-mail: jacky.keung@nicta.com.au

This research is funded in part by Tubitak EEEAG108E014.

example, in 2006, Auer et al. [9] propose an extensive
search to learn the best weights to assign different
project features. Also in that year, Menzies et al. [10]’s
COSEEKMO tool explored thousands of combinations of
discretizers, data pre-processors, feature subset selectors,
and inductive learners. In 2007, Baker proposed an ex-
haustive search of all possible project features, learners,
etc. He concluded that such an exhaustive search was
impractical [11].

The premise of this paper is that we can do better
than a COSEEKMO-style brute-force search through the
space of all variants of effort estimators. Such studies are
computationally intensive (the COSEEKMO experiments
took two days to terminate). With the ready availability
of cheap CPU farms and cloud computing, such CPU-
investigations are becoming more feasible. On the other
hand, datasets containing historical examples of project
effort are typically small1. In our view, it seems mis-
directed to spend days of CPU time just to analyze a
few dozen examples. These CPU-intensive searches can
generate gigabytes of data. Important general properties
of the estimation process might be missed, buried in all
that data. As shown below, if we exploit these aspects,
we can significantly improve effort estimates.

One alternative to the brute-force search of
COSEEKMO is heuristic search. For example Li et
al. [13] do not explore all options of their estimators.
Rather, they use a genetic algorithm to guide the search
for the best project features and the best cases to be

1. For example, the effort estimation datasets used in Mendes et
al. [12], Auer et al. [9], Baker [11], this study, and Li et al. [13] have
median size (13,15,31,33,52), respectively.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 2

used in the training data. However, while guided search
might comment on which particular variant is best for
some data set, it will not comment on why that variant
is best. Hence, they do not offer general principles that
could simplify future effort estimation work.

This paper proposes an alternative to brute-force and
heuristic search. According to our easy path principle for
designing an effort predictor:

Find the situations that confuse estimation. Remove
those situations.

The easy path is not standard practice. Usually, pre-
diction systems are matured by adding mechanisms to
handle the harder cases. For example, the AdaBoost
algorithm generates a list of learners, and each learner
focuses on the examples that were poorly handled by
the one before [14].

Focusing on just the easy cases could be problematic.
If we only explore the easy cases, we could perform
badly on the hard test cases. On the other hand, if the
easy path works, it finds short-cuts that simplifies future
effort estimation work. Also, it avoids COSEEKMO’s
brute-force search since, according to this principle, we
only explore the options that challenge the essential
assumptions of the predictor.

The rest of this paper uses the easy path to build and
evaluate an effort estimator called TEAK (short for “Test
Essential Assumption Knowledge”). In keeping with the
easy path, we only explored design options that com-
mented on TEAK’s essential assumptions; specifically:
(a) case subset selection and (b) how many training
examples should be used for estimation.

TEAK’s design applied the easy path in five steps:

1) Select a prediction system.
2) Identify the predictor’s essential assumption(s).
3) Recognize when those assumption(s) are violated.
4) Remove those situations.
5) Execute the modified prediction system.

On evaluation, we found that for the data sets studied
here, TEAK generated significantly better estimates than
comparable methods.

More generally, the success of the easy path principle
recommends it for future research. When designing a
predictor, it is useful to first try optimizing for the
situations where prediction is easy, before struggling with
arcane and complex mechanisms to handle the harder
situations. For example, in future work, we will apply
steps 1,2,3,4,5 to other aspects of effort estimation like
feature weighting, and similarity measures.

The rest of this paper is structured as follows. After a
review of the general field of effort estimation, we will
focus on ABE (analogy-based estimation). For ABE, we
will work through the above five steps to design TEAK.
TEAK’s performance will then be compared against six
other ABE systems. Our conclusion will be to recom-
mend TEAK for effort estimation.

2 BACKGROUND

After Shepperd [7], we say that software project effort
estimation usually uses one of three methods:

• Human-centric techniques (a.k.a. expert judgment);
• Model-based techniques including:

– Algorithmic/parametric models such
COCOMO [1], [15];

– Induced prediction systems.

Human centric techniques are the most widely-used
estimation method [16], but are problematic. If an esti-
mate is disputed, it can be difficult to reconcile com-
peting human intuitions (e.g.) when one estimate is
generated by a manager who is senior to the other
estimator. Also, Jorgensen [17] reports that humans are
surprisingly poor at reflecting and improving on their
expert judgments.

One alternative to expert judgment is a model-based
estimate. Models are a reproducible methods for generat-
ing an estimate. This is needed for (e.g.) U.S. government
software contracts that require a model-based estimate
at each project milestone [10]. Such models are used to
generate and audit an estimate, or to double-check a
human-centric estimate.

Model-based estimates can be generated using an
algorithmic/parametric approach or via induced pre-
diction systems. In the former, an expert proposes a
general model, then domain data is used to tune that
model to specific projects. For example, Boehm’s 1981
COCOMO model [1] hypothesized that development
effort was exponential on LOC and linear on 15 effort
multipliers such as analyst capability, product complexity,
etc. Boehm defined a local calibration procedure to tune
the COCOMO model to local data.

Induced prediction systems are useful if the available
local training data does not conform to the requirements
of a pre-defined algorithmic/parametric model such as
COCOMO. There are many induction methods including
stepwise regression, linear regression, rule induction,
neural nets, model trees, and analogy, just to name
a few [10], [18]. All these methods have underlying
assumptions. For example, linear regression assumes
that the effort data fits a straight line while model trees
assumes that the data fits a set of straight lines. When
data violates these assumptions, various patches have
been proposed. Boehm [1, p526-529] and Kitchenham
& Mendes [19] advocate taking the logarithms of expo-
nential distributions before applying linear regression.
Selecting the right patch is typically a manual process
requiring an analyst experienced in effort estimation.
TEAK, on the other hand, is a fully automatic process
requiring no expert control. When experts like Boehm,
Kitchenham, or Mendes are available, patching can sig-
nificantly improve effort estimation. Otherwise, auto-
matic methods should be considered.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 3

2.1 Analogy-based Estimation (ABE)

In ABE, effort estimates are generated for a test project
by finding similar completed software projects (a.k.a. the
training projects). Following Kadoda & Shepperd [20],
Mendes et al. [12], and Li et al. [13] we define a baseline
ABE called ABE0, as follows.

ABE0 executes over a table of data where:
• Each row is one project;
• Columns are either independent features seen in the

projects or one special dependent fortune that stores
the effort required to complete one project.

After processing the training projects, ABE0 inputs one
test project then outputs an estimate for that project.
To generate that estimate, a scaling measure is used to
ensure all independent features have the same degree
of influence on the distance measure between test and
training projects. Also, a feature weighting scheme is
applied to remove the influence of the less informative
independent features. For example, in feature subset
selection [21], some features are multiplied by zero to
remove redundant or noisy features.

After feature scaling and weighting, ABE0 computes
the distance between the test and training via a a similar-
ity measure that combines all the independent features.
ABE0 uses the standard Euclidean measure to assess the
distance between two projects x and y with normalized
independent features xi and yi

Distance =

√√√√ n∑
i=1

wi(xi − yi)2 (1)

In the above, wi is the feature weighting. ABE0 uses a
uniform weighting scheme; i.e. wi = 1.

Once similarity can be calculated, it must be deter-
mined how many analogies (i.e. subsets of the training
projects) will be used for estimation. Once the k-th
nearest analogies are found, they must be adapted to
generate an effort estimate. Adaption need not be a
complex task: ABE0 will return the median estimate of
the k nearest analogies.

2.2 Alternatives to ABE0

The literature lists many variants for ABE0-like systems.
A sample of those variants are discussed below.

2.2.1 Three Case Subset Selectors

A case subset selection is sometimes applied to improve
the set of training projects. These selection mechanisms
are characterized by how many cases they remove:

• Remove nothing: Usually, effort estimators use all
training projects [22], [23]. ABE0 is using this vari-
ant.

• Outlier methods prune training projects with (say)
suspiciously large values [24]. Typically, this re-
moves a small percentage of the training data.

• Prototype methods find, or generate, a set of
representative examples that replace the train-
ing cases. Typically, prototype generation removes
most of the training data. For example, Chang’s
prototype generators [25] replaced training sets
of size T = (514, 150, 66) with prototypes of size
N = (34, 14, 6) (respectively). That is, prototypes
may be as few as N

T = (7, 9, 9)% of the original data.
For example, our reading of Li et al. [13] is that their
genetic algorithms are more an outlier technique than a
prototype technique.

2.2.2 Eight Feature Weighting Methods and Five Dis-
cretizers
In other work Keung [24], Li et al. [13], and Hall &
Holmes [21] review eight difference feature weighting
schemes. Closer inspection reveals many more design
variants of feature weighting. Some feature weighting
schemes require an initial discretization of continuous
columns. Discretization divides a continuous range at
break points b1, b2, ..., each containing a count c1, c2, ...
of numbers [26]. There are many discretization policies
in the literature including:

• Equal-frequency, where ci = cj ;
• Equal-width, where bi+1 − bi is a constant;
• Entropy [27];
• PKID [28];
• Do nothing at all.

2.2.3 Three Similarity Measures
Mendes et al. [12] discuss three similarity measures [12],
[29] including the Euclidean measure described above
and a “maximum distance” measure that that focuses on
the single feature that maximizes inter-project distance.

2.2.4 Six Adaption Mechanisms
With regards to adaptation, the literature reports many
approaches including:

• Report the median effort value of the analogies;
• Report the mean dependent value;
• Report a weighted mean where the nearer analogies

are weighted higher than those further away [12];
• Summarize the adaptations via a second learner;

e.g. regression [11], model trees [10], [30] or neural
network [31].

2.2.5 Six Ways to Select Analogies
Li et al. [13] comment that there is much discussion in
the literature regarding the number of analogies to be
used for estimation. Numerous methods are proposed,
which we divide into fixed and dynamic.

Fixed methods use the same number of analogies for
all items in the test set. For example, Li et al. [13] report
that a standard fixed method is to always use 1 ≤ k ≤ 5
nearest projects:

• k = 1 is used by Lipowezky et al. [32] and Walker-
den & Jeffery [33];

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 4

• k = 2 is used by Kirsopp & Shepperd [34]
• k = 1, 2, 3 is used by Mendes el al. [12]
Dynamic methods adjust the number of analogies,

according to the task at hand. For example, following
advice from Martin Shepperd2, Baker [11] tuned k to
a particular training set using the following “Best(K)”
procedure:

1) Select N ⊆ T training projects at random;
2) For each k ∈ 1..T−N , compute estimates for n ∈ N ;
3) Find the k value with least error in step 2.
4) When estimating, use the k-nearest neighbors,

where k is set by step 3.
Our results show that Best(K) out-performs the standard
fixed methods (i.e. k ≤ 5). More interestingly, as shown
in Figure 1, Best(K) recommends k values that are very
different to those seen in the standard fixed methods.
These results come from three commonly used data
sets (Desharnais, NASA93, and the original COCOMO
data set from [1]: for notes on these data sets, see the
appendix).

While ABE systems differ on many apsects, they all
use analogy selection . The Figure 1 results suggest that
there may be something sub-optimal about standard,
widely-used, fixed selection methods. Hence, the rest of
this paper takes a closer look at this aspect of ABE.

3 DESIGNING TEAK
The above sample of the literature, describes

3 ∗ 6 ∗ 8 ∗ 5 ∗ 6 ∗ 3 = 12, 960

ways to implement similarity, adaptation, weighting, etc.
How might we explore all these variations?

The rest of this paper applies the easy path to design
and evaluate an ABE system called TEAK (Test Essential
and Assumption Knowledge). TEAK is an ABE0, with
the variations described below.

3.1 Select a Prediction System

Firstly, we select a prediction system. We use ABE since:
• It is a widely studied [9], [13], [20], [22], [24], [33],

[35]–[42].
• It works even if the domain data is sparse [43].
• Unlike other predictors, it makes no assumptions

about data distributions or an underlying model.
• When the local data does not support standard al-

gorithmic/parametric models like COCOMO, ABE
can still be applied.

The easy path limits the space of design options to
just those that directly address the essential assumptions of
the predictor. As shown below, for ABE, this directs us
to issues of case subset selection and the number of
analogies used for estimation.

2. Personal communication.

(a) Cocomo81

(b) Nasa93

(c) Desharnais

Fig. 1: Distribution of k after removing each project
instance, then applying Best(K) on the remaining data.
The y-axis counts the number of times a particular k
value was found by Best(K).

3.2 Identify Essential Assumption(s)
The second step is to identify the essential assumptions of
that prediction system. Although it is usually unstated, the
basic hypothesis underlying the use of analogy-based
estimation is that projects that are similar with respect to
project and product factors will be similar with respect
to project effort [42]. In other words:

Assumption One: Locality implies uniformity.
This assumption holds for project training data with the
following property:

• The K-nearest training projects with effort values
E1, E2, .., Ek have a mean value µ =

(∑k
i Ei

)
/k

and a variance σ2 =
(∑k

i (Ei − µ)2
)

/(k − 1).
• By Assumption One, decreasing k also decreases σ2.

3.3 Identify Assumption Violation
The third step is to recognize situations that violate the es-
sential assumption. Implementing this step requires some
way to compare the variance of larger-k estimates to
smaller-k estimates. We will use Greedy Agglomerative
Clustering (GAC) and the distance measure of Equa-
tion 1. GAC is used in various fields (data mining

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 5

Fig. 2: A GAC tree built from 8 projects. Leaf vertices
are actual projects. Grey vertices are the median of their
children. Only the leaf nodes of this tree hold effort data
from historical projects.

[44], databases [45] bioinformatics [46]). GAC executes
bottom-up by grouping together at a higher level (i+1)
the closest pairs found at level i. The result is a tree like
Figure 2. GAC is “greedy” in that it does not pause to
consider optimal pairings for vertices with very similar
distances.

Using a GAC tree, finding the k-nearest neighbors in
project data can be implemented using the following
TRAVERSE procedure:

1) Place the test project at the root of the GAC tree.
2) Move the test project to the nearest child (where

“nearest” is defined by Equation 1).
3) Go to step 2

Clearly, a k = 1 nearest-neighbor estimate comes from
TRAVERSE-ing to a leaf, then reporting the effort of that
leaf. More generally, a k = N nearest-neighbor estimate
comes from TRAVERSE-ing to a sub-tree with N leaves,
then reporting the median efforts of those leaves.

TRAVERSE can test Assumption One. Let some current
vertex x have children y and z. We say that:

• The sub-trees starting at x, y, z have leaves
Lx, Ly, Lz (and Lx = Ly ∪ Lz).

• The number of sub-tree leaves is kx = ky + kZ .
• The variance of the leaves’ efforts are σ2

x, σ2
y, σ2

z .
• After C4.5 [47], we say the variance of the trees

below x (denoted σ2
yz) is the weighted sum:

σ2
yz =

ky

kx
σ2

y +
kz

kx
σ2

z

Parent trees have the nodes of their children (plus
one). If we TRAVERSE from a parent x to a child, then
the sub-tree size k decreases. That is, TRAVERSE-ing
moves into progressively smaller sub-trees.

Assumption One holds if, when TRAVERSE-ing from
all vertices x with children y and z, the sub-tree variance
decreases. That is:

∀x ∈ T : σ2
x > σ2

yz (2)

3.4 Remove Violations
The fourth step in TEAK’s design is to remove the situa-
tions that violate the essential assumption. We instrumented
TRAVERSE to report examples where Equation 2 was
violated; i.e. where it recursed into sub-trees with a
larger variance than the parent tree. We found that this

usually occurs if a super-tree contains mostly similar
effort values, but one sub-tree has a minority of outliers.
For example:

• Suppose some vertex x has children y, z.
• Let each child start sub-trees whose leaves contain

the effort values leaves(y) ∈ {1253, 1440} staff hours
and leaves(z) ∈ {1562, 5727} staff hours.

In this example:
• The leaves of the parent tree x have similar effort

values: 1,253 and 1,562 and 1,440 staff hours.
• But the leaves of the subtree z has outlier values;

i.e. 5,727.
• TRAVERSE-ing from the super-tree x to the sub-tree

z increases the variance by two orders of magnitude.
A sub-tree pruning policy is used to prune sub-trees with
a variance that violates the essential assumption. We ex-
perimented with various policies that removed subtrees
if they had:

1) more than α times the parent variance;
2) more than β ∗max(σ2);
3) more than Rγ ∗ max(σ2), where R is a random

number 0 ≤ R ≤ 1.
In order to avoid over-fitting, our pruning policy ex-
periments were restricted to one data set (Boehm’s CO-
COMO embedded projects [1]) then applied, without
modification, to the others. The randomized policy (#3)
produced lowest errors, with smallest variance. The suc-
cess of this randomized policy suggests two properties
of effort estimation training data:

• The boundary of “good” training projects is not pre-
cise. Hence, it is useful to sometimes permit random
selection of projects either side of the boundary.

• The policy tuning experiments recommended γ = 9.
This selects for subtrees with less than 10% of the
maximum variance3. This, in turn, suggests that the
above example is typical of effort estimates; i.e. sub-
tree outliers are usually a few large effort values.

3.5 Execute the Modified System
The final step in the design of TEAK is to build a new
prediction system. TEAK executes as follows:

• Apply GAC to the training projects to build a tree
called GAC1;

• Prune GAC1 using the sub-tree pruning policy de-
scribed above. The remaining leaves are the proto-
types to be used in effort estimation.

• Apply GAC to the prototypes to build a second tree
called GAC2.

• Place the test project at the root of GAC2. Compute
an estimate from the median value of the GAC2
projects found by TRAVERSE2. TRAVERSE2 is a
variant of TRAVERSE that ensures the essential
assumption is never violated. It stops recursing into
GAC2 sub-trees when Equation 2 is violated.

3. The mean of rand()9 ≈ 0.1.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 6

Historical Effort Data
Dataset Features T = |Projects| Content Units Min Median Mean Max Skewness
Cocomo81 17 63 NASA projects months 6 98 683 11400 4.4

Cocomo81e 17 28 Cocomo81 embedded projects months 9 354 1153 11400 3.4
Cocomo81o 17 24 Cocomo81 organic projects months 6 46 60 240 1.7

Nasa93 17 93 NASA projects months 8 252 624 8211 4.2
Nasa93c2 17 37 Nasa93 projects from center 2 months 8 82 223 1350 2.4
Nasa93c5 17 40 Nasa93 projects from center 5 months 72 571 1011 8211 3.4

Desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
SDR 22 24 Turkish software projects months 2 12 32 342 3.9
Albrecht 7 24 Projects from IBM months 1 12 22 105 2.2
ISBSG-Banking 14 29 Banking projects of ISBSG hours 662 2355 5357 36046 2.6

Total: 448

Fig. 3: The 448 projects used in this study come from 10 data sets. Indentation in column one denotes a dataset
that is a subset of another dataset. For notes on this data, see the appendix.

In theory, TEAK is slow. Given T training projects,
TEAK builds two GAC trees of maximum height log2(T).
At each level, distances are computed between all pairs
of vertices. Since the number of vertices is halved at each
next level, building two GAC trees requires the following
number of distance calculations:

2 ∗

log2(T)∑
i

(
T

2i−1

)2
 =

8
3

(
T 2 − 1

)
This O(T 2) computation is deprecated for large T . How-
ever, for this study, TEAK generates an estimate in less
than a second4. Our runtimes were fast because GAC1
and GAC2 are usually small: Figure 3 shows all our
training projects contain less than 100 examples.

4 COMPARISONS
Recall the pre-experimental concern expressed above:
Taking the easy path might ignore important design
issues, to the detriment of the predictions. To address
that concern, this section compares TEAK to a range of
other ABE0 variants.

4.1 Randomized Trials
When assessing TEAK, is it important to execute it
using random orderings of the project data. Different
orderings of the training projects in different runs can
produce different trees when the greedy search of GAC
selects different sub-trees violating Assumption One. A
repeated randomization study 20 times lets us check for
conclusion stability across different GAC1 and GAC2
trees:

• Twenty times, for each data set, we randomize the
order of the rows in that data set.

• Next, we conduct a Leave-One-Out study; i.e. given
T projects, then ∀t ∈ T , use t as the test project and
the remaining T − 1 projects for training. For these
studies, we used all independent features when
computing similarities.

We applied this randomized trial procedure using the
448 projects from the 10 data sets of Figure 3 (for notes
on this data, see the appendix). In all, these randomized
trials generated 20*448=8,960 training/test set pairs.

4. Using Matlab on a standard Intel x86 dual core notebook running
LINUX with 4GB of ram.

wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if WILCOXON(MRE′si, MRE′si) says they are the same then

tiei = tiei + 1;
else

if median(MRE′si) < median(MRE′sj) then
wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 4: Pseudocode for Win-Tie-Loss Calculation Between
Variant i and j

4.2 Details
For each of these 8,960 pairs of training/test, estimates
were generated by TEAK and six other ABE0 variants:

• Five variants returned the median effort seen in the
k-th nearest neighbors for k ∈ {1, 2, 4, 8, 16}.

• The other variant returned the median effort seen in
k neighbors found using Baker’s Best(K) procedure.
From §2.2, recall that Best(K) adjusts k to each data
set by reflecting over all the training projects.

Since this is paired data, we applied a Wilcoxon signed
rank test (95% confidence) to rank the resulting esti-
mates. Our performance metric is the magnitude of the
relative error, or MRE:

MRE =
|actuali − predictedi|

actuali
(3)

In addition to MRE, we also used win-tie-loss values
to summarize the Wilcoxon comparisons. Each data set
generated 20*7=140 MRE values for each ABE0 variant
and each iteration of the randomized trials. To calculate
the win-tie-loss values, we first checked if two variants
i, j are statistically different according to the Wilcoxon
test. If not, then we incremented tiei and tiej . On the
other hand, if they turned out to be different, we updated
wini, winj and lossi, lossj after a numerical comparison
of their median values. The pseudocode for win-tie-loss
calculation is given in Figure 5.

4.3 Results
The resulting Win/Loss/Ties values are shown in Fig-
ure 4. In all ten data sets, TEAK had the largest win−loss

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 7

Data set Variant Win Tie Loss Win - Loss
Cocomo81 TEAK 54 66 0 54

Best(K) 26 90 4 22
k=8 17 85 18 -1

k=16 21 77 22 -1
k=1 14 74 32 -18
k=4 10 80 30 -20
k=2 8 68 44 -36

Cocomo81e TEAK 55 65 0 55
Best(K) 36 81 3 33

k=16 22 89 9 13
k=8 17 84 19 -2
k=4 13 83 24 -11
k=1 10 67 43 -33
k=2 3 59 58 -55

Cocomo81o TEAK 11 109 0 11
k=16 6 114 0 6

k=8 4 116 0 4
Best(K) 4 116 0 4

k=4 4 114 2 2
k=2 1 111 8 -7
k=1 1 98 21 -20

Nasa93 TEAK 40 80 0 40
Best(K) 22 96 2 20

k=16 19 97 4 15
k=8 20 91 9 11
k=4 14 89 17 -3
k=2 9 66 45 -36
k=1 6 61 53 -47

NASA93c2 TEAK 21 99 0 21
k=8 14 104 2 12

Best(K) 14 103 3 11
k=16 13 103 4 9

k=4 9 100 11 -2
k=1 8 88 24 -16
k=2 1 83 36 -35

Nasa93c5 TEAK 24 96 0 24
k=16 16 104 0 16

Best(K) 14 105 1 13
k=8 13 104 3 10
k=4 6 100 14 -8
k=2 3 91 26 -23
k=1 1 86 33 -32

Desharnis TEAK 32 88 0 32
k=16 17 100 3 14

k=8 15 101 4 11
Best(K) 15 101 4 11

k=4 16 96 8 8
k=2 7 78 35 -28
k=1 1 70 49 -48

SDR TEAK 51 69 0 51
k=8 13 98 9 4

Best(K) 11 99 10 1
k=4 8 101 11 -3

k=16 9 94 17 -8
k=1 10 88 22 -12
k=2 1 85 34 -33

Albrecht TEAK 3 117 0 3
k=16 3 117 0 3

k=8 2 118 0 2
k=4 0 120 0 0

Best(K) 0 120 0 0
k=2 0 117 3 -3
k=1 0 115 5 -5

ISBSG- TEAK 27 93 0 27
Banking k=16 22 98 0 22

k=8 18 98 4 14
Best(K) 17 100 3 14

k=4 9 97 14 -5
k=2 4 77 39 -35
k=1 3 77 40 -37

Fig. 5: MRE win-loss-tie results from the randomized
assessment procedure. Results sorted by data set, then
wins minus loss. Gray cells indicate variants with zero
losses.

values; i.e. TEAK always achieves statistically significant
lower MRE values of all the methods in this study. Also,
TEAK has a loss value of 0 for all datasets; i.e. TEAK
was never significantly outperformed by other variants.

As to the other ABE variants, three results deserve
some attention. Firstly, as mentioned above, Baker’s
Best(K) dynamic k selection algorithm performed better
than other variants using standard fixed k sizes. This
suggests that many prior results in ABE might be im-
proved using a different analogy selection policy. Nev-
ertheless, we do not recommend Best(K) since it only has
zero losses in two cases; i.e. Best(K) is a comparatively
worse method than TEAK. That it is, tuning k to entire
dataset (as done with Best(K)) is less useful than tuning
k to carefully selected prototypes (as done with TEAK).

Secondly, after TEAK, the method with the next fewest
losses was k = 16. This result should interest advocates
of k ∈ {1, 2, 3, 4, 5} (e.g. [13]). This suggests that many
current ABE methods explore too small a neighborhood.

Finally, a very interesting feature of these results is the
large number of ties seen in all datasets. For example, in
some data sets like Nasa93c2, Cocomo81e and Albrecht,
most of the methods tied 80% of the time or more.
Figure 6 explores these ties in more detail:

• Each line in that figure shows the sorted MREs for
one variant on the dataset.

• On the left-hand-side of the results for each dataset,
the curves are nearly identical.

• Only on the right-hand-sides, that show how badly
the methods perform, do these ABE0 variants dif-
ferentiate themselves.

• In those right-hand-regions, TEAK always has the
lowest distribution of errors.

The low error distributions of TEAK in Figure 6 is more
impressive that it might first appear. The y-axis of these
plots is an exponential scale. That is, when estimate
errors grow large, TEAK has exponentially less errors
than other ABE0 variants.

In summary, the pre-experimental concern that the
easy path was too simplistic was not observed. Of all
the variants studied here, TEAK is unequivocally the
superior ABE system.

4.4 Threats to Validity
Internal validity questions to what extent the cause-effect
relationship between dependent and independent vari-
ables hold [48].

The general internal validity issue is that data mining
experiments (like those discussed above) do not collect
new data, but only generates theories from historical
data. Ideally, we should take a learned theory and apply
it to some new situation, then observe if the predicted
effect occurs in practice. Note that if no explicit theory
is generated, then it cannot be be applied outside of the
learning system. That is, all ABE systems suffer from
issues of internal validity since they do not generate an
explicit theory. However, it is possible to mitigate this

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 8

(a) Cocomo81 (b) Cocomo81e

(c) cocomo81o (d) Nasa93

(e) Nasa93c2 (f) Nasa93c5

(g) Desharnais (h) SDR

(i) Albrecht (j) ISBSG

Fig. 6: Log-Mre Values of Datasets for GAC2 and multiple k Values. For each dataset, log of MRE values for 20
repeats are sorted.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 9

problem by simulating how an ABE system might be
applied to a new situation. Note that the Leave-One-Out
approach used in this paper generates estimates using
test data that is not used in training.

Construct validity (i.e. face validity) assures that we
are measuring what we actually intended to measure
[49]. In our research we are using MRE and win-tie-
loss values for measuring and comparing performance
of different models. Another internal validity issue is
our use of MRE (Magnitude of Relative Error). This is
the most widely used evaluation criterion for assessing
the performance of competing software effort estimation
models [50], [51], [52]. Each individual project case’s
MRE value is a direct measure of the absolute difference
between the prediction and the known actual value [53].
Therefore the smaller the MRE indicates the better the
performance of the prediction system [54]. Foss et al. [51]
have provided an extensive discussion demonstrating
that by using only MRE itself may be leading to incorrect
evaluation. This is largely due to measuring the error
ratio between the error and the actual value, where the
error is divided by the actual, and this will lead to an
incorrect result in some circumstances. For example:

• If project case A has a predicted effort of 50 and
actual effort of 100, the absolute error is 50 and the
MRE value for case A is 0.5.

• In contrast, if project case B has a predicted effort
of 100 and actual effort of 50, the absolute error is
50, but the MRE value for case B is 1.0.

This is an algorithmic limitation of MRE and can be
resolved by applying an additional statistical evaluation,
we have used Wilcoxon statistics to ensure the our
error measure do not fall into the MRE limitation. i.e.
if the two variants are statistically different. In practice,
the probability of the aforementioned error to occur is
insignificant, and will not have a major impact to the
overall evaluation. Therefore, given MRE is the most
commonly used method in the cost estimation research
community, we use MRE to present our results.

External validity is the ability to generalize results
outside the specifications of that study [55]. To ensure
the generalizability of our results, we studied a large
number of projects. Our datasets contain a wide diversity
of projects in terms of their sources, their domains and
the time period they were developed in. For example,
we used datasets composed of software development
projects from different organizations around the world to
generalize our results [56]. Our reading of the literature
is that this study uses more project data, from more
sources, than numerous other papers. All the papers we
have read, as well as, Table 4 of [8] list the total number
of projects in all data sets used by other studies. The
median value of that sample is 186, which is less than
half the 448 projects used in our study.

5 CONCLUSION
In response to the growing number of options for design-
ing software project effort estimators, various researchers

(e.g. [10], [11], [13]) have proposed elaborate and CPU-
intensive search tools for selecting the best set of design
options for some local data. While useful, these tools
offer no insight into the effort estimation task: they
report what what the design is in simplifying future effort
estimation tasks, but not why they were useful. Such
insights are useful for reducing the complexity of future
effort estimations.

In order to avoid the computation cost of these tools,
and to find the insights that simplify effort estimation,
we design TEAK using an easy path principle. The easy
path has five steps.

1. Select a prediction system: Analogy-based effort esti-
mation, or ABE, is a widely-studied method that works
on sparse data sets. Hence, we selected ABE as our
prediction system.

2. Identify the predictor’s essential assumption(s): The
essential assumption of ABE is that locality implies uni-
formity; i.e. the closer the test project approaches the
training projects, the smaller the variance in that neigh-
borhood.

3. Recognize when those assumption(s) are violated: Math-
ematically, this can be tested by recursively clustering
project data into a tree whose leaves contain historical
effort data and whose internal nodes are medians of
pairs of child nodes. When descending this tree, the
essential ABE assumption is violated when sub-trees
have a larger variance than the parents.

4. Remove those situations: This assumptions can be
removed by pruning sub-trees with the larger variances.

5. Execute the modified prediction system: TEAK builds a
second tree of clusters using just the projects not found
in high variance sub-trees. Estimates are generated from
this second tree by a recursive descent algorithm that
stops before the sub-tree variance is higher than the
super-tree variance. The leaves of terminating sub-tree
are then accessed and the estimate is calculated from
the median of the effort values in those leaves.

A pre-experimental concern with the easy path was
that, in ignoring the hard training cases, we would miss
important aspects of the data. Our experiments do not
support that concern. TEAK never lost against other ABE
methods and always won the most.

We conclude that is may be detrimental to prediction
to obsess on the hard cases. Rather, it may be better to
enhance what a predictor does best, rather than try to
patch what it does worst. For example, in the case of
ABE, case selection via variance significantly improved
the estimates.

6 FUTURE WORK
In this paper, we have applied the easy path principle
to design a new method for case & analogy selection. In
future work, we will apply the easy path to similarity
measures, feature weighting, and adapation. For exam-
ple:

• After grouping together rows with similar esti-
mates, we might weight features by their variance

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 10

within each group (and higher variance means
lower weight).

• Alternatively, Lipowezky [32] observes that feature
and case selection are similar tasks (both remove
cells in the hypercube of all cases times all columns).
Under this view, it should be possible to covert our
case selector to a feature selector.

Our investigations in this area are very preliminary and,
at this time, we have no conclusive results to report.

REFERENCES
[1] B. W. Boehm, Software Engineering Economics. Upper Saddle River,

NJ, USA: Prentice Hall PTR, 1981.
[2] C. Kemerer, “An empirical validation of software cost estimation

models,” Communications of the ACM, vol. 30, no. 5, pp. 416–429,
May 1987.

[3] Spareref.com, “Nasa to shut down checkout & launch con-
trol system,” August 26, 2002, http://www.spaceref.com/news/
viewnews.html?id=475.

[4] “Next nasa mars mission rescheduled for 2011,” 2008.
[5] B. Boehm, C. Abts, and S. Chulani, “Software development cost

estimation approaches A survey,” Annals of Software Engineering,
vol. 10, pp. 177–205, 2000.

[6] M. Jorgensen and M. Shepperd, “A systematic review of software
development cost estimation studies,” IEEE Trans. Softw. Eng.,
vol. 33, no. 1, pp. 33–53, 2007.

[7] M. Shepperd, “Software project economics: a roadmap,” in FOSE
’07: 2007 Future of Software Engineering, 2007, pp. 304–315.

[8] B. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus
within-company cost estimation studies: A systematic review,”
IEEE Trans. Softw. Eng., vol. 33, no. 5, pp. 316–329, 2007, member-
Kitchenham, Barbara A.

[9] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl,
“Optimal Project Feature Weights in Analogy-Based Cost Estima-
tion: Improvement and Limitations,” IEEE Transactions on Software
Engineering, vol. 32, pp. 83–92, 2006.

[10] T. Menzies, Z. Chen, J. Hihn, and K. Lum, “Selecting Best Practices
for Effort Estimation,” IEEE Transactions on Software Engineering,
vol. 32, pp. 883–895, 2006.

[11] D. Baker, “A hybrid approach to expert and model-based ef-
fort estimation,” Master’s thesis, Lane Department of Computer
Science and Electrical Engineering, West Virginia University,
2007, available from https://eidr.wvu.edu/etd/documentdata.
eTD?documentid=5443.

[12] E. Mendes, I. D. Watson, C. Triggs, N. Mosley, and S. Counsell, “A
comparative study of cost estimation models for web hypermedia
applications,” Empirical Software Engineering, vol. 8, no. 2, pp. 163–
196, 2003.

[13] Y. Li, M. Xie, and T. Goh, “A study of project selection and feature
weighting for analogy based software cost estimation,” Journal of
Systems and Software, vol. 82, pp. 241–252, 2009.

[14] J. R. Quinlan, “Boosting first-order learning,” in Proceedings of
the 7th International Workshop on Algorithmic Learning Theory, ser.
LNAI, S. Arikawa and A. K. Sharma, Eds., vol. 1160. Berlin:
Springer, Oct. 23–25 1996, pp. 143–155.

[15] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark,
E. Horowitz, R. Madachy, D. J. Reifer, and B. Steece, Software Cost
Estimation with Cocomo II. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2000.

[16] M. Jø rgensen, “A review of studies on expert estimation of
software development effort,” Journal of Systems and Software,
vol. 70, pp. 37–60, February 2004.

[17] M. Jorgensen and T. Gruschke, “The Impact of Lessons-Learned
Sessions on Effort Estimation and Uncertainty Assessments,”
Software Engineering, IEEE Transactions on, vol. 35, no. 3, pp. 368–
383, May-June 2009.

[18] M. Shepperd and G. Kadoda, “Comparing software prediction
models using simulation,” IEEE Transactions on Software Engineer-
ing, pp. 1014–1022, 2001.

[19] B. Kitchenham and E. Mendes, “Why comparative effort pre-
diction studies may be invalid,” in PROMISE ’09: Proceedings
of the 5th International Conference on Predictor Models in Software
Engineering. New York, NY, USA: ACM, 2009, pp. 1–5.

[20] G. Kadoda, M. Cartwright, and M. Shepperd, “On configuring
a case-based reasoning software project prediction system,” UK
CBR Workshop, Cambridge, UK, pp. 1–10, 2000.

[21] M. Hall and G. Holmes, “Benchmarking attribute selection
techniques for discrete class data mining,” IEEE Transactions
On Knowledge And Data Engineering, vol. 15, no. 6, pp. 1437–
1447, 2003, available from http://www.cs.waikato.ac.nz/∼mhall/
HallHolmesTKDE.pdf.

[22] M. Shepperd and C. Schofield, “Estimating software project effort
using analogies,” IEEE Trans. Softw. Eng., vol. 23, no. 11, pp. 736–
743, 1997.

[23] “A comparative study of two software development cost model-
ing techniques using multi-organizational and company-specific
data,” Information and Software Technology, vol. 42, no. 14, pp. 1009
– 1016, 2000.

[24] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery, “Analogy-
x: Providing statistical inference to analogy-based software cost
estimation,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 471–484,
2008.

[25] C. Chang, “Finding prototypes for nearest neighbor classifiers,”
IEEE Trans. on Computers, pp. 1179–1185, 1974.

[26] J. Gama and C. Pinto, “Discretization from data streams: appli-
cations to histograms and data mining,” in SAC ’06: Proceed-
ings of the 2006 ACM symposium on Applied computing. New
York, NY, USA: ACM Press, 2006, pp. 662–667, available from
http://www.liacc.up.pt/∼jgama/IWKDDS/Papers/p6.pdf.

[27] U. M. Fayyad and I. H. Irani, “Multi-interval discretization of
continuous-valued attributes for classification learning,” in Pro-
ceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, 1993, pp. 1022–1027.

[28] Y. Yang and G. I. Webb, “A comparative study of discretization
methods fornaive-bayes classifiers,” in Proceedings of PKAW 2002:
The 2002 Pacific RimKnowledge Acquisition Workshop, 2002, pp. 159–
173.

[29] E. Frank, M. Hall, and B. Pfahringer, “Locally weighted naive
bayes,” in Proceedings of the Conference on Uncertainty in Artificial
Intelligence. Morgan Kaufmann, 2003, pp. 249–256.

[30] J. R. Quinlan, “Learning with Continuous Classes,” in 5th Aus-
tralian Joint Conference on Artificial Intelligence, 1992, pp. 343–
348, available from http://citeseer.nj.nec.com/quinlan92learning.
html.

[31] Y. Li, M. Xie, and G. T., “A study of the non-linear adjustment
for analogy based software cost estimation,” Empirical Software
Engineering, pp. 603–643, 2009.

[32] U. Lipowezky, “Selection of the optimal prototype subset
for 1-NN classification,” Pattern Recognition Letters, vol. 19, p.
907918, 1998. [Online]. Available: http://linkinghub.elsevier.
com/retrieve/pii/S0167865598000750

[33] F. Walkerden and R. Jeffery, “An empirical study of analogy-based
software effort estimation,” Empirical Softw. Engg., vol. 4, no. 2, pp.
135–158, 1999.

[34] C. Kirsopp and M. Shepperd, “Making inferences with small
numbers of training sets,” IEEE Proc., vol. 149, 2002.

[35] C. Kirsopp, M. Shepperd, and R. House, “Case and feature subset
selection in case-based software project effort prediction,” Research
and development in intelligent systems XIX: proceedings of ES2002,
the twenty-second SGAI International Conference on Knowledge Based
Systems and Applied Artificial Intelligence, p. 61, 2003.

[36] M. Shepperd, C. Schofield, and B. Kitchenham, “Effort estimation
using analogy,” in ICSE ’96: Proceedings of the 18th international
conference on Software engineering. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 170–178.

[37] J. Li and G. Ruhe, “Analysis of attribute weighting heuristics
for analogy-based software effort estimation method AQUA +,”
Learning, pp. 63–96, 2008.

[38] ——, “A comparative study of attribute weighting heuristics for
effort estimation by analogy,” Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering, p. 74,
2006. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1159733.1159746

[39] ——, “A Comparative Study of Attribute Weighting Heuristics
for Effort Estimation by Analogy,” Comparative and General Phar-
macology, pp. 66–74, 2006.

[40] J. Li, G. Ruhe, A. Al-emran, and M. M. Richter, “A exible method
for software effort estimation by analogy,” Empirical Software
Engineering, pp. 65–106, 2007.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 11

[41] J. Keung, “Empirical evaluation of analogy-x for software cost
estimation,” in ESEM ’08: Proceedings of the Second ACM-IEEE
international symposium on Empirical software engineering and mea-
surement. New York, NY, USA: ACM, 2008, pp. 294–296.

[42] J. Keung and B. Kitchenham, “Experiments with analogy-x for
software cost estimation,” in ASWEC ’08: Proceedings of the 19th
Australian Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 229–238.

[43] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and valid-
ity in comparative studies of software prediction models,” IEEE
Transactions on Software Engineering, vol. vol, pp. 31no5pp380–391,
May 2005.

[44] D. Beeferman and A. Berger, “Agglomerative clustering of a
search engine query log,” In Knowledge Discovery and Data Mining,
vol. pages, pp. 407–416, 2000.

[45] S. Guha, R. Rastogi, and K. S. Cure, “An efficient clustering
algorithm for large databases,” In In Proceedings of ACM SIGMOD
International Conference on Management of Data, vol. pages, pp. 73–
84, 1998.

[46] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
Analysis and Display of Genome-Wide Expression Patterns. Proc.
of the National Academy of,” Science, vol. 95, pp. 14 863–14 868,
1998.

[47] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kauf-
man, 1992, iSBN: 1558602380.

[48] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2004.
[49] C. Robson, “Real world research: a resource for social scientists

and practitioner-researchers,” Blackwell Publisher Ltd, 2002.
[50] S. Q. M. S. S. M. Wang, Y. and J. Shen, “Integrate the gm(1,1) and

verhulst models to predict software stage-effort,” IEEE Transac-
tions on Systems, vol. 39, pp. 647 – 658, 2009.

[51] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A sim-
ulation study of the model evaluation criterion MMRE,” IEEE
Transactions on Software Engineering, vol. vol, pp. 29no11pp985–
995, 2003.

[52] D. S. I. W. Briand L. C., E. E. Emam and K. D. Maxwell,
“An assessment and comparison of common software estimation
modeling techniques,” Proceedings of the International Software
Engineering, pp. 313–322, 1999.

[53] E. Stensrud, T. Foss, B. Kitchenham, and I. Myrtveit, “A fur-
ther empirical investigation of the relationship between mre and
project size,” Empirical Softw. Engg., vol. 8, no. 2, pp. 139–161,
2003.

[54] C. Kirsopp, M. J. Shepperd, and J. Hart, “Search heuristics, case-
based reasoning and software project effort prediction,” pp. 1367–
1374, 2002.

[55] D. Milic and C. Wohlin, “Distribution Patterns of Effort Estima-
tions,” in Euromicro, 2004.

[56] A new perspective on data homogeneity in software cost estimation: a
study in the embedded systems domain, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11219-009-9081-z

[57] A. Bakir, “Classification based cost estimation model for embed-
ded software,” Master’s thesis, Bogazici University, 2008.

APPENDIX

With the exception of ISBSG-Banking and SDR, all
the data used in this study is available at http://
promisedata.org/data or from the authors. As shown in
Figure 3, our data includes:

• Data from the International Software Benchmarking
Standards Group (ISBSG);

• The Desharnais and Albrecht data sets;
• SDR, which is data from projects of various software

companies from Turkey. SDR is collected from Soft-
lab, the Bogazici University Software Engineering
Research Laboratory repository [56];

• And the standard COCOMO data sets (Cocomo*,
Nasa*).

Projects in ISBSG dataset can be grouped according
to their business domains. In previous studies, break-

down of ISBSG according to business domain has also
been used [57]. Among different business domains we
selected banking due to:

1. Banking domain includes many projects whose
data quality is reported to be high (ISBSG contains
projects with missing attribute values).

2. ISBSG Banking domain is the dataset we have
analyzed and worked for a long time due to our
hands on experience in building effort estimation
models in banking industry.

We will denote the banking domain subset of ISBSG as
“ISBSG-Banking”.

Note that two of these data sets (Nasa93c2, Nasa93c5)
come from different development centers around the
United States. Another two of these data sets (Co-
como81e, Cocomo81o) represent different kinds of
projects:

• The Cocomo81e “embedded projects” are those de-
veloped within tight constraints (hardware, soft-
ware, operational, ...);

• The Cocomo81o “organic projects” come from small
teams with good experience working with less than
rigid requirements.

Note also in Figure 3, the skewness of our effort values
(2.0 to 4.4): our datasets are extremely heterogeneous
with as much as 40-fold variation. There is also some
divergence in the features used to describe our data:

• While our data includes some effort value (mea-
sured in terms of months or hours), no other feature
is shared by all data sets.

• The Cocomo* and NASA* data sets all use the fea-
tures defined by Boehm [1]; e.g. analyst capability,
required software reliability, memory constraints,
and use of software tools.

• The other data sets use a wide variety of features
including, number of entities in the data model,
number of basic logical transactions, query count
and number of distinct business units serviced.

