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Abstract 
Context: Building defect prediction models in large organizations has many challenges due to limited resources and tight schedules in the 
software development lifecycle. It is not easy to collect data, utilize any type of algorithm and build a permanent model at once. We have 
conducted a study in a large telecommunications company in Turkey to employ a software measurement program and to predict pre-release 
defects. Based on our prior publication, we have shared our experience in terms of the project steps (i.e. challenges and opportunities). We 
have further introduced new techniques that improve our earlier results. 
Objective: In our previous work, we have built similar predictors using data representative for U.S. software development. Our task here 
was to check if those predictors were specific solely to U.S. organizations or to a broader class of software. 
Method: We have presented our approach and results in the form of an experience report. Specifically, we have made use of different 
techniques for improving the information content of the software data and the performance of a Naïve Bayes classifier in the prediction 
model that is locally tuned for the company. We have increased the information content of the software data by using module dependency 
data and improved the performance by adjusting the hyper parameter (decision threshold) of the Naïve Bayes classifier. We have reported 
and discussed our results in terms of defect detection rates and false alarms. We also carried out a cost-benefit analysis to show that our 
approach can be efficiently put into practice. 
Results: Our general result is that general defect predictors, which exist across a wide range of software (in both U.S. and Turkish 
organizations), are present. Our specific results indicate that concerning the organization subject to this study, the use of version history 
information along with code metrics decreased false alarms by 22%, the use of dependencies between modules further reduced false alarms 
by 8%, and the decision threshold optimization for the Naïve Bayes classifier using code metrics and version history information further 
improved false alarms by 30% in comparison to a prediction using only code metrics and a default decision threshold. 
Conclusion: Implementing statistical techniques and machine learning on a real life scenario is a difficult yet possible task. Using simple 
statistical and algorithmic techniques produces an average detection rate of 88%. Although using dependency data improves our results, it 
is difficult to collect and analyze such data in general. Therefore, we would recommend optimizing the hyperparameter of the proposed 
technique, Naïve Bayes, to calibrate the defect prediction model rather than employing more complex classifiers. We also recommend that 
researchers who explore statistical and algorithmic methods for defect prediction should spend less time on their algorithms and more time 
on studying the pragmatic considerations of large organizations. 
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1. INTRODUCTION 
Telecommunications is a highly competitive and booming industry in Turkey and the neighboring countries. The leading 
telecommunications (GSM) operator in Turkey operates in Azerbaijan, Kazakhstan, Georgia, Northern Cyprus, and Ukraine with a 
customer base of 53.4 million. The company has grown very rapidly and successfully since its inception in 1994. It has an R&D center 
including 200 researchers and engineers with one to ten years of experience. The company’s legacy software has millions of lines of code 
that need to be maintained.  
The company is under constant pressure to launch new and creative campaigns in a limited amount of time and on tight budgets. As the 
technology changes and the customers require new functionalities, the company has to respond faster than ever by means of new software 
releases. Currently, they make releases every two weeks. They use incremental software development [21], where each release has 
additional or modified functionalities, compared to the previous releases. Therefore, the time to track and fix the problems in their software 
and to ensure the overall software quality is limited.  
To ensure overall software quality, each stage of the development process must include verification, validation and testing (VV&T) 
activities [29]. Tight schedules, limited budgets and continuous changes in project requirements make this very hard to manage. The 
traditional software development lifecycle prioritizes the testing phase as the most critical phase for verifying the adequacy of the software 



ACCEPTED MANUSCRIPT 

 

and its consistency with the requirements [29]. Similar to traditional practices, testing is one of the most critical stages in the company’s 
development phase [2, 12, 14]. Accordingly, the managers are interested in any opportunity to improve their software development 
practices. 
In the literature, different VV&T strategies such as code inspections, reviews and defect prediction tools, are proposed to use the time and 
resources effectively while catching as many defects as possible in the software [29]. Among these, defect prediction models are helpful 
tools that guide the user, i.e. developer or tester, to specific parts of the software, which are more likely to fail. Defect predictors help 
developers reduce the testing effort and managers allocate resources more efficiently. A variety of software defect prediction models have 
been proposed over the years [1, 2, 6, 10, 17, 20]. Most of them have combined well-known methodologies and algorithms from various 
engineering domains. The most common methods used in these models are statistical techniques [2, 10, 17] and machine learning [1, 6, 
20]. They require previous data from completed projects in terms of software metrics and actual defect rates. Software metrics can be 
quantitative measures such as size and complexity [30], whereas defect rates represent the location (i.e. file/ functional unit/ LOC where the 
defect occurred) and the number of defects detected in the software [31]. Prediction models combine these metrics and defect information 
as training data to find out which modules are more defect-prone. Based on the knowledge gathered from past projects and the software 
metrics extracted from a new project, the model can estimate defect-prone modules of the new project. In such studies, a module whose 
defect-proneness is estimated can be either a functional unit, i.e. software method, or a file in the source code. 
Our study constructs a metrics program and a decision support system to predict defects and employ a more effective release management 
process. Previous studies have implemented extensive automated metrics and defect prediction programs using data mining such as the 
NASA Metrics Data Program [1]. In this paper, we describe our experience in applying those programs to a telecommunications company, 
while omitting all the technical details to build this metrics program and defect prediction model. While the company's development 
practices are much different from those of NASA, the automated statistical and machine learning methods ported with relatively little 
effort. However, we have spent much time learning the organization and working within their current practices. We, therefore, recommend 
that researchers who explore statistical and machine learning methods for defect prediction should spend less time on their algorithms, but 
work more on pragmatic considerations of large organizations. Note that in the following case study, we had to respond to user challenges 
and project demands numerous times. Because we were responsive, we were able to report that practitioners can benefit from a learning-
based defect predictor to solve the problems of the company's software development processes such as the allocation of resources, defect 
tracing and measurement in a large software system. Our prior publication [28] summarizes the preliminary results obtained from working 
with this company: 88% detection rates with 28% false alarms using code metrics and version history. In this paper, we have extended 
those results in two ways: a) increasing the information content of data, b) adjusting the hyperparameter of a Naïve Bayes classifier based 
on the local software data. After deploying the initial model, we have increased the information content of the data by adding dependencies 
between modules. Results show that dependencies provide valuable information for defect predictors, reducing false alarms by 8%. 
However, conducting measurement programs to collect these data is extremely difficult in large organizations operating in a competitive 
industry with tight schedules. Therefore, we have also focused on improving the performance of a Naïve Bayes classifier by adjusting its 
hyper parameter, i.e. decision threshold. Threshold optimization further decreases false alarms by 30%, thereby reducing the estimated 
inspection costs of testers to detect defective modules. 
This paper is organized as follows: In Section 2, we explicitly define our goals in this project aligned with the objectives of the company. In 
the subsections of Section 3, we explain our prior publication [28] in terms of plans, the challenges we came across during each phase and 
the methodologies to solve these problems in detail. In Section 4, we present our latest findings based on two new techniques (increasing 
the information content of data in Section 4.1 and adjusting the hyperparameter of Naïve Bayes in Section 4.2). In Section 5, we discuss the 
threats to the validity of our results. Finally, we share our best practices as well as mistakes during this project and conclude with 
suggestions to both academics and practitioners who would plan to build local defect predictors in large organizations. 
 
2. GOALS OF THE PROJECT 
Our goals in this project are defined as building a code measurement repository, defect tracing/matching program and a defect prediction 
model. We have jointly agreed on these goals with the R&D manager, project managers and the development team during the project kick-
off meeting. The senior management strongly believed that they should adjust their development processes to increase software quality and 
to allocate resources effectively. We have decided on the roles and responsibilities and aligned the goals of our project with their business 
goals (Table 1). We have clearly explained to them the final deliverables.  
In order to track the progress of the project, we held monthly meetings with the project team and quarterly meetings with the senior 
management to present the progress and discuss the following steps. Senior management meetings were quite important either to escalate 
the problems or to agree on critical decisions we had to make throughout the project. During the life of the project, researchers from our 
software research laboratory (SoftLab) were on-site on a weekly basis to work with the coders, testers and quality teams.   
Previously, the company did not employ any measurement process due to tight schedules and heavy workloads. Therefore, we have 
planned our work in four main phases:  

• In the first phase, we aimed to measure the static code attributes at function level, i.e. the level of functions that are defined as 
individual methods in the source code. 

• In the second phase, we planned to match software methods, i.e., functional units, with pre-release defects.  
• In the third and fourth phases, we planned to build and calibrate a defect prediction model, assuming that we would be able to 

collect enough data to train our model.  
However, the outcomes of every phase led us to redefine and extend the original scope and objectives in the following stages.  
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3. PHASES OF THE PROJECT 
Our prior publication [28] includes project details such as code measurement and analysis (Phase I), defect tracing and matching (Phase II), 
defect prediction modeling (Phase III), and extended phase in defect prediction (Phase IV). In this paper, we also explain these phases in 
order to keep track of the progress in the project. Furthermore, we add two new experiments that investigate the data and the algorithm. In 
Section 4, the information content of the data is increased using dependencies between software files. Then, the decision threshold of the 
algorithm is adjusted using ROC curves. These experiments improve the performance of the prediction model in terms of false alarms. We 
present these findings in Section 4. 
 

3.1 Phase I: Code Measurement and Analysis 
In the first three months of the project, we aimed to analyze the company's development practices and to conduct a literature survey of 
measurement and defect prediction in the telecommunications industry. At the end of this phase, we expected to agree on the list of static 
code attributes and to decide on an automatic tool to collect them. We also planned to collect the first set of static code attributes from the 
source code in order to make a raw code analysis. In order to do that, we planned to choose the sample projects through which we would 
collect data at function level. 
We decided that static code attributes could be used to investigate specific trends or characteristics in the code and current development 
practices. Static code attributes are widely used to predict defect-proneness in software systems [1, 3, 6, 12, 15, 16, 17, 18]. Furthermore, 
they are easily collected through automated tools. Therefore, we defined the set of static code attributes from NASA MDP Repository [12], 
as the metrics to be collected from the software in the company. Basically, we collected complexity metrics proposed by McCabe [5], 
metrics related to the unique number of operators and operands, which are proposed by Halstead [4], size metrics to count executable and 
commented lines of code, and CK object-oriented metrics [19] from Java applications. The set of metrics collected in different granularity 
levels can be seen in Table 2. We also donated all data that came from nine applications of the software to Promise, i.e. online data 
repository [7]. Thus, the data are publicly available for replicated studies and new experiments. 
 
3.1.1 Challenges during Phase I 
As mentioned earlier, the company did not have a process or an automated tool to measure code 
attributes. Our suggestion was to purchase a commercially available automated tool to extract metrics 
information easily and quickly. However, due to budget constraints and concerns about the adequacy of 
functionalities of the existing tools, the senior management did not want to invest in such a tool. 
Moreover, their software systems contained source codes and scripts written in different languages such 
as Java, JSP and PL/SQL. Therefore, the management was not convinced about finding a single cost 
effective tool that would embrace all languages and easily extract similar attributes from all of them. 
Their software system has the standard three-tier architecture with presentation, application and data 
layers. However, the content in these layers cannot be separated as distinct projects. Any enhancement 
to the existing software somehow touches all or some of the layers at the same time, making it difficult 
to identify code ownership as well as to define distinct software projects. 
Another problem we came across was partially related to the process of metrics collection. When we 
observed the software development process with the coding practices of the team, we saw that collecting 
static code attributes in the same manner with NASA datasets, i.e. at function level, is not adequate in 
the company, since it is almost impossible, due to lack of automated mechanisms, to match those 
attributes with the defect data afterwards. 
 
3.1.2 Our Methodology  
Metric Extraction: We had developed an all-in-one metrics extraction and analysis tool, Prest, to extract 
code metrics [9, 24]. Compared to other commercial and open source tools, Prest embraces many 
distinctive features, and it is freely available. It extracts 22 to 27 static code attributes in different 
granularities, i.e. package, class, file, and method level. The number of attributes varies according to the 
granularity level, since certain attributes, such as object-oriented metrics, are only extracted at class 
level. Prest is able to parse programming languages such as C, C++, Java, JSP, PL/SQL, and to form a 
dependency, i.e. call graph, matrix, that keeps the interrelations between the modules of the software 
systems. Prest has two different views: Project and Prediction. The Project view has a simple user 
interface, which allows the user to import the source code and parse his/her project using one or more 
language parsers. It is able to parse different parts of the code, using parsers of different programming 
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languages. Additional analysis on modules such as new threshold definition helps to identify critical 
modules whose attributes do not meet the coding standards of NASA MDP [12]. It is also possible to 
define new virtual metrics by combining two or more metrics, to apply logarithm filtering as a pre-
processing step and to display histogram of the selected metrics in the Project view. A sample 
screenshot taken from Prest is present in Figure 1. In the Prediction view, a training set and a test set can 
be separately uploaded. Then a Naïve Bayes classifier or Decision Tree algorithm can be applied, from 
which we have used the former one as the algorithm of our predictor model. Using the Project view of 
Prest, we were able to collect static code attributes from the files and the methods of 24 critical 
applications of the company. 
Project Selection: This was one of our first critical decisions in the project in order to define the scope 
and choose the projects and/or units of production that would be studied. The project managers initially 
wanted to focus on the presentation and the application layers because of the complexity of the 
architecture. However, we decided in unison to take twenty-four interdependent Java applications 
embedded in these layers due to the fact that layers contain more than one application; they are 
implemented by many development teams and, sometimes, more than one software process is used. 
Therefore, we selected these Java applications with clearly defined process teams, development process 
and packages affected in each layer. We refer to these applications as GSM projects during this study.  
Level of granularity: As mentioned in the previous section, we were unable to use method-level metrics 
in the software system since we could not collect method-level defect data from the developers in such a 
limited period of time. Therefore, we aggregated our method-level attributes to the file-level by taking 
the minimum, maximum, average, and sum values of each file [17] in order to make them compatible 
with the defect data.  
 
3.2 Phase II: Defect Tracing and Matching 
The second phase of our study was originally planned to store defect data, i.e. the defects found during 
the testing and pre-release phases. If things ran their normal course in Phase I, we would collect metrics 
from the completed versions of 24 projects and also match the defects.  
  
3.2.1 Challenges during Phase II 
This phase took much longer than we had anticipated. First of all, there was no process for defect 
tracing. Defects were not often stored during development activities. Secondly, there was no process to 
match the defects with the files in order to keep track of the reasons for any change in the software 
system.  
The project team realized that it would need too much time and effort to match each defect with its file 
manually for such a complex system. Additionally, the developers did not volunteer to participate in this 
process since keeping defect reports would increase their already heavy workload. 
 
3.2.2 Our Methodology 
To solve the above-mentioned issues, we called for an emergency meeting with the senior management 
and the heads of the development, testing and quality teams. Consequently, the company agreed to 
change their existing code development process. They forced a version control log to keep changes in 
the source code committed by the development team. Previously, the developers did not enter any 
comments into the log other than the project ID while checking into the system. Therefore, we were 
unable to identify which changes were intended for fixing a defect. Changes in their software could 
either be for fixing defects or new requirement requests, all of which were uniquely numbered in the 
system. Whenever a developer checked in the source code to the version control system, he/she had to 
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provide additional information about the modified file, i.e. the ID of the test defect or requirement 
request. Then, we would be able to retrieve those defect logs from the history and match them with the 
files of the projects in the same version. After the process change, we assigned defect flags, indicating 1 
for defective files and 0 for defect-free files, whose code attributes were extracted by Prest.  
During the adaptation of the process change, we carried out an additional analysis on static code 
attributes to point out some of the problems related to the coding practices of the company’s 
development team. Our intention was to investigate the development practices in the company, mention 
the critical aspects and convince the team and the managers for the required course of actions. We took 
the best practice coding standards of NASA MDP Repository [12] and compared them with our 
measurements at each function level. Table 4 presents the average values of 18 static code attributes in 
the function level for both layers (second column), the presentation (third column) and the application 
(fourth column) layers in the GSM company and their minimum and maximum values (fifth and sixth 
columns) based on NASA standards. Attributes shaded as gray are outside the standards, which are the 
number of operands, the number of operators, Halstead vocabulary and the ratio of commented LOC to 
code LOC. Based on our analysis, we saw that there are two fundamental issues in the coding practices: 
a) No comments at all, which makes the source code hard to read and understand by other developers, 
and b) limited usage of vocabulary, i.e. the number of operator and operands are below the standards. 
Their development practice has been based on decreasing the complexity of the software modules. 
However, this leads to an unnecessarily modular system, i.e. very small modules containing very few 
actions.  
This code analysis supports the necessity to improve the software quality. As an alternative analysis, we 
conducted a rule-based code analysis process based on static code attributes. Our aim here was to 
estimate what amount of code had to be reviewed and how much testing effort was needed to inspect the 
defect-prone files in the company [14]. To this end, we simply defined rules for each attribute based on 
its recommended minimum and maximum values in Table 4. These rules are fired if the selected 
attribute of a module (i.e. a functional unit) is not in the specified interval. This also indicates that the 
method could be defect-prone; therefore, it should be manually inspected. The results of the rule-based 
model can be seen in Table 5, where there are 17 basic rules with the corresponding attributes and two 
additional rules derived from all of the attributes. Based on 19 rules, software modules that should be 
investigated are presented in Table 5. The columns in Table 5 show the number of modules, i.e. 
functional units, which should be investigated (Modules), their percentage over all modules (Module %) 
as well as LOC and its percentage over all source code (LOC %) for each rule. The shaded rows in Table 
5 correspond to the attribute rules that cause inspecting greater than 50% LOC. Rule #18 is fired if any 
of the 17 rules are fired. This rule shows that we need to inspect 100% LOC to find the defect-prone 
methods of the overall system. Rule #19 is fired if all basic rules except the Halstead rules are fired. This 
reduces the firing frequency of the former rule such that 45% of the code (341655 LOC) should be 
reviewed to detect the potentially problematic files in the software. 
We had seen that the rule-based code review process was impractical in the sense that we would need to 
inspect 45% of the code [14]. Thus, we obviously need more intelligent oracles to reduce the testing 
effort and the defect rates in the software system. 
 
3.3 Phase III: Defect Prediction Modeling 
The original plan in this phase was to start constructing our prediction model with the data collected 
from the projects. We planned to test the performance of our model with those referred to in the 
literature. We would try different experimental designs, sampling methods, and algorithms to build such 
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a model. In this section, we briefly explain the methodologies applied and the local prediction model 
proposed in this study. 
 
3.3.1 The Proposed Model 
We planned to build a learning-based defect predictor for the company. A learning based predictor 
follows a typical machine learning application: the model is trained with previous data such as projects 
whose software metrics and actual defects are known at file level, and it is tested on a new project whose 
defects are unknown. The learner of the model was set as a Naïve Bayes classifier since a) it is simple 
and robust as a machine learning technique, b) it has performed the best prediction accuracy on 8 public 
datasets, compared to other machine learning methods [1], and c) a recent study by Lessmann et al. has 
also shown that most of the machine learning algorithms are not significantly better than each other in 
the defect prediction domain [18]. A Naïve Bayes classifier is derived from the Bayes Theorem such 
that the posterior probability of an instance x being in class Ci is proportional to the prior probability of 
Ci and the likelihood of p(x|Ci). Then, it is normalized using evidence:  
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In binary classification problems such as defect prediction, a Naïve Bayes classifier computes the 
posterior probabilities of a module as “defective” or “defect-free” given its software metrics, i.e. static 
code attributes. It then assigns the module x to the first class, i.e. defective class if its posterior 
probability is greater than or equal to the default threshold which is 0.5. Otherwise, the instance is 
assigned to the second, i.e. defect-free, class. This classification rule can be summarized as follows: 
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In Equation 2, C1 refers to the defective class, whereas C2 refers to the defect-free class. This process is 
rather straightforward such that it simply uses attribute probabilities (likelihood) derived from historical 
data to make predictions. In order to compute the likelihoods, Gaussian probability distribution function 
is used, where the attributes (x) are assumed as independent with different means (µ) and a common 
covariance matrix (), as follows: 
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To assess the performance of our predictor model, three measures have been proposed: the probability of 
detection rate, pd; the probability of false alarm rate, pf; and, the balance rate [13]. Pd measures the 
percentage of defective modules that are correctly classified by the predictor. Pf, on the other hand, is a 
measure to calculate the ratio of defect-free modules that are wrongly classified as defective with our 
predictor. Receiver Operator Characteristics (ROC) curves are often used to evaluate the performance of 
an algorithm in terms of hit rate, pd, and false alarm rate, pf, with varying decision thresholds [13]. In 
the ROC curve (Figure 2), the lower left point (0,0) in terms of (pf,pd) represents assigning all instances 
of the defect-free class. The upper right corner (1,1) indicates assigning all instances to the defective 
class. The upper left point (0,1) represents ideal classification, when we detect 100% of the defective 
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modules while keeping the false alarm rate as 0%. Finally, the balance indicates how close our estimate 
is to the ideal case by calculating the Euclidean distance between the performance of our model in terms 
of pf, pd and the point 0 (pf), 1(pd). We have computed these measures using the common confusion 
matrix (Table 3) and the formulas below: 
 

pd = TP / (TP + FN)                                                                                              (4) 
 pf = FP  / (FP + TN)                                                                                              (5) 
bal = 2pd)-(1  pf)-(0 -1 22 +                                                                             (6) 

 
In order to interpret our results to business managers, we also agreed to construct a cost-benefit analysis 
(CB) based on Arisholm and Briand’s work [23]. This approach compares the inspection effort 
suggested by a defect prediction with a random testing strategy. Based on that, the reduction in testing 
effort can be calculated with the following formula: 
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In Equation 7, MRT represents the number of Modules (files in our study) that must be inspected 
through a random testing strategy, whereas MDF represents the number of Modules that must be 
inspected with a defect predictor. For example, if a predictor detected 70% of the defective files (MRT) 
by looking at 50% of all files (MDF), then the reduction in the inspection effort to find 70% of the 
defective files would be around 30% using the predictor. 
 
3.3.2 Challenges during Phase III 
Although we started collecting data from the completed versions of the software system, we realized that 
constructing such a dataset for training the predictor model would take a long time. We saw that 
building an immature version history is an inconsistent process. Developers could not allocate extra time 
to write all the defects they fixed during the testing phase because of their workload and other business 
priorities. In addition, matching those defects with the corresponding files of software could not be 
automatically handled. We could not form an effective training set for a long time. Therefore, we were 
not able to train our defect prediction model with the previous data from the company.  
 
3.3.3 Our Methodology 
Instead of waiting for a complete dataset, we used an alternative technique to move ahead. In our 
previous research, we had suggested that companies such as this GSM operator should train defect 
predictors with the data from other companies, i.e. cross-company data [6]. Cross-company data can be 
used effectively in the absence of a local data repository, especially when additional filtering techniques 
are used:  
 

• Selecting similar projects from cross-company data using nearest neighbor sampling [8]. 
• Increasing the information content of data using dependency data between modules [22].  

 
We selected NASA projects as the cross-company data, which are publicly available [7]. These projects 
are collected over a period of five years from numerous NASA contractors. They represent various 
systems from flight simulators to ground control systems and video guidance systems to spacecraft 
instruments. As Basili et al. [39] argued, conclusions from NASA data are relevant to US software 
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development industry. Several authors argue that these projects may not be representative for the test 
sets in terms of the software domain where they are implemented [32]. However, in a recent study by 
Zimmermann et al. [32], authors investigated cross project predictions, which employed projects only 
from similar software domains or software processes as the training data, and found that cross-project 
data did not lead to accurate predictions. Therefore, we have used NASA projects without filtering them 
by software domains or software processes.  
NASA projects contain more than 20.000 modules, of which we randomly used 90% as the training data 
to predict the defective modules in our projects [6]. This random split is carried out 20 times to change 
the projects selected for training and to avoid sampling bias during the training process. From this 
subset, we selected a subset of projects that were similar to those in our test data in terms of the 
Euclidean distance in the 17 dimensional metric spaces [8]. The nearest neighbors in this random subset 
were used to train the predictor. The test data consisted of local (GSM) projects from the software 
system of the company whose static code attributes were extracted while defects were unknown. So our 
analysis using cross-company data would give the estimated defect rates for the local projects. 
We added one more analysis using cross-company data to increase the information content by adding 
dependency data between the modules of the projects. The previous research proposed by Turhan et al. 
[22] showed that false alarms can be reduced from 30% to 20% by using a call graph based ranking 
framework in a public embedded software data [7]. A call graph matrix is an M-by-M matrix where M is 
the number of files in the software system. Each entry mij of the matrix takes 1 if file i calls file j; 
otherwise, it is 0. The call graph based ranking framework (CGBR) approach is applicable to any static 
code attribute based prediction model, where static code attributes measure the intra-module 
complexities and call graphs models inter-module interactions in software systems. This approach is 
inspired by Google’s web page ranking method [38], and it computes ranks for each module in the 
software system using call graph matrices. Modules that are popularly called (columns in the call graph 
matrix with the highest number of 1s) by others have the highest ranks, and these ranks are then used as 
weights (multipliers) for the static code attributes of all modules. We also included caller-callee relations 
between the modules of NASA and the GSM projects to adjust code metrics with this framework. We 
repeated the random split 20 times, applied call graph based ranking with new sets of NASA projects 
each time and raised a flag for modules that were estimated as defective in at least 10 trials [8]. 
Table 6 shows the results from this analysis on 24 projects in terms of estimated defect rate (%), 
estimated defective LOC, total LOC, and the percentage (%) of estimated defective LOC over the whole 
code. We were not able to analyze projects 7, 23 and 25 for our limited computational resources at the 
time. Indeed, we had the call graphs but were not able to analyze them because for large projects, 
processing NxN matrices is required, and the process becomes computationally resource-intensive, as N-
number of modules gets larger. Analyses were carried out on an average laptop computer. 
Results present the estimated defect rate as 8% in the software system of the company. There is a major 
difference with the rule-based approach in terms of its practical implications. According to the rule-
based model, LOC required to inspect corresponds to 45% of the whole code, while the method level 
defect rate is estimated as 14%. On the other hand, according to the learning-based model, LOC required 
to inspect corresponds to only 2% of the code, where the method level defect rate is estimated as 8%. 
Therefore, we could once more see the benefits of a learning-based model to decrease testing efforts by 
guiding testers through defective parts of the software.  
The difference between the two models occurs, since a rule-based model makes decisions based on 
individual metrics, and it has a bias towards more complex and larger modules. On the other hand, a 
learning based model combines all ‘signals’ from each metric and estimates defects located in smaller 
modules [1, 16]. It is important to mention that this analysis was completed in the absence of local data. 
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Therefore, we used the results to show the tangible benefits of building a defect predictor to the 
managers and the development team in the company.  
 
3.4 Phase IV: Defect Prediction Extended 
This phase did not exist in our original plan since we underestimated the time and effort that was 
necessary to build a local data repository. In this phase, we were able to collect within-company data, 
i.e. static code attributes and local defect data, from ten previous versions of the software. The properties 
of the projects in terms of the number of files and defect rates are illustrated in Table 7. These data are 
now publicly available for other researchers to reproduce, refute and improve our results [7]. We 
observed discontinuities in projects between different releases perhaps because some projects were 
rarely deployed or withdrawn at a certain release. Starting from this phase, we trained the prediction 
model using the project data of the company from previous versions and tested it on the next version. 
We decided on the experimental design of the local prediction model in Phase IV. First, we investigated 
the amount of data, i.e. the ratio between defective and defect-free modules, which was needed to 
establish predictions. We chose the “micro-sampling” approach based on the study done by Turhan et al. 
[3]. Micro-sampling approach is a special case of under-sampling, where the number of the defect-free 
instances in the training set is reduced to the number of defective instances. The results of the study [3] 
have shown that more than 50 samples of which 25 are defective and 25 are defect-free, do not improve 
the performance of the algorithms. Therefore, we formed all the training sets with size M=2N, with 
equal N number of defective and defect-free instances. Secondly, we investigated the content of training 
data in the model to predict the defective files of the projects in the next release. We conducted two 
experiments on GSM3 and GSM4 projects to decide on the best strategy: 
 

• We applied micro-sampling on the latest previous release of each project, i.e. the latest release in 
the scope of which a project was deployed and its metrics as well as defect data were collected in 
order to form the training set.  

• We applied micro-sampling to the latest previous release of all projects as the training set [14]. 
 
GSM3 and GSM4 projects were selected, since these two projects were the ones whose defect data were 
available in the majority of the 10 releases to form the training set. The test data are the current release 
of that project such that its development phase has just been completed. Table 8 shows a sample of two 
versions and two projects. The third column (version-level) presents the prediction performance of the 
first experiment, when we choose our training set from all eight projects of the previous version to 
predict the defective modules of projects GSM3 and GSM4. We conducted 100 iterations to randomly 
select N defect-free files from all the projects in the previous release for the training set. We took the 
average performance of 100 iterations. The last column (project-level), on the other hand, shows the 
performance of the second experiment, when we used only the previous version of GSM3 or GSM4 to 
predict the defective modules of the selected project in the current version. It is observed that both of the 
approaches produce high pd rates in the range from 78% to 100%. Results show that the project level 
defect predictor would be better (bold cells in Table 8) although we had high false alarm rates. 
Therefore, we used project-level defect prediction for the following experiments. 
 
3.4.1 Challenges during Phase IV 
The results of this analysis presented in Table 8 show that we still produced high false alarms by selecting the training data from the 
previous versions of the specific project only, compared to the results when training data were selected from the previous versions of all 
projects included in the software. False alarms are critical for such predictors because they cause developers or testers to inspect more 
modules than necessary. This, in fact, contradicts with one of the initial aims of constructing a defect predictor: decreasing the testing 
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effort. Since false alarms burden the test team with additional costs, it is hard to adopt our predictor to their actual development practices. 
Therefore, we had to find a strategy to detect as much defective modules as possible while decreasing false alarms to a reasonable cost 
level.  
 
3.4.2 Our Methodology 
We discussed the causes of high false alarms in our monthly meetings with the project team and found that we needed to remove files that 
had not been changed for the last six months from the version history, i.e. January 2008 for the available dataset. The simple intuition 
behind this is as follows: most of the files in the software system are not edited much since they are either library files or they constitute the 
core assets of the system. Improvements or new functionalities of the projects in every release often take place on a small portion of the 
files, thereby leaving most of the files unchanged. Including all files of the previous release to build the training set disturbs the learning 
strategy of the model by damaging the information content of data. We built a simple assumption on defect-proneness of a module in order 
to prevent this: 
 

• “It is highly probable that a module is defect-free if it has not been changed since January 2008.” 
 

Then, we added a flag to each file of the projects to indicate whether the file had been actively changed or remained passive since January. 
The model controls each of its predictions by looking at the history flag of these files. If the model predicts a file as defective although it 
has not been used since January, then it is re-classified as defect-free. This approach was incredibly simple and successful in comparison to 
using churn as an additional metric to our model. Furthermore, matching churn and static code attributes was not feasible for most of the 
files due to low change rates. We decided upon a period of six months by trying out three possible time periods for extracting version flags: 
3 months, 6 months and a year. Among these time periods, using a six months period to extract version flags provided the best prediction 
performance for all projects.  
The results of our experiments using only code metrics (Model I) and using code metrics along with history flags (Model II) are 
summarized in Table 9 for all public datasets. We can clearly observe that using version history improves the predictions significantly in 
terms of pf rates. Our model succeeded in decreasing false alarms from 50% to 28% on average using version history. The change in pf 
rates varies in terms of projects in the range of {0%, 63%} due to discontinuities in the changed projects throughout the version history. In 
addition, we managed to have stable high pd rates on an average of 88% while reducing pf rates successfully. Furthermore, we spent less 
effort to detect 88% of these defective modules: the cost-benefit analysis (CB column in Table 9) shows that we managed to decrease the 
inspection effort to detect defective modules by 72%, decreasing from 88% to 25%. As a result, using a defect prediction model enables 
developers to allocate their limited amount of time and effort to only defect-prone parts of a system. Managers can also see the practical 
implications of such decision-making tools, which reduce the testing effort and cost. 
 

4. CALIBRATION OF THE FINAL MODEL 
 
We successfully built our defect predictor for the company using local data and presented our results to 
the project team. The results of the project show that the company’s business goal of decreasing the 
testing effort without compromising on the level of product quality can be achieved through intelligent 
oracles. We used two different methods to calibrate the final model for the company in order to improve 
the prediction performance. However, in our prior publication [28], we had faced challenges during the 
adaptation of these methods. First of all, the file-level call graph based ranking (CGBR) method did not 
work due to the transition to Service Oriented Architecture (SOA). SOA does not allow us to capture 
caller-callee relations through simple and static file interactions. Secondly, we only used static code 
attributes from Java files to build our model. However, there are many JSP files and PL/ SQL scripts 
that contain very critical information on the interactions between the application and data layers. Thus, a 
simple call-graph based ranking at file-level could not capture the overall picture and consequently 
failed to increase the information content in our study.  
In this paper, we have extended our prior publication [28] by pointing out these two important issues. 
Firstly, we increased the information content of the software data by producing SOA-based dependency 
data. Secondly, we examined the algorithm of our predictor Naïve Bayes. We had recommended 
spending less time on algorithms when working with large organizations. Thus, we have slightly 
modified a Naïve Bayes classifier to improve its prediction performance rather than trying more 
complex algorithms. In this section, we describe these extensions in detail.  
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4.1 Improving the Information Content of Software Data 
We considered two different approaches to improve the quality of defect prediction studies. The first one 
is increasing the information content of the training data [3]. The second one is using more appropriate 
algorithms in order to improve the prediction performance [15]. We selected the first approach in our 
prior experiments so far since the information content of static code attributes is so limited that more 
complex algorithms would not detect new information [3]. Using history flags, we successfully achieved 
better prediction rates in terms of pd and pf when compared to defect prediction solely through static 
code attributes [28]. However, we did not include all data available for the projects, such as the static 
code attributes and the defect information from Jsp files and SOA-based dependency data. Therefore, 
two analyses on increasing the information content of data were performed: a) information retrieval 
from Jsp files, and b) call graph generation from SOA. Since Prest is capable of extracting static code 
attributes from Jsp files, we have also collected defect data for Jsp files of the two sample projects, 
GSM2 and GSM3 during releases 11 and 12. Our experiments show that using both Java and Jsp files 
increase the information content as well as the defect data for the training set, thereby improving the 
defect prediction performance of our model [24].  
 
4.1.1 Challenges 
During Phase IV, we had difficulties in capturing caller-callee relations between SOA modules and/or 
the services of the GSM company. Prest has the ability to extract call graphs from C, C++, Java, and 
PL/SQL source code files. However, these call graphs are built only by checking the static source codes. 
Service Oriented Architectures provide a new way of programming allowing a call inside the source 
code to initiate a service outside the system or to trigger a file read/write operation [33]. Although it 
seems that we are able to extract call graphs from static source code files using Prest, it is not valid for 
such technologies, where we have to reveal all components at run time. In other words, the 
communication between two or more services coordinating a certain activity cannot be seen in the 
generated call graphs. These services may run on different servers that are not accessible. They may be 
implemented in a programming language that is not supported by Prest, or calls may not be extracted 
from the source code. Therefore, if we use the call graphs extracted from the source code in service 
oriented architectures, we cannot improve the performance of defect predictors.  
Several dynamic call graph generation tools [34, 35, 36], which can track components at run time, exist. 
However these tools have certain constraints: a) they support a limited number of web services, b) they 
need a source code and running configurations, c) some of them are platform and instruction set 
dependent, and d) most of them have JVM dependency. It is necessary to adopt Prest to the new method 
of programming the company adopted, i.e. SOA, where the communication between two or more 
services could not be captured using static file interactions. Therefore, we were not able to extract call 
graphs from the software system as easily as expected. 
 
4.1.2 Our Methodology 
In order to overcome these problems, we took advantage of a Configuration Management Database (CMDB) in the GSM company, which 
is a comprehensive application tool that has been implemented for the last six months. We implemented an add-on to Prest that could 
extract call graphs from Configuration Management Databases. The Configuration Management Database (CMDB) is a repository where 
all the entities and their relationships to a system are stored. CMDB allows us to understand and track the components, such as services, 
their release time and churn data about any file in the software system easily and effectively. This database includes attributes of each 
component in the system such as service name, release number and storage time. In addition, every component is connected to the others 
by useful information such as the parent level and the application depth. Checking the status of running applications and tracking the 
defects from the lowest level subroutine to the source are the basic properties of CMDB. For SOA, we can generate a comprehensive call 
graph that covers every interaction between the components by using CMDB. Contrary to call graph extraction from static source codes, 
we can build a call graph with all actions executed at run time such as database triggers and remote method invocations.  
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We extracted call graphs of the GSM4 project using information from CMDB. We implemented a new 
add-on to Prest that takes the parent-child relations from CMDB and converts them to call graph 
matrices in order to feed them into our prediction model. Employing a call graph based ranking 
framework, we predicted the defective files of the GSM4 project for the release 15. The final results of 
the call graph experiments can be seen in Figure 3. The first chart in Figure 3 presents the prediction 
performance in terms of pd, pf, and balance using static code attributes from Java and Jsp files. The 
second chart shows that the performance does not improve when a file-level call graph based framework 
is used. The final chart represents a decrease of 8% in the pf rates when the training data is enriched with 
SOA call graphs. This approach has a limitation, and that is the use of CMDB. We extracted call graphs 
by using the relations from CMDB. Therefore, it is only applicable to companies that store all entities 
and their relationships via CMDB. However, the approach is not limited to the GSM company. It can be 
easily applied to the data of other companies. 
 
4.2 Adjusting the Decision Threshold of a Naïve Bayes Classifier 
During this case study, we plan to focus on software data rather than the algorithm. However, the recent 
results obtained with Jsp files and SOA call graphs have led us to define new research directions. We 
have decided to examine the algorithm of our defect prediction model in order to adjust its hyper-
parameters. 
 
4.2.1 Challenges 
We see that adding new data would definitely improve the performance of our defect predictor. 
However, collecting new data was very difficult and time-consuming. Furthermore, we were still 
working on software projects whose defect rates were less than 1%, since defect-file matching has not 
been fully accepted by the development team1. Therefore, the software data has an imbalanced nature 
with very few defective modules compared to defect-free ones. We tried the micro-sampling technique 
to overcome the problem of imbalanced data. However, there are ongoing discussions in the machine 
learning community on whether sampling techniques would solve the problem of imbalanced datasets. 
According to Provost [26], using standard machine learning algorithms without adjusting their decision 
threshold may be a critical mistake. On the other hand, Maloof examined the decision thresholds of 
simple AI techniques and different sampling ratios on datasets with imbalanced class distributions [25]. 
The results show that varying either of these is equivalent, but the precise conclusion is more complex 
and domain-specific. 
 
4.2.2 Our Methodology 
We also studied decision threshold optimization using ROC curves with 13 public datasets [27].  We 
adjusted the decision threshold of a Naïve Bayes classifier for each dataset using cross validation on 
training data and plotted ROC curves to illustrate the optimum threshold. Our results reveal that 
threshold optimization significantly decreases the pf rates by 11% on average, while keeping pd rates 
stable.  

In this study, we examined GSM data by adjusting the decision threshold of a Naïve Bayes classifier 
in our defect prediction model, and we compared the results with over- and under-sampling strategies. 
We conducted five different experiments to analyze the software data collected so far: a) using the 
original training set, b) using under-sampling strategy, c) using oversampling strategy, d) using decision-

                                                 
1 The new process can be overridden by entering any text into the log message. A text mining is out of the scope to determine whether it is 

an existing defect ID or not. However, managers make periodical checks for the correctness of these log messages entered by developers.  
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threshold optimization, and e) using version history with an optimum decision threshold. First of all, the 
original training set was used in the model without modifying class distributions. Secondly, under-
sampling was applied on the training set by selecting the number of defect-free instances given a certain 
ratio, i.e. {10, 15, 20 … 100} %, in order to obtain the best defective vs. defect-free ratio. Since micro-
sampling is a special case of under-sampling, which decreases the number of defect-free modules to a 
level equal to the number of defective modules, we had to also assess whether micro-sampling is the 
best sampling strategy for GSM data. In the third experiment, we conversely increased the number of 
defective instances in the training set given a certain ratio, i.e. {10, 15, 20 … 100} %. To determine the 
best defective vs. defect-free ratio, we randomly added a number of defective instances (according to the 
specified ratio) to the training set. In both sampling approaches, we gradually decreased or increased the 
defective vs. defect-free ratio so that we could find the best result with the highest prediction rates (pd, 
pf, bal).  
In addition to sampling experiments, we applied decision threshold optimization on GSM data and 
adjusted the performance of this experiment using history information. To this end, we focused on the 
algorithm of our defect predictor – a Naïve Bayes classifier. When using a Naïve Bayes classifier, we 
calculated the pd and pf rates using a default threshold, i.e. 0.5, which mapped to a single point on the 
ROC curve. Since software data have an imbalanced nature, we sought to assess the performance of our 
defect predictor for varying thresholds in the range 0-1. We changed the classification rule of the Naïve 
Bayes classifier as follows: 
 



 ≥

otherwiseC

txCpifC

   ,

)(      ,

2

11                                                                                        (8) 

 
Different pd and pf values are calculated for threshold t, and the resulting set is plotted as a 2D ROC 
curve in terms of pf, pd. Our aim is to find the best threshold that is the closest to the ideal point on the 
ROC curve. We computed the distance between each pf, pd pair and 0,1 using Equation 9. In order to 
find the optimum decision threshold, we have selected the pf, pd pair that gives the minimum distance.  
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For GSM datasets, we initially used the default threshold of the Naïve Bayes classifier to predict the 
defect-prone files of a project’s current release and computed the performance measures. Then, we 
iteratively changed the decision threshold within a range between 0.01 and 0.99 and computed the 
performance measures for each threshold value. We chose the best threshold that would give the highest 
prediction accuracy for each project. As the last step, we adjusted our prediction by using both the 
optimum decision threshold for the Naïve Bayes classifier and the version history. In other words, we 
found the best threshold with the highest accuracy for a project and adjusted the predictions of the model 
using history flags to further reduce the false alarms. We have computed pd, pf rates for all five 
experiments consecutively using GSM data. All results obtained from these five experiments are 
illustrated in Table 10.  
For each dataset, the third and fourth columns in Table 10, i.e. pd and pf respectively, are the prediction 
performances of our defect predictor using the original training set with the default threshold of the 
Naïve Bayes classifier. Pd, pf pairs of under-sampling results with their optimal sampling ratio for each 
dataset, runder, can be seen between the fifth and the seventh columns of Table 10. Similarly, we 
presented the performance of the oversampling technique in terms of pd, pf pairs and the optimum 
sampling ratio, rover, between the eighth and the tenth columns of Table 10. 
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Decision threshold optimization was applied as the forth experiment. We used the optimum decision 
threshold of the classifier topt for each dataset and presented the resulting pd, pf pairs in the eleventh and 
the twelfth columns of Table 10. Finally, we trained a Naïve Bayes algorithm with the optimum decision 
threshold using code metrics and the version history, and we presented the results in the last two 
columns of Table 10.  
As seen in Table 10, different thresholds and sampling ratios have been selected for each project based 
on its current release. That is, the optimum threshold of a project for release n+1 totally depends on the 
project data used in release n. In other words, the optimum threshold of a project for release n+1 may 
change when the model is trained using the data from release n-1. We also plotted the change in pd rates 
(Figure 4) and the change in pf rates (Figure 5) in order to visualize the effects of each experiment. 
Figures 4 and 5 clearly present the improved prediction performance based on using decision threshold 
optimization. Although it seems that detection rates have not statistically changed in any of these 
experiments, we conducted pair-wise t-tests with 95% confidence between five different false alarm 
rates. Based on these tests, the decision threshold optimization significantly reduces the number of false 
alarms in comparison to the original training data over- and under-sampling techniques. However, the 
approach based on using the optimum decision threshold and the version history outperforms all in 
terms of false alarms, i.e. reduction by 12% from the fourth to the fifth experiment. Thus, the decision 
threshold optimization on code metrics using version history information produces the best performance 
ever, reducing the number of false alarms by 30% in comparison to a Naïve Bayes classifier with default 
threshold on code metrics. 
 
5. THREATS TO VALIDITY 
Like all other empirical studies, the data, methodologies and the algorithm must have influenced our 
study. First of all, the reasons for using a Naïve Bayes classifier are extensively discussed in Section 
3.3.1. We used Naïve Bayes because it is easy to implement, robust and identical in terms of 
performance measures compared to other machine learning algorithms.  
In this study, we have built a prediction model that is calibrated according to the problems of local data. 
Therefore, we intend to generalize neither the results nor the model. We have presented our experiences 
in terms of problems and proposed methodologies to provide insight to other researchers who will work 
on building such defect predictors in other companies. Furthermore, we did not propose new 
methodologies, but we applied already published techniques such as using cross-company data and 
sampling. Therefore, we do not claim that our model is a generic in terms of defect prediction research.  
Applied methodologies are already discussed in the literature in terms of their validity. We applied cross 
company data when the company did not have local data to train the model. This is very practical since 
we did not waste time during the evolution of this project. In our experiments, the training and test sets 
contained very few defected files, and this imbalanced ratio between defective and defect-free modules 
in software data is a major threat. We utilized sampling strategies to avoid this threat. Sampling 
strategies are well known techniques that deal with imbalanced or limited data problems. From the 
practitioners’ perspective, instead of waiting for collecting a more balanced local data, various sampling 
strategies can be applied to get immediate prediction results. Sampling strategies introduce some bias on 
data since we controlled the class distributions of the training data in order to increase the prediction 
performance on the test data. However, we made several repetitions during sampling experiments to 
avoid sampling bias.  
We used probability of detection (PD) and probability of false alarm rates (PF) to assess the 
performance of our proposed model. Some of the researchers in defect prediction studies have been 
using precision instead of pf [10, 11]. Measuring pf helps researchers to evaluate the additional costs our 
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predictor would cause. In defect prediction research, precision is also used to assess the performance of 
such models instead of the pf rate [2, 10, 11].  Since both precision and pd assess the number of the 
defective modules that are actually detected by the predictor, we preferred to use pd only. However, 
based on the signal theory, when such predictor models are triggered often to increase pd, pf rates would 
increase in turn [1]. High pf rates, on the other hand, indicate that we unnecessarily highlight the safe 
modules in the software system and waste additional amount of time for testing them. Therefore, our 
objectives in building such predictors are increasing pd as much as possible while avoiding high pf rates. 
 
6. LESSONS LEARNED 
During this project we had many challenges to overcome, and we constantly redefined our processes and 
planned for new sets of actions. In this section, we would like to discuss what can be used as best 
practices and what needs to be avoided in the future. We hope that this study and our self-evaluation will 
shed some light for other researchers and practitioners. 
 
6.1 Best Practices 
Managerial Support: From the beginning till the end of this work, we had the full support of the senior 
management as well as the mid-level management. They were available and ready to help whenever we 
needed them. We believe that without such a support, a project like this would not have been concluded 
successfully.  
Project planning and monitoring: One of the critical success factors was having a detailed project plan, 
and rigorously following and monitoring that plan. This enabled us to identify problems early on and to 
take the necessary precautions on time. Although we faced many challenges, we were able to finish the 
project on time, achieving and extending its intended goals. Weekly and monthly meetings also brought 
up new and creative research ideas. As the research team, we mapped the project plan and its 
deliverables to new research topics and academic studies. Moreover, the company has also gained 
valuable outcomes, which are described in the next best practice, i.e. “multiplier effect”. 
The Multiplier Effect: One of the benefits of doing research in an industrial setting such as this GSM company is that researchers can work 
on-site, access massive amounts of data, conduct many experiments, and produce a lot of results. This attitude toward research provided 
benefit to the GSM company as well, enabling them to obtain more output, which influenced five other process areas in addition to those 
originally planned. It is definitely a win-win situation. Although our initially stated goal was to conduct a measurement and defect 
prediction study focusing only the testing stage, this project has had an influence on all other stages of SDLC: 1) the design phase by using 
dependencies between the modules of the software system, 2) the coding phase by adding static code measurement, raw code analysis and 
a rule-based model, 3) the coding phase by employing a sample test-driven development to measure the effectiveness of TDD on reducing 
the defect rates, 4) the testing phase by building a defect predictor to decrease the testing effort, and finally, 5) the maintenance phase by 
pointing out the complex modules that need to be refactored in the following release.  
Existence of Well Defined Project Life Cycles and Roles/Responsibilities: The development lifecycle 
in the company is arranged in a way that all stages, i.e. requirements, design, coding, testing and 
maintenance are separately assigned to different groups in the team. Therefore, the segregation of duties 
is successfully operated in the company. We benefited from this organizational structure while working 
on our project. Contacting the test team to obtain the defect data and the development team to take 
measurements from the source code was easy since the teams and their responsibilities were well 
defined.  
Mature Relationship with the Company: Because we have collaborated with the GSM company for 
more than two years, it was easier to communicate with the software teams including managers, 
developers, testers, and to access various kinds of data that were necessary for our further analysis. We 
started to comprehend the cause-effect relationships among various factors and evaluated our findings 
based on this type of company-related data. We did additional analysis on the development phase by 
collecting churn data, extracting churn metrics and analyzing statistical correlations between version 
control commits and the complexity of software projects. Furthermore, we focused on the people factor 
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throughout the development lifecycle and started measuring cognitive bias. Cognitive bias can be 
defined as a person’s tendency to make errors in judgment. Recent empirical software engineering 
research investigates the effect of personality on inserting defects into the software system by looking at 
various psychological factors [37]. We are applying several similar tests to measure the bias of the 
developers in the company.  
Learners of the Model: We selected a simple and robust technique, namely Naïve Bayes, for our defect 
prediction model since we planned to keep the focus of this study on challenges in large organizations 
rather than the performance of our predictor’s algorithm. It is possible to achieve a detection rate of 88% 
on average with a false alarm rate of 28% using the Naïve Bayes classifier. Within the scope of our 
research, we have also adjusted the decision threshold of the Naïve Bayes classifier. According to a 
study by Lessmann et al. [18], most of the machine learning algorithms do not differ significantly from 
one another in terms of defect prediction. Following this view, one may conclude that the selection of 
the classifier is less important than generally assumed and practitioners are free to choose from a broad 
set of candidates when building defect predictors. We have also found that simple algorithms such as 
Naïve Bayes are practical for building local predictors in the industry. They are easy for practitioners to 
understand; they do not require parameter optimization such as the number of hidden layers in multi-
layer perceptrons; and, they are robust in the face of changes such as decision threshold optimization, 
which decreases the false alarms from 26% to 14% on average. Therefore, we also recommend applying 
a simple and robust technique such as a Naïve Bayes classifier during the construction of a defect 
prediction program in large companies.  
 
6.2 Things to Avoid in the Future 
Lack of Tool Support: Automated tool support for measurement and analysis is fundamental for this 
type of projects. In this project, we have developed a metrics extraction tool to collect code metrics 
easily. However, we were unable to match the defects with the corresponding files. Therefore, it took 
too much time to construct a local defect prediction model. Our next plan would definitely be initiating 
an automated defect tracing/matching mechanism with the company. Thus, we highly recommend that 
before a similar project starts, an automated tool support for defect collection and matching be 
employed.  
Lack of Documentation and Architectural Complexity: Large and complex systems have 
distinguishing characteristics. Therefore, proper documentation is paramount to understand the 
complexities especially when critical milestones are defined at every stage of such a project. Lack of 
documentation has led to many challenges as we moved along, forcing us to change our plans several 
times. 
Lack of On-Site Presence: During the beginning of this collaboration, we thought that weekly or bi-
weekly meetings would be enough to receive and analyze all data in detail. Unfortunately, it did not 
happen as initially planned because the required data could not be collected accurately and on time. 
Thus, it took much time to collect the necessary data without wasting the limited time of the software 
team. We solved this problem by working on-site twice a week with a permanent desk and PC allocated 
to us and having read-only accesses to version control systems and databases. 
 
7. CONCLUSION 
Decision making is a critical business problem that managers in various industries have to deal with. 
Our research was an empirical study where we collected data, designed experiments, and then presented 
and evaluated the results of these experiments. Contrary to classical machine learning applications, we 
have focused on better understanding the data at hand. This case study provides a live laboratory 
environment that was necessary to achieve this goal. As always, both sides of the equation (academia 
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and practice) must be ambitious to reach the desired goals. Our empirical results show that a metrics 
program can be built in a period of less than a year: as few as 100 data points are good enough to train 
the model [3]. In the meantime, the company can use cross-company data to predict defects by using 
simple filtering techniques. Once a local repository is built and version history information is used, we 
will be able to compare our prediction with real defect data and show that it detects 88% of the defective 
modules with 28% of false alarms. Since false alarm rates are very high compared to the average 
performances seen on NASA datasets (75%, 21%) in terms of pd, pf, in this study, we focused on the 
algorithm and adjusted the hyper-parameter of the Naïve Bayes classifier to set the optimum decision 
threshold for GSM projects. With decision threshold optimization, we produced a detection rate of 86% 
with 14% false alarms. Therefore, we recommend that other researchers, who will collaborate with large 
organizations on defect prediction modeling, select a simple classifier like Naïve Bayes and adjust its 
hyper-parameter before choosing a more complex classifier or an ensemble of classifiers.  
The main discussion related to our recent findings is to answer the question, “How to apply threshold 
optimization in practical defect prediction?” Since we adjusted the decision threshold of the Naïve 
Bayes classifier depending on the training set in each release, the optimal decision threshold for a single 
project or a single release has not been discovered yet. We have alternatives for selecting the best 
decision threshold for a given project: cross validation on the training set, taking the average of the 
optimum thresholds of the latest n releases, or a dynamic decision threshold prediction. Even though the 
last alternative gives the best result in practice, we have not found a way of achieving it yet. Therefore, it 
is one of our future research directions in this study to define the optimum decision threshold in practice. 
Moreover, we plan to add PL/SQL defect data and code metrics for further increasing the information 
content of the training data.  
Currently, we are working on calibrating the local defect predictor in the GSM company in order to 
conduct real-time predictions based on real data, i.e., when the implementation of the software has just 
been completed and the testing phase has begun. We are trying to integrate this predictor to their testing 
practices so that they benefit from the predictions, which would expect to detect 86% of actual defective 
modules on average and allocate their time to those critical parts. Prest has been slightly modified to 
serve for preprocessing techniques such as SOA call graph generation, log filtering, decision threshold 
adjustment, and automated defect matching. Finally, a member of the software team in the company has 
been assigned for integrating Prest into their development lifecycle. Based on our initial observations, 
predictions with Prest guide the testers toward actual defective modules. We have selected the GSM4 
project for an initial prediction study and found that we can correctly classify defective files (90% of 
them are found) by eliminating files that have not been changed for longer than six months. Currently, 
the company is conducting process improvement activities in the course of which they will check the 
estimated defect rate of a project before it moves on to the testing phase as well as other factors related 
to the analysis and design phases. If the defect rate is higher than a predefined threshold, then a thorough 
code review will be done for this project before it is sent for testing.  
We know that such metrics programs are well conducted in many companies such as Motorola [20], 
Microsoft [10, 11] and AT&T [2]. In such studies, learning-based approaches are often employed with 
process metrics that add more value on the personal aspects of the development team, churn metrics 
related with the version history and the process maturity of the development practices. Therefore, one of 
our research directions is to broaden this study with new metrics and new techniques that improve the 
performance of the algorithm, to conduct surveys, and to compare what we have done so far by adopting 
these approaches. 
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Figure 1. Screenshot from Prest: Displaying results at package level. 
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Figure 2. An example of a ROC curve 
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Figure 3. SOA Call graph analysis 
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         a) Using the original training set (PD)                    b) Using decision threshold optimization 

(PD Opt) 
 

   
c) Using under-sampling (PD Under)  d) Using over-sampling (PD Over) 

 

 
e) Using version history with optimum decision threshold (PD Hist) 

Figure 4. Probability of detection rates for five experiments. 
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        a) Using the original training set (PF)                      b) Using decision threshold optimization 

(PD Opt) 
 

   
                                 c) Using under-sampling (PF Under)                            d) Using over-sampling 
(PF Over) 

 

 
e) Using version history with optimum decision threshold (PF Hist) 

Figure 5. Probability of false alarms for five experiments. 
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Table 1. Goals in line with business objectives 

Goals of the project Management objectives 

Code measurement and analysis of the software system. -Improve code quality 

Storing a version history and defect data. -Measure/ control the time to repair the defects 

Construction of a defect prediction model to predict defect prone modules before 
testing phase. 

-Decrease lifecycle costs such as testing effort. 

-Decrease defect rates 
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Table 2. Set of static code attributes used in this study. For the explanations of these metrics, see [1]. 

Metric name 
Granularity 

(class: C, package: P, 
method: M, file: F) 

Metric name 
Granularity 

(class: C, package: P, 
method: M, file: F) 

Cyclomatic density C, P, M, F Halstead length C, P, M, F 

Decision density C, P, M, F Halstead level C, P, M, F 

Essential density C, P, M, F Halstead programming effort C, P, M, F 

Branch count C, P, M, F Halstead programming time C, P, M, F 

Condition count C, P, M, F Halstead volume C, P, M, F 

Cyclomatic complexity C, P, M, F Maintenance severity C, P, M, F 

Decision count C, P, M, F Formal parameters M 

Essential complexity C, P, M, F Call pair length M 

LOC C, P, M, F Coupling between objects C 

Total operands C, P, M, F Fan in C 

Total operators C, P, M, F Number of children C 

Unique operands C, P, M, F Response for class C 

Unique operators C, P, M, F Weighted methods per class C 

Halstead difficulty C, P, M, F   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Confusion matrix 

Actual Predicted defective defect free 
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defective TP FP 
defect 
free FN TN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4. Raw code analysis.  

Metric Average Application 
Layer 

Presentation 
Layer 

NASA 
Standard 

Min 

NASA 
Standard 

Max 
Intelligent 
Content 36.83 30.67 38.77   50 

Maximum 
Nesting 
Depth 

0.8 0.68 0.84   3 

Volume 266.57 183.65 292.75 30 1000 
Total 

Operators 27.61 20.48 29.86 50 125 

Time 232.64 137.35 262.73   5000 
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Difficulty 3.65 2.96 3.87   35 
Vocabulary 21.42 16.88 22.85 25 75 

Effort 4187.46 2472.21 4729.11   1000000 
Unique 

Operands 14.02 10.8 15.03 10 40 

Unique 
Operators 7.4 6.08 7.82 15 40 

Total 
Operands 18.11 13.13 19.68 25 70 

Architectural 
Complexity 11.73 8.94 12.62   60 

Level 0.52 0.57 0.51 0 1 
Ratio of 

Comment to 
Code 

0.02 0.03 0.02 0.15   

Length 45.72 33.61 49.54   300 
Cyclomatic 
Complexity 3.42 2.54 3.7   10 

Structural 
Complexity 1.12 0.97 1.17   5 

Total Lines 
of Code 23.48 19.18 24.84     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Rule based analysis 
Rule 
No Metric Module % LOC % 

Rule 1 Intelligent Content 8245 17 507344 66 
Rule 2 Maximum Nesting 1307 3 155696 20 
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Depth 
Rule 3 Volume 31260 65 345399 45 
Rule 4 Total Operators 44117 92 530882 70 
Rule 5 Time 143 0 53368 7 
Rule 6 Difficulty 83 0 29545 4 
Rule 7 Vocabulary 40442 84 444212 58 
Rule 8 Effort 1626 3 234039 31 
Rule 9 Unique Operands 41699 87 528542 69 
Rule 
10 Unique Operators 44086 92 464262 61 

Rule 
11 Total Operands 42774 89 507471 67 

Rule 
12 

Architectural 
Complexity 1217 3 196641 26 

Rule 
13 Level 3270 7 28678 4 

Rule 
14 

Ratio of Comment 
to Code 47062 98 729896 96 

Rule 
15 Length 525 1 122541 16 

Rule 
16 

Cyclomatic 
Complexity 1735 4 223773 29 

Rule 
17 

Structural 
Complexity 1036 2 112470 15 

Rule 
18 Any 47995 100 763025 100 

Rule 
19 Any - Halstead 6488 14 341655 45 
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Table 6. Defect prediction using cross company data  

Project 
Estimated 

defect 
rate 

Estimated 
defective 

LOC 

Total 
LOC 

%LOC 
for 

inspection 
GSM2 0.1 2458 80941 0.03 
GSM3 0.03 1035 45323 0.02 
GSM4 0.05 1130 53690 0.02 
GSM5 0.06 2133 79114 0.03 
GSM6 0.08 303 9767 0.03 
GSM8 0.01 389 51273 0.01 
GSM9 0.07 137 6258 0.02 
GSM10 0.03 82 3507 0.02 
GSM11 0.05 746 36280 0.02 
GSM13 0.02 99 6206 0.02 
GSM14 0.08 163 5803 0.03 
GSM15 0.13 138 5423 0.03 
GSM16 0.18 505 10221 0.05 
GSM17 0.09 1509 61602 0.02 
GSM18 0.09 44 2485 0.02 
GSM19 0.08 119 5425 0.02 
GSM20 0.06 65 2965 0.02 
GSM21 0.18 1476 42431 0.03 
GSM22 0.04 140 6933 0.02 
GSM23 0.1 246 10601 0.02 
GSM24 0.03 28 1971 0.01 
GSM25 0.19 369 10135 0.04 
GSM26 0.07 168 4880 0.03 
GSM27 0.06 85 4526 0.02 
TOTAL  13567 547760  

AVG 0.08   0.02 
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Table 7. General properties of GSM projects 

Project  Release ID 
  1 2 3 4 5 6 7 8 9 10 

GSM1 Total Files - - - 218 220 - 280 - - - 
 Defectives    2 2  1    

GSM2 Total Files 262 262 - - - - 264 - 264 - 
 Defectives 2 2 - - - - 1 - 1 - 

GSM3 Total Files 262 264 266 - - 281 - 300 310 310 
 Defectives 2 2 1 - - 1 - 2 1 1 

GSM4 Total Files 434 440 442 442 - 472 488 488 488 488 
 Defectives 3 5 2 4 - 1 2 3 11 9 

GSM5 Total Files 565 - 570 569 - 569 - 571 571 544 
 Defectives 1 - 3 5 - 1 - 3 3 2 

GSM6 Total Files 48 - - 48 - - - - - - 
 Defectives 1 - - 1 - - - - - - 

GSM9 Total Files - 28 28 - - - - - - - 
 Defectives - 1 1 - - - - - - - 

GSM10 Total Files - - - - - 91 - - - 105 
 Defectives - - - - - 1 - - - 1 

GSM11 Total Files - - - 204 - - - - 233 - 
 Defectives - - - 1 - - - - 2 - 

AVG Total Files 314 248.5 326.5 296.2 220 353.2 344 453 373.2 361.7 
Defectives 1.8 2.5 1.7 2.6 2 1 1.3 2.6 3.4 3.2 

 Defect 
Rate %0.6 %1 %0.5 %0.8 %0.9 %0.3 %0.4 %0.6 %0.9 %0.9 
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Table 8. Results for version- versus project-level prediction. Shaded cells show the significance of project-level prediction over 
version-level prediction in terms of performance measures. 

Release 
number 

Appl. 
Name 1st experiment with 8 appl. 2nd experiment with 

GSM 3 or 4 
  pd pf bal pd pf bal 

2 GSM3 100 67 53 85 34 68 
 GSM4 78 75 44 80 66 51 

3 GSM3 92 51 60 100 36 75 
 GSM4 81 63 45 90 71 44 
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Table 9. Results of local defect prediction model.  

Release Name Model I Model II 
  pd pf bal CB pd pf bal CB 

2 GSM2 50 49 50 0 50 19 62 60 
 GSM 3 100 31 76 66 100 18 86 81 
 GSM 4 80 75 45 17 80 62 54 32 
3 GSM 3 100 22 84 73 100 15 89 84 
 GSM 4 100 69 42 49 100 61 53 61 
 GSM 5 67 63 49 17 67 9 76 87 
 GSM 9 100 8 95 71 100 0 100 92 
4 GSM 4 75 75 42 34 75 53 55 53 
 GSM 5 70 41 65 62 70 10 75 88 
 GSM 6 100 51 46 52 100 6 94 93 
5 GSM 1 75 35 63 51 75 15 68 74 
6 GSM 3 90 25 81 68 90 18 85 81 
 GSM 4 100 79 44 35 100 29 80 77 
 GSM 5 72 35 68 65 72 8 79 92 
7 GSM 1 100 34 59 43 100 27 76 65 
 GSM2 50 55 33 0 50 8 61 84 
 GSM4 100 31 78 59 100 29 80 64 
8 GSM3 95 23 82 70 95 16 87 85 
 GSM4 100 81 36 46 100 63 52 50 
 GSM5 100 64 54 37 100 21 85 68 
9 GSM2 100 29 80 54 100 17 88 79 
 GSM4 100 74 44 41 100 62 55 53 
 GSM5 100 52 58 53 100 18 89 84 
 GSM11 100 28 81 79 50 17 63 74 

10 GSM3 100 57 60 41 100 35 76 65 
 GSM4 88 69 49 36 88 60 54 44 
 GSM5 100 40 72 60 100 7 95 93 
 GSM10 100 95 29 33 100 61 56 59 
 AVG 90 50 59 47 88 28 74 72 

PD: Probability of detection rates (%) 
PF: Probability of false alarms (%) 
BAL: Balance rate (%) 
CB: Cost-benefit analysis (gained verification effort %) 
Model I: Predictor using only static code attributes 
Model II: Predictor using static code attributes and version history 

 
Table 10. New results of local defect prediction model  

Releas
e Name PD P

F 
PD 

Under 
PF 

Under 
runde

r 
PD 

Over 
PF 

Over 
rove

r 
PD 
Op

PF 
Op topt 

PD 
Hist 

PF 
Hist 
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t t 

2 GSM2 50 48 50 41 0.12 50 48 1 50 33 0.8
1 50 3 

 GSM 3 100 31 100 29 0.3 95 29 2 10
0 15 0.6

9 100 5 

 GSM 4 80 70 80 67 0.04 80 70 2 80 35 0.8
8 60 16 

3 GSM 3 100 32 100 29 0.23 100 32 1 10
0 4 0.9 100 3 

 GSM 4 100 70 80 56 0.11 80 58 2 10
0 35 0.7

2 100 16 

 GSM 5 67 41 67 37 0.03 67 41 1 67 14 0.8
4 67 2 

 GSM 9 100 8 100 5 0.15 100 8 1 10
0 0 0.7 100 0 

4 GSM 4 100 71 95 67 0.03 100 71 1 10
0 39 0.8

6 100 17 

 GSM 5 60 30 64 33 0.13 60 31 19 60 18 0.5
7 60 2 

 GSM 6 100 24 100 26 1 100 24 1 10
0 9 0.9

5 100 2 

5 GSM 1 100 43 95 37 0.04 90 33 1 10
0 20 0.6

3 100 7 

6 GSM 3 90 35 90 26 0.25 90 35 1 90 12 0.7 90 16 

 GSM 4 100 69 100 66 0.04 100 69 1 10
0 22 0.9

2 100 10 

 GSM 5 72 40 75 25 0.11 60 30 3 80 10 0.6
2 80 2 

7 GSM 1 100 37 100 33 0.6 90 36 3 10
0 11 0.6

6 100 4 

 GSM2 70 23 70 31 0.26 80 33 96 10
0 57 0.4

6 100 10 

 GSM4 100 70 100 52 0.01 100 70 1 10
0 27 0.8

6 100 13 

8 GSM3 65 9 75 12 0.02 65 9 1 10
0 52 0.0

5 100 29 

 GSM4 33 63 90 67 0.14 33 63 1 10
0 68 0.4

6 100 62 

 GSM5 100 46 100 46 0.24 100 46 1 10
0 39 0.8

6 67 13 

9 GSM2 100 45 100 42 0.02 100 45 1 10
0 6 0.9

6 100 4 

 GSM4 100 70 99 65 0.05 100 70 1 91 55 0.6
9 91 50 

 GSM5 100 46 100 46 0.19 100 46 1 10 24 0.9 67 17 



ACCEPTED MANUSCRIPT 

 

0 3 

 GSM1
1 80 14 95 17 0.01 80 14 1 10

0 20 0.3
1 50 14 

10 GSM3 100 51 100 45 0.07 90 46 2 10
0 34 0.5

6 100 21 

 GSM4 75 64 59 47 0.09 75 63 1 63 28 0.5
5 63 17 

 GSM5 100 50 100 20 0.04 100 50 1 50 7 0.4
2 50 3 

 GSM1
0 50 24 60 65 0.02 50 24 1 10

0 48 0.3
9 100 30 

 AVG 85 44 87 40  83 43  90 26 0.6
8 86 14 

PD: probability of detection rate (%) with default threshold. PF: probability of false alarm rate (%) with 
default threshold.  
PDopt, PFopt: PD and PF rates using optimum decision threshold, topt 
PDunder, PFunder: PD and PF rates, when under-sampling has been applied using the optimum 
sampling ratio, runder.  
PDover, PFover: PD and PF rates, when over-sampling has been applied using the optimum sampling 
ratio, rover. 
PDhist, PFhist: PD and PF rates when version history and decision threshold optimization has been 
used. 
 

 
 


