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Abstract—

Background : Despite decades of research, there is no consensus on which software effort estimation methods produce the most

accurate models.

Aim: Prior work has reported that, given M estimation methods, no single method consistently outperforms all others. Perhaps rather

than recommending one estimation method as best, it is wiser to generate estimates from ensembles of multiple estimation methods.

Method: 9 learners were combined with 10 pre-processing options to generate 9 × 10 = 90 solo-methods. These were applied to

20 data sets and evaluated using 7 error measures. This identified the best n (in our case n = 13) solo-methods that showed stable

performance across multiple datasets and error measures. The top 2, 4, 8 and 13 solo-methods were then combined to generate 12

multi-methods, which were then compared to the solo-methods.

Results: (i) The top 10 (out of 12) multi-methods significantly out-performed all 90 solo-methods. (ii) The error rates of the multi-

methods were significantly less than the solo-methods. (iii) The ranking of the best multi-method was remarkably stable.

Conclusion: While there is no best single effort estimation method, there exist best combinations of such effort estimation methods.

Index Terms—Software Cost Estimation, Ensemble, Machine Learning, Regression Trees, Support Vector Machines, Neural Nets,

Analogy, k -NN

�

1 INTRODUCTION

Correctly estimating the effort required to develop software

is of vital importance. Over or under-estimation of software

development effort can lead to undesirable results:

• Under-estimation results in schedule and budget overruns,

which may cause project cancellation.

• Over-estimation hinders the acceptance of promising

ideas, thus threatening organizational competitiveness.

A practitioner when encountering the literature would al-

most certainly strike closed (i.e. fixed-parameter) models in the

first instance e.g. COCOMO [1], FPA [2], SLIM [3]. Further

possible models to encounter range from:

• Simple regression [4];

• To analogy-based methods [5];

• To complex combinations of techniques such as Corazza

et al.’s [6] use of tabu search to configure support vector

machines or Menzies et al.’s [7] approach that tries

hundreds of different methods.

Not only is the current literature confusing and voluminous [8],

some results suggest that it may be impossible to assess

which effort estimators are the best. Shepperd et al. [9] warn

that when comparing M estimation methods, the ranking of

any one method may change, if the conditions are changed.

Hence, they argue that it is fundamentally impossible to offer a

definitive ranking such that method1 is better than method2.
This paper revisits the Shepperd et al. results and offers

a more optimistic conclusion. We find that if we combine
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the estimates from multiple estimators, then those combined

methods perform better than any single estimator. That is,

we agree with Shepperd et al. that there may be no single

best effort estimator. However, there may be best ensembles

of methods.

This should not be a surprising result. Many researchers

argue that, in theory, best estimates come from combinations

of multiple predictions. For example, Jorgensen advises that,

for expert-based estimation, it is best to generate estimates

from multiple methods [10]. Researchers in machine learning

concur: e.g. Seni et al. report that averaging the estimates

from many methods often does better than using any solo

method [11]. Similar conclusions are offered by other re-

searchers in the field of statistics [12] and machine learn-

ing [13], [14].

Current empirical results [15]–[17] in software engineering

report the exact opposite effect than that predicted by Jor-

gensen and Seni et al., and others [10]–[14]:

• Kocaguneli et al. failed to improve estimation by averag-

ing across the predictions of 14 estimators [15].

• Baker could not improve estimation accuracy by boosting

ensembles [16]1.

In that respect our results are different from the prior empirical

studies on ensembles. Whereas previous studies on the ensem-

bles (through different strategies) report that ensembles are not

statistically better than single learners, our study reports that

(through the right strategy) ensembles can outperform single

learners. This paper resolves this contradiction between theory

and experimental results. To the best of our knowledge, this

is the first such result in the effort estimation literature that is

supported by extensive experimentation.

1. Boosting is an ensemble example that generates a series of meth-
ods where methodi focuses on the cases that were most difficult for
methodi−1 [18].
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It will be argued that the mistake made by Baker et al.

and Kocaguneli et al. was to assume that all solo methods are

candidates for combination into multi-method ensembles. This

is not the case. Solo methods can be sorted into a minority

of superior methods and a majority of inferior methods. We

show below that, in the majority case, solo methods are

out-performed by ensembles of multi-methods built from the

superior set.

We therefore offer the following advice for a successful

ensemble of methods:

1) Try a large number of methods among which there are

at least some good methods (shown to have a good

performance by prior work).

2) Sort the methods using the evaluation methods discussed

in this paper. Discard all but the best solo methods.

3) Build ensembles from the remaining solo methods.

This research makes the following contributions:

• A novel scheme for ensembling the best solo-methods,

whose product is successful results (unlike previous re-

search) concerning multi-methods applied on effort data

• An evaluation method for the stability of methods

• Stable multi-methods that outperform all solo-methods

This paper is structured as follows. §2 discusses related

work. §3 summarizes the learners, pre-processing options and
solo/multi-methods used in this study. Our methodology is

explained in §4, which generates the results of §5. The threats
to the validity of our results are reviewed in §6. We provide
a discussion of our work in §7 and conclude with §8.

2 RELATED WORK

2.1 Software Effort Estimation Methods

Software effort estimation (from now on SEE) can be defined

as the process of estimating the total effort necessary to

complete a software project [19]. According to the extensive

systematic review conducted by Jorgensen and Shepperd, de-

veloping new models is the biggest research topic in SEE since

1980s [8]. Therefore, there are many SEE models that have

been proposed over the years and a taxonomy is necessary to

classify such a large corpus. Myrtveit et al. defines taxonomy

as an explanation of a concept by highlighting the similarities

and differences between that particular concept and the related

ones [20].

There exists a number of different taxonomies proposed

in the literature [20], [21]. Briand et al. report that there

is no agreement on the best taxonomy and define all pro-

posed taxonomies to be subjective and to have flaws [21].

For example Menzies et al. divide SEE methods into two

groups: Model-based and expert-based [7]. According to this

taxonomy model-based methods use some algorithm(s) to

summarize old data and to make predictions regarding the

new data. On the other hand, expert-based methods make use

of human expertise, which is possibly supported by process

guidelines and/or checklists.

Myrtveit et al. use a different taxonomy, where they propose

a dataset dependent differentiation between methods [20].

According to that taxonomy the methods are divided into two:

• Sparse-data methods that require few or no historical

data: e.g. expert-estimation [10].

• Many-data approaches where certain amount of historical

data is a must: e.g. functions and arbitrary function ap-

proximations (such as classification and regression trees).

Shepperd et al. propose a 3-class taxonomy [5]: 1) expert-

based estimation, 2) algorithmic models and 3) analogy. Ac-

cording to this taxonomy expert based models target the con-

sensus of human experts through some process. Jorgensen et

al. define expert-based methods as a human-intensive process

of negotiating the estimate of a new project and arriving at a

consensus [10]. There are formal methods proposed for expert-

based estimation like Delphi [22]. However, Shepperd et al.

notes in another study that it is mostly the case that companies

follow an informal process for expert-based estimation [9].

Algorithmic models include the adaptation of a formula to

local circumstances or local data. Prominent examples to

these methods are the COCOMO method [1] and function

points [23]. Analogy based methods include finding past

projects that are similar to the current project that is to be

estimated and then adapting the effort values of these past

projects.

Regardless of the taxonomy used to group SEE methods

under different classes, the ultimate goal of all the methods is

to generate realistic estimates. In [24] Jorgensen defines some

guidelines for generating realistic software effort estimates.

An important finding in Jorgensen’s study (which parallels our

findings) is that combining estimations coming from different

sources (e.g. from experts and instance-based learners) cap-

tures a broader range of information related to the estimation

problem. Hence, multi-source predictions offer the most robust

and accurate estimator.

2.2 Ranking Instability

One long-standing issue with software effort estimation is

ranking instability. Ideally, given M methods, we can defini-

tively rank them in terms of their predictive accuracy:

M1 ≥M2 ≥M3 ≥ ..

This ideal has yet to be seen in the literature. To the contrary,

Shepperd et al. report that there is no certainty in that sort [20],

[25]. For example, in the experiments of [25], a large number

of synthetic data sets were generated (from distributions found

in one real-world data set). As they changed the conditions

of their experiments, Shepperd et al. found that no method

was consistently best across every condition. Specifically, they

found that the performance of a method was dependent on

the dataset, the random number generator used to select train

and test sets, and the evaluation method used to assess model

accuracy. Hence, they concluded that it was not feasible to

sort methods into some definitive order.

Extending their work, we say that when M methods are

sorted to find a rank ri for method Mi, then if experimental

conditions are changed, then that rank will change by an

amount δr > 0.
Recently, researchers have access to more methods than

that used by Shepperd et al. For example, Menzies et al. [26]
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studied 158 methods. While that study was over a very limited

data set (just two old COCOMO data sets), their preliminary

results prompted this study (where we work with 20 data sets).

In a result consistent with Shepperd et al., Menzies et al. found

that as we changed the random numbers used to generate

train/test sets, then all 158 methods showed some δr > 0;
i.e. their precise ranking changed. However, they also found a

small number of methods with two interesting properties:

1) Their ranks were very high;

2) Their δr values were very small.

Property #1 means that some methods performed compara-

tively very well and Property #2 means that high ranking

persisted across multiple experimental conditions. Hence, if

we look at enough methods, it may be possible to rank

methods even when they exhibit δr > 0. Accordingly, in the
results reported below, we will report not only the rank of

each method, but also their associated δr. The methods we
recommend will be those with

• high ranks;

• and low δr.

2.3 Ensemble of Methods

A standard machine learning technique is to try multiple

methods on the available data, then recommend the one that

performs the best [27]. Many effort estimation papers apply

this technique to demonstrate that (say) their preferred new

method is superior to those proposed in prior work.

Ensemble learning takes a different approach. Rather than

choosing one method, ensembles build multiple predictors,

where estimates coming from different learners are com-

bined through particular mechanisms, e.g. voting of individual

learner estimates on the final prediction [28]. Before contin-

uing any further we need to clear a terminology difference.

From now on the term “learner” refers to a stand-alone

algorithm without any supplemental pre or post processing

step (e.g. k-NN, neural nets etc.), whereas the term “solo-

method” will refer to an algorithm supplemented with a pre-

processing option (e.g. logging+k-NN, discretization+neural

nets etc.).

Ensembles are useful since any particular learner comes

with its own assumptions [27]. These assumptions may be

best suited to different parts of the training data [27]–[29].

In ensembles, methods can augment each other, i.e. a method

patches errors made by another method. For example, when

reducing estimated mean-squared-error, multi-methods attain

smaller or equal error rates than single-methods [11].

It is a recommended practice to combine solo-methods

that have different characteristics [27], [29], [30]. There

are many techniques to attain different-characteristic multi-

methods. The first way is through representation of the

data. The multi-method structure may be based on uni-

representation (all learners use same representation of data)

or multi-representation (different learners use different repre-

sentations) [27]. Examples to such strategies are the use of

different feature sets [31], [32] or different training sets [33].

The second way is through architectural methodologies.

Bagging (Bootstrap Aggregating) and boosting are among

the most common examples of that approach [27], [34]. In

bagging n-many solo-methods are independently applied on n-

many different training samples, where each training sample is

selected via bootstrap sampling [27] with replacement. Boost-

ing on the other hand arranges solo-methods in a sequential

manner: each solo-method pays more attention to the instances

on which previous method was unsuccessful. Boosting is

reported to be considerably better than bagging [34]–[36], but

has trouble in handling noisy datasets [34], [36].

2.4 Ensemble of Methods in SE

Ensemble methods are widely used in data mining (see the

literature survey of [11]). Nevertheless, in the software do-

main, ensemble of methods (multi-methods) have not been

reported to be superior to solo-methods in terms of prediction

accuracy [15], [17]. In other words, ensembles fall short of

providing a statistically significant increase in the prediction

accuracy values over the solo-methods. For particular error

measures that were used to evaluate the prediction accuracy

see the work of Khoshgoftaar et al. and Kocaguneli et al. [15],

[17]. Khosgoftaar et al. [17] question the performance of dif-

ferent multi-method schemes under different scenarios in the

domain of software quality. They use different combinations

of 17 learners induced on 7 datasets and report that multi-
methods induced on single datasets do not yield a significant

increase in prediction accuracy.

Kocaguneli et al. [15] replicated the work of Khoshgoftaar

et al. [17] in the domain of software effort estimation. They

exploited combination of 14 methods applied on 3 software
effort estimation datasets. Their conclusion was similar to that

of the replicated study [17]: The application of multi-methods

under different scenarios did not provide a significant increase

in the estimation accuracy. Similarly, in the study of Kumar

et al. [37], different learners were employed in two types of

ensembles, but only one of them was reported to be successful.

Another example to ensembles is the ensemble of single-

type learners, where multiple versions of a single learner are

combined. Pahariya et al. use linear combinations of genetic

algorithms [38], where they report improvements over single-

learners. Kultur et al. report improvements through collections

of neural networks [39]. Unless a learner is supplemented with

a pre-processing or a post-processing option, then the learners

in the ensemble are the copy of one another and have the same

biases/assumptions. Unlike ensemble of single-type learners,

all the multi-methods reported in our study is the combination

of a learner augmented with pre/post-processing options.

There are also some applications of ensemble methods in

effort estimation so as to process datasets: In [40], Twala et

al. use multiple imputation techniques to handle missing data

and in [41] Khoshgoftaar et al. make use of learner ensembles

as a filter to improve the data quality.

Our ensemble is different from the above. We take care to

prune inferior solo methods before building the ensemble. As

shown below, this leads to very effective effort estimators.

3 EFFORT ESTIMATION METHODS

The effort estimation methods studied in this paper fall into

two groups: solo-methods and multi-methods. Solo-methods
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TABLE 1

The summary table for the solo-methods. This table provides a list of abbreviations as well as their explanations for

pre-processing options and learners used in this research.

Pre-processing Options Learners

Abbreviation Explanation Abbreviation Explanation

norm Normalization ABE0-1NN Basic ABE with 1 nearest neighbor
log Taking natural logarithm ABE0-5NN Basic ABE with 5 nearest neighbors
PCA Principal Component Analysis SWReg Stepwise Regression
SFS Sequential Forward Selection CART (yes) Classification and Regression Tree with pruning
SWReg Stepwise Regression CART (no) Classification and Regression Tree without pruning
width3bin Discretize into 3 bins based on equal width NNet Neural Net with two hidden layers
width5bin Discretize into 5 bins based on equal width LReg Simple linear regression
freq3bin Discretize into 3 bins based on equal frequency PCR Principal components regression
freq5bin Discretize into 5 bins based on equal frequency PLSR Partial least squares regression
none Apply no pre-processor

are some combination of a pre-processing option and a

learner. For example, Boehm’s preferred effort estimation

method uses a log transform as the pre-processing option, then

linear regression as the learner. Multi-methods are combina-

tions of solo-methods.

3.1 90 Solo-Methods

In our experiments, we used 10 different pre-processing op-

tions and 9 learners. These were selected on two criteria:

• Learners must come from the SE effort estimation liter-

ature; e.g. [4], [5], [8], [39], [42]–[46].

• Learners must make different assumptions about the data.

This second criteria is based on data-mining theory that

recommends using different learners that fail under different

circumstances [27]–[29], [47]. For example ABE methods

assume that similar instances of the data set have similar

dependent variable values, whose translation into SEE domain

is that similar projects have similar effort values [44]. Decision

tree inducers adopt a divide and conquer approach and assume

that decisions on the prediction can be made through a

sequence of tests/decisions that usually involve one feature

at a time [34]. Artificial neural networks assume that data can

be modeled through different geometries of directed graphs,

where nodes represent the neurons and the connecting edges

represent the weights applied on the output of the neurons [48].

With the arrival of each new instance, the effect is propagated

through neurons and edges. Linear regression assumes that

the trend seen in data can be formulated through a linear

model [49]. Stepwise regression is built on assumption that

the set of features that maximize the F-value (evaluates if

the variables in the model -all together- are significantly

related to the independent variable) should be used in the final

model [50].

Ensembles work best when one member of the ensemble

patches the mistakes made by other methods of the ensemble.

We hence used 10 pre-processing options:

• Three simple pre-processing options: none, norm, and

log;

• One feature synthesis method: PCA;

• Two feature selection methods: SFS and SWreg;

• Four discretization methods: Based on equal fre-

quency/width.

and 9 learners:

• Two iterative dichotomizers: CART(yes), CART(no);

• A neural net: NNet;

• Four regression methods: LReg, PCR, PLSR, SWReg.

• Two instance-based learners: ABE0-1NN, ABE0-5NN;

Note that “ABE” is short for analogy-based effort estimation.

ABE0-kNN is a standard analogy-based estimator with exe-

cution steps of:

• Normalization of data to zero-one interval;

• A Euclidean distance measure;

• Estimates generated using the k nearest neighbors.

For detailed descriptions of all these learners, see Appendix.

Combining 10 pre-processing options and 9 learners results
in 10*9=90 solo-methods. A summary table for abbreviations

of the methods and pre-processing options is provided in

Table 1. Note that some of the combinations are less plausible

than the others, for example:

• norm & ABE0, as ABE0 already has a normalization

mechanism in it

• different discretizations & CART, as CART already has

an inherent discretization mechanism

• SWReg & SWReg, as using the learner itself as a pre-

processor would be too cumbersome

However, we included them in our analysis because they

would find their appropriate rankings when compared with

better methods. Furthermore, this brute-force analysis with

all possible (but not necessarily plausible) pre-processing and

learner combinations has to be carried out only once to find

the better performing solo-methods that are to be ensembled

into multi-methods.

3.2 Multi-Methods

Multi-methods combine two or more solo-methods. Many

combination schemes have been proposed in the literature [27],

[29], [30], [43]. Complex combination schemes include bag-

ging [51], boosting [18] or random forests [52], [53]. Simpler

methods include computing the mean, median or inverse-

ranked weighted mean (IRWM [43], see Figure 1) of estimates

coming from n-many solo-methods.

Our aim is not to investigate complex schemes, but to ob-

serve how multi-methods perform compared to solo-methods
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In IRWM, the final estimates from M methods e1, e2, ..., em that
have been ranked r1, r2, ..rm is a weighted sum by the ranks of
all methods in the ensemble. The top and bottom-ranked methods
of m methods get a weight of m and 1 (respectively). More
generally, a method with rank ri gets a weight of m+1−ri. The
final estimate in IRWM is hence

�
�

i
(m+ 1− ri)·ei

�

/
�
�

i
i
�

.

Fig. 1. IRWM. Generalized from [43].

on effort datasets. Therefore, we adopt simple schemes (mean,

median and IRWM).

4 METHODOLOGY

4.1 Multiple Error Measures

This section describes several performance measures used in

this research. All the performance measures listed here have

the property that we can find at least one publication proposing

their use for effort estimation.

Error measures comment on the success of a prediction. For

example, the absolute residual (AR) is the difference between

the predicted and the actual values:

ARi =| xi − x̂i | (1)

(where xi, x̂i are the actual and predicted values respectively
for test instance i). MAR is the mean of individual AR values.
The Magnitude of Relative Error measure a.k.a. MRE is

a very widely used evaluation criterion for selecting the

best effort estimator from a number of competing software

prediction models [44], [54]. MRE measures the error ratio

between the actual effort and the predicted effort. It can be

expressed as the following equation:

MREi =
| xi − x̂i |

xi

=
ARi

xi

(2)

A related measure is MER (Magnitude of Error Relative to

the estimate [54]):

MERi =
| xi − x̂i |

x̂i
=
ARi

x̂i
(3)

A summary of MRE can be derived as the Mean Magnitude

of Relative Error (MMRE) or Median Magnitude of Relative

Error (MdMRE), which can be calculated as follows respec-

tively:

MMRE =

�n

i=1MREi

n
(4)

MdMRE = median(MRE1,MRE2, ...,MREn) (5)

A common alternative error measure is PRED(25), which

can be defined as the percentage of predictions falling within

25% of the actual values:

PRED(25) =
100

N

N
�

i=1

�

1 if MREi ≤
25

100

0 otherwise
(6)

For example, PRED(25)=50% implies that half of the esti-

mates fall within 25% of the actual values [44].

There are many other error measures including Mean Bal-

anced Relative Error (MBRE) and the Mean Inverted Balanced

Relative Error (MIBRE) studied by Foss et al. [54]:

MBREi =
|x̂i − xi|

min(x̂i, xi)
(7)

MIBREi =
|x̂i − xi|

max(x̂i, xi)
(8)

Interpreting these error measures without any statistical test

may be misleading. A recent discussion about this issue can

be found in [55]. To evaluate our results subject to a statistical

test, we make use of the so called win-tie-loss statistics. Win-

tie-loss statistics employ a Wilcoxon non-parametric statistical

hypothesis test with 95% confidence. Wilcoxon is more robust

than the Student’s t-test as it compares the sums of ranks,

unlike Student’s t-test, which may introduce spurious findings

as a result of outliers in the given datasets. Ranked statistical

tests like the Wilcoxon are also useful, if it is not clear that

the underlying distributions are Gaussian [56].

We stored the performance of every method w.r.t. 7 error

measures over 20 datasets. This enabled us to collect win-tie-

loss statistics using the algorithm of Figure 2. In Figure 2,

we first check if two distributions i, j are statistically different
according to the Wilcoxon test (95%); if they are not, then we

increment tiei and tiej . If the distributions are statistically dif-
ferent, we update wini, winj and lossi, lossj after comparing
their error measures.

if WILCOXON(Ei, Ej , 95) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else

if better(Ei, Ej ) then
wini = wini + 1
lossj = lossj + 1

else

winj = winj + 1
lossi = lossi + 1

end if

end if

Fig. 2. Comparing methods (i,j).

The better function in the if statement of Figure 2 varies
according to the performance criteria. For some error measures

such as MMRE and MdMRE, better means lower values,

i.e. lower means and medians respectively. However, for

PRED(25), better means higher PRED(25) values.

Note that 20 data sets have considerable size differences,
e.g. China data set contains almost half of all the records
used in this study. However, the above mentioned performance

measures are derived separately for every dataset.

4.2 Experimental Conditions

Recall the results of Shepperd et al. [25] and Menzies et

al. [26]: different experimental conditions can change the rank

of an effort estimator. Hence, it is important to study not

just the rank of an estimator, but also how well that method

performs across multiple experimental conditions such as:
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TABLE 2

The 1198 projects used in this study come from 20 data sets. Indentation in column one denotes a dataset that is a

subset of another dataset. For notes on these datasets, see Appendix.

Historical Effort Data

Dataset Features Size Description Units Min Median Mean Max Skew

cocomo81 17 63 NASA projects months 6 98 683 11400 4.4

cocomo81e 17 28 Cocomo81 embedded projects months 9 354 1153 11400 3.4

cocomo81o 17 24 Cocomo81 organic projects months 6 46 60 240 1.7

cocomo81s 17 11 Cocomo81 semi-detached projects months 5.9 156 849.65 6400 2.64

nasa93 17 93 NASA projects months 8 252 624 8211 4.2

nasa93 center 1 17 12 Nasa93 projects from center 1 months 24 66 139.92 360 0.86

nasa93 center 2 17 37 Nasa93 projects from center 2 months 8 82 223 1350 2.4

nasa93 center 5 17 40 Nasa93 projects from center 5 months 72 571 1011 8211 3.4

desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0

desharnaisL1 11 46 Projects in desharnais that are developed with Language1 hours 805 4035.5 5738.9 23940 2.09

desharnaisL2 11 25 Projects in desharnais that are developed with Language2 hours 1155 3472 5116.7 14973 1.16

desharnaisL3 11 10 Projects in desharnais that are developed with Language3 hours 546 1123.5 1684.5 5880 1.86

sdr 22 24 Turkish software projects months 2 12 32 342 3.9

albrecht 7 24 Projects from IBM months 1 12 22 105 2.2

finnish 8 38 Software projects developed in Finland hours 460 5430 7678.3 26670 0.95

kemerer 7 15 Large business applications months 23.2 130.3 219.24 1107.3 2.76

maxwell 27 62 Projects from commercial banks in Finland hours 583 5189.5 8223.2 63694 3.26

miyazaki94 8 48 Japanese software projects developed in COBOL months 5.6 38.1 87.47 1586 6.06

telecom 3 18 Maintenance projects for telecom companies months 23.54 222.53 284.33 1115.5 1.78

china 18 499 Projects from Chinese software companies hours 26 1829 3921 54620 3.92

Total: 1198

1) Error measures that measure a method’s performance;

2) Comparison summaries used to report the performance

of many methods over many data sets;

3) Data sets used in the experiments.

The error measures used in this study, as defined above,

are MAR, MMRE, MdMRE, MMER, PRED(25), MBRE,

MIBRE.

As to comparison summaries, the following procedure was

repeated for each error measure. Each of our 90 methods were

compared to 89 others using the procedure of Figure 2. In our

procedure, we sum the wins, losses, ties of Figure 2 and
we rank our methods by that sum. That is, for an estimation

method to be highly ranked, it must perform comparatively

well across all error measures.

The results of those comparisons are contained in the win,
tie, loss counters of Figure 2. These comparisons can be
summarized through many ways:

1) Number of losses;

2) Number of wins;

3) Number of wins-losses

Demsar [57] reports that there is no generally accepted method

of comparison summarization. Hence, we compute δr from
the changes in the ranks seen when we move across all three

summarization methods:

• Firstly, we generate rankings of estimators using number

of losses (repeated for all error measures) via a leave-

one-out procedure (where each example becomes a test

and the remaining data is used for training).

• Next, we compare that rank to other ranks generated

by other comparisons summaries (again, repeated for all

error measures).

• The maximum rank change for a method over all the

dimensions is the δr value for that method.

Finally, we run our rig over multiple data sets. Our experiments

use the 20 publicly available effort estimation datasets in

the PROMISE repository (see http://promisedata.org/?cat=14).

The names and properties of these datasets are provided in

Table 2. Note that some projects in desharnais dataset contain

missing values and we used mean imputation [58] to handle

missing values. See Appendix for more explanatory notes.

Combining the above, we can see that the experiments of

this paper are an extensive analysis of different conditions for

effort estimation experiments. Given 89 comparisons among

solo-methods, 7 error measures, and 20 datasets, then each

method appears in 89× 7× 20 = 12, 460 comparisons.

4.3 Focus on Superior Methods

Figure 3 is a plot that shows the success of the solo-methods

through ranking and the variability in that ranking. The x-

axis of Figure 3 shows the ranking of the 90 solo-methods,

according to number of losses over all 7 error measures and

20 data sets. The most successful methods have the lowest

number of total losses whereas the least successful ones have

the highest number of total losses. Then solo-methods are

ranked on the x-axis starting from the best one. Therefore,

better methods appear on the left-hand-side of that figure (so

the top-ranked method appears at position x = 1).
The ranking of methods is identified by the x-axis of

Figure 3, whereas the variability in that ranking is given by the

y-axis. The y-axis of Figure 3 shows the maximum changes,

δr, seen for each method as we compare the ranks across
number of losses, number of wins, and number of wins-losses.

In other words, a solo-method has different rankings according

to its win, loss or win− loss values and the related number
seen on the y-axis is the biggest difference between its best

and worst rankings. In a result consistent with Shepperd et al.,

all methods have δr > 0. However, the good news is that the
top-ranked methods have a very low δr. That is, even if these
top-ranked methods jumped rank by their maximum δr, then
they would still be performing better than most of the other

90 methods.

In signal processing, it is standard practice to segment data

based on the region of maximal change [59]. An inspection
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Fig. 3. Methods and the associated changes, i.e. δr
values. Note the sudden increase in δr values, after

X = 13. We call methods in the region 1 ≤ X ≤ 13 as

superior.

of Figure 3 shows that the region of maximal δr occurs after
X = 13. This is an interesting division since the region 1 ≤
X ≤ 13 contains methods with high rank and low δr. We call
these methods superior and the rest inferior. The list of top

13 methods are shown in Table 3.
Figure 3 is investigated further in a related paper that dis-

cusses the relative ranking concept of the solo-methods [60].

The names of the top 13 superior solo-methods of Figure 3

are listed in Table 3. When we look at Table 3, we see that

none of the superior solo-methods try to fit one model to all

the data:

• The CART regression tree learner appears at ranks 1

through 10 of Table 3. Each branch of a regression tree

defines one context in which an estimate may be different.

• Analogy-based estimation (ABE) appears at ranks

11,12,13. ABE builds a different model for each test

instance (using the test instance’s k-th nearest neighbors).

Solo-methods are not the focus of this paper. Hence, we move

on to discuss multi-methods.

4.4 Build Ensembles

To form multi-methods, we build ensembles using the top M
solo-methods in the sort order of Table 3. In this study, we

use M ∈ {2, 4, 8, 13}.
To generate an estimate, we ask all members of an ensemble

to offer a prediction. These are combined in one of three ways:

mean, median and IRWM.

TABLE 3

Ranking of top-13 superior solo-methods and related δr
values. These solo-methods are combined in various

ways to form 12 multi-methods.

rank δr pre-processing option learner

1 8 norm CART (yes)

2 6 norm CART (no)

3 6 none CART (yes)

4 9 none CART (no)

5 5 log CART (yes)

6 4 log CART (no)

7 5 SWReg CART (yes)

8 6 SWReg CART (no)

9 6 SFS CART (yes)

10 5 SFS CART (no)

11 5 SWReg ABE0-1NN

12 4 log ABE0-1NN

13 5 SWReg ABE0-5NN
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Fig. 4. Rank changes of solo and multi-methods. Region

1 ≤ X ≤ 10 contains 10 out of 12 multi-methods. See that

Top13/Mean at X = 1 has a δr of 1, i.e. it outperforms

all other methods w.r.t. 7 different error measures and 20
datasets.
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Fig. 5. The sum of win, tie and loss values for all methods

of Figure 4 (over all error measures and all datasets).

Since one method is compared to 101 other methods, over

7 error measures and 20 datasets, the sum of win, tie and

loss values is: 101× 7× 20 = 14, 140.

These multi-methods are then ranked along-side the solo-

methods in the same manner as Figure 3. This gives us the

comparison of 90 solo-methods + 12 multi-methods = 102

methods. Every method is compared to 101 others with respect

to seven error measures and over 20 datasets. Therefore,

the maximum number of comparisons for any method now

becomes 101 × 7 × 20 = 14, 140. To the best of our knowl-
edge this is the one of the most extensive effort estimation

experiments yet reported in the literature (and for extensive

non-experimental studies, see [8], [61]).

5 RESULTS

Figure 4 shows the rank of our 102 methods. As before, the

x-axis ranks the methods according to number of losses and

the y-axis shows the δr of each method. Table 4 shows the
102 methods, sorted in the same way as the x-axis of Figure 4.

Two aspects of these result are worth commenting:

• The top X = 10 methods (marked by a dashed line)
are all multi-methods. The remaining multiple methods

appear at ranks 14,15,18. That is, in the majority case

( 1012 = 83%), combinations of methods perform better

that any solo method. Further, in all cases ( 1212 = 100%),
they are ranked higher than the majority of other methods.

• The multi-method at X = 1 also has the lowest δr of any
method in this study. This method generated estimates

using the IRWM value of 13 top-ranked solo-methods.
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TABLE 4

Detailed pre-processing option and learner combinations

and related δr values. Methods are sorted by the sum of

their losses seen in all performance measures and all

data sets. The method with fewest losses is ranked #1

and is Top13/Irwm. At the other end of the scale, the

method with the most losses is ranked #102 and is

PCA/LReg.

rank δr pre-proc. learner rank δr learner

1 1 Top13 Irwm 52 17 norm SWReg

2 4 Top13 Mean 53 6 none SWReg

3 13 Top13 Median 54 11 freq3bin ABE0

4 10 Top2 Mean 55 10 width3bin CART (yes)

5 13 Top4 Mean 56 19 width3bin CART (no)

6 10 Top2 Median 57 20 PCA ABE0

7 8 Top4 Median 58 11 PCA NNet

8 12 Top8 Median 59 14 none NNet

9 10 Top2 Irwm 60 11 width5bin SWReg

10 6 Top4 Irwm 61 15 width3bin ABE0

11 6 norm CART (yes) 62 14 SWReg NNet

12 7 norm CART (no) 63 23 SFS NNet

13 7 none CART (yes) 64 18 width5bin 1NN

14 7 none CART (no) 65 6 SWReg LReg

15 11 Top8 Irwm 66 7 none LReg

16 8 log CART (yes) 67 8 norm PLSR

17 8 log CART (no) 68 13 width5bin ABE0

18 12 Top8 Mean 69 13 norm LReg

19 15 SWReg CART (yes) 70 7 freq5bin 1NN

20 17 SWReg CART (no) 71 9 freq3bin CART (yes)

21 17 SWReg 1NN 72 20 freq3bin CART (no)

22 16 SFS CART (yes) 73 30 PCA 1NN

23 3 SFS CART (no) 74 20 freq3bin 1NN

24 3 log 1NN 75 7 width3bin SWReg

25 14 SWReg ABE0 76 9 log SWReg

26 12 PCA PLSR 77 5 width5bin PLSR

27 9 none PLSR 78 13 log PCR

28 19 SWReg PCR 79 10 log PLSR

29 14 PCA PCR 80 3 width3bin 1NN

30 17 none PCR 81 5 width3bin PLSR

31 12 SFS 1NN 82 4 width5bin PCR

32 8 PCA CART (yes) 83 12 norm PCR

33 15 PCA CART (no) 84 5 width3bin LReg

34 15 SFS ABE0 85 3 width3bin PCR

35 11 norm 1NN 86 9 freq5bin PCR

36 9 none 1NN 87 6 freq5bin SWReg

37 9 freq5bin CART (yes) 88 5 width5bin LReg

38 12 freq5bin CART (no) 89 6 freq3bin PCR

39 11 freq5bin ABE0 90 4 freq3bin PLSR

40 10 SFS LReg 91 5 freq5bin PLSR

41 10 width5bin CART (yes) 92 5 log LReg

42 17 width5bin CART (no) 93 6 freq3bin SWReg

43 18 SWReg PLSR 94 10 freq5bin LReg

44 16 SFS PLSR 95 5 width5bin NNet

45 9 SFS PCR 96 4 norm NNet

46 13 norm ABE0 97 3 width3bin NNet

47 13 PCA SWReg 98 5 log NNet

48 11 none ABE0 99 6 freq3bin NNet

49 18 SWReg SWReg 100 5 freq5bin NNet

50 16 log ABE0 101 7 freq3bin LReg

51 16 SFS SWReg 102 12 PCA LReg

Note that the second result is exactly the “ensembles are

better” result as might be predicted by the researchers men-

tioned in the introduction [10]–[14]. We speculate that prior

SE researchers who failed to find that “ensembles are better”

did not prune away inferior solo-methods before building an

ensemble. One word of caution here is that although we use

a deterministic sampling method (LOOCV) in this research,

some algorithms contain probabilistic processes (e.g. back-

pruning process of CART (yes)). This may create small

alterations in the performances of the methods (solo and multi)

using these algorithms. Hence, it may be the case that one gets

a slight variation of Table 4; however, the general picture (solo-
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Fig. 6. Spectrum of MdMRE values for 2 regions of meth-

ods: Solo-methods and multi-methods. Here we keep the

order of methods same as those given in Table 4 and

divide those methods into 2 regions. Notice how multi-

methods attain the lowest MdMRE scores.

methods outperformed by multi-methods) remains the same.

Better yet, as shown in Figure 4, this largest ensemble at

rank X = 1 had the lowest δr seen in any of our 102 methods
(δr = 1). This result underscores the main message of this
paper: the method that scored the best (and had the greatest

stability across different experimental conditions) was the one

that used the highest number of superior solo-methods.

Figure 5 shows the sum of win, tie and loss values
for the methods of Figure 4. Every method of Figure 4 is

compared to 101 other methods, over 7 error measures and 20
datasets, so the maximum value that either one of the win,
tie, loss statistics can attain is: 101 × 7 × 20 = 14, 140.
Notice in Figure 5 that except the low performing methods

on the right hand-side, the tie values are in 10, 000− 12, 000
band. Therefore, they would not be so informative as to

differentiate the methods, so we consult to win and loss
statistics. There is a considerable difference between the best

and the worst methods in terms of win and loss values (in
the extreme case it is close to 4, 000). In a way Figure 5 is a
sanity check of Figure 4, because it shows that the rankings

reported in Figure 4 is due to considerable win and loss value
differences between high (left hand-side) and low (right hand-

side) performing methods.

Other results offer yet more evidence for the superiority of

multi-methods over solo-methods. Figure 6 sorts the MdMRE

values of all the solo-methods and all the multi-methods:

• Multi-methods generated lower MdMRE values than the

solo-methods;

• While some of the solo-methods have alarmingly large

errors (as observed from the steep right-hand-side of the

dashed line in that figure), note that none of the 12 best
multi-methods have large MdMRE values.

That is, multi-methods are far less prone to incorrect effort

estimates than solo-methods.

6 THREATS TO VALIDITY

External validity questions whether the results can be gener-

alized outside the specifications of a study [62]. To ensure
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external validity, this paper has studied a large number of

projects. For example, Table 4 of [61] lists the total number

of projects used by a sample of other studies. The median

value of that sample is 186; i.e. one-sixth of the 1198 projects

used here. In terms of external validity, this report has higher

validity than a standard effort estimation study (which might

apply one error measure to a handful of data sets). An ideal

case for our work or other similar studies would be to request

data sets with specific properties that would best suit the

experimental concerns and that would support the random

sampling of data in experimentation. However, SEE data sets

are neither easy to find nor easy to collect. Therefore, this

stands as an external validity issue and calls for more effort

in SEE data collection.

It is clear that this study has not explored a full range of

effort estimation methods. Future work is required to repeat

this study using the top performing solo-methods found here

and possibly more. Nevertheless, given the extent of the

experimentation reported here, this paper offers much support

for the general claim that when generating estimates, it is wise

to first sort and prune all available solo-methods, and then

try combinations of the best solo-methods. Another validity

issue to mention is that none of learners have been exhausted

via fine-tuning. Therefore, future work is required to exhaust

all the parameters of every learner to use their best version.

However, exhaustive fine-tuning of a learner through some

heuristic may be as comprehensive as a paper on its own right,

e.g. tabu search heuristic proposed by Corazza and Mendes et

al. [6].

Construct validity (i.e. face validity) asks if we are mea-

suring what we actually intended to measure [63]. Previous

studies have concerned themselves with the construct valid-

ity of different performance measures for effort estimation

(e.g. [54]). To make sure that we do not favor a particular

conclusion due to limited number of performance measures,

we used 7 error measures and questioned the stability of

our conclusions. We showed empirically the surprising result

that multi-methods are stable across a range of performance

criteria. The surprise factor comes from the fact that solo-

methods and successful multi-methods have different rank

change values. Unlike most of the solo-methods with high

rank changes w.r.t different performance measures (as high as

30), the top-10 multi-methods are quite stable and successful,

with the highest rank change of 13 and the lowest rank change
of 1.
In terms of internal validity, there is one dimension of

experimental conditions not explored above. This paper used

leave-one-out to assess methods. An alternate experimental

condition would be to use N-way cross-validation where

examples are divided into B bins and each bin is tested on a

model learned from the remaining bins. In theory, not using

cross-validation is a threat to the validity of our results since

we did not check if our results were stable across both leave-

one-out and cross-validation. According to Hastie et al. [12,

p242], leave-one-out testing generates:

• Lower bias estimates than cross-validation (since cross-

validation must learn from fewer examples);

• Higher variance estimates than cross-validation (since

leave-one-out conducts many more tests).

Similar assertions are made by Kohavi [13] and Breiman [14].

Elsewhere [64], we have documented the surprising result

that, at least for the data sets of Table 2, there is very little

difference in the bias and variance values generated for leave-

one-out and cross-validation. We conjecture that the standard

comments on “bias vs. variance trade-off” for “leave-one-out

vs cross-validation” needs to be revisited for the small effort

data sets seen in effort estimation.

Since leave-one-out and cross-validation have similar

bias/variance profiles, we are free to select either method. This

paper uses leave-one-out for the following reasons. Leave-one-

out is a deterministic procedure that can be exactly repeated

by any other researcher with access to a particular data set.

The same cannot be said about cross-validation since it divides

the data into bins using:

• A random number generator;

• Some stratification heuristics. Stratification attempts to

maintain the same class distributions in each bin as in

the entire data set). Stratification is a heuristic procedure

since it may encounter issues that have no singular

solution (e.g. how to space rare outliers amongst the bins).

Note that without knowledge of the stratification heuristics,

and without access to an identical random number generator,

it can be difficult for researcher “A” to reproduce the cross-

validation results of researcher “B”.

7 DISCUSSION

7.1 Learning Curve

One of our observations is that ensembles are more trustworthy

(less ranking instability). For someone with a strong back-

ground in machine learning algorithms, the number of learners

to combine is not an issue as he/she has already gone through

the learning curve. However, from a practitioner’s point of

view, there is a cost-benefit trade-off between:

• the cost of learning new learners

• and the additional performance benefit

We acknowledge the fact that building an ensemble model

from scratch may be too challenging for practitioners without

prior machine learning experience. However, our industry-

collaborated project experience shows that once the model is

built by researchers, its adoption/implementation by practition-

ers is a pretty straightforward process [65]–[68]. This section

provides an in depth discussion and alternative solutions for

such practitioners.

The best multi-method reported in this paper requires com-

bination of top-13 solo methods. The learning curve associated

with top-13 solo methods is given in Table 5. From Table 5

we see that a practitioner willing to use multi-methods at all

has to learn at least 2 learners (CART(yes) and CART(no)).
Not included in Table 5 are the numeric manipulations such as

normalizing an array of numbers and taking logarithm, mean

or median of these numbers. Before learning the algorithms

of Table 5, a practitioner will need to learn these numeric

operations, then learning just 2 learners in fact enables him/her
to use up until the 6th best performing solo-method. By using
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TABLE 5

The learning curve of the top-13 superior solo-methods.

The column “# of additions” shows how many algorithms

(learner or pre-processor) are needed for the transition to

current row from the previous one and the required

algorithm for that transition is given in brackets. The

column “total learned” shows how many algorithms are

needed to be learned until the current row. Assumption is

that common numeric methods such as normalizing and

taking the natural logarithm of numbers is known in

advance.

rank pre-processor learner # of additions total learned

1 norm CART (yes) 1 [CART (yes) ] 1

2 norm CART (no) 1 [CART (no) ] 2

3 none CART (yes) 0 2

4 none CART (no) 0 2

5 log CART (yes) 0 2

6 log CART (no) 0 2

7 SWReg CART (yes) 1 [SWR] 3

8 SWReg CART (no) 0 3

9 SFS CART (yes) 1 [SFS] 4

10 SFS CART (no) 0 4

11 SWReg ABE0-1NN 1 [ABE-kNN] 5

12 log ABE0-1NN 0 5

13 SWReg ABE0-5NN 0 5

top-6 solo methods, we can build the 4th, 5th, 6th, 7th, 9th,
10th best methods of Table 4. Also note that aside from the

algorithms of Table 5, a practitioner will most likely require

to learn the simple formula of IRWM.

In summary, building successful multi-methods is not nec-

essarily a difficult process for a practitioner. See in Table 5

that building the best method reported here requires learning

5 algorithms (learner or pre-processor) and learning only 2
learners enables someone to build 4 very successful multi-
methods. Therefore, our recommendations to practitioners,

who are willing to use multi-methods but lack the knowledge

of machine learning algorithms are:

• Start with initial 2 learners and build the associated multi-
methods

• See the performance of the current multi-methods

• Build new multi-methods only if you are not pleased with

the performance of the current ones

The matter of mutual SE knowledge transfer between research

and industry is not restricted to the discussion we provided in

this section. Practitioners willing to know further on that issue

are strongly recommended to read [69].

7.2 Ensemble and Accuracy

Writing in the field of marketing, Armstrong reports in his

2007 study that the multi-method forecasts out-perform single-

method forecasts [70]. He cites 31 studies where multiple

source prediction consistently out-performs single source pre-

diction by 3.4 to 23.4% (average = 12.5%). It is expected

to see that a meaningful combination method, such as ours,

results in superior performance. On the other hand, it is

impossible to cover all meaningful combination strategies

in a single paper. Our study adopts only one of the many

proposed successful combination methods [71]. Citing from

one of our reviewers: “ Work by Hogarth [72] demonstrates

that a reduced inter-correlation between the prediction sources

may be just as important as finding the prediction sources

with highest expected accuracy (excluding the poor methods)

when combining predictions.” For this research, it means that

understanding the inter-dependencies between different solo-

methods could lead to clearer definitions of when to combine

which particular solo-methods. In return, such a strategy

could yield more robust multi-methods. For example a very

promising future work (as indicated by the cited reviewer)

would be to include the best neural network model into multi-

methods.

In the ideal case, different multi-methods would perform

optimally under different combination schemes. For example

when combining a high number of solo-methods, it would

be better to use a scheme that would catch the central

tendency and be able to handle extreme values, e.g. median.

However, our findings do not support that implication. In

other words, our best performing multi-method includes a

high number of solo-methods and its combination scheme is

IRWM. That discrepancy between implications and results is a

familiar concept in forecasting literature: It is difficult to give

robust guidelines as to combine the methods in an optimum

way [73]. Investigation of robust combination schemes and

their implications would be a good future direction to our

study.

8 CONCLUSION

There are many effort estimation methods and little guidance

on how to choose between them. Prior results from Shepperd

et al. are pessimistic about the consistency of the rankings of

different methods. If M methods are ranked in an experiment,

then that ranking can be changed by altering the conditions

of that experiment (e.g. the data used in training or the

performance measure used).

This paper confirms the inconsistency of the rankings effect

reported by Shepperd et al.: in Figure 3 and Figure 4 it was

seen that a method’s ranking can change by some amount

δr. Nevertheless, our conclusions are more optimistic than
those of Shepperd et al. While some methods have very large

δr, others do not. In fact, for the solo-methods shown in
Figure 3, the better methods have smaller δr. Better yet, when
we combined the highest ranked solo-methods, we found that

the top-ranked multi-method had almost zero δr. Therefore,
we recommend multi-methods since, as shown in Figure 4:

• The multi-methods consistently out-perform most, if not

all, of the solo-methods;

• The performance of the multi-methods are more trustwor-

thy (has the smallest ranking instability).

• Also, as shown in Figure 6, the multi-methods avoid the

problem of very large errors seen with other methods.

The success of our results raises the question: Why were prior

experiments in ensembles for effort estimation [15], [16] so

unsuccessful? Reading from prior effort estimation literature,

we offer the following hypothesis: Many effort estimation

methods are inferior so combinations of inferior members

will also be inferior. In Figure 3, for example, while there is

evidence for 13 useful methods (in the range 1 ≤ X ≤ 13), the
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remaining methods have large δr or fall into the worse ranks.
That is, of the 90 solo-methods we have explored, there is no

evidence for the value of 77
90 = 86% of the methods. Without a

ranking like Figure 3 to guide method selection, it is therefore

probable that researchers will try combining weaker methods.

New methods are being constantly invented (e.g. see [6],

[39], [74]) so we make no claim that the 90 methods explored

here cover the space of all possible effort estimators. We

also make no claim that one study can cover all the pre-

processing options there is in the literature and our study

is no exception. Our study covers a total of 10 options

for pre-processing, however it does not cover the effects of

noise or outlier removal. The investigation of the effects of

noise/outlier removal on method performance would in fact

be an interesting future direction to this study.

Finally, we can offer an answer to the vexing question:What

is the best effort estimator? Simply put, we have no evidence

suggesting that any solo-method is some universal, best in all

circumstances, effort estimator. However, if no solo-method is

always the best, some ensemble of solo-methods may offer

consistently better performance. We have seen that 9 out of

12 multi-methods outperformed all others. Better yet, our top-

ranked multi-method has the greatest stability among any of

the 102 methods explored in this study. Hence, this study

proposes multi-methods as the technique that finds the best

learner.
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APPENDICES

Note: the content of the following appendices come from [60].

Although the work in [60] and this manuscript use the same

base learners and pre-processing options, they address two

very different research ideas. In [60] our concern is an

investigation of the common SEE methods in retrospect, i.e.

we re-evaluate the past work in SEE and seek for stable

conclusions in methods and datasets. We use the results of this

investigation to comment on the methods and on the datasets

used extensively in SEE.

On the other hand, in this paper we investigate new and

robust estimation methods, i.e. the ensembles. This research

is built around a similar code base (the implementation of

learners and pre-processing options), yet it uses the knowledge

we got by observing old methods to propose a completely new

direction of building a novel scheme: multi-methods.

Appendix A: Data

All the data used in this study is available either at

http://promisedata.org/data or through the authors. As shown
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in Table 2, we use a variety of different data sets in this

research. The standard COCOMO data sets (cocomo*,

nasa*), which are collected with the COCOMO approach [1].

The desharnais data set, which contains software projects

from Canada. It is collected with function points approach.

SDR, which contains data from projects of various software

companies in Turkey. SDR is collected by Softlab,

the Bogazici University Software Engineering Research

Laboratory [75].

albrecht data set consists of projects completed in IBM in

the 1970’s and details are given in [2].

finnish data set originally contains 40 projects from different

companies and data were collected by a single person. The

two projects with missing values are omitted here, hence we

use 38 instances. More details can be found in [76].

kemerer is a relatively small dataset with 15 instances, whose

details can be found in [77].

maxwell data set comes from finance domain and is composed

of Finnish banking software projects. Details of this dataset

are given in [78].

miyazaki data set contains projects developed in COBOL.

For details see [79].

telecom contains projects which are enhancements to a U.K.

telecommunication product and details are provided in [44].

china dataset includes various software projects from multiple

companies developed in China.

Note that two of these data sets (Nasa93c2, Nasa93c5) come

from different development centers around the United States.

Another two of these data sets (Cocomo81e, Cocomo81o)

represent different kinds of projects. The Cocomo81e “em-

bedded projects” are those developed within tight constraints

(hardware, software, operational, ...); The Cocomo81o “or-

ganic projects” come from small teams with good experience

working with less than rigid requirements.

Note also in Table 2, the skewness of our effort values (up

to 6.06): Our datasets are extremely heterogeneous with as

much as 60-fold variation. There is also some divergence in

the features used to describe our data. While our data includes

some effort value (measured in terms of months or hours), no

other feature is shared by all data sets.

Appendix B: Pre-Processing Options

Simple numeric techniques: This category lists the pre-

processors that entail mere numeric alterations of actual values

rather than application of certain algorithms.

• norm: “norm” represents the application of normaliza-

tion on the data. The data is normalized to 0-1 interval

according to Equation 9:

• log: The natural logarithm of the independent variables

are taken. Similar to all pre-processing procedures, the

dependent variable is excluded from the pre-processing

method.

normalizedV alue =
(actualV alue − min(allV alues))

(max(allV alues) − min(allV alues))
(9)

Feature synthesis: “PCA” stands for principal component

analysis [58]. PCA is widely used as a dimension alteration

mechanism. The alteration in PCA occurs in the form of

changing an n-dimensional space into another n-dimensional

space. PCA lets the user know which particular features

are most influential in the new n-dimensional space, hence

user can choose to use only the most influential features.

Therefore, it is also common to see the usage of PCA like

a dimensionality reduction mechanism. However, in our study

we prefer to use PCA only to change the n-dimensional space

(not the number of features).

Feature selection: Some of the pre-processors aim at finding

a subset of all features according to certain criteria. This subset

is supposed to produce a feature subset that will ultimately

increase the estimation accuracy. Under this category, we have

SFS and SWREg.

Sequential forward selection (“SFS”) is a feature selection

mechanism, in which features are added into an initially

empty set until no improvement is possible with the addition

of another feature. The so called improvement is defined

through an objective function. In our implementation based on

MATLAB, the objective function is the mean-squared-error of

a simple linear regression on the training set. One caution to be

made here is that exhaustive search algorithms over all features

can be very time consuming (2n combinations in an n-feature

dataset), therefore SFS works only in forward direction (no

backtracking).

“SWReg” stands for stepwise regression, which can be

defined as a systematic method for adding and removing

features from a multi-linear model. Removal and addition

of features depend on their statistical significance in regres-

sion. Our SWReg implementation that is developed by using

MATLAB starts execution with a preliminary model, then it

compares the performances of smaller and larger models. At

each step a potential feature is to be decided for addition or

removal. Addition and removal are based on the p-value in an

F-statistic. In a particular step, the F-statistics for two models

(models with and without the feature that is being questioned

in that step) are calculated. Provided that the feature was not

in the model, the null hypothesis is: “Feature would have

a zero coefficient in the model, when it is added”. If the

null hypothesis can be rejected, then the feature is added to

the model. As for the other scenario (i.e. feature is already

in the model), the null hypothesis is: “Feature has a zero

coefficient”. If we fail to reject the null hypothesis, then the

term is removed.

Note that stepwise methods are locally optimal and may

not necessarily be globally optimal. In other words, depending

on the initial model and the order of features for inclusion-

exclusion, the algorithm may result in different final models,

hence different performances.

Discretization:

• width3bin: This procedure bins each one of the data

features into 3 bins, depending on equal width of all bins.

The bin-width for a general n-bin procedure is given in

Equation 10. In our 3-bin case, once we know the bin-

width, we assign each feature value to either 1, 2 or 3,
depending on which particular bin the value is in.

binWidth = ceiling(
(max(allV alues) − min(allV alues))

n
) (10)
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• width5bin: Exactly same as “width3bin” except that this

time we have 5 bins instead of 3.
• freq3bin: “freq3bin” means binning each feature into

3 bins, depending on the equal frequency count (equal

number of instances in each bin). Similar to previously

mentioned binning methods, in this method each feature

value is assigned to 1, 2 or 3. For that, all values
of a particular feature is sorted in ascending order.

Then first ceiling(numberOf(allInstances)/3)
instances are assigned 1, the second

ceiling(numberOf(allInstances)/3) instances are

assigned 2 and so on.
• freq5bin: Same as “freq3bin”, but with 5 bins.

Others: The option(s) that cannot be categorized into afore

mentioned categories are mentioned here. Application of no

pre-processing to the data is also a choice. “none” represents

the choice of no pre-processor selection.

Appendix C: Learners

Instance-based learners: When we refer to instance-based

learners (either ABE methods or nearest-neighbor based meth-

ods), there are various design options to be decided. The

analogy based estimation method that we call ABE0-xNN

refers to a very basic type of ABE that we defined through

our readings of various ABE studies [43], [74], [80]. In ABE0-

xNN, features are firstly normalized to 0-1 interval, then the

distance between test and train instances is measured accord-

ing to Euclidean distance function, x nearest neighbors are

chosen from the training set and finally for finding estimated

value (a.k.a adaptation procedure) the median of x nearest

neighbors is calculated. Therefore, when we say ABE0-xNN,

all the design options including the choice of x-many closest

analogies become explicit to a reader. In our experimentation

we use two different x values (i.e. two different analogy

values):

• ABE0-1NN: Only the closest analogy is used. Since the

median of a single value is itself, the estimated value in

ABE0-1NN becomes the actual effort value of the closest

analogy in the training set.

• ABE0-5NN: Five closest analogies are found and used

for adaptation.

Iterative dichotomization: Under this category, we use

classification and regression trees (CART) as described by

Breiman et al. [81] and developed it using MATLAB routines.

CART is a non-parametric technique and it can work both

for classification and regression type of problems, in our case

it is the latter. When planning to construct a CART, there

are a couple of points to consider. Firstly, the selection of

splits: There are a variety of solutions such as misclassification

rate, information (or entropy) or GINI index. CART uses the

GINI index to calculate the impurity of a tree [81]. Secondly,

decision on when to stop further splits: The implementation

allows you to specify a threshold value or use the default value.

We have used default threshold values in the implementation

(for further details please refer to MATLAB documentation).

Lastly, assigning class to each terminal node. Each test in-

stance results in a terminal node and therefore different test

instances resulting in the same terminal node are given the

same predicted value. For regression, the predicted value in

a terminal node is a fit on the independent variables of the

instances in that node.

We have used 2 types of CART, which are given below:

• CART (yes): In this version, the pruning is on, meaning

that the training data is used in a cross validation process

and for each cross validation run, some internal nodes

are randomly chosen as the leaf nodes and their sub-

nodes are removed. Finally, the sub-tree that resulted in

the lowest error rate is returned. The returned sub-tree is

a sub-optimal solution and it is locally optimum.

• CART (no): The sub-trees of CART will not be consid-

ered and the full tree will be used.

Two-layered neural net: “Neural Nets” (NNet) are mem-

oryless structures that can be defined as universal approxima-

tors [82], meaning that: 1) They store information coming from

training data as weights during training and after that phase

they do not need training data and 2) they can approximate

any function depending on how complex the NNet structure is.

NNets basically have a 3 layer structure: Input layer, hidden

layer and the output layer. Depending on the complexity of the

problem, one can model more complex functions with a NNet

by increasing the number of hidden layers in the structure. In

our implementation, we used a simple NNet structure with 2

hidden layers, 1 input layer and 1 output layer.

Regression methods: Under this category, we list our

regression-based learners. LReg stands for linear regression.

Given the dependent variables, this learner calculates the

coefficient estimates of the independent variables.

Partial Least Squares Regression (PLSR) as well as Prin-

cipal Components Regression (PCR) are algorithms that are

used to model a dependent variable and we have used MAT-

LAB routines to implement those functions in our experiments.

While modeling an independent variable, they both construct

new independent variables as linear combinations of original

independent variables. However, the ways they construct the

new independent variables are different:

• PCR: This method generates new independent variables

to explain the observed variability in the actual ones.

However, while generating new variables the dependent

variable is not considered at all. In that respect, PCR is

similar to selection of n-many components via PCA (the

default value of components to select is 2, so we used it

that way) and applying linear regression.

• PLSR: Unlike PCR, PLSR considers the independent

variable and picks up the n-many of the new components

(again with a default value of 2) that yield lowest error

rate. Due to this particular property of PLSR, it usually

results in a better fitting.

SWReg: We have previously defined SWReg and men-

tioned that it was a special regression algorithm. We have also

stated how it can be used as a feature selection algorithm.

In the algorithms section, we use SWReg as a regression

method on the selected-out independent variables to explain

the dependent variable.


