
Noname manuscript No.
(will be inserted by the editor)

A Ranking Stability Indicator for Selecting the Best Effort
Estimator in Software Cost Estimation

Jacky Keung · Ekrem Kocaguneli ·
Tim Menzies

Received: 24 December 2010 / Accepted: Feburary 2011
Springer Science+Business Media, LLC 2011

Abstract Software effort estimation research shows that there is no universal agreement
on the “best” effort estimation approach. This is largely due to the “ranking instability”
problem, which is highly contingent on the evaluation criteria and the subset of the data
used in the investigation. There are a large number of different method combination exists
for software effort estimation, selecting the most suitable combination becomes the subject
of research in this paper. Unless we can reasonably determine stable rankings of different
estimators, we cannot determine the most suitable estimator for effort estimation. This pa-
per reports an empirical study using 90 estimation methods applied to 20 datasets as an
attempt to address this question. Performance was assessed using MAR, MMRE, MMER,
MBRE, MIBRE, MdMRE, PRED(25) and compared using a Wilcoxon ranked test (95%).
An comprehensive empirical experiment was carried out. Result shows prior studies of rank-
ing instability of effort estimation approaches may have been overly pessimistic. Given the
large number of datasets, it is now possible to draw stable conclusions about the relative
performance of different effort estimation methods and to select the most suitable ones for
the study under investigation. In this study, regression trees or analogy-based methods are
the best performers in the experiment, and we recommend against neural nets or simple lin-
ear regression. Based on the proposed evaluation method, we are able to determine the most
suitable local estimator for software cost estimation, an important process in the application
of any effort estimation analysis.

Keywords Effort estimation, Data mining, Stability, Linear Regression, Regression Trees,
Neural Nets, Analogy, MMRE, Evaluation Criteria

Jacky Keung
Department of Computing
The Hong Kong Polytechnic University
Kowloon, Hong Kong
E-mail: Jacky.Keung@comp.polyu.edu.hk

Ekrem Kocaguneli and Tim Menzies
Lane Department of Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV 26505, USA
E-mail: ekocagun@mix.wvu.edu, tim@menzies.us

2

1 Introduction

Being able to choose the most suitable software development effort estimator for the local
software projects remains illusive for many project managers. For decades, researchers have
been searching for the “best” software development effort estimator. At the time of writing,
no such “best” estimator has been found which provides consistently the most accurate
estimate. The usual conclusion is that effort estimation suffers from a ranking instability
syndrome; i.e. different researchers offer conflicting rankings as to what is “best” [30, 32].
It seems, different set of best effort estimators exist under various different situations given
different historical sample datasets.

This is an open and urgent issue since accurate effort estimation is vital to Software En-
gineering, and is often a challenging task for many software project managers. Both over-
estimating and underestimating would result unfavorable impacts to the business’s com-
petitiveness and project resource planning. Conventionally, the single most familiar effort
estimator may be used for different situations, this approach may not produce the best effort
estimates for different projects.

Being able to compare and determine the best effort estimator for different scenarios
is critically important to the relevance of the estimates to the target problem under inves-
tigation. Software effort estimation research focuses on the learner used to generate the
estimate (e.g. linear regression, neural nets, etc) in many cases, overlooking the importance
of the quality and characteristics of the data being used in the estimation process. We ar-
gue that this approach is somewhat misguided since, as shown below, learner performance
is greatly influenced by the data preprocessing and the datasets being used to evaluate the
learner.

Ranking stability in software effort estimation should be the primary research focus,
being able to correctly classify the characteristics of each method allows the most suitable
estimators to be used in the estimation process. This paper presents a method which can be
used to determine the best effort estimators to use at different situations.

Method combinations can produce vast different results, in all, this study applies 90
estimators (10 learners and 9 preprocessors) to 20 datasets and measure their performance
using seven performance criteria. To the best of our knowledge, this is the largest effort
estimation study yet reported in the literature. One result of exploring such a large space of
data and algorithms is that we are able to report stable conclusions (while prior studies have
not).

This paper is structured as follows. Section 2 addresses our research challenge and moti-
vation. Related work discusses effort estimation and the prior reports on conclusion instabil-
ity. Those reports used a dataset to seed the generation of artificial data. Our results section
shows that if we extend the experiments to a broader set of methods and project data, we are
able to discover stable conclusions such as that we can list best (and worst) effort estimators.

2 Searching for the Best Estimator

A result of a classification/ranking procedure is a list of performance indicators, ranked
according to their relevance to the target problem. Unlike dataset feature subset selection,
there is no consolidated theory exists in literature for estimator selection stability. Ranked
estimator lists are highly unstable in the sense that different method combining with different
preprocessors may yield very different rankings, and that a small change of the data set
usually affects the obtained estimator list considerably. The estimator ranking stability issue

3

has not been considered for its importance in the literature, but unfortunately, the issue has
not grown into the main focus of research in the last few years, perhaps as a consequence
of immediate benefits of individual development of estimators claimed to be more superior
than the others, but limited to a very specific circumstance.

Without being able to understand the ranking stability, it is unlikely to progress the
research in the area of software cost estimation, as a consequence there is not convincing
evidence to support the practical usage of the developed methods and tools available in the
literature.

To derive stable rankings about which estimator is “best”, there have been attempts
in trying to compare model prediction performance of different approaches. For example,
Shepperd and Kododa [32] compared regression, rule induction, nearest neighbor and neural
nets, in an attempt to explore the relationship between accuracy, choice of prediction system,
and different dataset characteristics by using a simulation study based on artificial datasets.
They also reported a number of conflicting results exist in the literature as to which method
provides superior prediction accuracy, and offered possible explanations including the use
of an evaluation criteria such as MMRE or the underlying characteristics of the dataset
being used can have a strong influence upon the relative effectiveness of different prediction
models. Their work as a simulation study that took a single dataset, then generated very
large artificial datasets using the distributions seen on that data. They concluded that:

– None of these existing estimators were consistently “best”;
– The accuracy of an estimate depends on the dataset characteristic and a suitable predic-

tion model for the dataset.

They conclude that it is generally infeasible to determine which prediction technique is the
“best”.

Recent results suggest that it is appropriate to revisit the ranking instability hypothesis.
Menzies et al. [28] applied 158 estimators to various subsets of two COCOMO datasets. In
a result consistent with Shepperd and Kododa, they found the precise ranking of the 158 es-
timators changed according to the random number seeds used to generate train/test sets; the
performance evaluation criteria used; and which subset of the data was used. However, they
also found that four methods consistently outperformed the other 154 across all datasets,
across 5 different random number seeds, and across three different evaluation criteria.

There are now many datasets in public domain readily available for stability studies.
Figure 1 lists 20 datasets which have become available in the last year at the PROMISE
repository of reusable SE data1. It is no longer necessary to work on simulated data (as
done by Shepperd and Kadoda [32]) or to study merely two datasets (as done by Menzies et
al. [28]).

When previous studies and conclusions are considered, unless we address the instability
issue, we cannot make conclusive remarks about neither the algorithms nor the datasets. Our
fundamental motivations is to question the stability issue and we propose a methodology for
evaluating the stability (see methodology of Figure 6). Given that methodology, we will
propose that if the mean-rank change among methods or datasets is x, then we will need a
dataset or algorithm amount of more than 2 times the value of this x to be able to make stable
conclusions, which allows us to select the correct estimator for software cost estimation.

1 http://promisedata.org/data

4

H
ist

or
ic

al
Ef

fo
rt

D
at

a
D

at
as

et
Fe

at
ur

es
Si

ze
D

es
cr

ip
tio

n
U

ni
ts

M
in

M
ed

ia
n

M
ea

n
M

ax
Sk

ew
ne

ss
co

co
m

o8
1

17
63

N
A

SA
pr

oj
ec

ts
m

on
th

s
6

98
68

3
11

40
0

4.
4

co
co

m
o8

1e
17

28
C

oc
om

o8
1

em
be

dd
ed

pr
oj

ec
ts

m
on

th
s

9
35

4
11

53
11

40
0

3.
4

co
co

m
o8

1o
17

24
C

oc
om

o8
1

or
ga

ni
c

pr
oj

ec
ts

m
on

th
s

6
46

60
24

0
1.

7
co

co
m

o8
1s

17
11

C
oc

om
o8

1
se

m
i-d

et
ac

he
d

pr
oj

ec
ts

m
on

th
s

5.
9

15
6

84
9.

65
64

00
2.

64
na

sa
93

17
93

N
A

SA
pr

oj
ec

ts
m

on
th

s
8

25
2

62
4

82
11

4.
2

na
sa

93
ce

nt
er

1
17

12
N

as
a9

3
pr

oj
ec

ts
fr

om
ce

nt
er

1
m

on
th

s
24

66
13

9.
92

36
0

0.
86

na
sa

93
ce

nt
er

2
17

37
N

as
a9

3
pr

oj
ec

ts
fr

om
ce

nt
er

2
m

on
th

s
8

82
22

3
13

50
2.

4
na

sa
93

ce
nt

er
5

17
40

N
as

a9
3

pr
oj

ec
ts

fr
om

ce
nt

er
5

m
on

th
s

72
57

1
10

11
82

11
3.

4
de

sh
ar

na
is

12
81

C
an

ad
ia

n
so

ftw
ar

e
pr

oj
ec

ts
ho

ur
s

54
6

36
47

50
46

23
94

0
2.

0
de

sh
ar

na
is

L1
11

46
Pr

oj
ec

ts
in

D
es

ha
rn

ai
s

th
at

ar
e

de
ve

lo
pe

d
w

ith
La

ng
ua

ge
1

ho
ur

s
80

5
40

35
.5

57
38

.9
23

94
0

2.
09

de
sh

ar
na

is
L2

11
25

Pr
oj

ec
ts

in
D

es
ha

rn
ai

s
th

at
ar

e
de

ve
lo

pe
d

w
ith

La
ng

ua
ge

2
ho

ur
s

11
55

34
72

51
16

.7
14

97
3

1.
16

de
sh

ar
na

is
L3

11
10

Pr
oj

ec
ts

in
D

es
ha

rn
ai

s
th

at
ar

e
de

ve
lo

pe
d

w
ith

La
ng

ua
ge

3
ho

ur
s

54
6

11
23

.5
16

84
.5

58
80

1.
86

sd
r

22
24

Tu
rk

is
h

so
ftw

ar
e

pr
oj

ec
ts

m
on

th
s

2
12

32
34

2
3.

9
al

br
ec

ht
7

24
Pr

oj
ec

ts
fr

om
IB

M
m

on
th

s
1

12
22

10
5

2.
2

fin
ni

sh
8

38
So

ftw
ar

e
pr

oj
ec

ts
de

ve
lo

pe
d

in
Fi

nl
an

d
ho

ur
s

46
0

54
30

76
78

.3
26

67
0

0.
95

ke
m

er
er

7
15

La
rg

e
bu

si
ne

ss
ap

pl
ic

at
io

ns
m

on
th

s
23

.2
13

0.
3

21
9.

24
11

07
.3

2.
76

m
ax

w
el

l
27

62
Pr

oj
ec

ts
fr

om
co

m
m

er
ci

al
ba

nk
s

in
Fi

nl
an

d
ho

ur
s

58
3

51
89

.5
82

23
.2

63
69

4
3.

26
m

iy
az

ak
i9

4
8

48
Ja

pa
ne

se
so

ftw
ar

e
pr

oj
ec

ts
de

ve
lo

pe
d

in
C

O
B

O
L

m
on

th
s

5.
6

38
.1

87
.4

7
15

86
6.

06
te

le
co

m
3

18
M

ai
nt

en
an

ce
pr

oj
ec

ts
fo

rt
el

ec
om

co
m

pa
ni

es
m

on
th

s
23

.5
4

22
2.

53
28

4.
33

11
15

.5
1.

78
ch

in
a

18
49

9
Pr

oj
ec

ts
fr

om
C

hi
ne

s
so

ftw
ar

e
co

m
pa

ni
es

ho
ur

s
26

18
29

39
21

54
62

0
3.

92
To

ta
l:

11
98

Fig. 1: The 1198 projects used in this study come from 20 data sets. Indentation in column
one denotes a dataset that is a subset of another dataset. For notes on this datasets, see the
appendix.

5

3 Estimation Methods for Software Development Projects

This section reviews the effort estimation literature with regards to (a) the major estimation
techniques used by empirical research studies on cost estimation within the last 15 years and
(b) the conclusion instability problem.

3.1 Algorithmic Methods

There are many algorithmic effort estimators. For example, if we restrict ourselves to just
instance-based algorithms, Figure 2 shows that there are thousands of options just in that
one sub-field.

As to non-instance methods, there are many proposed in the literature including vari-
ous kinds of regression (simple, partial least square, stepwise, regression trees), and neural
networks just to name a few. For notes on these non-instance methods, see §4.3.

Note that instance & non-instance-based methods can be combined to create even more
algorithms. For example, once an instance-based method finds its nearest neighbors, those
neighbors might be summarized with regression or neural nets [25].

3.2 Non-Algorithmic Methods

An alternative approach to algorithmic approaches (e.g. the instance-based methods of Fig-
ure 2) is to utilize the best knowledge of an experienced expert. Expert based estimation [13]
is a human intensive approach that is most commonly adopted in practice. Estimates are usu-
ally produced by a domain expert based on their very own personal experience. It is flexible
and intuitive in a sense that it can be applied in a variety of circumstances where other
estimating techniques do not work (for example when there is a lack of historical data). Fur-
thermore in many cases requirements are simply unavailable at the bidding stage of a project
where a rough estimate is required in a very short period of time.

Jorgensen [14] provides guidelines for producing realistic software development effort
estimates derived from industrial experience and empirical studies. One important finding
concluded was that the combined estimation method in expert based estimation offers the
most robust and accurate combination method, as combining estimates captures a broader
range of information that is relevant to the target problem, for example combining estimates
of analogy based with expert based method. Data and knowledge relevance to the project’s
context and characteristics are more likely to influence the prediction accuracy.

Although widely used in industry, there are no standard methods for expert based esti-
mation. Shepperd et al. [34] do not consider expert based estimation an empirical method
because the means of deriving an estimate are not explicit and therefore not repeatable, nor
easily transferable to other staff. In addition, knowledge relevancy is also a problem, as an
expert may not be able to justify estimates for a new application domain. Hence, the rest of
this paper does not consider non-algorithmic methods.

4 Experiment Design

In our experiments, numerous performance measures were collected after various algo-
rithms (combinations of preprocessors and learners) were applied to the data of Figure 1.
This section describes those performance measures, preprocessors, and learners.

6

Instances-based learners draw conclusions from instances near the test instance. Mendes et al. [27]
discuss various near-ness measures.

M1 : A simple Euclidean measure;
M2 : A “maximum distance” measure that that focuses on the single feature that maximizes inter-

project distance.
M3 : More elaborate kernel estimation methods.

Once the nearest neighbors are found, they must be used to generate an effort estimate via...

R1 : Reporting the median effort value of the analogies;
R2 : Reporting the mean dependent value;
R3 : Reporting a weighted mean where the nearer analogies are weighted higher than those further

away [27];

Prior to running an instance-based learning, it is sometimes recommended to handle anomalous rows
by:

N1 : Doing nothing at all;
N2 : Using outlier removal [18];
N3 : Prototype generation; i.e. replace the data set with a smaller set of most representative exam-

ples [8].

When computing distances between pairs, some feature weighting scheme is often applied:

W1 : All features have uniform weights;
W2..W9 : Some pre-processing scores the relative value of the features using various methods [12, 18, 25].

The pre-processors may require discretization.

Discretization breaks up continuous ranges at points b1, b2, ..., each containing counts of c1, c2, ... of
numbers [11]. Discretization methods include:

D1 : Equal-frequency, where ci = cj ;
D2 : Equal-width, where bi+1 − bi is a constant;
D3 : Entropy [9];
D4 : PKID [36];
D5 : Do nothing at all.

Finally, there is the issue of how many k neighbors should be used:

K1 : k = 1 is used by Lipowezky et al. [26] and Walkerden & Jeffery [35];
K2 : k = 2 is used by Kirsopp & Shepperd [19]
K3 : k = 1, 2, 3 is used by Mendes el al. [27]
K4 : Li et al. use k = 5 [25];
K5 : Baker tuned k to a particular training set using an experimental method [3].

Fig. 2: Each combination of the above N×W×D×M×R×K techniques is one algorithm
for instance-based effort estimation. This figure shows 3 × 3 × 3 × 9 × 5 × 5 > 6, 000
algorithms for effort estimation. Some of these ways can be ruled out, straight away. For
example, at k = 1, then all the adaptation mechanisms return the same result. Also, not all
the feature weighting techniques require discretization, decreasing the space of options by a
factor of five. However, even after discarding some combinations, there are still hundreds to
thousands of algorithms to explore.

Since it is impractical to explore (say) the thousands of options described in Figure 2,
we elected to explore variants commonly used in the literature. For example, we explore
neural nets, regression, and analogy because those methods were explored by Shepherd and
Kododa [32]. Nevertheless, it is important to note that our conclusions come only from
the estimators/performance criteria/datasets used in this study. Further work is required to
confirm our findings on other estimators/performance criteria/datasets.

7

4.1 Performance Measures

Performance measures comment on the success of a prediction. For example, the absolute
residual (AR) is the difference between the predicted and the actual:

ARi = xi − x̂i (1)

(where xi, x̂i are the actual and predicted value for test instance i).
The Magnitude of Relative Error measure a.k.a. MRE is a very widely used evaluation

criterion for selecting the best effort estimator from a number of competing software pre-
diction models [33] [10]. MRE measures the error ratio between the actual effort and the
predicted effort and can be expressed as the following equation:

MREi =
| xi − x̂i |

xi
=

| ARi |
xi

(2)

A related measure is MER (Magnitude of Error Relative to the estimate [10]):

MERi =
| xi − x̂i |

x̂i
=

| ARi |
x̂i

(3)

The overall average error of MRE can be derived as the Mean or Median Magnitude of
Relative Error measure (MMRE, or MdMRE respectively), can be calculated as:

MMRE =

∑n
i=1 MREi

n
(4)

MdMRE = median(allMREi) (5)

A common alternative to MMRE is PRED(25), and defined as the percentage of predic-
tions failing within 25% of the actual values, and can be expressed as:

PRED(25) =
100

N

N∑

i=1

{
1 if MREi ≤ 25

100
0 otherwise (6)

For example, PRED(25)=50% implies that half of the estimates are failing within 25% of
the actual values [33].

There are many other performance measures including Mean Balanced Relative Er-
ror (MBRE) and the Mean Inverted Balanced Relative Error (MIBRE) studied by Foss et
al. [10]:

MBREi =
x̂i − xi

min(x̂i, xi)
(7)

MIBREi =
x̂i − xi

max(x̂i, xi)
(8)

8

4.2 Ten Pre-processors

In this study, we investigate:

– Three simple preprocessors: none, norm, and log;
– One feature synthesis methods called PCA;
– Two feature selection methods: SFS (sequential forward selection) and SWreg;
– Four discretization methods: divided on equal frequency/width.

None is the simplest preprocessor- all values are unchanged.
With the norm preprocessor, numeric values are normalized to a 0-1 interval using

Equation 9. Normalization means that no variable has a greater influence that any other.

normalizedV alue =
(actualV alue−min(allV alues))

(max(allV alues)−min(allV alues))
(9)

With the log preprocessor, all numerics are replaced with their logarithm. This logging
procedure minimizes the effects of the occasional very large numeric value.

Principal component analysis [1], or PCA, is a feature synthesis preprocessor that con-
verts a number of possibly correlated variables into a smaller number of uncorrelated vari-
ables called components. The first component accounts for as much of the variability in the
data as possible, and each succeeding component accounts for as much of the remaining
variability as possible.

Some of the preprocessors aim at finding a subset of all features according to certain
criteria such as SFS (sequential forward selection) and SWR (stepwise regression). SFS
adds features into an initially empty set until no improvement is possible with the addition
of another feature. When ever the selected feature set is enlarged, some oracle is called
to assess the value of that set of features. In this study, we used the MATLAB, objective
function (which reports the the mean-squared-error of a simple linear regression on the
training set). One caution to be made here is that exhaustive search algorithms over all
features can be very time consuming (2n combinations in an n-feature dataset), therefore
SFS works only in forward direction (no backtracking).

SWR adds and removes features from a multilinear model. Addition and removal is
controlled by the p-value in an F-Statistic. At each step, the F-statistics for two models
(models with/out one feature) are calculated. Provided that the feature was not in the model,
the null hypothesis is: “Feature would have a zero coefficient in the model, when it is added”.
If the null hypothesis can be rejected, then the feature is added to the model. As for the other
scenario (i.e. feature is already in the model), the null hypothesis is: “Feature has a zero
coefficient”. If we fail to reject the null hypothesis, then the term is removed.

Discretizers are pre-processors that maps every numeric value in a column of data into
a small number of discrete values:

– width3bin: This procedure clumps the data features into 3 bins, depending on equal
width of all bins see Equation 10.

binWidth = ceiling
(
max(allV alues)−min(allV alues)

n

)
(10)

– width5bin: Same as width3bin except we use 5 bins.
– freq3bin: Generates 3 bins of equal population size;
– freq5bin: Same as freq3bin, only this time we have 5 bins.

9

4.3 Nine Learners

Based on our reading of the effort estimation literature, we identified nine commonly used
learners that divide into

– Two instance-based learners: ABE0-1NN, ABE0-5NN;
– Two iterative dichotomizers: CART(yes),CART(no);
– A neural net: NNet;
– Four regression methods: LReg, PCR, PLSR, SWReg.

Instance-based learning can be used for analog-based estimation. A large class of ABE
algorithms was described in Figure 2. Since it is not practical to experiment with the 6000
options defined in Figure 2, we focus on two standard variants. ABE0 is our name for a
very basic type of ABE that we derived from various ABE studies [15, 25, 27]. In ABE0-
xNN, features are firstly normalized to 0-1 interval, then the distance between test and train
instances is measured according to Euclidean distance function, x nearest neighbors are
chosen from training set and finally for finding estimated value (a.k.a adaptation procedure)
the median of x nearest neighbors is calculated. We explored two different x:

– ABE0-1NN: Only the closest analogy is used. Since the median of a single value is
itself, the estimated value in ABE0-1NN is the actual effort value of the closest analogy.

– ABE0-5NN: The 5 closest analogies are used for adaptation.

Iterative Dichotomizers seek the best attribute value splitter that most simplifies the data
that fall into the different splits. Each such splitter becomes a root of a tree. Sub-trees are
generated by calling iterative dichotomization recursively on each of the splits. The CART
iterative dichotomizer [7] is defined for continuous target concepts and its splitters strive
to reduce the GINI index of the data that falls into each split. In this study, we use two
variants:

– CART (yes): This version prunes the generated tree using cross-validation. For each
cross-val, an internal nodes is made into a leaf (thus pruning its sub-nodes). The sub-
tree that resulted in the lowest error rate is returned.

– CART (no): Uses the full tree (no pruning).

In Neural Nets, or NNet, an input layer of project details is connected to zero or more
“hidden” layers which then connect to an output node (the effort prediction). The connec-
tions are weighted. If the signal arriving to a node sums to more than some threshold, the
node “fires” and a weight is propagated across the network. Learning in a neural net com-
pares the output value to the expected value, then applies some correction method to improve
the edge weights (e.g. back propagation). Our NNet uses three layers.

This study also uses four regression methods. LReg is a simple linear regression algo-
rithm. Given the dependent variables, this learner calculates the coefficient estimates of the
independent variables. SWreg is the stepwise regression discussed above. Whereas above,
SWreg was used to select features for other learners, here we use SWreg as a learner (that
is, the predicted value is a regression result using the features selected by the last step of
SWreg). Partial Least Squares Regression (PLSR) as well as Principal Components Regres-
sion (PCR) are algorithms that are used to model a dependent variable. While modeling an
independent variable, they both construct new independent variables as linear combinations
of original independent variables. However, the ways they construct the new independent
variables are different. PCR generates new independent variables to explain the observed
variability in the actual ones. While generating new variables the dependent variable is not

10

considered at all. In that respect, PCR is similar to selection of n-many components via
PCA (the default value of components to select is 2, so we used it that way) and applying
linear regression. PLSR, on the other hand, considers the independent variable and picks up
the n-many of the new components (again with a default value of 2) that yield lowest error
rate. Due to this particular property of PLSR, it usually results in a better fitting.

4.4 Experimental Rig

This study copied the experimental rig of a recent prominent study [24]. In their leave-one-
out experiment, given T projects, then ∀t ∈ T , t is the test and the remaining T − 1 projects
are used for training. The resulting T − 1 predictions are then used to compute our seven
evaluation criteria given in Section 3.1.

To compare the performance of one algorithm versus the rest, we used a Wilcoxon non-
parametric statistical hypothesis test. Wilcoxon is more robust than the Student’s t-test as it
compares the sums of ranks, unlike Student’s t-test which may introduce spurious findings
as a result of presence of outliers may be existed in the given datasets. Ranked statistical
tests like the Wilcoxon are also useful if it is not clear that the underlying distributions are
Gaussian [22].

Using the Wilcoxon test, for each dataset, the performance measures collected from
each of our 90 algorithms was compared to the 89 others. This allowed us to collect win-tie-
loss statistics using the algorithm of Figure 3. First, we want to check if two distributions
i, j are statistically different according to the Wilcoxon test (95% confident); otherwise we
increment tiei and tiej . If the distributions are statistically different, we update wini, winj

and lossi, lossj after comparing their median values.

if WILCOXON(Pi, Pj , 95) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if better(median(Pi), median(Pj)) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 3: Comparing algorithms (i,j) on performance (Pi,Pj). The “better” predicate changes
according to P . For error measures like MRE, “better” means lower medians. However, for
PRED(25), “better” means higher medians.

5 Results

After applying leave-one-out to all 20 data sets, the procedure of Figure 3 was repeated seven
times (once for MAR, MMRE, MMER, MBRE, MIBRE, MdMRE and PRED(25)). Our

11

rank pre-processor learner rank pre-processor learner
1 norm CART (yes) 46 PCA NNet
2 norm CART (no) 47 width3bin ABE0-5NN
3 none CART (yes) 48 none NNet
4 none CART (no) 49 width5bin SWR
5 log CART (yes) 50 width5bin ABE0-1NN
6 log CART (no) 51 none LReg
7 SWR CART (yes) 52 width5bin ABE0-5NN
8 SWR CART (no) 53 SFS NNet
9 SFS CART (yes) 54 norm PLSR
10 SFS CART (no) 55 freq5bin ABE0-1NN
11 SWR ABE0-1NN 56 SWR NNet
12 log ABE0-1NN 57 SWR LReg
13 SWR ABE0-5NN 58 norm LReg
14 SFS ABE0-5NN 59 freq3bin ABE0-1NN
15 PCA PLSR 60 freq3bin CART (yes)
16 SWR PCR 61 freq3bin CART (no)
17 none PLSR 62 PCA ABE0-1NN
18 SFS ABE0-1NN 63 width3bin SWR
19 PCA PCR 64 width5bin PLSR
20 none PCR 65 log SWR
21 PCA CART (yes) 66 log PCR
22 PCA CART (no) 67 log PLSR
23 freq5bin ABE0-5NN 68 width3bin PLSR
24 SWR PLSR 69 width3bin ABE0-1NN
25 SFS LReg 70 width5bin PCR
26 norm ABE0-1NN 71 norm PCR
27 none ABE0-1NN 72 width3bin PCR
28 SFS PCR 73 freq5bin PCR
29 SFS PLSR 74 freq5bin SWR
30 freq5bin CART (yes) 75 width3bin LReg
31 freq5bin CART (no) 76 freq3bin PCR
32 width5bin CART (yes) 77 width5bin LReg
33 width5bin CART (no) 78 freq3bin PLSR
34 norm ABE0-5NN 79 freq5bin PLSR
35 PCA SWR 80 log LReg
36 none ABE0-5NN 81 freq3bin SWR
37 SWR SWR 82 freq5bin LReg
38 SFS SWR 83 width5bin NNet
39 log ABE0-5NN 84 norm NNet
40 norm SWR 85 width3bin NNet
41 none SWR 86 log NNet
42 freq3bin ABE0-5NN 87 freq3bin NNet
43 PCA ABE0-5NN 88 freq5bin NNet
44 width3bin CART (yes) 89 freq3bin LReg
45 width3bin CART (no) 90 PCA LReg

Fig. 4: Detailed algorithm combinations, sorted by the sum of their losses seen in all per-
formance measures and all data sets. The algorithm with fewest losses is ranked #1 and is
norm/CART(yes). At the other end of the scale, the algorithm with the most losses is ranked
#90 and is PCA/LReg.

ninety algorithms were then sorted by their total number of losses over all datasets. The re-
sulting sort order is shown in Figure 4. The algorithm, with fewest losses (norm/CART(yes))
was ranked #1 and the algorithm with the most losses (PCA/LReg) was ranked #90.

Given 89 comparisons and seven performance measures and 20 datasets, the maximum
number of losses for any algorithm was 89 × 7 × 20 = 12, 460. Figure 5 sorts all 90 algo-
rithms according to their total losses seen in all seven performance criteria (expressed as a
percentage of 12,460). The x-index of that figure corresponds to the ranks of Figure 4; e.g.
the top ranked method of norm/CART(yes) lost in nearly zero percent of our experiments.

Figure 6 tests the stability of the methods. In this plot, we check if the sort orders are
changed by different performance criteria:

12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

pe
rc

en
ta

ge
 o

f l
os

se
s

methods, sorted by number of losses

Fig. 5: The ninety algorithms of Figure 4, sorted by their percentage of maximum possible
losses (so 100% = 12,460).

– In Figure 6, we report the mean of maximum rank changes for each method with respect
to their ordering in Figure 4.

– Each error measure defines its own ordering of methods w.r.t. its win, loss or win−
loss values.

– Maximum rank change is the maximum absolute difference between either of these
orderings and the ordering of Figure 4.

– Then, mean of maximum rank changes coming from 7 performance measures gives
us Figure 6.

The sort order on the x-axis of Figure 6 was kept the same as the before. A line drawn parallel
to x-axis at y = 10 gives methods, whose mean rank change is less/more than 10. See in
Figure 6 that y = 10 line divides all methods into 3 regions: a (from method 1 to 13), b (from
method 14 to 64) and c (from method 65 to 90). Regions a and c show “high-ranked” and
“low-ranked” methods respectively. None of the methods in regions a and c exceed mean
rank change of 10, i.e. they are “stable” in high and low ranks. In region b “medium-ranked”
methods are accumulated. However, all methods in region b have mean rank changes above
10, i.e. they are “unstable” in this region. In a result consistent with prior reports on ranking
instability, the lines in each region are not exactly smooth. However, they do closely follow
the same general trends as Figure 5 and Figure ??.

Since the sort orders seen using the number of losses and mean rank changes over seven
performance criteria are mostly stable, we use them to draw Figure 7. In that figure, each
x,y position shows the results of 623 comparisons (each algorithm compared to 89 oth-
ers using seven performance measures; 89× 7 = 623). The y-axis of that figure shows the
90 algorithms sorted in the rank order of Figure 4. For example, the top-ranked algorithm
norm/CART(yes) appears at y=1; the log/ABE0-1NN result appears at y=12; the log/LReg
results appear at y=80; and the worst-ranked algorithm PCA/LReg appears at y=90.

In order to discuss which learners/preprocessors are “best”, we divide Figure 7 into 3
bands of Figure 6. We reserve the lowest band from method 1 to 13 (containing the “best”
estimators) for the region where all algorithms have a mean rank change of smaller than
10. Note that algorithms in that region almost always lose less than 1

8 th of the time (i.e.
the rows y = 1 to y = 13 that are almost completely yellow in Figure 7). In the other

13

bands (boundaried at y = 14 to y = 64 and y = 65 to y = 90), algorithms lose much
more frequently, i.e. behavior of methods in the loss percentage graph of Figure 7 are in
agreement with rank change graph of Figure 6.

Figure 8 shows the spectrum of PRED(25) values across the 3 bands. As might be expect,
the y-axis sort order of Figure 8 predicts for estimation accuracy. As we move over the three
bands from worst to best, the PRED(25) values double (approximately), thus confirming the
unique performance of algorithms in each band.

Figure 9 shows the frequency counts of preprocessors and learners grouped into the five
bands:

– A “good” preprocessor/learner appears often in the lower bands (tendency towards band
a). In Figure 9, CART is an example of a “good” learner.

– A “poor” preprocessor/learner appears more frequently in the higher bands (tendency
towards band c). In Figure 9, all the discretization preprocessors (e.g. freq3bin) are
“poor” preprocessors.

– The gray rows of Figure 9 shows preprocessor/learner that are neither “good” nor “poor”
(since they exist in all 3 bands have high frequency counts in bands b and c); e.g. see the
log preprocessor.

6 Discussion

6.1 Findings

Based on these figures and results, we summarize our findings as follows.
Result1: Observe how the majority of the squares on the left-hand-side of Figure 7 are

yellow. In that mostly-yellow region, algorithms loss vary rarely against other algorithms
(in less that 1

8
th of all comparisons). Also notice how higher loss percentages (more than

50%) become dominant on the right-hand-side. For the purposes of finding the best effort
estimator, the data sets on the far left and right-hand-sides are not very suitable since they
hardly distinguish the performance of different algorithms.

Result2: Observing the small amounts of “jitter” in Figure 6 we can see that our results
are not 100% stable, they are only sufficiently stable to draw conclusions. We conjecture
that prior reports on ranking instability could stem from using too few data sets or too few
algorithms.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 13 20 40 64 80 90m
ea

n
m

ax
-ra

nk
-c

ha
ng

es

algorithms, sorted as per Figure 5

a (1 to 13) b (14 to 64) c (65 to 90)

Fig. 6: Algorithms and the mean of their maximum rank changes over all performance mea-
sures. Mean rank change of smaller than 10 divides 90 methods into 3 regions. Region a
consists of high-ranked stable methods, whereas region çontains low-ranked but still stable
methods. Region b on the other hand shows middle-ranked and non-stable methods.

14

 13

 20

 40

 60
 64

90

telecom
kemerer
cocomo81o
desharnaisL1
cocomo81s
desharnaisL3
albrecht
cocomo81e
nasa93_center_5

desharnaaisL2

desharnais
maxwell
sdr
nasa93_center_1

miyazaki94
nasa93_center_2

finnish
cocomo81
nasa93
china

90
 a

lg
or

ith
m

s,
 s

or
te

d
by

 lo
ss

es
 in

 a
ll d

at
a

se
ts

log
LReg

log ABE0
1NN

< 12.5% losses
< 25.0% losses
< 50.0% losses

>= 50.0% losses

Fig. 7: Number of losses seen in 90 methods and 20 datasets. expressed as a percentage
of the maximum losses possible for one method in one dataset (so 100% =623; 50%=311;
25%=156; 12.5%=78). The algorithms on the y-axis are sorted according to Figure 5.

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90

PR
ED

(2
5)

all preds, sorted

Performance, grouped by algorithms

algorithms 1..13
algorithms 14..64
algorithms 65..90

Fig. 8: Spectrum of Pred(25) across the bands

Result3: Observe how, in Figure 4, learners found at one rank with a one preproces-
sor, can jump to a very different rank if the different preprocessor is changed. For example,
the top-ranked method that uses CART(yes), is driven down to rank 60 if the preprocessor
is changed from norm to freq3bin. Clearly, the effectiveness of a learner can be signifi-

15

Occurrence of algorithms in bands a, b, c
band a band b band c

y = 1..13 14..64 65..90

Le
ar

ne
rs

CART (yes) 34 28 1
CART (no) 33 28 2

ABE0-5NN 6 55 2
ABE0-1NN 11 44 8

PCR 3 29 31
PLSR 3 35 25
LReg 22 41
SWR 46 17
NNet 20 43

Pr
e-

Pr
oc

es
so

rs

SWR 25 37 1
SFS 14 49

none 14 48 1
log 20 17 26

norm 14 33 16
PCA 4 49 10

freq5bin 28 35
width3bin 31 32
width5bin 42 21

freq3bin 23 40

Fig. 9: Frequency counts over 7 error measures for preprocessor and learners in the three
bands of Figure 6.

cantly altered by seemingly trivial details relating to data preprocessing. Hence, in future,
researchers should explore learners and the preprocessors, as they are both equally impor-
tant.

Result4: Observe in Figure 9 how SWR, LReg and NNet are stand-out learners in that
fall entirely into the worst two bands. Proponents of these learners need to defend their value
for the purposes of effort estimation.

The relatively poor performance of simple linear regression is a highly significant result.
LReg, with a log preprocessor, is the core technology of many prior publications; e.g. the
entire COCOMO project [5]. Yet as shown in Figure 7, w.r.t. loss values over all error mea-
sures, log/LReg ranks very poorly (position 80 out of a maximum of 90 algorithms). We also
did experiments at individual level of error measures. At individual level the ranking is not
very different either, i.e. the ranking of LReg w.r.t. loss values over MAR, MMRE, MMER,
MBRE, MIBRE, MdMRE and Pred(25) are 80, 76, 81, 80, 75, 76 and 78 respectively.

Result5: While SWR falls into the worst two bands of the learners, it is most commonly
found in the best two bands of the preprocessors. That is, stepwise regression is a poor
learner but a good preprocessor. Hence, in future, the fate of SWR might be as an assistant
to other algorithms.

Result6: While simple regression methods like LReg are depreciated by this study, more
intricate regression methods like regression trees (CART) and partial linear regression PLSR
are found in the better bands. Hence, in future, proponents of regression for effort estimation
might elect to explore more intricate forms of regression than just simple LReg.

Result7: The top-ranked algorithm was norm/CART.
Result8: Simple methods (e.g. k=1 nearest neighbor on the log of the numerics) perform

nearly as well as the top-ranked algorithm. Figure 10 compares the PRED(25) results be-
tween rank=12 and rank=1. The datasets in that figure are sorted by the difference between
the top-ranked and the twelfth-ranked algorithm. Except for China dataset, the difference in
PRED(25) values is either slightly negative, or positive. That is, even though the rank=1 al-

16

gorithm is relatively “best” (measured according to our comparative Wilcoxon tests), when
measured in an absolute sense, it is not impressively better than simpler alternatives.

norm/CART(yes) log/ABE0-1NN difference
kemerer 7 27 -20

desharnaisL3 20 40 -20
nasa93 center 2 43 57 -14

nasa93 29 39 -10
cocomo81s 9 18 -9

albrecht 33 42 -9
telecom1 33 39 -6

cocomo81 13 16 -3
nasa93 center 5 36 33 3

desharnaisL1 39 35 4
cocomo81o 29 21 8

desharnaisL2 48 40 8
cocomo81e 18 7 11
desharnais 43 32 11

sdr 42 29 13
miyazaki94 40 25 15

maxwell 32 15 17
finnish 61 37 24

nasa93 center 1 58 33 25
china 95 43 52

Fig. 10: Using all data sets to compare the Pred(25) of norm/CART (rank=1) and log/ABE0-
1NN (rank=12).

Result8 is an important result, for three reasons. Firstly, there are many claims in the
literature that software project follows a particular parametric form. For example, in the
COCOMO project, that form is effort ∝ KLOCx) The fact that non-parametric instance
methods perform nearly as well as our best method suggests that debates about the paramet-
ric form of effort estimation is misguided. Also, it means that the value of certain commercial
estimation tools based on a particular parametric form may not be much more than simple
instance-based learners.

Secondly, analogy-based estimation methods are widely used [2, 16–18, 20, 23–25, 33–
35]. Result8 says that while this approach may not be 100% optimal in all cases, compared to
our best estimator found by this study, there is not a dramatic lost if estimates are generated
by analogy. Prior to this publication, we are unaware of a large comparative study relating
to this matter.

Thirdly it is easier to teach and experiment with simpler algorithms (like the log/ABE0-
1NN algorithm at rank=12) than more complex algorithms (like the norm/CART algorithm
at rank=1). For example, recently we have been experimenting with a very simple variant of
ABE0-1NN that is useful as a learner to find software process change [6]. Such experimen-
tation would have been hindered if we tried to modify the more complex CART algorithm
(particularly if we included sub-tree pruning).

6.2 Validity

Construct validity (i.e. face validity) assures that we are measuring what we actually in-
tended to measure [31]. Previous studies have concerned themselves with the construct va-
lidity of different performance measures for effort estimation (e.g. [10]). While, in theory,
these performance measures have an impact on the rankings of effort estimation algorithms,

17

we have found that other factors dominate. For example, Figure 7 showed that some of the
datasets have a major impact on what could be concluded after studying a particular estima-
tor on these data set. We also show empirically the surprising result that our results regarding
algorithms are stable across a range of performance criteria.

External validity is the ability to generalize results outside the specifications of that
study [29]. To ensure external validity, this paper has studied a large number of projects.
Our data sets are diverse, measured in terms of their sources, their domains and the time
they were developed in. We use datasets composed of software development projects from
different organizations around the world to generalize our results [4]. Our reading of the
literature is that this study uses more data, from more sources, than numerous other papers.
For example, Table 4 of [21] list the total number of projects used by a sample of other
studies. The median value of that sample is 186; i.e. one-sixth of the 1198 projects used
here.

As to the external validity of our choice of algorithms, recalling Figure 2, it is clear
that this study has not explored the full range of effort estimation algorithms. Clearly, future
work is required to repeat this study using the “best of breed” found here (e.g. bands one
and two of Figure 9 as well as other algorithms).

Having cast doubts on our selection of algorithms, we hasten to add that this paper has
focused on algorithms that have been extensively studied in the literature [33] as well as
the commonly available datasets (that is, the ones available in the PROMISE repository
of reusable SE data). That is, we assert that these results should apply to much to current
published literature on effort estimation.

7 Conclusion

In this study, ten learners and nine data preprocessors were combined into 90 effort estima-
tion algorithms. These were applied to twenty datasets. Performance was measured using
seven performance indicators (AR, MRE, MER, MdMRE, MMRE, PRED(25), MBIRE).
Performances were compared using a Wilcoxon ranked test (95%). To the best of our knowl-
edge, this is the largest and most comprehensive effort estimation study yet reported in the
literature. Eight results are noteworthy:

1. Prior reports of ranking instability about effort estimation may have been overly pes-
simistic. Given relatively large number of publicly available effort estimation datasets,
it is now possible to make stable rankings about the relative value of different effort
estimators.

2. The effectiveness of a learner used for effort estimation (e.g. regression or analogy meth-
ods) can be significantly altered by data preprocessing (e.g. logging all numbers or nor-
malizing them zero to one).

3. Neural nets and simple linear regression perform much worse than other learners such
as analogy learners.

4. Stepwise regression was a very useful preprocessor, but surprisingly a poor learner.
5. Non-simple regression methods such as regression trees and partial linear regression are

relatively strong performers.
6. Regression trees that use tree pruning performed best of all in this study (with a prepro-

cessor that normalized the numerics into the range zero to one).
7. Very simple methods (e.g. K=1 nearest neighbor on the log of the numerics) performed

nearly as well as regression trees.

18

Lastly, this is an empirical paper that reports, but does not explain, the rankings of data
sets and algorithms seen in Figure 7. An open question raised by this work is what features of
our algorithms resulted in their rankings. While we have no current theory on what explains
the algorithm ordering, we speculate that the dataset ordering might be explained by the
regions of local high variance in their internal structure. However, at the time of this writing,
we have no convincing evidence for that speculation.

Given the significance of this study, an important goal for future work would be to
determine the reason for the algorithm ranking seen in this study.

References

1. E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.
2. M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl. Optimal project feature weights in

analogy-based cost estimation: Improvement and limitations. IEEE Transactions on Software Engineer-
ing, 32:83–92, 2006.

3. D. Baker. A hybrid approach to expert and model-based effort estimation. Master’s thesis, Lane Depart-
ment of Computer Science and Electrical Engineering, West Virginia University, 2007. Available from
https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443.

4. A. Bakir, B. Turhan, and A. Bener. A new perspective on data homogeneity in software cost estimation:
A study in the embedded systems domain. Software Quality Journal, 2009.

5. B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1981.

6. A. Brady and T. Menzies. Case-based reasoning vs parametric models for software quality optimization.
In International Conference on Predictive Models in Software Engineering PROMISE’10. IEEE, Sept.
2010.

7. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984.

8. C. Chang. Finding prototypes for nearest neighbor classifiers. IEEE Trans. on Computers, pages 1179–
1185, 1974.

9. U. M. Fayyad and I. H. Irani. Multi-interval discretization of continuous-valued attributes for classifica-
tion learning. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence,
pages 1022–1027, 1993.

10. T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the model evaluation criterion
mmre. IEEE Transactions on Software Engineering, 2003.

11. J. Gama and C. Pinto. Discretization from data streams: applications to histograms and data mining. In
SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pages 662–667, New York,
NY, USA, 2006. ACM Press. Available from http://www.liacc.up.pt/˜jgama/IWKDDS/
Papers/p6.pdf.

12. M. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining.
IEEE Transactions On Knowledge And Data Engineering, 15(6):1437–1447, 2003.

13. M. Jørgensen. A review of studies on expert estimation of software development effort. Journal of
Systems and Software, 70(1-2):37–60, 2004.

14. M. Jorgensen. Practical guidelines for expert-judgment-based software effort estimation. Software,
IEEE, 22(3):57–63, 2005. 0740-7459.

15. G. Kadoda, M. Cartwright, and M. Shepperd. On configuring a case-based reasoning software project
prediction system. UK CBR Workshop, Cambridge, UK, pages 1–10, 2000.

16. J. Keung. Empirical evaluation of analogy-x for software cost estimation. In ESEM ’08: Proceedings of
the Second ACM-IEEE international symposium on Empirical software engineering and measurement,
pages 294–296, New York, NY, USA, 2008. ACM.

17. J. Keung and B. Kitchenham. Experiments with analogy-x for software cost estimation. In ASWEC ’08:
Proceedings of the 19th Australian Conference on Software Engineering, pages 229–238, Washington,
DC, USA, 2008. IEEE Computer Society.

18. J. W. Keung, B. A. Kitchenham, and D. R. Jeffery. Analogy-x: Providing statistical inference to analogy-
based software cost estimation. IEEE Trans. Softw. Eng., 34(4):471–484, 2008.

19. C. Kirsopp and M. Shepperd. Making inferences with small numbers of training sets. IEEE Proc., 149,
2002.

19

20. C. Kirsopp, M. Shepperd, and R. Premrag. Case and feature subset selection in case-based software
project effort prediction. Research and development in intelligent systems XIX: proceedings of ES2002,
the twenty-second SGAI International Conference on Knowledge Based Systems and Applied Artificial
Intelligence, page 61, 2003.

21. B. Kitchenham, E. Mendes, and G. H. Travassos. Cross versus within-company cost estimation studies:
A systematic review. IEEE Trans. Softw. Eng., 33(5):316–329, 2007. Member-Kitchenham, Barbara A.

22. J. Kliijnen. Sensitivity analysis and related analyses: a survey of statistical techniques. Journal Statistical
Computation and Simulation, 57(1–4):111–142, 1997.

23. J. Li and G. Ruhe. A comparative study of attribute weighting heuristics for effort estimation by anal-
ogy. Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering,
page 74, 2006.

24. J. Li and G. Ruhe. Decision support analysis for software effort estimation by analogy. In International
Conference on Predictive Models in Software Engineering PROMISE’07, May 2007.

25. Y. Li, M. Xie, and T. Goh. A study of project selection and feature weighting for analogy based software
cost estimation. Journal of Systems and Software, 82:241–252, 2009.

26. U. Lipowezky. Selection of the optimal prototype subset for 1-nn classification. Pattern Recognition
Letters, 19:907–918, 1998.

27. E. Mendes, I. D. Watson, C. Triggs, N. Mosley, and S. Counsell. A comparative study of cost estimation
models for web hypermedia applications. Empirical Software Engineering, 8(2):163–196, 2003.

28. T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum. Stable rankings for different effort models. Auto-
mated Software Engineering, 17:409–437, 2010.

29. D. Milic and C. Wohlin. Distribution patterns of effort estimations. In Euromicro, 2004.
30. I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative studies of software

prediction models. Software Engineering, IEEE Transactions on, 31(5):380 – 391, may 2005.
31. C. Robson. Real world research: a resource for social scientists and practitioner-researchers. Blackwell

Publisher Ltd, 2002.
32. M. Shepperd and G. Kadoda. Comparing software prediction techniques using simulation. Software

Engineering, IEEE Transactions on, 27(11):1014 –1022, nov 2001.
33. M. Shepperd and C. Schofield. Estimating software project effort using analogies. Software Engineering,

IEEE Transactions on, 23(11):736 –743, nov 1997.
34. M. Shepperd, C. Schofield, and B. Kitchenham. Effort estimation using analogy. In Software Engineer-

ing, 1996., Proceedings of the 18th International Conference on, pages 170 –178, 25-29 1996.
35. F. Walkerden and R. Jeffery. An empirical study of analogy-based software effort estimation. Empirical

Softw. Engg., 4(2):135–158, 1999.
36. Y. Yang and G. I. Webb. A comparative study of discretization methods fornaive-bayes classifiers. In

Proceedings of PKAW 2002: The 2002 Pacific Rim Knowledge Acquisition Workshop, pages 159–173,
2002.

