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Abstract—

BACKGROUND: Given many possible changes to a software project, which ones are recommended?

AIM: To comparatively assess different decision procedures for recommending project changes.

METHOD: We search for project recommendations within data from eight projects using various AI tools: six model-based methods

and one instance-based method called W2. Results were assessed by comparing effort, defects, development time values in the raw

data versus the subset of the data selected by those recommendations.

RESULTS: In the majority case, significantly large reductions on effort, defects and development time were achieved. Further, W2

performed as well, or better, than any other methods in this study. W2 does not rely on an underlying model of software process so it

does not demand that domain data be expressed in the terminology of that model. Hence, it can be quickly adapted to a new domain

and easy to maintain (just add more instances).

CONCLUSION: We recommend instance-based methods such as W2 for learning changes to a software project.

Index Terms—Search-based software engineering, Analogy, COCOMO

F

1 INTRODUCTION

There are many ways a manager might change, and hopefully

improve, their software development project. Some changes

require tools such as using the new generation of functional

programming languages or execution and testing tools [1]

or automated formal analysis [2]. Other changes use process

improvement techniques such as changing the organizational

hiring practices, or a continual renegotiation of the require-

ments as part of an agile software development cycle [3].

Endres & Rombach [4] list dozens of laws of software

engineering to justify a particular change to a project. If a

manager proposed using all the laws, then senior management

would most likely suggest they scale back their plans to just

a minimal set of most effective measures.

This paper explores different ways for finding this minimal

set of most effective changes to a project. Specifically, we

compare model-based vs instance-based methods. The dif-

ference between these two methods is as follows. Model-

based methods develop a model via expert advice [5] or using
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automatic methods such as data mining [6]. Once built, the

model can be used for “what-if” queries in order to assess

possible changes to a project. For example:

data → model
model + whatIf → scores

Here, Scores represents business concerns; for example

reduce defects before release the software product. Also, the

whatIf query defines a context within which a manager

seeks ways to improve a project.

Instance-based methods, on the other hand, insert the “what-

if” query into a n-dimensional space populated with historical

project cases [7]–[11]. Unlike model-based methods, instance-

based methods do not require an underlying model. Rather, the

immediate neighborhood of the “what-if” is somehow scored

to find summary of those neighboring cases:

data+ whatIf → neighborhood
neighborhood → scores

In previous work [12]–[20]. we tried combining model-

based methods with AI tools to control thousands of “What-

If” queries over COCOMO models. This paper compares

those model-based methods with “W2”, a novel instance-

based method. Given a “What-If” query that selects some set

of similar projects, W2 seeks a treatment Rx, which finds

the “better” parts of those similar projects within the dataset:

data+WhatIf → neighborhood1
neighborhood1 → scores1

Rx + data+WhatIf → neighborhood2
neighborhood2 → scores2

scores2 > scores1

When compared to model-based methods:

• W2 identified similar or better treatments.

• W2 was faster to run: all the experiments in this paper

require 10 minutes with W2, but days for using models.
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• W2 was simpler to implement: W2’s 200 lines AWK

replaces thousands of lines of the model-based LISP.

• W2 was simpler to maintain: with instance-based meth-

ods, “maintenance” implies “adding more instances”.

• W2 was simpler to adapt to new domains: W2 do not

require an underlying model and therefore it imposes

no restrictions on the data being processed. It is more

efficient and it can be quickly applied to more data sets.

Hence, we now recommend the instance-based methods like

W2 for identifying changes to software projects.

In summary, this study has 4 significant contributions:

1) We demonstrate that managers have many options for

effectively changing and improving their projects.

2) We enhance algorithms proposed by other researchers.

Prior work on instance-based methods founds ways to

generate estimates [21]–[24]. We show that a small

modification to standard instance-based analysis allows

us to determine how to change an estimate.

3) We improve our prior results on instance-based methods.

W2 outperforms our model-based methods described

in [12]–[20] as well as earlier versions of our instance-

based reasoner in [25] and [26]. As discussed in §3,

W2 handles missing values better than W1. More sig-

nificantly, this paper is the first report on extending any

version of W beyond standard COCOMO data.

4) Results show simple instance-based methods can per-

form better than more complex model-based methods.

While the first points may be of most interest to industrial

practitioners, but it is the last point that may be most inter-

esting to researchers. There are many sophisticated methods

for exploring the complexities and uncertainties of trying to

control software engineering projects. Based on the results

of this paper, we advise researchers to first explore simpler

methods, if only for the purposes of establishing a performance

baseline.

This result shows that the W2 instance-based method is

superior to all the model-based methods explored in this study.

This does not imply that learning changes to software projects

is always best achieved using simple instance methods. For

example, the next release planning problem discussed in [27],

[28] is a process problem of great complexity. For that task,

the Pareto frontier optimization methods employed by (e.g.)

Ruhe [27] is preferred to W2.

2 BACKGROUND

2.1 Software Estimation Research

Instance-based software estimation such as Case-Based Rea-

soning (CBR) is a widely explored area in software engineer-

ing research [21]–[24]. Based on our collective experience,

when a manager sees an estimate, his/her immediate question

is “how can I change that?”. While the effort estimation

literature describes many estimation methods (both model-

based and instance-based [21]–[24], [29]–[33]) in order to

address manager’s immediate concern, we focus on how to

change estimates.

W2 explores multiple goals such as reducing development

effort and defects and the total calendar time to deliver the

software. Instead, most other work in this area explores a

single goal. For example, Pendharkar et al. [29] demonstrate

the utility of Bayes networks in software effort estimation

while Fenton and Neil explore Bayes nets and software defect

prediction [34], neither of these teams links defect models to

effort models. In addition, as mentioned above, these work

focus much more on prediction, rather than on the subsequent

problem of learning how to change those predictions.

2.2 Search-Based Software Engineering (SBSE)

Multi-goal optimization in Search-Based Software Engineer-

ing (SBSE) is well explored in the field [35]. SBSE employs

optimization techniques from operations research and meta-

heuristic search (for example in simulated annealing and

genetic algorithms) in an attempt to hunt for near-optimal

solutions. Harman [35] distinguishes AI search-based methods

from those seen in standard numeric optimizations. Such

optimizers offer settings to all controllables. This may result

in needlessly complex recommendations since a repeated em-

pirical observation is that many model inputs are contaminated

or correlated in similar ways to model outputs [36]. Such

contaminated or correlated variables can be pruned to generate

simpler solutions that are easier and quicker to understand.

For continuous variables, there are many work on feature

selection [37] and techniques like principal component analy-

sis [38] to reduce the number of dimensions reported by a data

analysis. Some studies report that discrete AI methods perform

better at reducing the size of the reported theory [36].

The SBSE approach can and has been applied successfully

to many software engineering domains such as requirements

engineering [39], but more commonly used in software test-

ing [1]. Harman’s work provides the inspiration to this study in

an attempt to experiment simulated annealing for our model-

based methods [14] (which we subsequently found performed

worse than W2).

2.3 Model: Benefits

High-level abstraction models represent and transmit common

software patterns observed in multiple specific situations [40].

At a keynote address at PROSIM’05 Walt Scacchi noted

that merely writing a model can clarify local business pro-

cesses [41]. Executable software process models can be used

for many purposes including but not limited to reducing

the inspection effort at different stages of the software life

cycle [42]. Even if a model lacks a sophisticated execution

engine, it can still be used for what-if queries that are insightful

to different business processes (e.g. see Boehm et al.’s what-if

studies in Chapter Three of [43]).

Models can combine and summarize both expert insights

and local data. Fenton [5] builds the general structure of his

Bayes nets via workshops of business knowledge. The details

of these structures are then tuned via local data. Elsewhere,

Boehm reports the advantages of combining local data with

model structures initialized via expert knowledge [44].

Another subtle advantage of models is data sharing. Schulz

reports that organizations that are reluctant to share specific
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Dataset Cols Rows Notes Measures

Kemerer 7 15 Large business applications effort

Telecom 3 18 U.K. telecom enhancements effort

Finnish 8 38 Finnish IS projects effort

Miyazaki 8 48 Japanese COBOL projects effort

COC81ii 26 63 NASA projects effort, time, defects

NASA93ii 26 93 NASA projects effort, time, defects

China 17 499 Chinese software projects effort

Total: 774

Fig. 1. Seven data sets from promisedata.org/?cat=14:

effort is total staff months; time is calendar time (start to

stop); defects is number of delivered defects.

data, may be willing to share models (if those models do not

reveal details from particular business sites) [45].

Finally, models let us extrapolate from past examples to new

examples. A trend that is sampled by N historical examples

can be extended to offer predictions for new examples that

have not been seen previously.

2.4 Models: Drawbacks

Extrapolation, while sometimes useful, may over fit the data.

If that occurs, then a model may offer unsupported recom-

mendations. For example, as shown in the results below, our

model-based methods were ineffective since, sometimes, they

proposed conclusions that applied to none of the test data.

Another drawback with model-based tools is that they only

accept data that conforms to the ontology of the model (i.e. use

the input values of the model). If local data does not conform

to that ontology, then the tool cannot be applied. For example,

Figure 1 shows the data sets used in this study. Our model-

based methods can only process the two data sets that conform

to the COCOMO ontology of Figure 2. On the other hand, the

W2 instance-based method can process all of them.

Models need to be learned from data and collecting that

data can be difficult due to the business sensitivity associated

with the data as well as differences in how the metrics

are determined, collected and archived. In many cases the

required data is not archived at all. In our experience, for

example, after two years we were only able to add 7 records

to our NASA wide software cost metrics repository [14].

Alternatively, open-source code repositories are a rich source

of product information, but usually lack process details such

as the descriptions of the applications experience of the

developers. Other researchers also have noted similar problems

with collecting process data. Lowry [46] discusses the com-

plexities involved in calibrating his software failure models.

Those models require parameters that are clearly antiquated.

For example, he mentions a commercial model-based cost

estimation tool that requires a parameter that rates “the time

it takes for a software development environment to respond

to a keyboard input”. When software was written on remote

time-shared computers, this was an important factor. However,

today it is irrelevant but it is kept in the model for backwards

compatibility and because it was measured in the software

projects on which the model was calibrated.

Baker [47] discusses another serious concerns with model

calibration: tuning instability. Software construction is a very

human-intensive process, therefore the data collected from that

decreases acap: analyst capability

effort apex: applications experience

ltex: language and tool-set experience

pcap: programmer capability

pcon: personnel continuity

plex: platform experience

site: multi-side development

tool: use of software tools

sced: dictated development schedule

increases cplx: product complexity

effort data: database size

docu: documentation

pvol: platform volatility

rely: required reliability

ruse: required reuse

stor: required % of available RAM

time: required % of available CPU

Fig. 2. COCOMO II effort multipliers.

process is as varied as the humans building the code. Consider

the following simplified COCOMO [43] model:

effort = a · LOCb+pmat · acap (1)

The equation presents COCOMO’s core assumption that soft-

ware development effort is exponential on software size. In

this equation, a and b control the linear and exponential

inferences (respectively) on model estimates; while pmat
(process maturity) and acap (analyst capability) are project

choices articulated by managers. Equation 1 contains only two

features (acap, pmat) and a full COCOMO model contains a

set of project descriptors as shown in Figure 2.

Baker [47] learned values of (a, b) for a full COCOMO

model using Boehm’s local calibration method [48] from 300

random samples of 90% of the available project data. The

ranges varied widely:

(3.2 ≤ a ≤ 9.4) ∧ (0.8 ≤ b ≤ 1.12) (2)

Such large variation in model tunings not only violates

standard gradient descent methods, but it also obscure any

benefits observed within a particular project change. Suppose

a proposed technology doubles productivity, but a changed

from 9.0 to 4.5, any improvement would be obscured by the

tuning instability.

In summary, model-based methods can suffer from:

• Inappropriate extrapolations;

• Ontology restrictions;

• Untamed variance inside the models

Hence, in this paper, we explore alternative methods.

3 INSTANCE-BASED METHODS

This section described three versions of the W instance-based

tool. Lessons learned from W0 [25] and W1 [26] will inform

the description of the current version, W2.

Similar to all instance-based methods, W assumes access

to historical cases described using P project descriptors (e.g.

analyst capability; process maturity; etc). Note that, unlike

the model-based approach, W does not assume that all cases

are described using the same set of P descriptors. Rather, P
can be varied. For example, Figure 1 lists the datasets used

in our analysis. If W was restricted to just the COCOMO

ontology, then it could only analyze two of those seven data

sets: NASA93ii and COC81ii. W’s applicability to a wide
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Figure 3.a: RELEVANT= cases nearest to context1. Figure 3.b: Best (top) & rest (bottom). Figure 3.c: Rank with Equation 3.
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55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13

53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648 13

35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370 12

26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12

09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12

40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11

25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11

23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11

22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11

17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11

16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11

47 3 4 4 4 4 3 5 4 4 2 4 3 3 3 703 10

44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10

43 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10

41 4 4 4 2 4 3 4 3 5 2 4 4 3 2 576 10

36 3 2 3 4 3 4 5 3 3 2 4 5 3 2 278 10

34 4 3 4 2 3 4 4 5 3 3 4 4 3 3 155 10

33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8 10

(other cases omitted)
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16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90

33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8

26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114

17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210

09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215

44 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300

07 5 3 4 3 3 2 4 3 3 2 4 5 3 3 360

35 4 3 3 2 4 3 4 4 4 2 3 3 3 3 370

55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480

40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636

53 2 1 2 2 5 2 5 5 6 2 4 3 4 3 648

frequency

range b r b2/(b + r)
best rest

pmat=3 5/5 10/15 60%

sced=3 5/5 13/15 54%

tool=3 5/5 14/15 52%

acap=3 4/5 7/15 51%

data=3 4/5 9/15 46%

rely=4 3/5 6/15 36%

time=3 3/5 7/15 34%

pvol=4 2/5 2/15 30%

stor=3 3/5 10/15 28%

cplx=5 2/5 3/15 27%

stor=5 2/5 3/15 27%

cplx=4 3/5 12/15 26%

time=5 2/5 4/15 24%

pvol=3 2/5 5/15 22%

data=2 2/5 5/15 22%

rely=3 2/5 9/15 16%

pvol=2 1/5 9/15 5%

Fig. 3. Processing context1 on a training set selected from NASA93ii.

range of data sets is an important advantage over the AI model-

based methods described above.

W’s next assumption is that each case is described by a set

of qualities such as number of defects, development time, total

staff effort etc. All of these qualities are summarized into a

single value by some value function like Equation 6.

Similar to our model-based methods, W assumes that a

manager can offer us (a) a description of the context ⊆ P
that interests them and (b) a list of controlable options which

they can change (control ⊆ context). For example, once we

asked a NASA software project manager for a description of

the effects of assigning inexperienced people. The manager

commented that, at his site, such inexperience implies low

applications experience (aexp), low to very low platform

experience (plex), and language and tool experience (ltex)

that is not high. Next, we asked the manager to describe the

range of projects seen at his site (using the COCOMO names

of Figure 2). The resulting context1 is shown below:

context1 =
apex ∈ {2} ∧ plex ∈ {1, 2} ∧ ltex ∈ {1, 2, 3}∧
?pmat ∈ {2, 3}∧?rely ∈ {3, 4, 5}∧?data ∈ {2, 3}∧
?cplx ∈ {4, 5}∧?time ∈ {4, 5}∧?stor ∈ {3, 4, 5}∧
?pvol ∈ {2, 3, 4}∧?acap ∈ {3, 4, 5}∧?pcap ∈ {3, 4, 5}∧
?tool ∈ {3, 4}∧?sced ∈ {2, 3}

Here, “?” are the controllabels; for example, this manager is

senior enough adjust factors like schedule pressure (sced).

Note that there is no requirement for managers to include all

project descriptors in their context statement. As seen below,

W can handle contexts that are a subset of the descriptors.

Another important assumption made by W2 is that we

should not reason on all the data. Rather, we need to focus

on the data relevant to the context of the current problem. A

mistake made by W0 was to reason over all the data- which

lead to problems of learning from inappropriate examples.

W0 tended to converge on nearby projects with increased

productivity, but because it had (e.g.) a lower level of com-

plexity or required reliability, it selected for regions containing

acceptable alternatives. Sometimes, this is unavoidable (e.g.

if all the available examples mention lower complexity or

reliability). However, as much as possible, W’s reasoning

needs to respect the context limitations offered by the user.

W2 finds a project treatment Rx by studying the project

similar to the context in the case repository. Formally, W2

explores the neighorhood of the context, looking for ways to

select for the “best” cases. (as determined by a value functions

like Equation 6). In W2, this is a seven step procedure:

1) Divide cases randomly into train : test in the ratio 2:1.

2) Use context to find the neighborhood within train.

3) Divide neighborhood into (a) the best cases that should

be emulated, and (b) the remaining cases to avoid (which

we call rest).
4) Rank all differences between (a) and (b) according to

how strongly they select for the best cases.

5) Use the train set again, experiment with treatments Rx

built from the top ranked items found in Step4. Return

the treatment that selects for the cases in the train set

with highest median value.

6) Test the treatment from Step6 using relevant cases from

the test set; i.e. find all rows in the neighborhood of

the context in test set; then find the subset of those

rows that match the treatment. Assess those rows using

a value function such as Equation 6.

7) Repeat above six steps n = 20 times with other

randomly selected train : test sets. Prune unstable
treatments; i.e. those not found in the majority of repeats.

Note that Step7 is a new feature of W2 (since W0 and W1

neglected to test for treatment stability).

On issue encountered with Step2 (finding the neighbor-

hood) was that the context cannot be treated as a rigid criteria.

In our experiments with W0, we found that some data sets

were so small that, often, none of the cases contained all
the ranges mentioned in the context. For example, Figure 3.a

shows training data from NASA93ii. The gray cells in that

figure show ranges that do not appear in context1. Note that

all rows have at least one gray cell. That is, none of that

data exactly matches context1. Consequently, W1 used some

partial match operator to compute the neighborhood. Members
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of the training set were sorted according to their Euclidean

distance from the context. If a context only mentions a subset

of the project descriptors P , then W1’s distance function filled

in {P − context} with random values (selected from the

known ranges). This was repeated 50 times to generate 50

context queries that reference all project descriptors. Next, the

neighborhood was computed using the intersection of the 20

instances closest to any of those 50 queries.

This technique solves the problem of missing parts of the

context. However, it creates another problem: a large variance

in all the results. To rectify this issue, W2 ensures context
became a set overlap membership function. For example,

context1 defines ranges for 14 project descriptors. Any train-

ing case contains ranges that overlaps with between 0 and

14 of the ranges is context1. As shown in Figure 3.a, we can

use the size of this overlap to sort the cases: the neighborhood

cases are those with greatest overlap. Appealing to the central

limit theorem, W2 implies that the neighborhood of a query

are the K1 = 20 training cases with largest overlap to the

query (and for very small data sets, we use all the training

examples except the K2 = 5 examples discussed below).

W2’s set overlap operator is only defined for finite ranges.

Hence, W2 adds a Step0: discretization of all project descrip-

tors (but not quality attributes) into B bins. All the following

experiments assume that all numbers y are discretized using

round((y − min)/((max − min)/B)). We set the B value

after experiments with one dataset, then leaving it fixed for

the rest. For all of the W experiments in this paper, B = 5.

Step3 (division into best and rest) is illustrated in Fig-

ure 3.b. The neighborhood is sorted by case value; the top K2

cases are best; and the remaining K1−K2 examples are rest.
While the ranking algorithm of Step4 works best for larger

K2 values, we did not want to exceed accepted standards in

the research community. After a review of the analogy-based

estimation literature [22]–[24], [30], [31] we noted that no

researcher proposed using more than five neighbors. Hence,

we used the K2 = 5 cases with highest value (in this example,

value means lower development effort).

Step4 (rank the ranges in best) is shown in Figure 3.c. W0

used the following simple Bayesian ranking method. Observer

that nominal tool (tool = 3) occurs 5 times in best and 14

times in rest. Given that information, we can rank tool = 3
according to its ability to select best cases:

E = (tool = 3)

freq(E|best) = 5

freq(E|rest) = 14

ratio(E|best) = 5/5 = 1

ratio(E|rest) = 10/15 = 0.93

rank(E) =
ratio(E|best)

ratio(E|best) + ratio(E|rest) = 0.52

W0 encountered problems with evidence that was infrequent,

but relatively more frequent in best than rest. To avoid

this problem, W1 and W2 adds a support term. Support

should increase as the frequency of a range increases, i.e.

ratio(E|best) is a valid support measure. Hence, W2’s range

row a
p
ex

p
le

x

lt
ex

p
m

at

re
ly

d
at

a
cp

lx

ti
m

e
st

o
r

p
v
o
l

ac
ap

p
ca

p

to
o
l

sc
ed

effort overlap

57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13
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43 4 4 4 2 3 3 4 3 5 2 4 4 3 2 300 10

41 4 4 4 2 4 3 4 3 5 2 4 4 3 2 576 10

36 3 2 3 4 3 4 5 3 3 2 4 5 3 2 278 10

34 4 3 4 2 3 4 4 5 3 3 4 4 3 3 155 10

33 4 3 4 2 3 4 4 5 3 3 4 4 3 3 98.8 10

Fig. 4. A K1 = 20 neighborhood of context1 (NASA93ii

train set).
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effort overlap

57 3 2 2 3 4 3 5 5 5 4 3 3 3 3 38 13

56 3 2 2 3 4 3 5 5 5 4 3 3 3 3 12 13

55 3 2 2 3 4 3 5 5 5 4 3 3 3 3 480 13

26 3 3 3 3 3 3 4 4 3 3 3 3 3 3 114 12

09 4 2 1 3 3 2 4 3 3 4 4 4 3 3 215 12

40 4 3 4 3 4 3 4 4 3 2 4 4 3 3 636 11

25 3 3 3 3 3 3 4 3 3 3 3 3 3 3 42 11

23 3 3 3 3 3 3 4 3 3 3 3 3 3 3 60 11

22 3 3 3 3 4 3 4 3 3 3 3 3 3 3 42 11

17 4 3 3 3 4 3 4 3 3 3 3 4 3 3 210 11

16 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11

Fig. 5. All rows of Figure 4 satisfying R1 : pmat = 3.
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effort overlap

11 5 3 4 3 3 2 4 3 3 2 4 4 3 3 24 10

15 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48 10

19 5 3 4 3 3 2 4 3 3 2 4 4 3 3 48 10

18 4 3 4 3 3 2 4 3 3 2 4 4 3 3 60 10

10 5 3 4 3 3 2 4 3 3 2 4 5 3 3 72 10

24 4 3 3 3 4 3 3 4 3 3 3 4 3 3 90 11

63 4 3 4 3 3 3 3 3 3 2 4 4 3 3 162 9

45 4 3 4 3 4 4 3 3 3 2 3 4 3 3 400 8

67 4 3 4 3 5 3 4 4 3 2 4 4 3 3 444 11

60 3 4 4 3 3 2 4 3 3 2 5 5 3 3 720 10

Fig. 6. The testing set with all cases not containing

pmat = 3 removed.

ranking formulae is:

rank(E) ∗ support(E) =
ratio(E|best)2

ratio(E|best) + ratio(E|rest) (3)

The x top-ranked items of Figure 3.c are candidate treatments:

R1 : pmat = 3
R2 : pmat = 3 ∧ sced = 3
R3 : pmat = 3 ∧ sced = 3 ∧ tool = 3
R4 : pmat = 3 ∧ sced = 3 ∧ tool = 3 ∧ acap = 3
etc

Step5 (pruning the treatments) applies Rx to the projects

similar to the context; i.e. those found in the test set’s

neighborhood. For example, Figure 4 shows the K1 = 20
cases closest to context1 in the train set.

Figure 5 shows the cases from this neighborhood that satisfy

R1 : pmat = 3. It turns out, that for cases relevant to context1
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in this test set, there is some association between the ranges

see in R1, R2 and R3: all these treatments select the same

rows. Only when R4 is applied does Figure 5 shrink to the

two rows containing acap = 3. W1’s results exhibited large

variances if we drew conclusions from less than three rows.

Hence, Step5 explores Rx upwards from x = 1 while:

• The median value of the rows selected by Rx+1 is greater

than that of Rx.

• The number of selected rows |Rx ∧ neighborhood| ≥ 3;

In the case of Figure 5, Step5 returns R1 (pmat = 3).

Figure 6 applies R1 on the test data. Its impact is reported as

the median effort value of the cases. For the cases of Figure 6,

this is 81 months of effort.

W2 is not a slow algorithm. Nothing in any of these steps

takes more than log-linear time, and even that is only to sort

K1 items (which is a very small list). Even when implemented

in an interpreted language (GAWK), W2 runs in less than half

a second for up to 500 cases (on a 3MHz dual core Macintosh,

OS/X 10.6, 4GB of ram).

To compare the effectiveness of different treatments, we

offer the following performance measures:

• All our measures are taken from the test set.

• The asis values are from the neighborhood of the

context; e.g. the effort column.

• The tobe values are from the cases selected by a treat-

ment; e.g. the effort column.

• The median of a distribution is the 50-th percentile of

the sorted values in that distribution.

• The spread of a distribution is the (75-25)th percentile

of the sorted values.

• The improvement from a = asis to t = tobe is 100 ∗
(a− t)/a. Larger improvements are better.

For example, consider pmat = 3:

• Without the pmat = 3 restriction, the median and spread

in the test set are 235 and 633 months, respectively.

• With pmat = 3, the median and spread of projects similar

to context1 are 81 and 353 months (see Figure 5).

• The observed improvement in the median is hence 66%.

• The observed improvement in the spread is hence 44%.

3.1 Empirical Example

Figure 7 shows the results seen after apply W2 to:

• Enhancements to a U.K. telecommunications product;

• Projects collected by Miyazaki et al [49];

• Finnish Information Systems projects;

• A large dataset of Chinese software projects;

• Large COBOL projects, collected by Kemerer [50].

The format of this data is highly varied and includes number of

basic logical transactions, query count and number of distinct

business units serviced. For these data sets, we did not have

access to specific case studies like Figure 8. Hence, these

results are based on contexts developed as follows:

• The first contained the entire range of possible project de-

scriptors, representing complete freedom to recommend

any change within the space.
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Fig. 7. Effort results for five non-COCOMO datasets.

• The other two queries were generated by randomly choos-

ing 50% of each attribute values from either the lower,

middle, or upper ranges for each project descriptor.

For these experiments, the values function was just “re-

duce effort” (later in this article we explore other results on

COCOMO-related data, that tries to reduce effort and defects

and calendar months).

There are three noteworthy aspects of the Figure 7 results:

• All the points in that figure are positive; i.e. improvements

were seen in all cases.

• The dotted lines show the 50% percentile range of the

results: half that results had at least 56% and 73%

improvement in median and spread.

• There is no evidence that W2 has problems with smaller

data sets. The two smallest examples processed by W2

are Kemerer and Telecom containing 15 and 18 examples

each. The minimum improvements seen, even for these

small data sets, are 55% (in both median and spread).

The expected value of the results in these examples is very

high; e.g. a 56% median improvement in effort. The reason

for these large improvements is that, in these examples, we

focuses only on effort. Clearly, there are many ways to cut

corners in a project and some of those can have disastrous

results (e.g. allocate no effort to testing will reduce the cost,

but that is clearly not a recommended management action for

a software project). Later in this paper are examples where

W2 is chasing improvements to effort and defects and total

calendar time to develop the software. Optimizing for N = 3
goals is a harder task than just the N = 1 goal of Figure 7.

Hence, those the improvements seen in those examples will

be more modest (around 20%).

4 MODEL-BASED METHODS

This section discusses SEESAW, our best model-based method

for learning changes to a software project. Subsequent sections

will compare SEESAW to W .
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4.1 Case Studies

Since all our model-based methods are built around the

COCOMO-suite, we must use COCOMO data and contexts
written in the COCOMO ontology. Figure 8 shows some real-

world context and control information taken from a debrief

of some NASA program managers:

• Ground and flight represent typical ranges for most

NASA projects at the Jet Propulsion Laboratory (JPL);

• OSP represents the guidance, navigation, and control

aspects of NASA’s 1990 Orbital Space Plane (OSP);

• OSP2 represents a second, later version of OSP with a

more limited scope of COCOMO attributes.

The uncontrolable column in Figure 8 shows project features

that cannot be changed. For example in project OSP, the

required reliability is fixed at rely = 5. On the other hand, the

low and high ranges in that figure define the space of possible

changes to that project. For instance, the reliability of flight

software varies from 3 (nominal) to 5 (very high).

4.2 Handling the Models

Optimizing for a set of goals is traditionally resolved by

computing partial differential equations of a model, and then

exploring the surface of steepest change. A premise of this

approach is tuning stability; i.e. that the gradients at any point

in the model can be determined with certainty. As shown in

Equation 2, this premise does not hold for the COCOMO

models used in this study.

If tuning instability cannot be isolated, it must instead be

managed. Our model-based methods assume that predictions

are altered by project variables P and tuning variables T :

prediction = model(P, T ) (4)

For example, in local calibration, the tuning options T are the

ranges of (a, b) and the project options P are the EMi values.

At any local site, only part of the tunings is relevant: we

denote these as t ⊆ T . This subset can be found in many

ways including linear regression or local calibration. However,

if there is insufficient data for stable tunings, then T may as

well be left unconstrained, so t ⊆ T can be selected randomly.

Managers explore a specific context (the particulars of their

project) context ⊆ P and control some items of context
(control ⊆ context). Since it is too expensive to use all

control settings, we seek minimal treatments Rx ⊆ control;
i.e. no smaller treatment has the same (or better) effect as Rx.

Models assess different treatments by running them on the

model and returning the one that maximizes a model’s value:

AI search
︷ ︸︸ ︷

Rx ⊆ control,mediann



t ⊆ T, value(model(Rx, t))
︸ ︷︷ ︸

Random Selection



 (5)

mediann is the median observed in n repeats of the random

selection and value is a domain-specific function. For example,

value could be computed from the difference of the model

estimates to zero (effort, defects, development time):

value = 1−
(√

Effort2 +Defects2 + T ime2/
√
3
)

(6)

context

controlable uncontrolable

project feature low high feature setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125

rely 3 5 tool 2
JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

prec 3 5 flex 3
OSP2 pmat 4 5 resl 4

docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Fig. 8. Contexts of 4 case studies. {1, 2, 3, 4, 5, 6} map
to {very low, low, nominal, high, very high, extra high}.

If the estimates are normalized to the range between 0 and 1

(0 ≤ value ≤ 1) then higher values are better.

Equation 5 needs to sample the space of model tunings. The

appendix to this paper describes one mechanism for sampling

across the space of the tunings within Boehm’s COCOMO

effort estimator and the COQUALMO defect estimator. One

thing to note with that appendix is that, for instance-based

methods, none of that machinery is required.

4.3 Six AI Model-Based Algorithms

The case studies of Figure 8 can be used to assess how well

different AI algorithms can find changes to software projects.

For example, a typical Simulated Annealing (SA) run explores

10,000 variants on some solution [51]. A side-effect of that run

is 10,000 sets of inputs, each scored with the value function
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Decisions made from round=1 to round=13:

x=0: Rx = ∅
x=1 added {pmat=3}
x=2: added {resl=4}
x=3: added {team=5}
x=4: added {aexp=4}
x=5: added {docu=3}
x=6: added {plex=4}

x=7: added {rely=3}
x=8: added {stor = 3}
x=9: added {time = 3}
x=10: added {tool = 4}
x=11: added {sced = 2}
x=12: added {site = 4}
x=13: added {acap = 5}

Fig. 9. Example of SA’s forward and back select.

of Equation 6. Our tool classified the outputs into the 90%

rest and the 10% best seen during the run of the SA. All the

ranges from all the features were then ranked according to

how much more frequently they appeared in best than rest.

A forward select was then called using the first 1. . .x ranked

items. Figure 9 shows the treatment Rx at any x value is the

conjunction of ranges observed between 1 to x (see the table

at the bottom of that figure). The y axis scores show median

results in 100 runs of COCOMO/COQUALMO, after impos-

ing the treatment. The “pruned” range of that figure shows

the results of a back select that worked backwards over the

forward select ordering, deleting any item x whose distribution

of values was statistically insignificantly different to x − 1.

SA’s final recommendation was the treatment 1 ≤ x ≤ 13.

The improvement generated by that treatment can be seen

by comparing the values at x = 0 to x = 13.

• Defects reduced: 350 to 75;

• Time reduced: 16 to 10 months;

• Effort reduced: 170 to 80 staff months.

SA is just one way to generate a treatment. For our AI model-

based methods, we explored five others. Given a random

selected treatment, MaxWalkSat tries n modifications to ran-

domly selected features [52]. Sometimes (controlled by the α
parameter), the algorithm chooses the range that minimizes

the value of the current solution. Other times (at probability

1 − α), a random range is chosen for the feature. After N
retries, the best solution is returned. Our implementation used

n = 50, α = 0.5, and N = 10.

SEESAW [18] augments MaxWalkSat with a search heuristic

taken from simplex optimization. SEESAW ignores all ranges

except the minimum and maximum values for a feature in

p. Like MaxWalkSat, each feature is randomly selected on

each iteration. However, SEESAW has the ability to delay bad

decisions until the end of the algorithm (i.e. decisions where

constraining the feature to either the minimum or maximum

algorithm Defects months time

SEESAW 4 4 3
BEAM 0 3 3
A-star 0 1 1

SA 0 1 1
MaxWalkSat 0 0 0

ISAMP 0 0 0

Fig. 10. Number of times algorithms were top-ranked

(largest is 4: i.e. one for each Figure 8 case study).

value results in a worse solution). Hence, SEESAW’s search

was followed by the same back-select process used in SA.

This paper also explores the ISAMP, BEAM, and A-STAR

algorithms described in the appendix. Initially, we planned to

explore more AI algorithms but the success of W’s instance-

based approach has decreased our motivation in that regard.

4.4 Comparisons of AI Model-based Methods

For each case study of Figure 1, each algorithm was run 20

times (guided by the value function of Equation 6). Separate

statistics were collected for the defects/effort/time predictions

seen at the policy point in the 20*4 trials. The top-ranked

algorithm(s) of Figure 10 had statistically different and lower

defects/effort/time predictions than any other algorithm(s).

Note the dramatic difference between MaxWalkSat and

SEESAW results. The difference between these two algorithms

is very small: SEESAW assumed that the local search state

space was monotonic, so it only explored minimum and

maximum values for each feature. This result underscores the

power of the simplex heuristic.

From Figure 10, the worst algorithms are MaxWalkSat and

ISAMP and the best algorithms are SEESAW and BEAM. The

performance of these best algorithms is sometimes equivalent

(e.g., in time, both algorithms achieved an equal number of

top ranks). However, BEAM is not recommended:

• BEAM runs 10 times slower than SEESAW.

• SEESAW performs better than BEAM in some cases (e.g.

in defects, BEAM is never top-ranked).

Since SEESAW performs best, we will use it for our subse-

quent comparisons with instance-based methods.

5 MODEL VS. INSTANCE-BASED METHODS

SEESAW requires models in the COCOMO format so for our

comparisons, we restrict ourselves to data in that format. W2

used the historical cases from the NASA93ii and COC81ii

datasets. These data sets all have the features defined by

Boehm [48]; e.g. analyst capability, required software relia-

bility, and use of software tools. Originally collected in the

COCOMO-I format, JPL business experts have translated them

from their original COCOMO format to COCOMOII.

Both SEESAW and W2 guided their search using Equa-

tion 6 and the four contexts of §4.1. SEESAW used those

contexts to guide their “what-if” queries around its CO-

COMO/COQUALMO models. W2 took those contexts then

applied the seven step procedure described above to NASA93ii

and COC81ii. Recall that, in those steps, some Rx was

assessed on projects similar to the context in a test set; i.e.
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all the cases in the context’s neighborhood. Our comparison

rig studied that same test neighborhood using SEESAW and

W2. We say that rows1 and rows2 are the rows selected

from the neighborhood after applying SEESAW’s or W2’s

recommendations (and by “apply”, we mean reject any row

that contradicts the ranges in the recommendation). From

rowsi, we applied Equation 6 to find valuesi.

The are shown in Figure 11, divided into the defect, effort,

months changes see in GROUND, FLIGHT, OSP2 and OSP.

50% (75-25)th

percentile percentile

(median) (spread) Median Spread

a = t = A = T = improv. improv.

Win Goal Treatment as is to be as is to be
a−t

a

A−T

A

NASA93ii Flight

defects SEESAW 1276 626 3737 2311 51% 38%

defects W 2042 1688 3992 2501 17% 37%

effort SEESAW 159 72 378 192 55% 49%

effort W 265 183 416 242 31% 42%

months SEESAW 21 15 13 8.6 27% 33%

months W 22 20 15 11.1 5% 24%

NASA93ii Ground

defects SEESAW 2006 688 4254 2203 66% 48%

defects W 2007 933 3763 1121 54% 70%

effort SEESAW 240 95 390 166 61% 57%

effort W 177 81 361 156 54% 57%

months SEESAW 22 16 15 8.8 28% 41%

months W 21 17 14 6.2 19% 55%

NASA93ii OSP

* defects W 1586 767 3557 1741 52% 51%

defects SEESAW 1265 1696 3722 3077 -34% 17%

* effort W 210 99 557 179 53% 68%

effort SEESAW 150 174 411 372 -16% 10%

* months W 21 15 15 9.0 28% 39%

months SEESAW 21 21 15 12 -2% 21%

NASA93ii OSP2

* defects W 2077 744 4222 1356 64% 68%

defects SEESAW 2042 1172 4369 3127 43% 28%

* effort W 239 79 465 145 67% 69%

effort SEESAW 210 118 514 275 44% 46%

months W 21 15 17 6.8 31% 60%

months SEESAW 21 16 17 11 25% 36%

COC81ii Flight

defects W 1529 1265 1867 2369 17% -27%

defects SEESAW 1487 1629 2054 1965 -9% 4%

effort W 86 81 181 200 6% -11%

effort SEESAW 89 106 246 237 -19% 4%

* months W 18 16 6.5 10 11% -49%

months SEESAW 18 20 10 8.9 -8% 8%

COC81ii Ground

defects W 1541 1248 1902 2102 19% -11%

defects SEESAW 1650 1496 2445 2499 9% -2%

effort W 98 65 199 223 33% -12%

effort SEESAW 106 122 383 372 -15% 3%

* months W 18 15 9.2 10 17% -7%

months SEESAW 19 19 10 10 0% -5%

COC81ii OSP

* defects W 1496 1068 1787 2054 29% -15%

defects SEESAW 1496 1765 2233 2233 -18% 0%

effort SEESAW 93 83 332 200 11% 40%

effort W 88 93 209 205 -5% 2%

* months W 19 14 9.0 8.9 22% 1%

months SEESAW 19 19 9.4 10 -3% -4%

COC81ii OSP2

* defects W 1850 1802 2697 2405 3% 11%

defects SEESAW 1473 2269 1769 2061 -54% -17%

* effort W 122 130 431 356 -7% 17%

effort SEESAW 98 447 289 288 -356% 0%

months SEESAW 19 19 7.9 8.6 -3% -9%

months W 20 21 11 10 -4% 10%

Fig. 11. Changes in median and spread.

In all, we show 24 comparisons:

(
NASA93ii
COC81ii

)

∗

(
defects
effort
months

)

∗

(
ground
flight
OSP
OSP2

)

W2 produced larger median reductions that SEESAW in

16/24 comparisons. The “Win” column of those figures in-

dicates when any member of a comparison had a higher value

and was statistically significantly different (Mann-Whitney,

95% confidence). In nearly half the comparisons (11/24), W2

results were statistically different and better than SEESAW (in

the remaining comparisons, SEESAW’s median improvements

were never better than W2).

Figure 12 shows the sorts the median and spread improve-

ments seen from the Figure 11 results. Note that rarely were

the changes to the median less than zero. In the majority of

cases, W2’s median and spread improvements were positive

(an expected value of 20.5; sometimes ranging over 50%).

While occasionally the spread degraded sharply (down to 50%

worse), such cases were uncommon: note that in only 10% of

our results were the spread changes below -15%. Also, all the

cases where W2 had poor spread results were in the COC81ii

data set which, as discussed below, is a data set with certain

special features.

The gray cells in Figure 11 show optimization failures;

i.e. a zero or negative improvement. W2 failed less than

SEESAW (had fewer gray cells). W2 showed 3/24 and 7/24
failures for medians and spreads (respectively) while SEESAW

showed 13/24 and 7/24 failures for medians and spreads

(respectively). One of SEESAW’s failures was particularly

dramatic: witness the increase from 98 effort months to 447

effort months in the OSP2 effort results. We conjecture that

SEESAW’s greater failures in median reduction are due to

the over-fitting problem discussed in §2.4. SEESAW’s model-

based methods are free to sample increasingly narrow seg-

ments of the internal state space of a model (“flying in”, as

it were, into small cracks between the training data). If that

sampling is taken to extreme, and the model-based methods

offer recommendations that cover a tiny part of the state space,

and if the test data does not fall into that tiny region, then the

model-based recommendations will fail.
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Fig. 12. Range of changes in median and spread gener-

ated by applying the recommendations of W2. The me-

dian observed changes were (20.5, 20.5)% for (medians,

spreads), respectively.
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Note that most of the gray cells occur in the COC81ii

results. Boehm assumed that this data was to be analyzed

by regression so spent much effort on the COC81ii data,

applying his domain expertise to prune or trim outstanding

values. Curiously, W2 performed best on the “uncleansed”

data set (NASA93ii) than the cleaner data set (COC81ii). We

conjecture that, sometimes, seemingly “dirty” data actually

contains data that is insightful in some contexts. While such

outliers confuse regression-based methods (that try to fit one

model over the entire data), instance-based tools like W2 can

exploit those less-common instances (since they build local

models around each context).

In summary:

• W2’s performance was better than SEESAW;

• W2 was more effective at reducing the medians;

• Both instance-based and model-based methods had sim-

ilar issues with reducing the spread.

• Possibly, the instance-based approach of W performs

better on “dirtier”, nosier data than model-based methods.

6 DISCUSSION

6.1 Intra- and Inter-Project Stability

One of the premises of instance-based methods like W2 is

that local reasoning in some specific context is best that fitting

one model over an entire space. This is required if the “best”

solutions in a one context do not hold in others.

To test this premise, we generated a report of what treat-

ments were found under different conditions. Figure 13 shows

the results of W2’s Step7 (prune all treatments that do appear

in less than 50% of 20 repeated trials). The left-hand column

of Figure 13 shows the four values function used in that study:

1) Defects aims at reducing just defects;

2) Effort aims at reducing just effort;

3) Months aims at reducing a project’s total calendar time.

4) All refers to Equation 6; i.e. try to decrease effort and

development time and number of defects;

The last of these is a multi-objective function while the rest

strive to optimize one objective without concern to the others.

Figure 13 shows that, in any row, the conclusions reached

by W2 are stable (i.e. appear at high frequency, across 20

random selections of train : test). That is, W2’s results

exhibit intra−project conclusion stability (when the context
and values function are held constant). For project managers,

this is good news since it shows that their data contains clear

signals on how to best change their particular project in order

to achieve particular goals.

However, Figure 13 also shows that if the context is

changed (from generalized FLIGHT systems to a specific flight

system like OSP), then the recommended changes are very

different. Similarly, the OSP results show that altering the

values function also dramatically changes recommendations.

Menzies & Shull [53] report that many SE papers conclude

that what is “best” for one project may not be “best” for

another. For example, Zimmermann studied 629 pairs of soft-

ware development projects [54]. In only 4% of those hundreds

of pairs was a defect prediction model learned from one

project useful on another. When such inter-project conclusion
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Fig. 13. Recommendation frequency across 20 runs

of W2 for reducing individual goals (defects, effort, or

months) as well as all goals at once (all).

instability exists, then tools like W2 are essential since it is

best to learn changes that are tuned to the specifics of partic-

ular projects (like OSP & OSP2) rather than on generalized

descriptions of software (like FLIGHT & GROUND).

6.2 When Not to Use W2

Like any instance-based method, W2 requires historical cases.

If such data is missing then W2 cannot be used.

In that circumstance, discussions about how to best change

a project can use results borrowed from other sites. For

example, Figure 14 show’s Boehm et al.’s [43] analysis of the

effects of changing some project attribute from its minimum

to maximum value. Based on data from a regression analysis

of 161 projects, this figure comments that changing (e.g.) per-

sonnel/team capability can alter the effort to build software by

up to 350%. Using this data, the effects of various changes can

be investigated using Boehm’s delta analysis technique [55]:

• An old project with known efforts is used as a baseline.

A change to a project is described as a new project,

expressed in terms of deltas to the variables of Figure 14.

• The new estimate is then the product of the baseline times

the effort multiplier deltas.

• The “best” changes to a project are those that are simplest

to implement and have most positive impact on the effort

(ideally, reduces it).

Column two of Figure 14 lets us compare context-independent

reasoning (e.g. delta analysis) vs. context-dependent reasoning
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appears in
id Figure 13 as features relative weight

1 Personnel/team capability 3.53
2 Product complexity 2.38
3 time Time constraint 1.63
4 rely Required software reliability 1.54
5 Multi-site development 1.53
6 Doc. match to life cycle 1.52
7 Personnel continuity 1.51
8 apex Applications experience 1.51
9 Use of software tools 1.50

10 Platform volatility 1.49
11 stor Storage constraint 1.46
12 pmat Process maturity 1.43
13 ltex Language & tools experience 1.43
14 sced Required dev. schedule 1.43
15 Data base size 1.42
16 Platform experience 1.40
17 Arch. & risk resolution 1.39
18 Precedentedness 1.33
19 Developed for reuse 1.31
20 Team cohesion 1.29
21 Development mode 1.32
22 Development flexibility 1.26

Fig. 14. Relative effects on development effort. From [55].

(e.g. W2). Note how that only a third of the Figure 14

attributes appear in the “best” treatments of Figure 13. Curi-

ously, the two attributes with greatest impact (personnel/team

capability and product complexity) are absent from Figure 13.

Why is W2 ignoring an attribute with such a large impact

(350%)? To answer that question, we have go to the context-

dependent particulars. Recall from Figure 8 that in OSP2,

product complexity is fixed at cplx = 4 and personnel/team

capability is fixed at pcap = 3. W2 does not recommend

treatments for things that cannot change. Hence, cplx and pcap
are absent from the OSP2 results of Figure 13. Similarly, OSP

allows only pcap = 3 so this attribute is also absent.

The same reasoning does not explain the other absent

attributes. To understand these, we must look at the data.

OSP sets cplx ∈ {5, 6}. This attribute is absent in the

treatments since there is insufficient support in NASA93ii to

justify their inclusion (there only five cplx = 5 examples in

NASA93ii and no examples of cplx = 6). Similar explanations

can explain all the remaining absences. Examples such as

these show how W2 can provide recommendations that may

go against common expert advice. This lack of a defined

relationship between data attributes underscores the need for

careful query construction. For example, if a query contains

conflicting attributes, W2 maintains no internal inconsistency

check. Model-based approaches such as S-COST [56] can

provide this sanity check, but incur the costs associated with

model-based methods discussed above (ontology restrictions,

untamed internal model variance, etc).

In summary, when data is absent, managers can debate

changes to projects by reusing data like Figure 14. However,

the conclusions reached from a context-independent reasoning

(like delta analysis) can be made more specific with local

information about the kinds of projects seen in the local

environment and the kinds of changes the local managers are

willing to accept. Therefore, where possible, we recommend

collecting local data and analyzing it with W2.

6.3 Scope of the Study

This study use conveniently available datasets in the

PROMISE repository, the result applies within the same con-

text of the datasets. In addition, our evaluation compares the

performance of different methods across a finite number of

problems, so it cannot be used to predict which method will

be superior to others for some future, as yet unseen, problem.

In fact, no method has been found so far that is universally

superior to others in all problems; indeed, the “no-free-lunch

theorem” [57] suggests that such an universal best method

for all problems can never exist. In practice, for a given new

learning problem, various methods need to be empirically

evaluated to find the best ones, such as the ones carried out

in the study.

We have shown that some treatments identified can improve

the quality measures observed in historical project datasets.

Our performance measures including median and spread re-

ductions seen in “hold-out data” should not be confused with

practical significance in the real world.

That being said, we note that publications from other

research communities assess their models in the same manner

as this paper: see the effort estimation [22]–[24], [30], [31]

and defect prediction [58]–[61] literature. Ideally, researchers

in effort estimation, defect prediction, or learning changes to

software projects should apply their recommendations to live

projects. However, hold-out tests are widely used due to the

tremendous practical difficulties associated with performing

such tests on multiple software projects. At the very least,

studies like this paper are required to prune the space of

methods to be laboriously tested on new, real-world, projects.

7 CONCLUSION

To attain knowledge, add things every day.

To attain wisdom, remove things every day.

– Lao-tse

Managers must make management decisions about changes

to software projects. Currently, they have only very limited

guidance from the SE literature on how to make the fewest

number of most effective changes to their projects. Hence,

we have spent several years exploring methods for guiding

managers towards better choices.

Originally, our work focused on model based methods.

Models have many advantages such as representing and visu-

alizing expert domain knowledge. Also, models let us extrapo-

late from past observations to new situations that may not have

been seen previously. As demonstrated by the recent increase

in conferences devoted to the construction and exploration of

models (e.g. MODELS1 and SBSE2), there is much current

interest in model-based software engineering,

Since models seemed so useful, in previous work, we have

employed model-based methods to find changes for software

projects. This paper reports the surprising result that a small

extension to standard instance-based methods (a greedy search

1. http://ecs.victoria.ac.nz/Events/MODELS2011

2. http://www.ssbse.org/2011/
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over the neighborhood of some query, divided into a best and

rest region) out-performs numerous model-based methods.

Specifically, when compared to model-based methods, the W2

instance-based method:

• Is faster to run.

• Is simpler to code;

• Is easier to maintain (just add more cases);

• Is faster to adapt to data sets from new domains;

• Finds equivalent or better ways to improve projects;

• Scales to large problems (since it runs in log-linear time)

Following on from this report, there many issues that could

motivate future work:

• Are model-based methods worse for noisier data?

• Is “data cleansing” recommended for regression, but

deprecated for instance-based methods?

• How best to reduce spread, thus increase the confidence

a user has in the results?

• Why does W2 performs as well as more elaborate model-

based methods?

As to this last point, we conjecture that the kinds of process

data we can collect from projects are a shallow source of

knowledge. With such shallow sources:

• Very simple methods can plum their depths;

• More elaborate methods may do no better than the very

simple.

As evidence for this conjecture, we note that our data sets

are often very small (e.g. the 15 rows of KEMERER or the

18 rows of TELECOM). Such small data sources may only

hold very limited, and very shallow, structures. If so, then

sophisticated AI search algorithms may find little more than

the simple greedy search of W2.

This work has focused on software process data. Neverthe-

less, instance-based methods (such as the W2 algorithm used

in this study) can be effectively used in many other fields.

For (very long) lists of application areas of instance-based

reasoning, see Kolodner [10]. Aamodt [62], Lenz [63], Shep-

perd [8] and the proceedings of the International Conference

on Case-Based Reasoning3. While our results do not show

that all instance-based methods are better than all instance-

based methods, they do motivate more investigations of case-

based methods. Before researchers elaborate their model-based

methods, it may be both theoretically insightful (as well as

pragmatically useful) to build an instance-based version of

their method. Based on our experience, we predict that such

an instance-based method would be simple to build and, at the

very least, provide a baseline against which it is possible to

demonstrate the value of more elaborate systems.
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APPENDIX

Modeling Variance in COCOMO/COQALMO

For COCOMO effort multipliers (the features that that affect

effort/cost in a linear manner), the off-nominal ranges {vl=1,

l=2, h=4, vh=5, xh=6} change the prediction by some ratio.

The nominal range {n=3} corresponds to an effort multiplier

of 1 (i.e. no change). Hence, these ranges can be modeled

as straight lines y = mx + b passing through the point

(x, y)=(3, 1). Such a line has a y-intercept of b = 1 − 3m.

Substituting this value of b into y = mx+ b yields:

∀x ∈ {1..6} EMi = mα(x− 3) + 1 (7)

where mα is the effect of α on effort/cost. The positive effort

EM features such as cplx with slopes m+, are positively

correlated to effort/cost. The negative effort EM features

such as acap, with slopes m−. are negatively correlated to

effort/cost. The m ranges, as seen in 161 projects [55], are:

(0.073 ≤ m+ ≤ 0.21) ∧ (−0.178 ≤ m
−
≤ −0.078) (8)

To random sample the tunings, all that is required is to select

m at random from the ranges of Equation 8. As shown in

[16], similar equations can be derived from the COCOMO

scale factors and the COQUALMO model.

ISSAMP, BEAM, A-STAR

ISAMP is a fast stochastic iterative sampling method that

extends a treatment using randomly selected ranges. The algo-

rithm follows one solution, then resets to try other paths (our

implementation resets 20 times). The algorithm has proved

remarkably effective at scheduling problems, perhaps because

it can rapidly explore more of the search space [64]. To avoid

exploring low-value regions, our version of ISAMP stores the

worst solution observed so far. Any conjunction whose value
exceeds that of the worst solution is abandoned, and the new

“worst value” is retained. If a conjunction runs out of new

ranges to add, then the “worst value” is slightly decreased.

This ensures that consecutive failing searches do not perma-

nently raise the “worst value” by an overly permissive value.

Our other two algorithms use some variant of tree search.

Each branch of the tree is a different “what-if” query of

size i. If i is less than the number of input values to

COCOMO/COQUALMO, the missing values were selected at

random from the legal ranges of those inputs.

BEAM search extends search branches as follows. Each

branch forks once for every new option available to that range.

All the new leaves are sorted by their value and only the top

N ranked branches are marked for further expansion. For this

study we used N = 10 and results scored using the median

values seen in the top N branches.

A-STAR runs like BEAM, but the sort order is determined

by the sum f (the cost of reaching the current solution) plus

g (a heuristic estimate of the cost to reach the final solution).

Also, unlike BEAM, the list of options is not truncated so a

termination criterion is needed (we stop the search if the best

solution so far has not improved after m iterations). For this

study, we estimated f and g as follows:

• f was estimated as the percentage of the project descrip-

tors with ranges in the current branch;

• g was estimated using 1−Equation 6 (i.e. distance to the

utopia of no effort, no development time, and no defects).
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