
How to Find Relevant Data for Effort Estimation?

Ekrem Kocaguneli, Tim Menzies
Lane Department of Computer Science and Electrical Engineering

West Virginia University,Morgantown, USA

ekocagun@mix.wvu.edu, tim@menzies.us

ABSTRACT

Background: Building effort estimators requires the training data.

How can we find that data? It is tempting to cross the boundaries of

development type, location, language, application and hardware to

use existing datasets of other organizations. However, prior results

caution that using such cross data may not be useful.

Aim: We test two conjectures: (1) instance selection can automati-

cally prune irrelevant instances and (2) retrieval from the remaining

examples is useful for effort estimation, regardless of their source.

Method: We selected 8 cross-within divisions (21 pairs of within-

cross subsets) out of 19 datasets and evaluated these divisions under

different analogy-based estimation (ABE) methods.

Results: Between the within & cross experiments, there were few

statistically significant differences in (i) the performance of effort

estimators; or (ii) the amount of instances retrieved for estimation.

Conclusion: For the purposes of effort estimation, there is little

practical difference between cross and within data. After applying

instance selection, the remaining examples (be they from within or

from cross source divisions) can be used for effort estimation.

Categories and Subject Descriptors
H.4 [Software Cost Estimation]: k-NN; D.2.8 [Software Engi-

neering]: Cost—within resource, cross resource

1. INTRODUCTION
A recurring problem in effort estimation is finding training data that

is relevant to some local problem. When we cannot find enough lo-

cal training data, it is tempting to try and import data from other

sources. However, it is not clear that this approach is useful: many

studies report that using imported data degrades estimation efficacy,

perhaps because the imported data is not relevant to the local con-

text (e.g. see the Kitchenham et al. [14] and Zimmermann et al. [31]

studies discussed later in this paper).

In this paper, we offer one solution to the problem of importing

relevant data from other sources in order to make estimates about

local models. Our solution is based on a fresh look at what it

means to say that examples are local or imported. Many publica-

tions [2,6–8,19,28,29] including several of our own [21,22] either

explicatively or tacitly assume “locality(1)”; i.e. clumps of simi-

lar projects can be discovered using a single feature. We say that

data divided into subsets according to locality(1) can be used for

within or cross effort modeling:

• Within studies are localized to one subset;

• A cross study trains from some subsets and tests on others.

As examples of within studies, some authors claim that, for projects

in a specific organization, software effort models work best when

calibrated with local data collected within that same organization.

Proponents of such a within source approach assume that it is best

to retrieve training data for examples divided according to:

• The project type being developed: e.g. embedded, etc;

• The development centers of the different developers;

• The development language of the projects;

• The application type (management information system; guid-

ance, navigation, and control; etc);

• The targeted hardware platform;

• The in-house or outsourced development projects;

If locality(1) was true, then any lessons learned from one orga-

nization may never apply to another. For example, we might not

be able to transfer lessons learned about effort estimation from

one company called (say) “Boeing” to another called “Lockheed-

Martin”. If so, then our ability to make general conclusions about

software engineering (SE) would be confined to small, highly spe-

cialized, sub-groups (e.g. just one company).

The opposite to locality(1) is “locality(N)”; i.e. the assump-

tion that effort estimation data forms a complex multi-dimensional

space that can only be usefully divided using multiple features. If

true, then this would be very good news since that would mean that

relevant data for effort estimation does not come just from small

sub-groups within one organization. Rather, useful data could be

collected from many projects including cross sources. Continuing

the above example, this would mean that some of the data from

Boeing might apply to some of the projects at Lockheed-Martin.

Note that, if locality(N) was true, then this would simplify effort

modeling for new projects: just search other contexts for the right

data for the new project. Also, it could lead to conclusions about

SE that are general to many development contexts.

This paper argues for locality(N) using two predictions that would

support locality(N) and would contradict locality(1):

PREDICTION 1: Effort models built from training data divided

on a single feature will perform no better (and, perhaps, even worse)

than those that divide the data using multiple features.

PREDICTION 2: Consider project data that was grouped into di-

visions w.r.t. to the value of a feature. If training data is retrieved

from within and across those divisions, then it would be equally as

probable to find useful data within as cross those divisions.

Recent research offers much support for PREDICTION 1. In a

study of 90 effort estimation methods (ten pre-processors × nine

learners), we found that the best methods were those that divided

the training data according to multiple features [12]. That result is

detailed in our Related Work section.

For PREDICTION 2, we test if divisions based on different single

features change the effort estimation process. We allow an instance

selection & retrieval algorithm to find which instances are best for

training. That algorithm is given access to all the training data, or

just the data divided via a single feature. It will be shown that:

The probability of retrieving training data from within

or across divisions based on single features is the same.

This result, plus the results in [12], are strong support for locality(N)
since they confirm both PREDICTION 1 and PREDICTION 2.

1.1 Practical Implications
These results have three practical implications: Firstly, it would

mean that effort estimation is not dependent on some artificial, and

trite, division of training data such as the source organization; the

kind of application; or any other single feature division. Given the

complex multi-dimensional nature of the software creation process,

divisions of training data based on (say) geographical dimensions

may be less important than other factors. The most similar software

to what you are writing now may not be in the next office. Rather,

it may be in an office on the other side of the world (and automatic

instance selection & retrieval algorithms can find that data).

Secondly, if locality(N) was true, it would be useful to build effort

estimation models from data taken from multiple contexts. Hence:

• Building estimation models is less expensive since generat-

ing local models need not wait for an elaborate (and expen-

sive and time-consuming) collection process from local data.

• There are effects in SE that transcend our current divisions

of data (e.g. data from company1 or company2). This is a

very exciting result since it promises future generalizable SE

results that apply to many organizations.

Thirdly, locality(N) offers a strong business case for collecting

SE data in some sharable repository. Such repositories can now be

trusted to provide, at least some, relevant historical examples for

building effort estimators for some new project.

1.2 Terminology
Here, we offer some terminology clarification. Other papers such

as Kitchenham et al. [14] and Zimmermann et al. [31] discuss the

impact of dividing data according to a single feature (either the or-

ganization or application name). This paper explores those single-

feature division as well as other single feature divisions such as the

project type being developed; the development centers of the devel-

opers; the development language of the software; the application

type; the targeted hardware platform; and in-house or outsourced

development. So whereas (e.g.) Kitchenham et al. explore cross-

vs-within company data, we explore cross-vs-within data “sources”

where the data is divided by the values of any single feature. As

shown below, we find no examples where single feature division

improves a state-of-the-art effort estimation method.

Two terms need clarification before continuing this paper:

• Instance selection filters data to select the most relevant in-

stances; hence, instance selection and filtering is used inter-

changeably in the rest of the text.

• On the other hand, instance retrieval is the process of finding

the closest neighbors (e.g. in a k-NN method).

That is, in the terminology of this paper, instance selection is a pre-

processor to some other process while instance retrieval is the part

of a single estimation process.

2. RELATED WORK
2.1 Evidence for PREDICTION 1
Keung et al. [12] built 90 effort estimators using 10 pre-processors

and 9 learners. Pre-processors included normalization, various dis-

cretization methods and feature selection (PCA, stepwise, sequen-

tial forward). Learners included k = 1 and k = 5-nearest-neighbor,

linear and stepwise regression, CART, neural nets and PCR.

The 90 estimators were assessed via multiple accuracy statistics.

Let t instances have actuals a1, a2, .., at. Prediction models gener-

ate prediction pi for instance i. If |pi − ai| is ARi (the absolute

residual difference between predictions and actuals) then:

• MAR is the mean absolute residual (
∑

i
pi − ai)/t.

• MREi and MERi are the ratios ARi/ai and ARi/pi.
• PRED(X) is the percent of t with MREi ≤ X%.

• MMRE =
∑

i
MREi/t

• MMER =
∑

i
MERi/t.

• MdMRE is median MREi value.

• The balanced errors are MBREi = (pi − ai)/min(pi, ai)
and MIBREi = (pi − ai)/max(pi, ai)

The 90 estimators were used in a leave-one-out study on twenty

data sets from http://promisedata.org/?cat=14, and were compared

via a Mann-Whitney test (95% confidence). As it might have been

predicted by Shepperd et al. [25], the ranking of the estimators var-

ied across different data sets and the different accuracy estimators.

However, Keung et al. found a small group of 13 estimators that

were consistently the best performers across all data sets (mea-

sured according to all of MAR, MRE, PRED(25), MMRE, MMER,

MdMRE, MBRE, and MIBRE). In terms of this paper, the major

result of Keung et al. is that all these 13 estimators used CART or

k = 1 nearest neighbor. This is significant since both these estima-

tors use multiple features to sub-divide the training data:

• k-th nearest neighbor algorithms use all project features (per-

haps, weighted by some feature) to determine related projects [26];

• Tree-based algorithms like CART [4] divide data into multi-

ple branches, where each branch tests and divides that data

on multiple features.

Hence, this result is strong support for PREDICTION 1.

2.2 Other Evidence
Other results in the literature are also inconclusive about locality(N).
In their review of papers building effort models using data from

within one company or across multiple companies, Kitchenham et

al. [14] found equal evidence for and against the value of build-

ing effort models based on a single feature division (specifically,

they found four studies favoring the use of within company data,

and another three reporting that using cross data performance is not

significantly worse than within). In other work, in the field of de-

fect prediction, Zimmermann et al. [31] found that predictors per-

formed worse when trained from cross-application data than from

within-application data. The evidence for their conclusion is quite

emphatic: within defeated cross in 618 out of 622 comparisons.

On the other hand, support for locality(N) comes from the work

of Turhan et al. [30], and Kocaguneli et al. [15]. Turhan et al. com-

pare defect predictors learned from cross or within resource data.

Like Zimmermann, they found that using all cross resource data

lead to poor predictor performance (very large false alarm rates).

However, after instance selection pruned away irrelevant cross re-

source data, they found that the cross resource predictors were

equivalent to the predictors learned from within resource data [30].

Inspired by [30], Kocaguneli et al. [15] used instance selection as

a pre-processor for a study on cross-vs-within resource effort esti-

mation. In a limited study with three data sets, they found that af-

ter instance selection, the performance differences in the predictors

learned from cross or within data were statistically insignificant.

2.3 Resolving the Evidence
The results in [30] and [15] support locality(N) but the other re-

sults discussed above are inconsistent or unsupportive. How can

we reconcile this conflicting evidence? One way is to note that:

• Studies supporting locality(N) all used a filtering method

(instance selection).

• Instance selection is not seen in the Kitchenham, Zimmer-

mann et al. studies.

An instance selection method uses every feature (perhaps, with

some feature weighting) to find relevant training examples. Hence,

the studies with instance selection [15, 30] offer more support for

locality(N) than for locality(1); however, they are hardly conclu-

sive, since they do not collect the information required to comment

on PREDICTION 2.

What is required is a well-controlled instance selection and retrieval

experiment over data divided by some single feature. PREDIC-

TION 2 would be supported if the instance selection & retrieval

method (TEAK) retrieved as much data within as across the filtered

single feature divisions.

3. METHODOLOGY
Figure 1 illustrates how this study differs to prior work. Most effort

estimation research falls into Figure 1.a where estimation models

are applied within one source set to learn an estimator. Examples

of this approach include [1, 18, 20, 21, 26].

A smaller number of papers, such as those surveyed by Kitchen-

ham et al. [14], explore building models using data that falls across

many sources (see Figure 1.b). Fewer still are the papers like [15,

30]) that, prior to learning, apply some instance selection to cross

resource data sources (see Figure 1.c).

(a) Within (b) Cross (c) Filter (d) Within &
Cross Filter

Figure 1: The problem types in within vs. cross data compar-

ison and our conclusions so far. “+” and “-” signs on top of

each approach mean positive and negative results respectively.

A “?” sign means that the approach has not previously been

investigated.

To the best of our knowledge, this paper is the first that allows an

effort estimator to select (filter) training data from either cross or

within different sources, then checks what data was retrieved from

which source (see Figure 1.d).

3.1 Datasets
There are 2 fundamental factors that were considered for selection

of the datasets used in this research:

• Public availability: For reproducibility purposes

• Cross-within divisibility: For enabling cross vs. within ex-

perimentation

A critical issue in SE is the ability of the proposed results to be

reproducible [10,14] and use of proprietary data is a major obstacle

towards this goal. Therefore, all our datasets are publicly available

through PROMISE data repository [3].

We define cross-within division as the subset(s) of effort data that

are formed through division of one feature: instances having the

same value for that feature form a subset. Such features are plau-

sible candidates for generating a cross source experiment, i.e. the

features should be likely to change from one source to other. Ac-

cordingly, this study began by exploring what PROMISE effort data

can be divided via a single feature. After manually inspecting more

than 20 datasets, six were found to be suitable for cross-within ex-

perimentation. Those six data sets support the 21 cross-within di-

visions shown in Figure 8. The selected division criteria include:

• project type: embedded, organic and semidetached (cocomo81),

• center: geographical development center (nasa93),

• language type: programming language used for development

(desharnais),

• application type: on-line service program, production control

program etc. (finnish and maxwell),

• hardware: PC, mainframe, networked etc. (kemerer and maxwell),

• source: whether in-house or outsourced (maxwell).

Dataset Criterion Subsets Subsets Size

cocomo81 project type cocomo81e 28

cocomo81o 24

cocomo81s 11

nasa93 development center nasa93_center_1 12

nasa93_center_2 37

nasa93_center_5 39

desharnais language type desharnaisL1 46

desharnaisL2 25

desharnaisL3 10

finnish application type finnishAppType1 17

finnishAppType2345 18

kemerer hardware kemererHardware1 7

kemererHardware23456 8

maxwell application type maxwellAppType1 10

maxwellAppType2 29

maxwellAppType3 18

maxwell hardware maxwellHardware2 37

maxwellHardware3 16

maxwellHardware5 7

maxwell source maxwellSource1 8

maxwellSource2 54

Figure 2: 6 datasets are selected from 20+ candidates. Then

selected datasets are divided into subsets according to a crite-

rion that can define a cross-within division. The datasets, subset

sizes as well as the selection criteria are provided here.

We will use the following nomenclatures: If a subset name is fol-

lowed by a set of numbers, they correspond to values of the feature

used to form the subset. If a name has multiple numbers at the end

(e.g. finnishAppType2345) then all instances with these values are

combined in a single subset.

3.2 Instance Selection and Retrieval
The goal of our experiment is to find the probability that a learner

retrieves training instances from either cross- or within- sources. In

order for this analysis to be meaningful, it is essential that we use

some state-of-the art learner (otherwise, a critic of this work could

discount our conclusions, saying that our analysis tools were poorly

selected). Hence, this section carefully documents TEAK [17], a

state-of-the-art instance-based effort estimator.

Since TEAK is an extension to to ABE0 [15, 17], this section will

introduce ABE0 before TEAK.

3.2.1 ABE0
Analogy-based estimators (ABE) generate an estimate for a test

project by retrieving similar past projects (a.k.a. analogies) from a

database of past projects and adapting their effort values into an es-

timate. We use ABE methods in this study since 1) they are widely

investigated methods in the literature [5, 11, 13, 15, 17, 18, 20], 2)

they are particularly helpful for cross source studies as they are

based on distances between individual project instances.

There are various design options associated with ABE methods

such as the distance measure for nearness [20], adaptation of anal-

ogy effort values [20], row processing [5, 13], column process-

ing [13, 18] and so on. Elsewhere we show that these options can

easily lead to more than 6000 ABE variants [12]. Here we define

ABE0 that is a baseline ABE method that combines the tools used

in Kadoda & Shepperd [11], Mendes et al. [20], and Li et al. [18]:

• Input a database of past projects

• For each test instance, retrieve k similar projects (analogies).

– For choosing k analogies use a similarity measure.

– Before calculating similarity, scale independent features

to equalize their influence on the similarity measure.

– Use a feature weighting scheme to reduce the effect of

less informative features.

• Adapt the effort values of the k nearest analogies to come up

with the effort estimate.

ABE0 uses the Euclidean distance as a similarity measure, whose

formula is given in Equation 1, where wi corresponds to feature

weights applied on independent features. ABE0 framework does

not favor any features over the others, therefore each feature has

equal importance in ABE0, i.e. wi = 1. For adaptation ABE0

takes the median of retrieved k projects.

Distance =

√

√

√

√

n
∑

i=1

wi(xi − yi)2 (1)

3.2.2 TEAK
TEAK is a variance-based instance selector that discards training

data associated with regions of high estimation variance. It aug-

ments ABE0 with instance selection and an indexing scheme for

filtering relevant training examples. Detailed description of TEAK

can be found in [17]. In summary, TEAK is a two-pass system:

• Pass 1 prunes training instances implicated in poor decisions

(instance selection);

• Pass 2 retrieves closest instances to the test instance (instance

retrieval).

In the first pass, training instances are combined using greedy-

agglomerative clustering (GAC), to form an initial cluster tree that

we call GAC1; e.g. Figure 3. Level zero of GAC1 is formed by

leaves, which are the individual project instances. These instances

are greedily combined into tuples to form the nodes of upper lev-

els. The variance of the effort values associated with each sub-

tree (the performance variance) is then recorded and normalized

min..max to 0..1. The high variance sub-trees are then pruned, as

these are the sub-trees that would cause an ABE method to make

an estimate from a highly variable instance space. Hence, pass one

Figure 3: A sample GAC tree with regions of high variance

(red) and low variance (green). GAC trees may not always

be binary. For example here, leaves are odd numbered, hence

node “c” is left behind. Such instances are pushed forward into

the closest node in the higher level. For example, “c” is pushed

forward into the “b+f” node to make “b+f+c” node.

GAC1 GAC2

Figure 4: Execution of TEAK on 2 GAC trees, where tree on the

left is GAC1 and the one on the left is GAC2 (i.e. lower variance

sub-tree of GAC1). The instances in the low variance region

of GAC1 (green region) are selected to form GAC2. Then test

instance traverses GAC2 until no decrease in effort variance is

possible. Wherever the test instance stops is retrieved as the

subtree to be used for adaptation (white region of GAC2).

prunes sub-trees with a variance greater than α% of the maximum

variance seen in any tree. After some experimentation, we found

that α = 10 lead to estimates with lowest errors.

The leaves of the remaining sub-trees are the survivors of pass one.

They are filtered to pass 2 where they are used to build a second

GAC tree (GAC2). GAC2 is generated and traversed in a simi-

lar fashion to GAC1, then test instances are moved from root to

leaves. Unlike GAC1, this time variance is a decision criterion for

the movement of test instances: If the variance of the current tree

is larger than its sub-trees, then continue to move down; otherwise,

stop and retrieve the instances in the current tree as the analogies.

TEAK is a form of ABE0, so its adaptation method is the same, i.e.

take the median of the analogy effort values. A simple visualization

of this approach is given in in Figure 4.

We use TEAK in this study since, as shown by the leave-one-out

experiments of [17], its performance is comparable with other

commonly-used effort estimators including neural networks (NNet)

and linear regression (LR). A summary of those performance re-

sults are given in Figure 5 (for a complete analysis and for defini-

tions of datasets please refer to Figure 7 of [17]). That figure shows

the results of a statistical comparison of various performance indi-

cators (defined in [12]) for nine effort estimators and nine data sets

from http://promisedata.org/?cat=14:

• The columns k = 1, 2, 4, 8, 16 denote variants of standard

ABE0 where estimates are generated from the k-th nearest

neighbors.

• The column k = best denote a variant of ABE0 where k was

chosen by an initial pre-processor that chose a best k value

after exploring the training data.

• The columns LR and NNet refer to linear regression and

neural nets.

The black triangles in Figure 5 mark when an estimator was one

of the top-ranked methods for a particular data set. Ranking was

accomplished via the win − loss calculation of Figure 6. We first

check if two distributions i, j are statistically different according to

Simple ABE0

T
E

A
K

L
R

N
N

et

k=
b

es
t

k
=

1

k
=

1
6

k
=

2

k
=

4

k
=

8

MdMRE
Cocomo81 N

Cocomo81e N

Cocomo81o N

Nasa93 N

Nasa93c2 N

Nasa93c5 N

Desharnais N

Sdr N

ISBSG-Banking N

Count 6 3 0 0 0 0 0 0 0
Pred(25)
Cocomo81 N

Cocomo81e N

Cocomo81o N

Nasa93 N

Nasa93c2 N

Nasa93c5 N

Desharnais N

Sdr N

ISBSG-Banking N

Count 5 3 1 0 0 0 0 0 0
MAR
Cocomo81 N

Cocomo81e N

Cocomo81o N

Nasa93 N

Nasa93c2 N

Nasa93c5 N

Desharnais N

Sdr N

ISBSG-Banking N

Count 6 3 0 0 0 0 0 0 0

Figure 5: Results from 20 repeats of a leave-one-out exper-
iment, repeated for the performance measures of MdMRE,
Pred(25) and MAR. Black triangles mark when an estimator
was one of the top-ranked methods for a particular data set
(where ranking was computed via win − loss from a Mann-
Whitney test, 95% confidence). The Count rows show the
number of times a method appeared as the top performing vari-
ant. Results from [17].

wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if Mann-Whitney(Pi, Pj) says they are the same then

tiei = tiei + 1;
tiej = tiej + 1;

else
if mean or median(Pi) < median(Pj) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Figure 6: Pseudocode for win-tie-loss calculation between

methods i and j w.r.t. performance measures Pi and Pj .

Note here that only for Pred(30) the comparison is based on

actual values (Pred(30)i, Pred(30)j) rather than mean or

median values of performance measure arrays (median(Pi),

median(Pj)).

the Mann-Whitney test. In our experimental setting, i, j are arrays

of performance measure results coming from two different meth-

ods. If they are not statistically different, then they are said to tie

and we increment tiei and tiej . On the contrary, if they are dif-

ferent, we updated wini, winj and lossi, lossj after a numerical

comparison of performance measures. The related pseudocode is

given in Figure 6. To get rid of any bias due to a particular experi-

mental setting, for every experiment 20 runs are made.

The key feature of Figure 5 is that TEAK always performed better

than the other ABE0 methods, and usually performed better than

neural nets. TEAK’s only near-rival was linear regression but, as

shown in the LR columns, TEAK was ranked top nearly twice as

much as linear regression.

3.3 Experimentation
The experimentation of this research has two different goals:

• The performance comparison of a state-of-the-art effort esti-

mation method (TEAK) when trained from within and cross

source data.

• The retrieval tendency goals question the tendency of a within

test instance to retrieve within or cross data. In other words,

given the chance that a test instance had access to within and

cross data at the same time, what percentage of every subset

would be retrieved into k analogies used for estimation?

3.3.1 Performance Comparison
For performance comparison we have two settings: Within and

cross. In within data setting, only within one source is used as

the dataset and a testing strategy of leave-one-out cross-validation

(LOOCV) is employed. LOOCV works as follows: Given a within

dataset of T projects, 1 project at a time is selected as the test

and the remaining T − 1 projects are used for training, so even-

tually we have T predictions. The resulting T predictions are then

used to compute 4 different performance measures defined in §2:

PRED(30), MAR, MMRE, MdMRE.

Cross data setting uses within data as the test set and the cross data

as the training set. In this setting LOOCV is used as follows: each

within source is selected as the test instance and TEAK derives an

estimate for that instance by adapting cross analogies. Ultimately

we end up with T predictions adapted from a cross dataset. Finally

the performances under within and cross data settings are com-

pared. For that purpose we use both mere performance values as

well as win-tie-loss statistics.

3.3.2 Retrieval Tendency
For retrieval tendency, we select test instances according to LOOCV.

For each test instance, we are left with training sets of T −1 within

data and the subsets of cross data. After marking every within and

cross instance, we combine the two datasets into a single training

set and let the test instance choose analogies from the unified train-

ing set (note that analogies are retrieved after filtering in pass #1 of

TEAK). In this setting our aim is to see what percentage of within

and cross subsets would appear among retrieved k analogies. The

retrieval percentage for a subset is the ratio of instances retrieved

in analogies from that subset to its total size (see Equation 2).

Percentage =
SubsetSizeInAnalogies

SubsetSize
(2)

4. RESULTS
4.1 Performance Comparison
For performance comparison 4 different performance measures are

employed: MAR, MMRE, MdMRE and Pred(30). The actual per-

formance values are also evaluated subject to Mann Whitney statis-

tical test at 95% confidence and this evaluation is summarized by

win-tie-loss statistics.

Figure 7 shows within and cross data performance when TEAK is

used as the estimation method. For each performance measure win-

tie-loss statistics (abbreviated with W, T, L respectively) of within

performance when compared to cross over 20 runs as well as actual

performance measure values are reported.

The gray lines in Figure 7 show the experiments where the within
results “dominate”; i.e. win in more than half the comparisons.

Note that there are only two gray lines. In the remaining 19

21
cases,

the within data does not provide an advantage over cross data. In

fact, in one case (kemererHardware1) the within data is far worse

than cross with an L value of 20. These results are confirmation

of previous conclusions [15, 30] in a much larger scale with 4 er-

ror measures and 21 different cases: instance selection on cross

Dataset MAR MMRE MdMRE Pred(30)

Median Results Median Results Median Results Median Results

W T L within cross W T L within cross W T L within cross W T L within cross

cocomo81e 0 20 0 1.0E+3 1.1E+3 0 16 4 2.4 0.9 4 16 0 0.7 0.9 4 16 0 0.1 0.1

cocomo81o 0 20 0 8.2E+2 8.1E+2 2 18 0 0.8 2.7 2 18 0 0.8 0.9 2 18 0 0.1 0.2

cocomo81s 18 2 0 3.6E+1 1.8E+2 15 5 0 1.0 8.6 15 5 0 0.5 1.7 13 5 2 0.2 0.1

nasa93_center_1 0 20 0 1.4E+2 1.3E+2 0 20 0 1.2 2.0 0 20 0 0.8 0.8 0 20 0 0.6 0.5

nasa93_center_2 4 16 0 1.8E+2 2.1E+2 2 18 0 1.3 2.8 2 18 0 0.7 0.8 2 18 0 0.2 0.2

nasa93_center_5 0 20 0 6.9E+2 8.9E+2 0 12 8 0.9 0.7 8 12 0 0.6 0.8 8 11 1 0.2 0.2

desharnaisL1 11 9 0 9.9E+2 2.0E+3 9 11 0 0.6 2.4 9 11 0 0.4 1.7 9 11 0 0.4 0.3

desharnaisL2 0 20 0 2.8E+3 2.8E+3 0 20 0 0.5 0.6 0 20 0 0.5 0.5 0 20 0 0.2 0.3

desharnaisL3 0 20 0 2.8E+3 3.2E+3 2 18 0 0.5 0.5 2 18 0 0.4 0.5 2 18 0 0.2 0.2

finnishAppType1 0 20 0 3.2E+3 3.8E+3 0 20 0 1.1 1.0 0 20 0 0.5 0.6 0 20 0 0.3 0.2

finnishAppType2345 0 20 0 7.1E+3 5.4E+3 0 17 3 2.2 0.9 0 17 3 0.8 0.7 0 17 3 0.1 0.2

kemererHardware1 0 0 20 1.4E+2 5.5E+1 0 0 20 1.3 0.3 0 0 20 1.1 0.3 0 0 20 0.4 0.5

kemererHardware23456 0 20 0 2.0E+2 2.0E+2 0 20 0 0.7 0.7 0 20 0 0.6 0.5 0 20 0 0.1 0.1

maxwellAppType1 6 14 0 1.4E+3 3.2E+3 1 19 0 0.8 1.9 1 19 0 0.4 0.7 0 19 1 0.3 0.3

maxwellAppType2 0 18 2 6.6E+3 5.4E+3 0 19 1 1.2 0.9 0 19 1 0.5 0.4 0 19 1 0.3 0.3

maxwellAppType3 0 20 0 5.6E+3 6.6E+3 1 19 0 1.0 1.0 1 19 0 0.5 0.6 1 19 0 0.2 0.2

maxwellHardware2 0 20 0 5.6E+3 5.3E+3 0 20 0 0.8 1.0 0 20 0 0.5 0.5 0 20 0 0.2 0.2

maxwellHardware3 0 20 0 5.3E+3 5.9E+3 0 20 0 0.9 0.7 0 20 0 0.4 0.5 0 20 0 0.3 0.4

maxwellHardware5 0 20 0 3.6E+3 3.6E+3 0 20 0 3.7 2.8 0 20 0 0.7 0.8 0 20 0 0.1 0.1

maxwellSource1 6 14 0 1.5E+3 3.3E+3 1 19 0 0.3 0.4 1 19 0 0.1 0.4 1 19 0 0.8 0.8

maxwellSource2 0 20 0 6.0E+3 6.0E+3 0 20 0 1.2 1.9 0 20 0 0.6 0.7 0 20 0 0.2 0.2

Figure 7: Results of TEAK: Comparison of performance between within and cross data w.r.t. 4 different performance measures

(median of MAR, MMRE, MdMRE, Pred(30) over 20 runs) as well as W, T, L statistics. Highlighted rows are the cases, where

within data is “dominantly” better than cross, i.e. wins more than half the time. Under the columns of within and cross the actual

performance values associated with within and cross source datasets are provided respectively.

sources improves its performance to an extent where it is no worse

than within data.

4.2 Retrieval Tendency
To explore retrieval tendency, LOOCV is used to choose single test

instances one by one from a within dataset of size T . The remaining

T−1 within instances are combined with the cross subsets. Prior to

combination, every training instance is marked with the source that

it belongs to (cross vs within). Then the test instance is allowed to

choose k analogies from a training set of within and cross data.

The rig lets us check the percentage retrieval of analogies from each

one of the within and cross subsets. Those results are shown in

Figure 8. Each cross-within division is represented with a row of

2 or 3 subsets; columns named “From Si” where i ∈ {1, 2, 3}
represent the subsets of the rows:

• The highlighted diagonal entries of each cell show the amount

of instances retrieved from within subset.

• The off-diagonal values are the amount of instances retrieved

from cross datasets.

To better see the percentages of within and cross subsets, we sorted

and plotted them in Figure 9. Figure 9(a) shows the sorted per-

centage values, where the within percentages are shown with cir-

cles, whereas the cross percentages are represented by triangles.

Observe how the cross percentage values are shifted versions of

within percentages (this shift-effect comes from the fact that there

are more cross subsets than within subsets).

The percentiles from 10th to 90th with increments of 20 are given

in Figure 9(b). When we plot the percentiles, the shift-effect due

to subset number disappears and we are able to observe that within

and cross retrieval tendencies at the indicated percentile values are

very close. A statistical test (Mann-Whitney, 95% confidence) con-

firms this: the distributions of Figure 9 are not statistically signifi-

cantly different.

Test Set From S1 From S2 From S3

S1: cocomo81e (28) 1.0 (3.6%) 1.1 (4.8%) 1.6 (14.4%)

S2: cocomo81o (24) 1.8 (6.6%) 1.3 (5.6%) 1.1 (10.4%)

S3: cocomo81s (11) 1.4 (5.1%) 1.7 (7.0%) 1.0 (9.4%)

S1: nasa93_center_1 (12) 1.0 (8.1%) 2.9 (7.9%) 1.7 (4.3%)

S2: nasa93_center_2 (37) 1.6 (13.0%) 4.6 (12.4%) 3.8 (9.8%)

S3: nasa93_center_5 (39) 0.8 (6.7%) 2.2 (6.0%) 2.1 (5.4%)

S1: desharnaisL1 (46) 2.5 (5.5%) 1.7 (7.0%) 0.8 (7.9%)

S2: desharnaisL2 (25) 2.6 (5.6%) 1.5 (6.1%) 0.7 (6.7%)

S3: desharnaisL3 (10) 1.9 (4.1%) 1.3 (5.0%) 0.4 (4.0%)

S1: finnishAppType1 (17) 1.6 (9.1%) 1.6 (8.8%)

S2: finnishAppType2345 (18) 1.4 (8.2%) 1.6 (8.8%)

S1: kemererHardware1 (7) 0.6 (8.8%) 0.9 (10.7%)

S2: kemererHardware23456 (8) 0.5 (7.3%) 0.8 (10.6%)

S1: maxwellAppType1 (10) 0.7 (7.1%) 1.7 (5.9%) 1.0 (5.8%)

S2: maxwellAppType2 (29) 0.4 (3.7%) 1.8 (6.2%) 1.0 (5.5%)

S3: maxwellAppType3 (18) 0.6 (6.3%) 0.9 (3.2%) 1.0 (5.6%)

S1: maxwellHardware2 (37) 1.7 (4.6%) 0.8 (4.9%) 0.4 (6.0%)

S2: maxwellHardware3 (16) 2.5 (6.8%) 1.1 (6.8%) 0.3 (4.3%)

S3: maxwellHardware5 (7) 2.3 (6.2%) 0.8 (5.0%) 0.3 (4.5%)

S1: maxwellSource1 (8) 0.1 (1.6%) 2.8 (5.2%)

S2: maxwellSource2 (54) 0.4 (4.6%) 2.8 (5.3%)

Figure 8: The average amount of analogies (k) retrieved from

within and cross resource datasets by TEAK. In parenthesis the

percentage of retrieved instances out of the actual within source

dataset is given. The diagonal entries that are highlighted with

gray are the within source retrieval amounts and percentages.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

S
o

rt
ed

 P
er

ce
n

ta
g

es

Index

WC
CC

(a) Percentages

 4

 8

 12

 16

10 30 50 70 90

P
er

ce
n

ta
g

e

Percentile

WC
CC

(b) Percentiles

Figure 9: Percentages and percentiles of instances retrieved by

TEAK from within and cross datasets. The cross percentages

are very similar to shifted version of within percentages, the

shift-effect is due to different number of subsets. The percentile

graph removes the shift-effect and we see that within test in-

stances retrieve very close percentages of within and cross in-

stances.

5. DISCUSSION
5.1 Implications
We have shown above that, for boundaries defined by a single fea-

ture:

• There was usually no difference in the performance of effort

estimators; learned from within or from across those bound-

aries;

• There was usually no difference in the probability of retriev-

ing instances for those estimates from within or from cross

those boundaries.

That is, it was not useful to divide the data by any of single feature

boundaries shown in Figure 8; i.e. by project type, geographical

location of the development center, language type, application type,

hardware, or source. Hence, at least for the purposes of selecting

and retrieving relevant examples for effort estimation, there is no

information gain in dividing data using a single feature.

5.2 Small Retrieval Sizes
The median values of the percentiles (i.e. 50th percentile) in Fig-

ure 9 is 7%. Initially, this low value troubled us but after a review of

the relevant literature we found that our results are consistent with

prior results:

• Chang’s prototype generators [5] replaced training sets of

size T = (514, 150, 66) with prototypes of size N = (34, 14, 6)
(respectively).

• That is, prototypes may be as few as N

T
= (7, 9, 9)% of the

original data. Note that these values are close to how many

instances were retrieved in the above results.

5.3 Geometric Implications

Figure 10: Projects de-

scribed in two dimensions.

Our results imply something

about the location of training

data in instance space. Geo-

metrically, locality(1) assumes

that project data lines up along

one dimension; e.g. as shown

by the circles in Figure 10.

This figure displays projects de-

scribed in terms of a two dimen-

sional instance space (labeled

here as x and y). Note that (a)

the circles are arranged (approx-

imately) parallel to the y axis

and that (b) the longer projects

(indicated with larger circles)

occur at higher y values. The space of the circle examples in Fig-

ure 10 could be processed by locality(1) since a single feature (in

this case, the vertical y-axis) usefully divides the examples with

higher effort from those with lower effort.

From a geometric perspective, locality(1) is improbable. Given

the idiosyncrasies of software development, we find it highly un-

likely that naturally occurring project examples will all line up in a

row parallel to one axis. What is more likely, we believe, are ge-

ometrics like those shown as squares in Figure 10. As before, the

size of the shapes indicates the effort associated with each project.

Note these examples do not run parallel to any feature and the

longer and shorter projects are not easily separated by either axis.

The space of small squares and larger squares cannot be divided by

any simplistic locality(1) assumption.

5.4 Threats to Validity
External validity questions whether the results can be generalized

outside the specifications of a study [23]. For the purpose of ex-

ternal validity, we use of 21 within-cross dataset pairs. Among 10

studies investigated by Kitchenham et al. in [14], 9 of them used

single within-cross dataset pairs, and 1 study used 6 pairs. In terms

of external validity, this report has higher validity than a standard

within vs. cross data comparison effort estimation study.

Another consideration for external validity is the employed meth-

ods. There are thousands of possible ABE variants and there is no

way that this study covers them all. There is obviously need for

future research that repeats these experimentations with different

ABE variants. However, experiments reported here include a filter-

ing based variant (TEAK) built on a base variant (ABE0) and run

on 21 within-cross pairs. Therefore, the extent of the experimen-

tation in this research offers enough support for the claims that 1)

cross data performs no worse than within data and 2) a within test

instance tends to retrieve equally from within and cross projects.

Construct validity (i.e. face validity) asks if we are measuring what

we actually intended to measure [24]. Previous studies have con-

cerned themselves with the construct validity of different perfor-

mance measures for effort estimation (e.g. [27]). So as not to bias

our conclusions due to a limited number of measures, we used 4
different performance measures aided with win-tie-loss statistics.

In terms of internal validity of our results, there is one dimen-

sion of experimental conditions not explored. We are making use

of LOOCV, whose a possible alternative would be N-Way cross-

validation. In N-Way cross-validation, data is randomly divided

into B bins and each bin is tested on a model learned from the

combination of other bins (typical values for B are 3 or 10). From

a theoretical point of view, not controlling the stability of our results

across different testing strategies is a threat to validity, as different

testing strategies entails different bias and variance conditions [9].

Elsewhere [16], we show that there is very little difference in the

bias and variance values generated for LOOCV and N-way cross-

validation. Since two testing strategies have similar bias-variance

characteristics for effort datasets, we opted for LOOCV due to the

fact that LOOCV is a deterministic procedure that can be exactly

repeated by any other researcher with access to a particular data set.

N-way cross-validation on the other hand requires a random num-

ber generator and a stratification heuristic (to maintain same class

distribution in each bin). Without access to exact same random

number generator and stratification heuristic, it would be difficult

for a researcher “A” to reproduce results of researcher “B”.

6. CONCLUSION
We have shown that when using a state-of-the-art effort estimator

(TEAC), then after instance selection:

1. The cross performance results are no worse than within
(see Figure 7);

2. The probability that the estimator retrieves a training instance

from cross or within is the same (see Figure 9.b).

Result #1 grants us permission to compare cross-vs-within results

(since there is no performance delta between them). Result #2

shows that the single-feature divisions have no bearing on effort es-

timation. Coupled with the results of [12], these results are strong

support for locality(N) since we have confirmed both PREDIC-

TION 1 and PREDICTION 2.

This means that (to repeat a comment made in our introduction), the

most similar software to what you are writing now may not be in

the next office. Rather, it may be in an office on the other side of the

world. As shown here, using instance selection tools like TEAK, it

is possible to automatically find that relevant training data.

7. FUTURE DIRECTIONS
Some of the most likely future directions to this research are:

• Reproduction of this work on proprietary data.

• Investigating why particular subsets (cocomo81s, desharnaisL1)

favor within data, while others favor both within and cross.

• Using other ABE or non-ABE methods under similar set-

tings.

• Using different features on different datasets to see if they

can define a border between within and cross data.

More generally, this work gives permission to effort analysts to

search for data outside of their particular organizational context.

One limit to such a search are the ontologies under which data is

described at different sites; e.g.

• Is “LOC” the same as “size”?

• One site might use record data using some term like prod-

uct complexity. Is there any analogous measure to product

complexity at other sites?

Hence, one result of this paper might be to spawn a sub-field in

effort estimation where researchers try to infer synonyms between

data dictionaries at different sites.

Acknowledgements
This work was funded by a National Science Foundation grant

CCF-1017330.

8. REFERENCES
[1] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and

S. Biffl. Optimal Project Feature Weights in Analogy-Based

Cost Estimation: Improvement and Limitations. IEEE

Transactions on Software Engineering, 32(2):83–92, 2006.

[2] B. Boehm. Safe and Simple Software Cost Analysis. IEEE

Software, pages 14–17, 2000.

[3] G. Boetticher, T. Menzies, and T. Ostrand. PROMISE.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.

Classification and Regression Trees, 1984.

[5] C.-l. Chang. Finding Prototypes for Nearest Classifiers.

IEEE Transactions on Computer, C(11), 1974.

[6] S. Chulani, B. Boehm, and B. Steece. From Multiple

Regression to Bayesian Analysis for Calibrating

{COCOMO} {II}. Journal of Parametrics, 15(2):175–188,

1999.

[7] D. Ferens and D. Christensen. Calibrating Software Cost

Models to {D}epartment of {D}efense {D}atabase: A

Review of Ten Studies. Journal of Parametrics, 18(1):55–74,

Nov. 1998.

[8] H. Habib-agahi, S. Malhotra, and J. Quirk. Estimating

Software Productivity and Cost for {NASA} Projects.

Journal of Parametrics, pages 59–71, Nov. 1998.

[9] T. Hastie, R. Tibshirani, and J. Friedman. The elements of

statistical learning. Springer, 2 edition, 2008.

[10] N. Juristo and S. Vegas. Using Differences among

Replications of Software Engineering Experiments to Gain

Knowledge. In ESEM, pages 356–366, 2009.

[11] G. Kadoda, M. Cartwright, and M. Shepperd. On configuring

a case-based reasoning software project prediction system. In

UK CBR Workshop, Cambridge, UK, pages 1–10. Citeseer,

2000.

[12] J. Keung, E. Kocaguneli, and T. Menzies. A Ranking

Stability Indicator for Selecting the Best Effort Estimator in

Software Cost Estimation. Automated Software Engineering

(submitted), 2011.

[13] J. W. Keung, B. Kitchenham, and D. R. Jeffery. Analogy-X:

Providing Statistical Inference to Analogy-Based Software

Cost Estimation. IEEE Trans. Softw. Eng., 34(4):471–484,

2008.

[14] B. Kitchenham, E. Mendes, and G. H. Travassos. Cross

versus Within-Company Cost Estimation Studies: A

Systematic Review. IEEE Trans. Softw. Eng., 33(5):316–329,

2007.

[15] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, and J. W.

Keung. When to use data from other projects for effort

estimation. In ASE’10, pages 321–324, 2010.

[16] E. Kocaguneli and T. Menzies. The Effects of Test Set

Selection on Effort Estimation (in preperation), 2011.

[17] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung.

Exploiting the Essential Assumptions of Analogy-based

Effort Estimation. To Appear in IEEE Trans. Softw. Eng,

2011.

[18] Y. Li, M. Xie, and T. Goh. A study of project selection and

feature weighting for analogy based software cost estimation.

Journal of Systems and Software, 82(2):241–252, Feb. 2009.

[19] K. Lum, J. Powell, and J. Hihn. Validation of Spacecraft

Software Cost Estimation Models for Flight and Ground

Systems. In ISPA Conference Proceedings, Software

Modeling Track, May 2002.

[20] E. Mendes, I. Watson, C. Triggs, N. Mosley, and S. Counsell.

A comparative study of cost estimation models for web

hypermedia applications. Empirical Software Engineering,

8(2):163–196, 2003.

[21] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting Best

Practices for Effort Estimation. IEEE Transaction on

Software Engineering, 32(11):883–895, 2006.

[22] T. Menzies, D. Port, Z. Chen, and J. Hihn. Simple software

cost analysis: safe or unsafe? In PROMISE ’05, pages 1–6,

New York, NY, USA, 2005. ACM.

[23] D. Milic and C. Wohlin. Distribution Patterns of Effort

Estimations. In Euromicro, 2004.

[24] C. Robson. Real world research: a resource for social

scientists and practitioner-researchers. Blackwell Publisher

Ltd, 2002.

[25] M. Shepperd and G. Kadoda. Comparing Software

Prediction Techniques Using Simulation. Software

Engineering, IEEE Transactions on, 27(11):1014–1022,

2002.

[26] M. Shepperd and C. Schofield. Estimating Software Project

Effort Using Analogies. IEEE Transactions on Software

Engineering, 23(12), Nov. 1997.

[27] E. Stensrud, T. Foss, B. Kitchenham, and I. Myrtveit. An

empirical validation of the relationship between the

magnitude of relative error and project size. Eighth IEEE

Symposium on Software Metrics, pages 3–12, 2002.

[28] S. Stukes and H. Apgar. Applications Oriented Software

Data Collection: Software Model Calibration Report,

{TR}-9007/549-1, Management Consulting and Research,

Mar. 1991.

[29] S. Stukes and D. Ferens. Software Cost Model Calibration.

Journal of Parametrics, 18(1):77–98, 1998.

[30] B. Turhan, T. Menzies, A. Bener, and J. Di Stefano. On the

relative value of cross-company and within-company data for

defect prediction. Empirical Software Engineering,

14(5):540–578, 2009.

[31] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and

B. Murphy. Cross-project defect prediction. ESEC/FSE’09,

page 91, 2009.

