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Software project effort estimation requires high accuracy, but accurate estimations are difficult to 

achieve. Increasingly, data mining is used to improve an organization’s software process quality, e.g. 

the accuracy of effort estimations. Data is collected from projects, and data miners are used to 

discover beneficial knowledge. This paper reports a data mining experiment in which we examined 

32 software projects to improve effort estimation. We examined three major categories of software 

project activities, and focused on the activities of the category which has got the least attention in 

research so far, the non-construction activities. The analysis is based on real software project data 

supplied by a large European software company. In our data mining experiment, we applied a range 

of machine learners. We found that the estimated total software project effort is a predictor in 

modeling and predicting the actual quality management effort of the project. 

Keywords: Effort estimation; data mining; project behavior. 

1.     Introduction  

A software supplier organization strives to estimate as accurately as possible the effort 

needed in building software to ensure that the project’s adherence to budget and 

schedules, and the successful allocation of resources [1]. A vast number of approaches, 

techniques and tools have been developed for both modeling and estimating software 

project effort. Although these approaches take various factors into account, the general 

software project activities which are not directly related to software construction or 

project management have not been considered to be one of the major effort categories. In 

contrast, effort estimation research and applications focus on software construction, 

because the majority of the total effort is software construction effort [2][3]. For instance, 

the well-known work breakdown structures [2][4][5][6] overlook general software 

project activities [7]. However, the amount of effort related to general software project 

activities can be greater than the project management effort and also can vary remarkably 
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between projects [8]. Can the overlooked general software project activities and their 

effort be a reason for the high effort estimation inaccuracy (in [8], the median magnitude 

of relative error (MdMRE) was reported to be 0.34)? 

In this study, we experimented with data mining to assess the impact of non-

construction activities compared with other software project activities on effort estimates. 

Our data mining experiment results (presented in sub-section 3.2.1) are two-fold: whereas 

we find no evidence that general software project activities are a significant factor 

influencing effort estimation, we find evidence of a relation between the estimated total 

software project effort and the actual effort of one of the general software project 

activities, namely quality management. This finding can be used in improving effort 

estimations, and is a useful supplement to the scanty research on the possible impacts of 

effort estimates on project work and behavior [9]. 

The remainder of this paper is structured as follows. Section 2 describes the 

theoretical background of this study and presents our prior work on defining general 

software project activities as a group called ‘non-construction activities’. The data mining 

experiment with interpretation of the results are presented in Section 3. Finally, Section 4 

offers a short summary. 

2.     Related and Prior Work  

In this section, we present the theoretical background to this study and our prior work 

related to the general software project activities. 

2.1.     Theoretical background  

The theoretical background of this work is two-fold. On the one hand, there are the key 

concepts of the research domain: effort and its estimation, effort distribution and work 

breakdown structure. On the other hand, there is the research approach used for achieving 

our goal to improve effort estimate accuracy: experimenting by data mining. 

2.1.1.     Key concepts  

The effort of a software project can be generally defined as the time consumed by the 

project, and it can be expressed as a number of person hours, days, months or years, 

depending on the size of the project. The effort is estimated in most projects. An estimate 

is a probabilistic assessment with a reasonably accurate value of the center of a range. 

Formally, an estimate is defined as the median of the (unknown) distribution [10]. An 

estimate is a prediction; hence, an estimation model can be considered to be a prediction 

system. Indeed, software project effort is one of the most-modeled software engineering 

areas. The most widely known formal modeling approaches include the regression-based 

composite models COCOMO (Constructive Cost Model) [2] and COCOMO II [4][11]. 

However, the most widely used empirical effort estimation technique in practice is expert 

judgment, particularly because there is no conclusive evidence that a formal approach 

outperforms the informal expert analysis [12]. 
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Although effort can be distributed in a project between project activities or project 

phases in many different ways, effort distribution is a less-investigated effort estimation 

area. Indeed, it has been disputed whether it is useful to distribute effort in the first place 

[3], although examples exist in the software engineering literature; Brooks' suggestion for 

rule-of-thumb effort distribution for software construction was one of the first in the mid-

1970s [13]. Effort is distributed on software project activities that together form a work 

breakdown structure, WBS. A WBS is a particular defined tree-structure hierarchy of 

elements that decomposes the project into discrete work tasks that can be scheduled and 

prioritized, and used for project budgetary planning and control purposes [2][6][14][15]. 

A WBS is also required by the currently employed capability maturity models, e.g. 

CMMI [16]. However, no standardized way to create a WBS exists, and the software 

engineering literature provides only a few general WBS including ones applied with the 

two COCOMO models [2][4], the Rational Unified Process (RUP) activity distribution 

[6], and the ISO/IEC 12207 work breakdown structure for software life-cycle processes 

[5]. The topic is largely avoided in the published literature because the development of a 

WBS depends on numerous project-specific parameters [6]. 

2.1.2.     Experimenting and data mining  

In this study, we employ experimenting [17][18] as our research methodology. In a 

controlled experiment, as many factors as possible belonging to the studied phenomenon 

are under researcher’s control [19]. Suppositions, assumptions, speculations and beliefs 

are tested with experimenting. In other words, the purpose of experimentation is to match 

ideas with reality [18]. 

Experimentations have two levels [18]: the first level is experimenting in laboratory 

(controlled conditions), and the second level is experimenting in reality (uncontrolled 

conditions), i.e. experimentation is carried out with real projects. The tightness of control 

is, however, usually in opposition to the richness of reality at the same level of 

knowledge [19]. Subsequently, the researchers have to ultimately make a trade-off 

between these two iso-epistemic attributes. 

In a controlled experiment, the Goal/Question/Metric paradigm provides a useful 

framework [17]. In the Goal/Question/Metric (GQM) paradigm [20], data collection is 

designed thus [21]: 

 

(1) Conceptual level (Goal): a goal is defined for an object for a variety of reasons, with 

respect to various models of quality, from various points of view and relative to a 

particular environment. 

(2) Operational level (Question): a set of questions is used to define models of the object 

of study and then focuses on that object to characterize the assessment or 

achievement of a specific goal. 

(3) Quantitative level (Metric): a set of metrics, based on the models, is associated with 

every question in order to answer it in a measurable way. 
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One of the techniques used to achieve goals in a controlled experiment is data mining. 

Data mining is also one of the popular processes for producing business intelligence (BI) 

information, which is utilized in improving the software process quality of cost or effort 

estimations, for instance. Data mining is used to reveal hidden patterns in unstructured 

data to provide valuable information for business utilization. Indeed, BI and data mining 

have been increasingly employed in the software industry for finding predictors from data 

for modeling software project effort. The data mining tools are employed to model the 

data [22] by regression or with trees, for example. The models of data behavior are 

generated with data mining learners, using appropriate data. The data can be gathered 

either manually or automatically. On a general level, project data collection can be 

divided into two groups according to its purpose: the data which is collected during a 

project for the project’s own purposes, and the data which is collected from multiple 

projects for BI and software process improvement (SPI) purposes. Whereas the 

automated data gathering processes can produce a vast amount of data in some business 

areas [22], manual data gathering results usually in smaller and noisier data sets. Another 

reason for the differences in data set sizes and quality is that in non-commercial 

organizations government funding can enable a more research-motivated and extensive 

data collection, whereas in the software industry data collection is more driven by the 

customer needs and the process maturity models which the companies are committed to. 

2.2.     Prior work: defining the non-construction activities  

In 2003, the quality executives at Tieto Corporation were concerned about the effects of 

software project activities other than actual software construction and project 

management ones on both software project effort and effort estimation accuracy, i.e. 

these general software project activities had not had the attention they might have 

required. The management hypothesized that focusing only on software construction and 

project management in effort estimations while neglecting or undervaluing other project 

activities can result in inaccurate estimates. Accordingly, in this experiment, we explore 

these general software project activities that could affect effort estimates. 

In [8], we noted that much of the effort estimation work focuses on the first two of 

the three parts of a software project WBS:  

 

(1) Software construction involves the effort needed for the actual software construction 

in the project’s life-cycle frame, such as analysis, design, implementation, and 

testing. Without this effort, the software cannot be constructed, verified and 

validated for the customer hand-over. 

(2) Project management involves activities that are conducted solely by the project 

manager, such as project planning and monitoring, administrative tasks, and 

steering group meetings. 

(3) All the general software project activities in the project’s life-cycle frame that do not 

belong to the other two main categories can be termed non-construction activities. 
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These include various management and support activities, which are carried out by 

several members of the project.  

In [7][8], we developed the taxonomy shown in Figure 1 by applying the grounded 

theory methodology [23]. In brief, we employed a three-step grounded theory method 

which involved firstly gathering the data sample of 26 software projects (a subset of the 

data set used in this study), followed by defining the main software project activity 

categories and deciding upon the one for generating the WBS, and finally coding the 

activities within the non-construction activity category, including identifying and 

extracting the activities from the data, renaming the activities, and categorizing them 

iteratively into logic entities [7]. 

 

Fig. 1. Software project activity breakdown structure with three major categories and further decomposed non-

construction activities. 

The activity extraction of the non-construction activity category resulted in seven 

individual, but generic, software project activities [7]: 

 

(1) Configuration management. Configuration management (CM), or software 

configuration management (SCM), is the development and application of standards 

and procedures for managing an evolving system product [1]. In other words, SCM 

is a set of umbrella activities that have been developed to manage change throughout 

the life-cycle of software [24]. These activities include CM planning, identification 

of objects in the software configuration, management and control of change, versions 

and releases, system building, configuration auditing, and reporting. We also include 

the management of the technical surroundings of the software in CM [7]. 

(2) Customer-related activities. The customer-related activities (e.g. customer inquiries, 

support, and training) include activities having interactions with customers and end-

users. 
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(3) Documentation. Documentation includes all other documentation than software 

construction (analysis or design) documentation, e.g. system documentation, 

manuals, standards etc.  

(4) Orientation. Orientation is the transfer of knowledge about a software’s business 

domain, technology etc. to a project group member, i.e. all learning activities 

involved with the particular project. These activities usually take place at the 

beginning of the project before it can be considered to be input and thus a part of 

some construction activity, e.g. software design. 

(5) Project-related activities. All activities related to the functionality of a particular 

project as an organization (software team, or project team or group) are included in 

this category, e.g. project events and project team meetings.  

(6) Quality management. Quality management (QM) is an umbrella activity consisting 

of the management and assurance of quality, and including the reviews of 

documentation and software code [1][24]. In simple terms, QM involves defining 

the procedures and standards which should be used during software development 

and checking that these have been followed [1]. QM has three principal activities: 

quality assurance, quality planning, and quality control. Quality assurance (QA) 

defines a framework for achieving software quality [1]. QA consists of a set of 

auditing and reporting functions that assess the effectiveness and completeness of 

quality control activities such as formal technical reviews [24] or peer inspections 

[6].  

(7) Miscellaneous activities. Project-specific, individual activities are included in the 

miscellaneous activities category. These activities include time for traveling and 

sales efforts, for instance. 

3.     Experiment  

In our experiment, we employ data mining techniques to find predictors for the effort of 

different project activities. The data mining experiment aims at assessing the impact of 

non-construction activities compared with other software project activities. The learners 

used in data mining are presented in sub-section 3.1.2 and come from the Weka toolkit 

software [25]. 

Data sets are created using both types of activities passed to a data miner. It should be 

noted that if an activity is not useful in predicting some target class, it will not appear in 

the model generated by the data miner. As we shall see, many activities will not prove to 

be useful. With one exception, we do not remove variables a priori. Instead, we use data 

mining experiments to determine which variables do not add significantly to the learning. 

In this way, we can assert that removing those variables does not adversely affect the 

variables.  Our single exception to this rule is the “miscellaneous activities” variable 

which has the follow undesirable property: for the data sets we were dealing with, this 

variable was used as a ‘dump’ category to record information that did not fit into any of 

the other categories. 



 Exploring the Effort of General Software Project Activities     7 

 

We report our experiment in the following two sub-sections. The first sub-section 

reports both the experimental design and the execution of the experiment. In the second 

sub-section, we present, analyze and interpret our results. 

3.1.     Experimental design and execution  

3.1.1.     Variables  

For practical reasons (i.e. to be performed in the software engineering industry), we 

define variables that are common and related to most software projects, and that are 

available and used in effort estimating at the beginning of the project. Our predictors 

(also called, independent variables or inputs [17]) include project, organization, customer, 

size (in terms of estimated effort), and non-construction activity related variables:  

 

• Project variables 

• ReqAnalysisPriorEstimation. A dichotomous predictor indicating whether the 

project had a requirements analysis phase prior to effort estimation. Intuitively, 

this might increase the amount of orientation effort since more documentation is 

available. 

• Type. A categorical predictor indicating that the project type is either 

‘Development’ (something new is going to be built) or ‘Enhancement’ (an 

existing system is enhanced with new features). Intuitively, an enhancement 

project does not require as much non-construction activity effort as a 

development project because variables such as customer, business domain, 

technical environment etc. are known. 

• Technology. A categorical predictor with the values ‘Java_J2EE’, 

‘ClientServer_TM’, and ‘Other’, indicating which technology was employed in 

the project. In our data set, the projects are mainly either Java/J2EE projects, or 

client/server projects employing a transaction monitor with Windows clients. A 

few projects applied other technologies. The organization in question has longer 

experience of client/server projects than of Java/J2EE, which emerged during 

the first decade of the 2000. Does a new technology have an impact on non-

construction activity effort? 

• Organization variables 

• TE_Team. A nominal predictor with a value indicating the name of the project 

team which constructed and manpowered the project. Does the fact that the 

teams differ from each other, for example in terms of their skills, have an impact 

on non-construction activity effort? 

• Customer variables 

• Customer. A nominal predictor with a value indicating customer’s name. 

Customers have an impact on effort, or do they? For example, the organization 

in question has longer experience of one of the customers than of the others. 

Also, customers vary in terms of their software engineering process maturity. 

• CustomerBusinessDomain. A categorical predictor with the value 

‘TelecomOperator’, ‘Telecom’ or ‘Government’. The customer’s business 
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domain has an impact on effort, or does it? Telecom customers tend to have 

more experience of IT, IT projects and software engineering, whereas 

government customers usually buy these as services. Also, the organization in 

question has longer experience of the telecom operator business domain than the 

others. 

• Size (in terms of estimated effort) variables 

• LogEstimatedEffort. A ratio predictor with a logarithmic value of estimated 

effort in hours. Because the projects could not been distributed equally based on 

their size in terms of effort, we applied a logarithm transformation into the 

variable of estimated effort before letting the Weka application [25] learn a 

model. It is common to take the logarithms of effort values to transform a model 

into a linear model [10][26]. The effort extraction had two main phases: the 

calculation of effort needed for the three main categories, and the calculation of 

effort for each non-construction activity. First, the proportions of effort needed 

for software construction, project management, and non-construction activities 

were calculated. Effort data was gathered from the work time registry system 

into which the project personnel feed their work hours for different project-

specific activities at half-hour precision. The activities along with their effort 

inputs were reorganized into the three categories according to the definition 

given in sub-section 2.2. Second, the effort proportions of each non-construction 

activity were calculated. 

• ConsideredAsASmallProject_Md. A categorical predictor with the value ‘Small’ 

or ‘Large’. Projects were divided into two groups according to the median 

estimated effort (1999.8 h) value of the 32 projects (under=’Small’, 

over=’Large’). 

• ChaosSizeConsidered. A categorical predictor with the value ‘Small’ or ‘Large’. 

Projects were divided into two groups according to the Standish definition of a 

small project (6 persons * 6 months * 150 h/month = 5400 h, estimated effort) 

[27]. 

• Non-construction activity variables 

• Number_NCA_Activities. A ratio predictor indicating the number of registration 

entries of non-construction activities created in the time-booking system’s work 

breakdown structure. 

• NCAEntitiesOfAll. A ratio predictor indicating the percentage of registration 

entries of non-construction activities of all registration entries. 

 

Our response variables (also called dependent or output variables [17][28]) is a set of 

continuous classes representing the actual effort proportions of the three major software 

project categories (software construction, project management, non-construction 

activities) and six further decomposed non-construction activities: 

 

(1) SC_Effort_Percent,  

(2) PM_Effort_Percent, 

(3) NCA_Effort_Percent, 

(4) ConfigurationManagement_Percent, 
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(5) CustomerRelatedActivities_Percent, 

(6) Documentation_Percent, 

(7) Orientation_Percent, 

(8) ProjectRelatedActivities_Percent, 

(9) QualityManagement_Percent. 

 

As noted in section 3, we exclude the ‘miscellaneous activities’ response class for 

two reasons: firstly, the frequency of these activities appearing in a project is small 

compared with the frequencies of the other activities [7], and secondly, ‘miscellaneous 

activities’, with no common denominator, is a ‘dump’ category. 

3.1.2.     Data mining: process and tool  

Our data mining experiment will have two or three steps, depending on the success of the 

second step. First, we apply Feature Subset Selection (FSS) prior to the next steps of 

learning, encouraged by the results of other studies (e.g. [26][29]). We employ FSS to 

analyze the predictors before classifying them. A repeated result in the data mining 

community is that simpler models with equivalent or higher performance can be built via 

FSS algorithms that intelligently prune useless variables (or, columns or features) [29]. 

Variables may be pruned for several reasons: 

  

• they may be noisy, i.e. contain spurious signals unrelated to the target class,  

• they may be uninformative, e.g. contain mostly one value, or no repeating values,  

• they may be correlated to other variables, in which case, they can be pruned since 

their signal is also present in other variables.  

 

A reduced variable set has many advantages:  

 

• Models containing fewer variables generally have less variance in their outputs [30]. 

• The smaller the model, the fewer are the demands on interfaces (sensors and 

actuators) to the external environment. Hence, systems designed around small 

models are easier to use (less to do) and cheaper to build. 

• In terms of this paper, the most important aspect of learning from a reduced variable 

set is that it produces smaller models. Such smaller models are easier to explain (or 

audit). 

 

We utilize the FSS results in creating subsets of variables by pruning the variables 

that do not receive a high number of folds. These pruned subsets assist us to gain the best 

results in data mining with the different learners. 

In FSS, we apply Weka’s Wrapper Feature Subset Selection, based on Kohavi and 

John’s Wrapper algorithm [31], in the process, since experiments by other researchers 

(e.g. [29]) strongly suggest that it is superior to many other variable pruning methods. 

Starting with the empty set, Wrapper adds some combinations of variables and asks a 

target learner to build a model using just those variables. Wrapper then grows the set of 
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selected variables and checks if a better model comes from learning over the larger set of 

variables. 

Second, after FSS, we apply learners for continuous classes. Besides having a long 

and widespread history, the linear models can perform well when the data is sparse, 

despite being simple and naïve [32].  

We will interpret our results with the fit of the linear model which is expressed in 

terms of the correlation coefficient. In a ‘perfect’ result (i.e. the linear model fits 

perfectly), the coefficient would be a magnitude of 1, and in an ‘acceptable’ result for us 

the coefficient would be over |0.6000|. 

If the results are not acceptable (i.e. too small correlation coefficients), we continue 

and (third) discretize the classes and apply the learners for discrete classes, encouraged 

by Witten and Frank, who note that “even methods that can handle numeric attributes 

often produce better results, or work faster, if the attributes are prediscretized” [33] (p. 

287). 

In our experiment, we attempt to develop statistical models to predict software project 

activity effort. The variables related to the project, organization, customer, size (in terms 

of estimated effort) and non-construction activity serve as predictors. The discretized 

relative actual effort values serve as predicted (response) variables. Table 1 shows the 

confusion matrix of prediction outcomes of the discretized classes. The matrix has four 

categories. True positives (TP) are correctly classified as over the median (Md) effort 

value. False positives (FP) refer to effort under the median value incorrectly classified as 

effort over the median value. True negatives (TN) correspond to effort under the median 

value correctly classified as such. Finally, false negatives (FN) refer to effort over the 

median value incorrectly classified as effort under the median value. 

An ideal result has no false positive of false negatives. In practice, such an ideal 

outcome happens very rarely, due to data idiosyncrasies. We will see one ‘acceptable 

result’ of the following form (Table 2): most results on the diagonal with only a few off-

diagonal entries. 

Table 1. A confusion matrix of prediction outcomes. 

  Real data 

  Over Md Under Md 

Over Md TP FP 
Predicted 

Under Md FN TN 

  

 

Table 2. A confusion matrix with acceptable prediction outcomes. 

  Real data 

  Over Md Under Md 

Over Md 9 1 
Predicted 

Under Md 1 11 
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In our data mining experiment, we employ the Weka toolkit software [25], which is a 

popular data mining tool both in academia and industry, and is currently a part of the 

Pentaho open source BI suite [34]. 

We apply a range of learners to find predictors for actual software project activity 

effort. First, we apply three learners provided by Weka for linear analyses: 

 

• function-based Linear Regression and Multilayer Perceptron, 

• tree-based M5P. 

 

The linear least-squares regression (linear standard regression, LSR) is the most 

widely used and simplest standard modeling method [26]. that fits a straight line to a set 

of points.  

Multilayer Perceptron is a neural network algorithm. The learning procedure is 

repeated until the network produces the correct response to each input [35][36]. 

M5-Prime, M5P, is a model-tree learner by Quinlan [37], and an improvement of the 

regression tree technique [33][37]. The M5-style variable pruning method steps through 

all the variables removing the one with the smallest standardized coefficient until no 

improvement is observed in the estimate of the model error. 

For the discretized response classes of actual effort, we apply the following range of 

learners: 

 

• Bayes-based Naïve Bayes and AODE, 

• function-based Multilayer Perceptron, 

• tree-based J48, 

• rule-based JRip and OneR. 

 

The simple, probabilistic Naïve Bayes learner is based on the classical statistical 

Bayes’ Theorem [29][35][38]. Naïve Bayes learner estimates simply the probability of 

attribute measurements within the historical modules. Naïve Bayes is a relatively fast 

algorithm used often in data mining applications [29], and it can outperform the rule-

based and decision-tree learning method [38]. 

AODE (averaged, one-dependence estimators) is a Bayes-classifier that averages over 

a space of alternative Bayesian models that have weaker independence assumptions than 

Naïve Bayes. The algorithm can perform better than Naïve Bayes on data sets with non-

independent attributes [33]. AODE is only able to classify nominal data. Hence, we 

employ it with our nominal data. 

We also use a tree-based learner provided by the Weka since tree-based learners are 

meant for decision making from a space divided into regions. J48 is a Java 

implementation of Quinlan’s decision tree learner C4.5 (version 8) algorithm [36]. The 

algorithm recursively splits a data set according to tests on attribute values in order to 

separate the possible predictions.  

JRip is a Java implementation of the RIPPER rule learner by Cohen [39]. The 

RIPPER method is a standard technique for removing noise and generating succinct, 
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easily explainable models from data. RIPPER’s covering algorithm runs over the data in 

multiple passes. Rule-covering algorithms learn one rule at each pass for the majority 

class. All the examples that satisfy the conditions are marked as covered and removed 

from the data set. The algorithm then recourses on the remaining data. RIPPER is useful 

for generating very small rule sets. 

Holte’s OneR [40], or 1R, algorithm builds prediction rules using one or more values 

from a single attribute. OneR takes as input a set of examples, each with several attributes 

and a class. Its goal is to infer a rule that predicts the class given the values of the 

attributes. It selects one-by-one attributes from a data set and generates a different set of 

rules based on the error rate from the training set. Finally, the OneR algorithm chooses 

the most informative single attribute (the one that offers rules with minimum error) and 

bases the rule on this attribute alone in constructing the final decision tree [35][40][41]. 

3.1.3.     Data collection, preparation, quality, and visualization  

In this sub-section, we introduce our data and address our adherence to the data 

preparation guidelines presented by Pyle [22][28]. The guidelines are applied whenever 

possible. However, Pyle’s guidelines on choosing data are, in our view, meant for a large 

data source and for choosing sample records from the large source, not a small data set 

such as ours. In our case, we use project data that we had access to in 2003-2008, and 

which had sufficient and relevant data. Although there are hundreds of projects on-going 

in the company in question, most of the project data is inaccessible for confidentiality 

reasons or not usable for data mining purposes because of the poor data quality. 

The experiment is based on sample of real software project data supplied by a 

software company, Tieto Finland Oy, a part of Tieto Corporation, which is one of the 

largest IT services companies in northern Europe, with 17,000 employees.  

The data set consists of 32 custom software development and enhancement projects, 

which took place in 1999-2006. These projects were delivered to five different Nordic 

customers who operate mainly in the telecommunication business domain. The delivered 

software systems were based on different technical solutions. However, the two most 

common technologies were based either on J2EE or on transaction management-based 

client/server technology. The duration of the projects was between 1.9 and 52.8 months. 

The projects, which were carried out by different teams within the same Finnish business 

division, required an effort of between 276.5 and 51,426.6 person hours.  

The median effort of software construction, project management and non-

construction activities in the 32 software projects are 76.7%, 11.3%, and 11.2%, 

respectively. The box-plot presentation of the effort of these major software activity 

categories showing the minimum and maximum, and the first and third quartile values, is 

presented in Figure 2. 
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Fig. 2. The effort of software construction, project management, and non-construction activities (N=32). 

The median effort of software construction does not differ from that reported by 

MacDonell and Shepperd (76.7% and 76.9%, respectively) [3], although their approach 

and basis of division were different to ours. This suggests that there might be a tendency 

to have a certain effort distribution, and that the division in this study seems to be 

appropriate. Also, it is notable that in this data set the non-construction activity effort 

proportion is very similar to that of the project management. However, as seen in Figure 

2, the deviation of this effort proportion between projects is significant. Both non-

construction activity effort amount and variance suggests that it is important to view the 

non-construction activities and their effort as an independent group. 

All the projects used a waterfall-like software development process, since iterative 

and agile processes have emerged in more recent projects. The project process life-cycle 

started from either the analysis phase or the design phase. All projects ended in customer 

acceptance of delivery. This span forms the project’s life-cycle frame, which was quite 

typical for delivery software projects in this organization. The normal work iteration is 

included in the effort data. Effort caused by change requests, however, is excluded from 

the data used for both predictor and response classes because the work caused by change 

requests is not initially known and is therefore not included in the original effort 

estimation. For this experiment, the information related to the effort estimates is gathered 

from the tender proposal documents, the contract documents, and the final report 

documents. Originally, projects’ efforts were estimated by using the expert judgment 

estimation technique in every project. Function Point Analysis was used in some projects 

as a secondary method to support the results. The actual effort data was gathered from the 

time-booking system prior to the experiment. The project team members enter their effort 

in this system. 

In the guidelines for data preparation, Pyle notes that the collected records should be 

distributed into three representative data sets: training, testing, and evaluation [22][28]. 

Due to our small data set this requirement is unreasonable. Instead, we perform the data 
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mining with one single data set, using a 2/3rd, 1/3rd train/test cross-validation procedure, 

repeated ten times. 

Pyle also gives instructions on missing values and data translations [22][28]. We 

manipulate our data as little as possible: for example, all missing values are left out and 

are not replaced by a mean or median value. The values for effort estimate in hours are 

recalculated as logarithms, which is the usual method [10][26], and further derived to two 

predictors (ConsideredAsASmallProject_Md, ChaosSizeConsidered) representing 

estimated effort. 

Following Pyle’s guidelines [22][28], we first visualized the data (the predictors in 

respect to each response) using Weka’s visualizing features (Figure 3), including 

cognitive nets (Figure 4), also to referred as cognitive maps [22]. However, no eminent 

predictor for responses could be found by applying these visualizing methods. 

 

 

Fig. 3. Data visualization with Weka (predictors for quality management effort). 
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Fig. 4. The cognitive (Bayes) net data visualization for the non-construction activity effort. 

3.2.     Analysis and interpretation  

3.2.1.     Results  

In this sub-section, we report our findings resulting from the three data mining steps in 

which we apply first the Feature Subset Selection, then learners for continuous classes, 

and finally learners for discretized classes. 

Our FSS uses ten-fold cross-validation for accuracy estimation. The selection search 

is used to produce a list of attributes to be used for classification. Attribute selection is 

performed using the training data and the corresponding learning schemes for each 

machine learner. We find that the Wrapper performs better on discrete classes than on 

continuous classes. We give two examples of our FSS results below; Table 3 shows the 

results for Linear Regression for continuous classes, and Table 4 shows Naïve Bayes for 

discrete classes. 

Table 3. Number of folds (>=5) in 10-fold cross-validation for continuous classes.  

Variable SC PM NCA Con Cus Doc Ori Pro Qua Mean 

Project variables           

ReqAnalysisPriorEstimation - - - - - - - 8 - 8 

Type - - 10 - - - - - - 10 

Technology - - - - - - - - - - 

Organization variables           

TE_Team - - 7 - - - - - - 7 

Customer variables           

Customer - - 8 - - - - - - 8 

CustomerBusinessDomain - - - - - - - - - - 

Size (effort) variables           

ConsideredAsASmallProject_Md - - - - 9 - - - 8 8.5 
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After Feature Subset Selection we apply data mining learners for continuous classes. 

The correlation coefficient results for Linear Regression, Multilayer Perceptron, and M5-

Prime are presented in Table 5.  

The results are gained with either a full data set or a pruned one. We prune our data 

set by removing all variables that gains under 50% of folds in 3-fold (since our data set is 

small) cross-validation in FSS (see Tables 3 and 4 for an example). This FSS is made 

with Wrapper using each learner. We use variable pruning to gain better results. It is 

noted that the variance of a linear model learned by minimizing the least-squares error 

decreases as the number of variables in the model decreases, i.e. the fewer variables there 

are, the more restrained the model predictions are [26][30]. By using FSS, our LSR 

results, for example, improve slightly (median correlation coefficient without FSS and 

with FSS: |0.2647| and |0.3442|, respectively). 

Table 4. Number of folds (>=5) in 10-fold cross-validation for discrete classes (effort 

percentage of the project’s total effort over or under the median).  

Variable SC PM NCA Con Cus Doc Ori Pro Qua Mean 

Project variables           

ReqAnalysisPriorEstimation - - - - 7 5 - 9 - 7 

Type 8 - 8 - - - - - - 8 

Technology 7 - - 9 - 10 - - - 8.7 

Organization variables           

TE_Team - - - 5 - - - - - 5 

Customer variables           

Customer 9 - - - - - - - - 9 

CustomerBusinessDomain - - - - 8 - - - - 8 

Size (effort) variables           

ConsideredAsASmallProject_Md - - - - - - - - 10 10 

ChaosSizeConsidered - 5 - - - - 8 - - 6.5 

LogEstimatedEffort - 6 - - - - - - - 5 

NCA variables           

Number_NCA_Activities - - - 6 - - - - - 6 

NCAEntitiesOfAll - - 8 - - - - - - 8 

Note: The response variables for actual effort: SC: software construction, PM: project management, 

NCA: non-construction activities, Con: configuration management, Cus: customer-related activities, 

Doc: documentation, Ori: orientation, Pro: project-related activities, Qua: quality management.  

 

Table 5. The correlation coefficient results for Linear Regression (LSR), Multilayer 

Perceptron (MLP), and M5-Prime (M5P). 

Predictor LSR MLP M5P 

Software construction -0.2647 0.0076 0.1209 

Project management -0.2963 0.2663 0.2487 

Non-construction activities 0.3713 0.3667 0.3713 

Configuration management -0.3837 -0.1334 -0.3094 

Customer-related activities -0.3442 0.1669 -0.0011 

Documentation 0.0840 0.0372 -0.4659 

Orientation 0.1159 0.1319 -0.0638 

Project-related activities -0.4487 0.3222 -0.0502 

Quality management 0.3752 0.1837 0.2795 
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However, since all the response classes result far below our threshold of |0.6000|, 

none of these coefficients can be considered acceptable. Since continuous methods are 

apparently not helpful in this domain, we move on to discretizations of the continuous 

space, by dividing all our output variables into two discretized groups (‘under’ and 

‘over’) according to their median values of actual effort (Table 6). 

Table 8 shows our results for the discretized classes. This table is a group of 60 

confusion matrices of the form shown in Table 1. The results shown are averages across a 

2/3rd, 1/3rd cross-validation study, repeated ten times for each of the two learners and for 

each of nice possible target variables, listed above (in the case of the nine repeats, one 

output variable was selected and the other eight were removed from the data set). Since 

Table 8 shows the results from many experiments, we offer the following guide on how 

to read these results. 

Table 7 shows a small example of the kinds of data shown in Table 8. The first 

column shows the target class and the other columns offer information on how well 

different learners find those classes.  For each learner, there are four kinds of results 

(recall Table 1): 

• The diagonals show the true negatives and the true positives on upper and lower 

rows, respectively. 

• The off-diagonal entries show various kinds of errors. 

As shown for ‘Learner 1’, the perfect learner’s results are all on the diagonal (with no 

entries for the off-diagonal errors). This rarely happens–the more usual result is shown 

with ‘Learner 2’ where most of the entries are on the diagonal but there is some leakage 

into the off-diagonal entries. 

Table 6. Median effort proportions of total project effort in the extracted 32 projects 

for the three major activity categories and for six non-construction activities. 

Activity Effort (%, Md) 

Software construction 76.6 

Project management 11.3 

Non-construction activities 11.2 

Configuration management 3.3 

Customer-related activities 1.6 

Documentation 2.3 

Orientation 1.8 

Project-related activities 3.0 

Quality management 0.8 

 

Table 7. Examples of the results for discrete approaches as confusion matrices.  

Discrete Classes Learner 1 Learner 2 Learner 3 Learner 4 Learner 5 

X_OverOrUnderMedian 16  0 10  4 20  5  2  5  9  1 

  0 16  3 15  5  2  5 20  1 11 
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Another pattern to watch for is where the learner misses most of the true positives. 

For example, with ‘Learner 3’, there are 20 true negatives but very few (only 2) true 

positives. ‘Learner 4’ shows the same poor result, but this time the results are dominated 

by the true positives. 

Practically speaking, the best we can hope for is a result like ‘Learner 5’ where the 

number of off-diagonal entries is very small. As shown in Table 8, this result only 

happens for the last discrete class. 

As a highlighted row in Table 8, an ‘acceptable result’ (defined in Table 2 and for 

‘Learner 5’ in Table 7) only appears for one response class: 

QualityManagement_OverOrUnderMedian, i.e. when learners are predicting the level of 

actual quality management effort apparent in a project. Note that no ‘acceptable result’ 

appears for the non-construction activities (NCA_Effort_OverOrUnderMedian) or either 

of the other two major software project activity categories 

(SC_Effort_OverOrUnderMedian, PM_Effort_OverOrUnderMedian). 

The prediction is (in this data set) that if a project is estimated to have a smaller effort 

than the median effort, the relative quality management effort will be realized over its 

median value and, vice versa, if a project is estimated to have a larger effort than the 

median effort, the relative quality management effort will be realized under its median 

value, i.e. in the case of the JRip learner rule the Weka application generated: 

 

Table 8. Results for discrete approaches as confusion matrices.  

Discrete Classes NB AODE MLP J48 JRip 1R 

SC_Effort_  4  6  4  6  4  6  0 10  1  9  4  6 

OverOrUnderMedian  2 20  2 20  2 20  3 19  4 18  2 20 

PM_Effort_ 11  5 22  5 10  6 12  4 10  6  9  7 

OverOrUnderMedian  8  8  6 10  7  9  9  7  4 12  5 11 

NCA_Effort_ 12  7 19  0 17  2 16  3 15  4 10  9 

OverOrUnderMedian  8  5 13  0  8  5  6  5  7  6  8  5 

ConfigurationManagement_ 16  4 16  4 19  1 17  3 20  0 18  2 

OverOrUnderMedian  7  2  7  2  6  3  7  2  9  0  6  3 

CustomerRelatedActivities_ 10  1  9  2 10  1  9  2 10  1  8  3 

OverOrUnderMedian  3  3  3  3  3  3  4  2  5  6  4  2 

Documentation_  9  3  9  3  8  4   9  3 11  1  9  3 

OverOrUnderMedian  5  6  7  4  7  4  5  6  5  6  5  6 

Orientation_  9  2  6  5  5  6  8  3  9  2  9  2 

OverOrUnderMedian  4  3  6  1  6  1  7  3  6  1  6  1 

ProjectRelatedActivities_  7  6 11  2  6  7 10  3 12  1  8  5 

OverOrUnderMedian  7  3 10  0  8  2  9  1 10  0  8  2 

QualityManagement_  9  1  9  1  9  1  9  1  9  1  9  1 

OverOrUnderMedian  1 11  1 11  1 11  1 11  1 11  1 11 

Note:  Applied learners: Naïve Bayes (NB), AODE, Multilayer Perceptron (MLP), 

J48, JRip, and OneR (1R). 
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(ConsideredAsASmallProject_Md = Small) => 

QualityManagement_OverOrUnderMedian=Over_Md (10.0/1.0) 

=> QualityManagement_OverOrUnderMedian=Under_Md 

(12.0/1.0) 

 

The JRip rule tells that with the categorical predictor variable 

ConsideredAsASmallProject_Md both categories of quality management effort response 

variable (over and under median value) are classified correctly having only one 

incorrectly classified case in both categories in the data set.  

In other words, the predicted effort proportion of actual quality management effort is 

larger in projects that are estimated in total as small rather than large ones. 

3.2.2.     Implications for research  

Because of the small and noisy data set, our data mining experiment was not without 

challenges. These challenges and how we overcame them are described as a case study in 

another publication [42]. It is insightful to contrast our data mining experiment with the 

guidelines proposed for experimenting in software engineering (e.g. [17][21][43]). It can, 

in fact, be useful to allow for a redirection, halfway through a study. Just because a data 

set does not provide answers to question X does not mean it cannot offer useful 

information about question Y. Hence, we advise tuning the question to the data and not 

the other way around. This advice is somewhat at odds with the guidelines presented in 

the empirical software engineering literature (e.g. [17][21][43]), which advises tuning 

data collection according to the goals of the study. In an ideal case, we can follow the 

three steps of GQM. However, in the 21st century, the pace of change in both software 

industry and software engineering organizations in general can make this impractical, as 

it did in the NASA Software Engineering Laboratory (SEL), for instance. With the shift 

from in-house production to outsourced, external contractors and production, and without 

an owner of the software development process, each project could adopt its own 

structure. The earlier SEL learning organization experimentation became difficult since 

there was no longer a central model to build on [44].  

The factors that led to the demise of the SEL are still active. Software engineering 

practices are quite diverse, with no widely accepted or widely adopted definition of ‘best’ 

practices. The SEL failed because if could not provide value-added when faced with 

software projects that did not fit their preconceived model of how a software project 

should be conducted. In the 21st century, we should not expect to find large uniform data 

sets where fields are well-defined and filled-in by the projects. Rather, we need to find 

ways for data mining to be a value-added service, despite idiosyncrasies in the data.  

Consequently, we recommend GQM when data collection can be designed before a 

project starts its work. Otherwise, as done in this study, we recommend using data mining 

as a microscope to closely examine data. While it useful to start such a study with a goal 

in mind, an experimenter should be open to stumbling over other hypotheses. Sometimes, 

experiments run as expected, but often the unexpected finding (“that’s strange”) can be 
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more informative than rigidly following a plan that was determined before there was any 

feedback from the particular data set.  

One drawback with our exploratory exercise could be susceptible to “shotgun 

correlation” effects (the detection of spurious connections between randomly generated 

variables) [45]. Hence, we offer the conclusions below as working hypotheses that (a) 

require monitoring within an organization and (b) could be disproved by further 

observations. 

In this regard, our conclusions have the same status as other scientific hypotheses. 

Popper argues that no conclusion is absolute and that all conclusions require monitoring, 

lest future data requires that the conclusions be changed [46]. Our conclusions are as 

valid as those in any other field where we cannot control the phenomenon being studied, 

but can only observe it. 

Finally, we note that if we do not apply our methods to generate conclusions then we 

may lose valuable insights. The study was originally designed as a regression analysis on 

historical data. When that failed, we could have stopped. However, had we done so, we 

would have had to dismiss a data set that had been very hard and expensive to collect. 

Despite the small size of our data set, it represented the entirety of the cross-project 

corporate experience gained up until this point. If we were to ignore the potential insights 

it contains, that experience could have been lost. 

3.2.3.     Implications for practice  

The practical implication of this study relate to the specific conclusion we can offer to 

software businesses and quality management. The implication is that the actual quality 

management (QM) effort proportion of total project effort will be larger in projects that 

are estimated to be small rather than large, which has to be considered in the effort 

estimates. 

Intuitively, absolute QM effort increases with project size and total effort, as there are 

more project deliverables requiring quality assurance. Indeed, our data shows such a 

tendency between the absolute effort values of quality management and total project 

effort. However, our data does not support a pattern of a linear, logarithmic or 

exponential growth of quality management effort as the total effort of a project increases. 

This implies that quality management effort is not a constant in software projects and 

thus cannot be predicted with an approach applying merely a constant. In fact, this 

supports the findings for quality assurance effort behavior in software projects (cf. Figure 

V.24 in [47] (p. 419)).  

We can conclude that we can set a maximum proportion for QM effort as a rule-of-

thumb when estimating the QM effort for large projects. In a tight market situation, the 

correct smallest possible estimate of the QM cost could improve the chances of winning a 

deal. However, the rule-of-thumb does not hold for smaller projects. It seems that in 

small projects we can set a minimum proportion for the QM effort but the actual amount 

can turn out larger.  
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Our finding suggests that projects that are perceived to be smaller at their beginning 

seem to devote more effort on QM activities than larger projects (Figure 5). This, in turn, 

can result in better quality projects, also in terms of actual effort (i.e. cost) estimates, 

promoting project success (cf. [27]). In other words, a small project might not consume 

all a team’s energy in the software construction tasks. Instead, the team can devote 

energy also to quality management. Vice versa, the results imply that projects that are 

perceived to be larger at their beginning tend to spend less effort on quality management 

as a proportion of the total project effort. One reason for this might be that the team’s 

energy is consumed by other (i.e. construction) project activities. In fact, there is 

evidence that effort estimates have an impact on software project work and behavior 

whether a project is estimated, and thus perceived, as either a small or large project when 

the project is starting [9][47][48]. 

 

Fig. 5. The theory of the relation between estimated total project effort and the actual QM effort (0.8%), and the 

realization in the data set’s projects. 

Quality management, as defined in sub-section 2.2, is essential to software projects 

and their success. As projects are getting larger (e.g. SOA and ERP implementations) or 

smaller (e.g. plug-ins, web implementations) than projects in the 1990s, it is essential to 

focus sufficiently on QM regardless of the project size. Quality has an effect on both user 

satisfaction and system success [49], and software quality will continue to be 

fundamental to the success of a company [50]. Since customer quality expectations are 

continuously increasing, with a requirement of a proof of process maturity in regards to 

software quality, there will be an increasing focus on achieving approved quality systems 

such as ISO 9000 [51]. Besides quality systems, companies have improvement programs 

in place to achieve a certain maturity level of some maturity assessment model such as 
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ISO/IEC 15504 [5] or CMMI [16] to meet both current and potential customer 

expectations. Moreover, the cost of poor quality will be measured in most software 

companies because quality becomes a key goal in improving the profitability and long-

term survival of the company [50]. Furthermore, the verification of software components 

will become increasingly important, as software development is speeded up and the time-

to-market is shortened, and concurrently there is a need to verify the correctness of the 

components [50]. 

In the light of our data mining experiment, QM was the only non-construction 

activity that showed a pattern of estimated total project effort influencing actual effort. 

One reason for this might be that QM (or its sub-activities) is intuitively considered 

important by the project team, and is performed whenever possible (when a team’s 

energy is not consumed by software construction). The other supporting activities (e.g. 

configuration management, orientation, and documentation) do not present the same kind 

of behavior, i.e. no pattern could be found in our data. However, on average in the 

projects, all the other non-construction activities consumed more effort than QM, which 

indicates that they are necessary in a software project (cf. [7]). Moreover, these activities 

are relevant for the success of the delivery in terms of both software and project quality, 

and thus should not be considered a cost overhead. Devoting effort to non-construction 

activities can indeed reduce the effort needed for software construction or project 

management, and reduce the cost of poor quality in terms of, for example, warranty costs. 

Hence, all non-construction activities must be carefully considered in software project 

effort estimation, but unfortunately our data does not reveal to what extent, except for the 

QM effort. 

3.2.4.     Limitations of study  

We consider the limitations of this study in regards to two aspects: general limitations 

related to software project effort data and the threats to the validity of an experiment. 

This study suffers from general limitations related to the data. These limitations are 

typical for software industry effort-related studies. The general concern related to the data 

is the reliability of the actual effort. As project group members feed their own work hours 

into the time-booking system, there can be individual variations with the inputs. 

Moreover, project group members can be too embarrassed to enter all the non-

construction activity time (e.g. orientation, problem solving, planning, waiting). On the 

other hand, they may dump all unclear or non-billable project effort on some non-

construction activity. Also, if these activities were not created as registration entries in 

the time-booking system, no effort could be fed to the activity. This means either that the 

effort was not registered at all, or it was fed to another activity (usually some software 

construction activity), which skews the effort data. Furthermore, the work hours were 

entered with half-hour precision, which also skews the data. Also, Hochstein et al. note 

that the effort recorded varies significantly depending on whether it is automated 

(instrumented) or self-recorded [52]. Hence, self-recorded effort is never quite reliable. 



 Exploring the Effort of General Software Project Activities     23 

 

The threats to the validity of an experiment can be distributed in four groups [17]: 

conclusion, internal, construct, and external validity. Conclusion validity addresses the 

significance of the results. Measured in term of conclusion validity, our conclusions are 

quite strong: the use of 10 cross-validation experiments ensures that our results hold over 

multiple samples of the data. Internal validity addresses the causality between the 

variables. The causal nature of our conclusions was discussed in sub-section 3.2.3. In that 

sub-section, we noted that we can infer a reasonable causal explanation for our result 

(that smaller projects may have the mistaken belief that their projects need less quality 

management). Construct validity addresses the relation between the theory and 

observation. In general, construct validity is very difficult to assess in software 

engineering since there are so few established theories. Recent catalogues of software 

engineering knowledge report that most of that knowledge is yet to reach the theory 

stage. For example, Endres and Rombach proposed a view of how knowledge gets built 

about software and systems engineering [53]. They distinguish between: 

 

• observations of what actually happens during development in a specific context can 

happen all the time (‘observation’ in this case is defined to comprise both hard facts 

and subjective impressions), 

• recurring observations that lead to laws that help understand how things are likely to 

occur in the future, 

• laws are explained by theories that explain why those events happen.  

 

While [53] lists over a hundred laws, they mention no theories. That is, it is hard to 

assess the construct validity of our conclusions since there are so few reference theories 

that we can cite which are relevant to this work. External validity addresses the 

generalization of the results into practice. This is a data mining experiment and, as such, 

the status of our conclusions should be clearly stated. We assess our methods using 

across-validation technique that checks how well models perform on data not used during 

training. Hence, our conclusions are only certified on the train/test data used in this study. 

These conclusions could be refuted if some future study found better methods than the 

methods proposed here. The reader may protest this approach since it does not seek 

generalizable truths that hold in all projects. In reply, we note that: 

 

• there are very few (if any) examples of such universal causal theories in the software 

engineering literature (cf. [53]),  

• one value-added feature of data mining is that it is an automated process.  

 

In addition, a concern related to the generalization of the results, is that the data is 

provided by only one company and one of its business divisions. However, since the 

project settings and the project methods varied between teams and the 32 projects, the 

data sample represents a heterogenic project environment. Moreover, the data sample 

presents real software projects, which were carried out in software industry to real 

customers.  
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Järvinen notes that the scientific rigorous of an experiment correlates with the number 

of factors used in it [19]. We experimented with a limited set of factors but, on the other 

hand, might gain more relevant and applicable results with natural like experimental 

setting (cf. [19]). We experimented in uncontrolled conditions in reality, i.e. the 

experimentation was carried out with real projects. 

It can be concluded that that most threats relate to the software project effort data. 

However, as this is a universal problem with industry effort data, this was accepted for 

this research. To increase the reliability of the results, replications of this experiment with 

a larger data set of within-company and cross-company data will endeavor to not only 

confirm our findings but also to make new predictor findings in regards to non-

construction activities. Whereas this study is limited to quantitative research, a qualitative 

survey or case study among project team members could partly verify our assumption 

concerning a team’s energy devoted to quality management, i.e. why teams reduce their 

effort on quality management in projects that are perceived to be large, and how the 

project team apprehends the importance of quality management over other non-

construction activities. 

3.2.5.     Lessons learned  

A further lesson learned for data mining is that some machine learners perform better 

than others. However, no consistent superior learner was found. Hence, we recommend 

that in a data mining experiment it is advantageous to apply several learners since 

different learners perform best for different response classes. This, naturally, is more 

time-consuming than employing only one superior learner, which must be acknowledged 

also by corporate organizations which demand immediate results. However, the nature of 

knowledge discovery in databases (KDD) should be iterative [54], i.e. the results and 

learning can be obtained by trial-and-error. In our case, we started with linear models 

before moving todiscretized data and learners, as suggested by the FSS. 

Some interpretations of learner performance can be made: for continuous classes, 

Linear Regression outperforms M5-Prime and Multilayer Perceptron. For discrete 

classes, all discrete learners perform equally in the case of our only ‘acceptable’ finding. 

A similar finding was reported by Dougherty et al. when they observed that the 

performance of classifiers such as Naïve Bayes usually improved after converting 

continuous variables to discrete variables [55]. 

4.     Conclusions 

In this study, we sought for predictors of software project activity effort as a part of a 

project aiming to construct practical improvements to effort estimations. In particular, we 

focus on the general software project activities. These non-construction activities together 

comprise an amount of effort in software projects equal to that of project management, 

and thus should be acknowledged in effort estimations. 

Our main conclusion for the software engineering research is that the question must 

be tuned to the data. In the modern diverse and outsourced software engineering world, 
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many of the premises of prior software engineering research no longer hold. We cannot 

assume a static sweet-structured domain where consistent data can be collected from 

multiple projects over many years for research and other utilizing purposes. We need to 

recognize that data collection has it limits in organizations driven by minimizing costs, 

and customers being the main stakeholder for data collection reason. Thus, we conclude 

with a recommendation to analyze the initial stand-point for data mining, and then either 

continue with GQM or, as in our case, use data mining for data examination. 

Our main finding for the software engineering practice, which should be considered 

in effort estimations, concerns one of the non-construction activities. Our data mining 

results suggest that the amount of a project’s estimated effort is a predictor of the actual 

quality management effort: the proportion of quality management effort is larger in 

projects where the total estimated project effort is smaller rather than larger. Although 

our finding concerns the smallest non-construction activity effort proportion in our data 

set, in the software industry all findings that can improve effort estimations and the 

accuracy of the effort estimates are considered relevant and welcome. In addition, this 

research supplements the scanty research on the possible impacts of effort estimates on 

project work and behavior. 

Our finding of the pattern in quality management effort data would have remained 

hidden without data mining. Thus, we can recommend data mining in analyzing industry 

effort data even if the data set in hand is noisy and small. In addition, we found that some 

machine learners perform better than others, and learners for discretized classes 

outperformed learners for continuous classes. Also, the results can be improved by using 

Feature Subset Selection prior to learning.  
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