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Abstract Analogy based estimation (ABE) generates an effort estimate for a new

software project through adaptation of similar past projects (a.k.a. analogies). Major-

ity of ABE methods follow uniform weighting in adaptation procedure. In this research

we investigated non-uniform weighting through kernel density estimation. After an ex-

tensive experimentation of 19 datasets, 3 evaluation criteria, 5 kernels, 5 bandwidth

values and a total of 2090 ABE variants, we found that: 1) non-uniform weighting

through kernel methods cannot outperform uniform weighting ABE and 2) kernel type

and bandwidth parameters do not produce a definite effect on estimation performance.

In summary simple ABE approaches are able to perform better than much more com-

plex approaches. Hence, -provided that similar experimental settings are adopted- we

discourage the use of kernel methods as a weighting strategy in ABE.

Keywords Effort estimation, data mining, kernel function, bandwidth

1 Introduction

If a researcher or an industrial practitioner reads the literature on software effort esti-

mation, they will encounter a dauntingly large number of different estimation methods.

For example, the following is a partial list of some of the methods currently being used:

– Boehm uses linear regression [6].

– Shepperd prefers analogy-based methods [55].

– Auer et al. [3] uses extensive search to find weights for project features.

– Pendharkar et al. used Bayesian Network (BN) for effort estimation and incorpo-

rated BN into decision making procedure against risks [48].

– Mendes and Mosley used a data-driven Bayes net for web effort estimation [38].

– Li et al. combine feature weighting with instance selection [36].

This list is hardly complete. Elsewhere [31,43], we have studied all the different kinds

of Analogy-Based Estimation (hereafter, ABE) methods in the literature:

– ABE generates estimates by sampling the neighborhood of some test instance.

Address(es) of author(s) should be given
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– The exact sampling method is controlled by the kernel method which we divide

into uniform and non-uniform (here after U-ABE and N-ABE, respectively).

– Uniform methods treat all items in the local neighborhood in the same way.

– Non-uniform methods weight those neighbors in different ways.

Our list of ABE variants is presented in the next section. Our reading of the literature

shows that different studies adopt different ways to handle:

– The selection of relevant features;

– The similarity function;

– The weighting method used in similarity function;

– The case subset selection method (a.k.a selected analogies or k value);

– And the adaptation strategy (a.k.a solution function)

Choice of different solutions to each of the above steps define a different ABE configu-

ration. A detailed discussion on the studies using alternative configurations is given by

Kocaguneli et al. [31]. In [31] it is shown that we can easily find over 17,000 different

ways to configure ABE-style estimators. How we select the right method from this

large menagerie of possibilities? One way is to try many options, then see what works

best on the local data. Baker then Menzies et al., used exhaustive search (i.e. try all

possible combinations) to find the best combinations of project features, learners and

other variables [4, 41]. The CPU intensive nature of that approach begs the question:

is there a simpler way?

There is indirect evidence that there must be a simpler way. If we look at the size

of the training data available for effort estimation, it is usually only a few dozen (or

less) instances. For example:

– The data accessible to researchers in four recent publications [3, 4, 36, 40] have

median size of 13, 15, 33, 52, respectively.

– Later in this paper we list the 19 data sets used in this study: they vary in size

from 10 to 93 with a median of 28.

Given that the size of these data sets is so small, it seems reasonable to believe that

(e.g.) complex multi-dimensional partitioning schemes (partition data into subgroups

according to a criterion that uses multiple features/dimensions of the data and where

each subgroup shares a common property, e.g. regression trees) reduce to more sim-

plistic methods such as “take the median of the variables in the local region”.

This is indeed the case. The experiments of this paper show that, for ABE, the

simplest kernel schemes are most often as good as anything else. This is an important

result since it means that future researchers have less to explore (at least, in the field

of ABE). Hopefully, if more researchers critically reviewed the space of options for

their tools, then we will arrive at a much smaller and much more manageable set of

candidate effort estimation methods.

Below, we list some of the key concepts used in this research for convenience of the

reader and provide brief definitions upfront. Detailed explanations and examples are

provided in related sections.

– Analogy: The project instance from the training set, which will be used for esti-

mating the effort for the test instance(s).

– Kernel Density Estimation: A non-parametric method for estimating a probability

density function (PDF). In our case it acts like a PDF giving a probability value

for the selected analogies one at a time.
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– Kernel: A function that evaluates the difference (normalized by bandwidth) be-

tween the analogy (for which we want a probability value) and all the remaining

training instances (see Equation 6).

– Bandwidth: A smoothing parameter telling the kernel how big of a neighborhood

around the analogy in the training set is important. Section 8 is devoted entirely

to this concept.

– Feature of a project: One of the many variables defining a software project, e.g.

lines of code (LOC), function points (FP) etc.

– Instance Selection: The process of selecting out project instances from the training

set according to a distance function that are to be used in the estimation phase.

– Feature Weighting: Multiplying feature values with higher or lower values/weights

to emphasize that they are more or less important, respectively.

The rest of the paper is organized as follows. To focus the paper, we will answer

the following research questions:

RQ1 Is there evidence that non-uniform weighting improves the performance of ABE?

RQ2 What is the effect of different kernels for non-uniform weighting in ABE?

RQ3 What is the effect of different bandwidths?

RQ4 How do the characteristics of software effort datasets influence the performance of

kernel weighting in N-ABE?

To do so, Section 2 summarizes our motivation of this story. Section 3 talks about the

value of negative results. In Section 4 we provide background information regarding

related work. Section 5 explains the adopted experimental methodology. In Section 6

results are presented. Section 8 is a discussion section and in Section 7 the threats to

the validity of the results are presented. In Section 9 we summarize our conclusions

and answer the research questions. Finally in Section 10 we list future directions of

this research.

Note that, for reasons of space, our results will be presented in a summary format.

For the full results, see http://goo.gl/qpQiD.

2 Motivation

This work is part of an on-going investigation into effort estimation. Effort estimation is

important since, those estimates are often wrong by a factor of four [6] or even more [21].

As a result, the allocated funds may be inadequate to develop the required project. In

the worst case, over-running projects are canceled and the entire development effort is

wasted.

We study analogy-based estimation (ABE), for several reasons:

– It is a widely studied approach [3, 20, 22,23, 26,27,33–36,54,55,58].

– It works even if the domain data is sparse [58].

– Unlike other predictors, it makes no assumptions about data distributions or an

underlying model.

– When the local data does not support standard algorithmic/parametric models like

COCOMO, ABE can still be applied.

Based on a literature review of just one sub-section of the field [43], we have found at

least eight dimensions that distinguish different ABE methods:
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A : The distance measure used to compute similarity;

B : The “neighborhood” function that decides what is a “near” neighbor;

C : The method used to summarize the nearest neighbors;

D : The instance selection mechanism;

E : The feature weighting mechanism;

F : The method for handling numerics, e.g. logging, discretization, etc.

That review found in the literature three to nine variants of A,B,C,D,E, F (which

combine to a total over 17,000 variants). Some of these variants can be ruled out,

straight away. For example, for ABE that reasons only about the single nearest neigh-

bor, then all the summarization mechanisms return the same result. Also, not all the

feature weighting techniques require discretization, thereby further decreasing the space

of options. However, even after discarding some combinations, there are still thousands

of possibilities to explore.

In our view, it is unacceptable that researchers continually extend effort estimation

methods without trying to prune away the less useful variants. To that end, in previous

work, we have tried to rank and prune estimation methods based on model selection [43]

or feature weighting [41] or instance selection [31].

We have had much recent success in pruning different variants:

– For COCOMO-style data [6], only four variants were demonstrably better than the

another 154 variants [43].

– Also, in non-COCOMO data, we have found 13 variants that perform better than

77 others [24].

This paper is our first exploration of kernel methods. Kernel methods are important

since they comment on many of the options within A,B,C,D,E, F listed above:

– Simpler kernel methods mean simple neighborhood and summarization methods.

– In theory, better estimates could be generated by a smarter sampling of the neigh-

borhood. For example, an intelligent selection of the kernel might compensate for

data scarcity.

We study kernel estimation since, if the effort data corresponds to a particular dis-

tribution, then it would seem wise to bias that sampling by that distribution. Also,

at least one other research team in the field of effort estimation have also begun ex-

ploring different kinds of kernel methods (e.g. inverse-ranked weighted mean) [39, 40].

The other kernel methods employed in our research are also explored by other re-

searchers [11,15,16,18,47]. For a detailed discussion on the effect of different commonly

adopted kernel types, the reader can refer to Hardle et al. [16].

Despite the potential of kernel methods to improve effort estimation, it is an un-

explored area. For the most part, researchers in this area propose kernel methods with

minimal motivation or experimentation [8, 17, 39, 40]. Hence, prior to performing the

experiments of this paper, we believed that kernel methods would be a rich source of

future insights into effort estimation:

– The space of sampling and weighting schemes seen in the SE literature is much

smaller than that seen in other fields (see for example the literature from data

mining or signal processing [15,18, 47]).

– Hence, it seemed to us that a rigorous exploration of this under-explored area might

be a worthy topic of research, perhaps applying methods not yet used in the SE

literature.
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This paper presents a rigorous exploration and leads to the the negative result sum-

marized in the conclusion that simple kernel methods do as well as anything else, at

least for ABE. Considering the characteristics of software effort datasets (small size,

high levels of noise), it is wise to keep in mind that simple approaches may perform

better than expected. Thereby, making the more complex alternatives a choice that

one should approach with caution.

3 On the Value of Negative Results

While it would have been gratifying to have found a positive result (e.g. that some

kernel method was very much better), it is important to report such negative results

as well. A very thorough discussion on the value of negative results can be found in [9].

The fundamental question is whether a negative result poses a positive knowledge.

Positive knowledge is defined by Browman et al. to be the ability of being certain, not

being either right or wrong [9]. However, not all certain conclusions are knowledge
per se. Common concerns are:

i. is the topic/hypothesis plausible,

ii. are the experiments sound,

iii. do the results propose “negative evidence” or “non-conclusive search” and

iv. will the reported results be valuable to future research.

As for i., research on weighting methods in ABE is quite plausible, see weighting

method proposed earlier by Mendes et al. [39,40]. In that respect, our evidence of neg-

ative results serve the purpose of guiding research away from conclusions (such as kernel

weighting can improve ABE performance) that would otherwise seem reasonable [9].

When presenting negative evidence it is crucially important to have sound and
extensive experimentation (condition ii.). This report rigorously investigates kernel

weighting on 19 datasets subject to 3 performance measures through appropriate

statistical tests.

The idea behind condition iii. is that “one should disvalue inconclusive re-
sults” [9], i.e. negative conclusions are more meaningful than uncertainty. The kernel

weighting experiments of this paper on a wide range of ABE variants are negative ev-

idence to conclude that it does not improve ABE performance, thereby satisfying iii.
Finally condition iv. questions the benefit of results to future research. After years of

research, effort estimation still suffers from conclusion instability, i.e. proposed results

are not widely applicable, they are bound to change w.r.t. different estimation methods

and experimental conditions. Shepperd et al. list the likely causes leading to conclusion

instability as the estimation models, performance measures, software effort estimation

datasets and sampling methods [53]. For more notes on conclusion instability see [24].

For stable conclusions, i.e. conclusions that are widely applicable w.r.t. causes of insta-

bility, retiring a considerable portion of search space is as important as the discovery

of successful applications. The contribution of this work is through retirement of 2090
of ABE variants.

4 Background

We can divide software effort estimation into at least two groups [52]: expert judg-
ment and model-based techniques. Expert judgment methods depend on consolidation
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of expert opinions regarding the cost of a new project and are widely used in soft-

ware effort estimation practices [19]. Expert judgment can be applied either explicitly

(following a method like Delphi [5]) or implicitly (informal meetings among experts).

Unlike expert-based methods, model-based techniques do not rely heavily on human

judgment. Model based techniques are products of:

1) Algorithmic and parametric approaches or

2) Induced prediction systems.

The first approach is the adaptation of an expert-proposed model to local data. A

widely known example to such an approach is Boehm’s COCOMO method [6]. The

second approach is particularly useful in the case where local data does not conform

to the specifications of the expert’s method. A few examples of induced prediction

systems are linear regression, neural nets, model trees and analogy based estimation [41,

53]. There are also successful applications where expert and model based techniques

are integrated to complement one another [7, 30]. In particular when such estimation

practices are employed iteratively over time, the estimation accuracy can significantly

be improved. For example in [57], an integrated approach called CoBRA was applied

in an iterative manner and accuracy was improved from 120% error down to 14%.

Analogy based estimation (ABE) or estimation by analogy (EBA) is a form of case

based reasoning (CBR) and it is grouped together with induced prediction systems.

ABE generates its estimate for a new project by gathering evidence from similar past

projects. When we analyze the previous research of experts on the domain of ABE

such as Shepperd et al. [55], Mendes et al. [40] and Li et al. [36], we can see a baseline

technique lying under all ABE methodologies. The baseline technique is composed of

the following steps:

– Form a table (training set) whose rows are completed past projects and whose

columns are independent variables (the features that define projects) and a depen-
dent variable (the recorded effort value).

– Decide on the number of similar projects (analogies) to use from the training set,

i.e k -value.

– For each test instance, select k analogies out of the training set.

– While selecting analogies, use a similarity measure (for example the Euclidean

distance).

– Before calculating similarity, apply a scaling measure on independent features

to equalize their influence on this similarity measure.

– Use a feature weighting scheme to reduce the effect of less informative features.

– Adapt the effort values of the k nearest analogies to come up with an effort estimate.

Following the steps of this baseline technique, we define a framework called ABE0.

ABE0 uses the Euclidean distance as a similarity measure, whose formula is given in

Equation 1. In Equation 1, wi corresponds to feature weights applied to independent

features. ABE0 framework does not favor any features over the others, therefore each

feature has equal importance in ABE0, i.e. wi = 1.

Distance =

����
n�

i=1

wi(xi − yi)2 (1)

The next step is deciding on how to adapt project costs. There is a wide variety of

adaptation strategies in the literature [37]. Using effort value of the nearest neighbor [8],
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taking mean or median of closest analogies (see [54] and [2] for uses of mean and

median), inverse distance and inverse rank weighted mean of the closest analogies are

among the commonly used adaptation methods [37]. Angelis et al. suggest that as the

number of the closest projects increase, median is a robust solution [2]. They have

found that taking median instead of mean decreases the estimation error. We want the

estimates of ABE0 framework to represent the majority of selected instances and not

greatly affected by extreme values. Therefore, ABE0 returns the median effort values

of the k nearest analogies. Since ABE0 implicitly assigns equal weights to k nearest

analogies, it turns out to be an U-ABE method.

In this research we will compare the results of ABE0 framework with different

non-uniform weighting strategies, i.e. with different N-ABE methods. Note that since

ABE0 is a framework for U-ABE methods, in the rest of the paper the two terms will

be used interchangeably. N-ABE methods have been previously addressed in literature.

For example inverse rank weighted mean (IRWM) was proposed by Mendes et al. [40].

IRWM method enables higher ranked analogies to have greater influence than the lower

ones. Assuming that we have 3 analogies, the closest analogy (CA) gets a weight of
3�3
i=1 i

, the second closest (SC) gets a weight of 2�3
i=1 i

and the last analogy (LA) gets

1�3
i=1 i

.

5 Methodology

5.1 Kernel Density Estimation

Kernel density estimation (a.k.a. Parzen Windows) is a non-parametric technique used

to estimate an unknown probability density function (PDF) [13,47,50]. Our short notes

on kernel density estimation given here are based on the excellent tutorial to kernel

density estimation given by Duda et al. [13]. Therefore, reader is strongly suggested to

see Chapter 4 of [13] for in depth discussion and derivations.

The main idea behind non-parametric density estimation is rather simple, the den-

sity function can be viewed as the probability of seeing other samples from the same

distribution in a given region. Think of the following intuitive example. Assume we

have n points (x1, x2, ..., xn) that are independently and identically distributed (i.i.d)

with respect to probability p(x). Further assume that we define a region R with volume

V . Obviously only a portion of the n points (say k-many) will fall into this region. We

can use this fact to derive the following estimate for p(x):

p(x) =
k/n

V
(2)

According to this scenario, if we had 10 points (i.e. n = 10) and we had defined

our sample volume to be a unit-cube centered at the origin that contained only 5 of

these 10 points, our estimate for p(x) would be p(x) =
5/10
1 = 0.5.

To see how this simple formula is used as the basis of kernel density estimation,

temporarily assume that the region we sample from R is a hyper-cube with d dimen-

sions. Given one edge-length of this hyper-cube is h, its volume becomes: hd (the h
value is also known as the bandwidth value). So as to find an expression for the number

of points (i.e. k) within this region, we can define the following kernel function:
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Kernel Type Formula

Uniform Kernel K(ρ) = 1
2
1(|ρ|<1)

Triangular Kernel K(ρ) = (1− |ρ|)1(|ρ|<1)

Epanechnikov Kernel K(ρ) = 3
4

�
1− ρ2

�
1(|ρ|<1)

Gaussian Kernel K(ρ) = 1√
2π

e(
−1
2
ρ2)

IRWM Kernel —

Fig. 1: The formulas for different kernels used in this study, where 1(|x|<1) is the

indicator function. In formulas ρ = x−Xi

h . Note that IRWM kernel has different char-

acteristics and its calculation details were provided in Section 4.

K(ρ) =

�
1, if |ρ| ≤ 0.5

0, elsewhere
(3)

Note that above kernel function (i.e. K(ρ)) is nothing but a unit hypercube centered

at the origin. If we center this hyper-cube at x (a point for which we want to get the

probability estimate), the number of samples falling within the hypercube (i.e. (k))
can be calculated as follows1:

k =

n�

i=1

K
�x− xi

h

�
(4)

Now if we replace the k value in Equation 2 with the expression of Equation 4, we

get the estimate as:

p(x) =
1

n

n�

i=1

1

Vn
K

�x− xi
h

�
(5)

We should note that the kernel function (i.e. K
�
x−xi

h

�
) is used for interpolation

and each sample point in our space contributes to the estimate depending on its dis-

tance to the point x (for which we want to find the probability).

However, see that just using a hyper-cube function as the kernel function is rather

limiting. To make p(x) a more general and a proper PDF, we need to make sure that

all the values it returns are greater than or equal to zero and it integrates to 1. This

can be achieved by choosing the kernel function itself as a probability distribution

function [59].

There are different kernel functions used to make the p(x) a PDF [11]. This paper

explores the commonly used kernels, which are given in Figure 1 as well as IRWM [39,

40]. IRWM is not actually proposed as a kernel method and it does not fully conform

1 Note that the effort values stored in software effort datasets are stored in a single column;
hence our space is 1-dimensional. In other words, Vn in this formula will be just 1-dimensional
too which is just the bandwidth value h, i.e. Vn = h.
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to the definition of standard kernel methods. However, due to the weighting strategy

it proposes we can read it as an expert proposed kernel.

A literature review revealed that the selection of bandwidth (h) for kernels is more

influential than the kernel types [11,51]. Bandwidth h is fundamentally a scaling factor

that controls how wide probability density function will spread, i.e. appropriate choice

of h is critical to avoid under and over-smoothing [50, 59]. To avoid both under and

over-smoothing conditions we used various bandwidth values. One of the bandwidths

we used is suggested by John et al., which is h = 1/
√
n where h is the bandwidth and

n is the size of dataset [18]. The other bandwidth values we used are: 2, 4, 8 and 16.

5.2 Weighting Method

Assume that our dataset of size n is divided into two sets:

– A = {x1, ..., xi, ..., xk} (effort values of the selected Anologies with cardinality k
and xi (i ∈ {1...k}) representing an element of A)

– and R = {t1, ..., xj ..., tn−k} (effort values of the Rest of the dataset with cardi-

nality n− k and xj (j ∈ {1...(n− k)}) representing an element of R).

We build the kernel density estimation on R and evaluate the resulting function at

instances of A. Equation 6 shows the probability calculation with kernel density esti-

mation. In Equation 6 the kernel K is built on training data xj ∈ R and is evaluated

at analogy xi for a bandwidth of h. After scaling these probability values to 0-1 inter-

val according to Equation 7, we use them as weights for analogies. After calculating

weightxi for each analogy, we update their actual effort values according to Equation

8.

f(xi, h) =
1

nh

�

xj∈R

K
�xi − xj

h

�
(6)

weightxi =
f(xi, h) −max(f(xi, h))

max(f(xi, h)) −min(f(xi, h))
(7)

updatedEffortxi = actualEffortxi ∗ weightxi (8)

5.2.1 Uniform vs. Non-Uniform Weighting

The fundamental difference between N-ABE and U-ABE methods is that in U-ABE

analogies are given uniform weights and their actual effort values are used in an as is
manner, whereas in N-ABE analogies are assigned different weights and their actual

effort values are multiplied by these weight values. As for U-ABE, we defined a base

method that we call ABE0 and for N-ABE we use 5 different kernel methods.

One point that needs further clarification is the use of uniform kernel as a N-ABE

method. Figure 2 succinctly illustrates the difference between uniform kernel being a

N-ABE method and ABE0 being a U-ABE method. ABE0 assumes equal importance

of all instances and assigns equal probabilities. A uniform kernel would assign equal

non-zero probabilities to only a certain portion of the instances, whereas the rest of

the instances would be assigned a weight of zero (i.e. they would be ignored).
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Fig. 2: In the case of ABE0 all instances are given equal probability values, hence equal

weights. However, uniform kernel prefers some instances over the others: Only a certain

portion of the instances are given equal non-zero weights.

Dataset F
e
a
t
u
r
e
s

S
iz
e

Description Units
Cocomo81 17 63 NASA projects months

Cocomo81e 17 28 Cocomo81 embedded projects months
Cocomo81o 17 24 Cocomo81 organic projects months
Cocomo81s 17 11 Cocomo81 semi-detached projects months

Nasa93 17 93 NASA projects months
Nasa93 center 1 17 12 Nasa93 projects from center 1 months
Nasa93 center 2 17 37 Nasa93 projects from center 2 months
Nasa93 center 5 17 40 Nasa93 projects from center 5 months

Desharnais 12 81 Canadian software projects hours
DesharnaisL1 11 46 Desharnais projects using Language1 hours
DesharnaisL2 11 25 Desharnais projects using Language2 hours
DesharnaisL3 11 10 Desharnais projects using Language3 hours

SDR 22 24 Turkish software projects months
Albrecht 7 24 Projects from IBM months
Finnish 8 38 Finland projects hours
Kemerer 7 15 Large business applications months
Maxwell 27 62 Projects from commercial banks in Finland hours
Miyazaki94 8 48 Japanese COBOL projects months
Telecom 3 18 Maintenance projects for telecom companies months

Total 699

Fig. 3: We used 699 projects coming from 19 datasets. Datasets have different charac-

teristics in terms of the number of attributes as well as the measures of these attributes.

5.3 Data

In our research, we have used 19 datasets, most of which are heavily used in software

effort estimation research: Nasa93, the original Cocomo81 [6], Desharnais [12] and so on.

Note that 4 projects in Desharnais dataset has missing entries, we used imputation [1]

to handle them. The details regarding these datasets can be found in Figure 3.

SEE datasets have particular characteristics that are worth mentioning. According

to our experience at at NASA [10] and various Australian [24] and Turkish [32] orga-

nizations, a practitioner willing to use SEE datasets will face some possible problems

regarding the datasets:
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– The time required for projects to reach completion, so that their effort/costing data

can be collected.

– The data collection cost; i.e. the time required to collect project description (e.g.

lines of code) and costing data (e.g. total man-hours or man-months);

– The data cleansing cost, i.e. time required to correct high levels of noise inherent

in the dataset, after the initial collection.

Collecting such detailed costing data is extraordinarily difficult due to the business

sensitivity associated with the data as well as differences in how the costings are defined,

collected and archived. In many cases the required data has not been archived at all. For

example, after two years we were only able to add 7 records to a NASA wide software

cost metrics repository [42]. A similar situation was encountered inside Turkish software

development companies. One of us (Kocaguneli) was charged with collecting project

data. It took much senior management intervention to collect detailed cost information

for even a small subset of those projects.

The datasets and projects shown in Figure 3 are the result of a tremendous col-

laboration effort of many researchers from all around the world. Aside from the initial

collection effort invested in these projects by the research teams that donated them;

it took more than 5 years to have these datasets just to be brought together and put

into the public domain of PROMISE data repository.

5.4 Experiments

Our experimental settings aim at comparing the performance of standard U-ABE

(ABE0) to that of N-ABE. To separate train and test sets we use leave-one-out method,

which entails selecting 1 instance out of a dataset of size n as the test set and using

the remaining n− 1 instances as the training set. For each test instance, we run ABE0

and N-ABE separately and store their estimates. As the analogy number is reported to

play a critical role in estimation accuracy [20], both for U-ABE and N-ABE methods,

we tried different k values.

We use 2 forms of ABE methods (uniform and non-uniform weighting) induced

on 19 datasets for 5 different k values. The k values we used in our research are:

k ∈ {3, 5, 7, 9, best}. best is a pseudo-best k value that is selected for each individual

test instance through a process, in which we randomly pick up 10 instances from the

training set and select the lowest error yielding k value as the best. Since pseudo-best

k includes a random procedure, to hinder any particular bias that would come from

the settings of a single experiment, we repeated the afore mentioned experimental

procedure 20 times. Note that k > 1 for ∀k, because for k = 1 U-ABE and N-

ABE would be equivalent. In addition, we use 5 different kernels (Uniform, Triangular,

Epanechnikov, Gaussian and IRWM) with 5 bandwidth values in N-ABE experiments.

To further explore field of software effort estimation, we investigate a total of 2090

different settings in this research:

– U-ABE Experiments: 95 settings

– 19 datasets * 5 k values = 95
– N-ABE Experiments: 1995 settings

– Standard Kernels: 19 datasets * 5 k values * 4 kernels * 5 bandwidths =
1900

– IRWM: 19 datasets * 5 k values = 95
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5.5 Performance Criteria

Performance measures comment on the success of a prediction. For example, mean

absolute residual (MAR) is the mean of absolute residuals (the difference between the

predicted and the actual):

MAR = mean(ARi = |actuali − predictedi|) (9)

Magnitude of relative error (MRE) is one of the most commonly used performance

criterion for assessing the performance of competing software effort estimation meth-

ods [8, 14, 45].

MRE =
|actuali − predictedi|

actuali
(10)

Median MRE (MdMRE) has emerged as the de facto standard evaluation criterion

for cost estimation models [56]. Median also gives information about central tendency

and is less sensitive to extreme MRE values. MdMRE formula is given in Equation 11,

where n is the test set size.

MdMRE = median(MRE1,MRE2, ...,MREn) (11)

Another alternative performance measure is PRED(25), which is reported to be

one of the most commonly used accuracy statistics [29]. It is defined as the percentage

of predictions falling within 25% of the actual values [38]:

PRED(25) =
100

N

N�

i=1

�
1 if MREi ≤ 25

100
0 otherwise

(12)

For example, PRED(25)=50% implies that half of the estimates are failing within 25%

of the actual values [54].

if Mann-Whitney(Pi, Pj , 95) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if better( median(Pi), median(Pj)) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 4: Comparing algorithms (i,j ) on performance (Pi,Pj). The “better” predicate

changes according to P . For error measures like MRE, “better” means lower medians.

However, for PRED(25), “better” means higher medians.

If performance measures are used as a stand-alone evaluation criteria (i.e. not com-

bined with appropriate statistical tests), results may lead to biased or even false con-

clusions [14]. Therefore, we use the so called win, tie, loss statistics, whose pseudocode
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is given in Figure 4. In Figure 4, we first check if two distributions i, j are statistically

different (Mann-Whitney rank-sum test, 95% confidence); otherwise we increment tiei
and tiej . If the distributions are statistically different, we update wini, winj and

lossi, lossj after comparing the performance measures so as to see which one is better.

6 Results

To see the effect of kernel weighting, we studied 19 datasets and 3 different perfor-

mance measures. For each performance measure we tried 4 different kernels subject

to 5 different bandwidths, plus the IRWM kernel (which does not have a bandwidth

concept) and reported associated win, tie, loss statistics.

Figure 5 shows a sample of our results. It reports the win, tie, loss statistics of

Desharnais dataset for ABE0 and N-ABE through Gaussian kernel. For each dataset

we have 4 such tables (one for each kernel), so for all datasets there are 19 Datasets
× 4 tables = 76 tables. For the IRWM kernel there will be another 19 datasets ×
1 kernel = 19 tables. Hence, in total, our results comprise 76 + 19 = 95 tables to

report. All these tables are available on line at http://goo.gl/qpQiD (user-name: guest,

password: guest). However, for space reasons, we summarize those tables as follows.

In Figure 5 we see that each row reports win, tie, loss statistics of ABE0 meth-

ods (k=3,5,7,9,best) as well as N-ABE methods (k=[3,5,7,9,best]+kern where kern
stands for kernel weighting) subject to a particular performance measure. Similarly,

each column shows the win, tie, loss statistics associated with a particular bandwidth

value. As can be seen in Figure 5, for Desharnais dataset ABE0 methods always have

higher win values and always have a loss value of 0, meaning that they never lose

against N-ABE methods. That is, by summarizing each row/column intersection we

can see that the performance of ABE0 is never improved by N-ABE.

Figure 6 and Figure 7 repeat that summarization process for all 19 datasets and

all kernel/bandwidth combination:

– Each row of these summary figures shows the comparison of ABE0 performance to

that of N-ABE subject to 3 different performance measures.

– Every kernel/bandwidth intersection in Figure 6 and Figure 7 has 3 symbols cor-

responding to MdMRE, MAR and Pred(25) comparisons from left to right.

– Each of these 3 symbols can have 3 values: −,+, o.
– “−” means that N-ABE decreased the accuracy of ABE0;

– “o” means ABE0 and N-ABE are statistically same;

– “+” shows that ABE0 accuracy was improved through kernel weighting (i.e.

N-ABE has a better performance than ABE0).

We assign the symbols “+” or “−” if the performance associated with the majority

of the k-values (at least 3 out of 5) are improved or degraded by N-ABE (in terms of

win− loss). If there is no change, we assign a “o” symbol to that setting.

Observe that in all these summaries:

– There is only one dataset (SDR in Figure 7) where N-ABE provides a performance

improvement in certain cases. Even for that dataset there are 15 “+” symbols and

21 “−” symbols, meaning that most of the time N-ABE is still destructive.

– In 18 other datasets, which is 18
19 = 95% of all the datasets, there is not a single

case where N-ABE improves the performance of ABE0.
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Fig. 5: Desharnais dataset win, tie, loss statistics for ABE0 and N-ABE through Gaus-

sian kernel. For each dataset we have 4 of these tables (one for each kernel). In total

it amounts to 19 Datasets × 4 tables = 76 tables. In addition we have another 19
datasets × 1 kernel = 19 tables from IRWM kernel. It is infeasible to include all the

tables in this paper, therefore an executive summary of 76+19 = 95 tables is provided in

Figure 6. Furthermore, we provide all 95 tables in excel format at http://goo.gl/qpQiD.
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Dataset Kernel h=1/sqrt(size) h = 2 h = 4 h = 8 h = 16

C
o
c
8
1

Uniform ooo ooo ooo ooo ooo
Triangular ooo ooo ooo ooo ooo
Epanechnikov ooo ooo ooo ooo ooo
Gaussian ooo ooo ooo ooo ooo

C
o
c
8
1
e Uniform ooo ooo ooo ooo ooo

Triangular ooo ooo ooo ooo ooo
Epanechnikov ooo ooo ooo ooo ooo
Gaussian ooo ooo ooo ooo ooo

C
o
c
8
1
o Uniform −o− −oo −oo −oo −oo

Triangular ooo ooo ooo ooo ooo
Epanechnikov − − − ooo ooo ooo ooo
Gaussian −o− ooo ooo ooo ooo

C
o
c
8
1
s Uniform ooo ooo ooo ooo ooo

Triangular ooo ooo ooo ooo ooo
Epanechnikov ooo ooo ooo ooo ooo
Gaussian ooo ooo ooo ooo ooo

N
s9
3

Uniform −o− −o− −o− −o− −o−
Triangular −o− −o− −o− −o− −o−
Epanechnikov −o− ooo ooo ooo ooo
Gaussian −o− ooo ooo ooo ooo

N
s9
3
c
1

Uniform − − − − − − − − − − − − − − −
Triangular − − − −o− −o− −o− −o−
Epanechnikov − − − −o− −o− −o− −o−
Gaussian −o− −o− −o− −o− −o−

N
s9
3
c
2

Uniform ooo −o− −o− −o− −o−
Triangular −o− ooo ooo ooo ooo
Epanechnikov −o− ooo ooo ooo ooo
Gaussian ooo ooo ooo ooo ooo

N
s9
3
c
5

Uniform − − − −o− −o− −o− −o−
Triangular − − − ooo ooo ooo ooo
Epanechnikov − − − ooo ooo ooo ooo
Gaussian − − − ooo ooo ooo ooo

Fig. 6: Nine data sets comparing ABE0 to N-ABE. For every row in each cell, there are

three symbols indicating the effect of N-ABE w.r.t. 3 different error measures. From left

to right, the first symbol stands for N-ABE effect w.r.t. MdMRE, the second symbol

w.r.t. MAR and the third one w.r.t. Pred(25). A “+” indicates that for majority of k
values (at least 3 out of 5 k values), N-ABE improved ABE0 in terms of win − loss
values. “−” indicates that N-ABE decreased the performance of ABE0 in the majority

case. If the former conditions do not satisfy, then a “o” symbol is assigned. Note that

dataset order here is the same as Figure 3, yet the dataset names are abbreviated to 3

to 5 letters due to space constraints.

Note that these summary tables contain results from different performance criteria

(MdMRE, MAR, Pred(25)) as well as kernels and bandwidths. Therefore, our conclu-

sion from Figure 6 and Figure 7 is that that “non-uniform weighting through standard
kernel methods does not improve the performance of ABE” holds in the majority

case across different datasets and error measures.

Another summary table is given in Figure 8. Figure 8 is very similar to Figure 6 in

the sense that it summarizes the performance of N-ABE over 19 datasets w.r.t. three

different performance measures. The difference is that Figure 6 summarizes the results

of standard kernel methods, whereas in Figure 8 we see the N-ABE performance under

an expert-based kernel, i.e. IRWM. Although there are important differences between

standard and expert-based kernels (IRWM has no bandwidth parameter), the results

seen in Figure 8 is quite similar to those of Figure 6. As can be seen in Figure 8, there

is not a single case where N-ABE (under IRWM kernel) improves the performance of
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Dataset Kernel h=1/sqrt(size) h = 2 h = 4 h = 8 h = 16

D
e
s

Uniform − − − − − − − − − − − − − − −
Triangular ooo − − − − − − − − − − − −
Epanechnikov − − − − − − − − − − − − − − −
Gaussian − − − − − − − − − − − − − − −

D
e
sL

1
Uniform − − − − − − − − − − − − − − −
Triangular ooo −o− −o− −o− −o−
Epanechnikov − − − −o− −o− −o− −o−
Gaussian − − − −o− −o− −o− −o−

D
e
sL

2

Uniform − − − − − − − − − − − − − − −
Triangular ooo − − − − − − − − − − − −
Epanechnikov − − − −o− −o− −o− −o−
Gaussian − − − −o− −o− −o− −o−

D
e
sL

3

Uniform −o− −o− −o− −o− −o−
Triangular −o− ooo ooo ooo ooo
Epanechnikov −o− ooo ooo ooo ooo
Gaussian −o− ooo ooo ooo ooo

S
D
R

Uniform −o− −o− −o− −o− −o−
Triangular ++− +o− +o− +o− +o−
Epanechnikov −+− ++− ++− ++− ++−
Gaussian

A
lb
r

Uniform − − − − − − − − − − − − − − −
Triangular − − − −o− −o− −o− −o−
Epanechnikov − − − −o− −o− −o− −o−
Gaussian − − − −o− −o− −o− −o−

F
in
n

Uniform − − − − − − − − − − − − − − −
Triangular ooo − − − − − − − − − − − −
Epanechnikov − − − −o− −o− −o− −o−
Gaussian − − − −o− −o− −o− −o−

K
e
m

Uniform −o− −o− −o− −o− −o−
Triangular − − − ooo ooo ooo ooo
Epanechnikov − − − ooo ooo ooo ooo
Gaussian − − − ooo ooo ooo ooo

M
a
x
w

Uniform − − − − − − − − − − − − − − −
Triangular − − − ooo ooo ooo ooo
Epanechnikov − − − ooo ooo ooo ooo
Gaussian − − − ooo ooo ooo ooo

M
iy
9
4

Uniform − − − − − − − − − − − − − − −
Triangular − − − − − − − − − − − − − − −
Epanechnikov − − − −o− −o− −o− −o−
Gaussian − − − −o− −o− −o− −o−

T
e
l

Uniform − − − − − − − − − − − − − − −
Triangular −o− −o− −o− −o− −o−
Epanechnikov − − − −o− −o− −o− −o−
Gaussian − − − −o− −o− −o− −o−

Fig. 7: Ten more data sets comparing ABE0 to N-ABE. Same format as Figure 6.

ABE0. Furthermore, the amount of “−” symbols is much more than “o”, meaning that

N-ABE decreases the performance of ABE0 most of the time.

7 Threats to Validity

We will address the threats to validity of this research under 3 categories: Internal

validity, external validity and construct validity.

Internal validity asks to what extent the cause-effect relationship between depen-

dent and independent variables holds [1]. We use leave-one-out method for all treat-

ments to address internal validity issues. Leave-one-out selection enables us to separate

the training and test sets completely in each experiment, thereby making the test sets

completely new situations for the training sets.
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Dataset Improvement
MdMRE MAR Pred(25)

Cocomo81 − o −
Cocomo8e o o o
Cocomo8o − − −
Cocomo8s o o o
Nasa93 − − −
Nasa93 center 1 − − −
Nasa93 center 2 − o −
Nasa93 center 5 − − −
Desharnais − − −
DesharnaisL1 − − −
DesharnaisL2 − − −
DesharnaisL3 − o −
SDR − o −
Albrecht − − −
Finnish − − −
Kemerer − − −
Maxwell − − −
Miyazaki94 − − −
Telecom − − −

Fig. 8: The comparison of ABE0 to N-ABE under IRWM kernel. Similar to Figure 6

three symbols indicate the effect of N-ABE w.r.t. 3 different error measures and “+”

indicates that for majority of k values N-ABE improved ABE0 in terms of win− loss
values. A “−” symbol indicates a decrease and a “o” symbol indicates neither decrease

nor increase. Notice that subject to IRWM kernel, N-ABE fails to improve ABE0 w.r.t.

3 different performance measures.

External validity questions the ability to generalize the results [44]. To observe

the generalizability of our results, we perform extensive experiments on 19 datasets.

The datasets are widely used in software effort estimation community and have very

different characteristics in terms of various criteria such as size, number of features,

types of features and measurement method. However, to have full confidence in our

claims, our study needs to be replicated by future studies.

Another external validity threat is the use of ABE0 framework, which can be seen

as a specific CBR algorithm. ABE0 is a standard method underlining various different

ABE variants of the software effort estimation literature. Hence its use is a mean of

benchmarking our results. However, its use should not be restrictive for the future

studies. Keung et al. shows a theoretical maximum prediction accuracy for ABE0

framework in [25] to prove that ABE0 frameworks can be improved significantly. There

are abundant amount of CBR improvement strategies (e.g. see [46]), which can be used

to improve ABE0 performance.

Construct validity (i.e. face validity) makes sure that we in fact measure what we

intend to measure [49]. Kitchenham et al. notes that different performance measures

evaluate different aspects of prediction accuracy [29]. So as to assess N-ABE and ABE0

comparison from different standpoints, we made use of MAR, MdMRE and Pred(25)

in our study. However, as Kitchenham et al. points out in [28], it is wrong to solely use

the performance measures without a statistical test. Therefore, we also use win-tie-loss

measures, where we make use of Mann-Whitney U test at a significance level of 95%.
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8 Post Hoc Analysis of the Negative Results

One of the most likely questions to be raised from the results of this study is “Why

do other fields [15,18,47] benefit from weighting, whereas effort estimation does not?”.

Our belief is that the answer is partially hidden behind the low sample sizes of effort

datasets. Scarcity of the samples means that the weighting observes a signal being

broadcast from a very small number of points in the neighborhood. In Figure 9 we

simulate 50, 100 and 1000 samples coming from two Gaussian probability distribution

functions (PDFs): N(20, 5) and N(35, 5). Then we use kernel density estimation tech-

nique with a Gaussian kernel to estimate the density at discrete values of x in [0-55]

interval with a step-size of 1.

In Figure 9, closest estimates require:

– Optimum bandwidth (here h = 1). Too small bandwidth (h = 0.001) assigns most

probability values (hence weights) to zero, whereas too big of a bandwidth (h = 10)

results in over-smoothing.

– Considerable sample size. Note how optimum fit is achieved for a sample size of

1000.

In case of signal processing the sample sizes are closer to Figure 9(c) and as we

see from the simulation example, kernel estimates can successfully model such densely

populated datasets. However, software effort datasets used in our research are similar

to Figure 9(a) and Figure 9(b). When we observe behavior of kernel estimates for low

sample sizes in those figures, it is somewhat expected to see lower performance values

in sparsely populated data sets like software effort data sets.

9 Conclusions

In this research we tried kernel density estimation as a non-uniform weighting strategy

for ABE. We conducted experiments with various kernels as well as bandwidths. For the

datasets and performance measures used in our research there were hardly any cases

where N-ABE methods outperformed ABE0, i.e. simple methods perform better than

more complex alternatives. We hesitate to discourage further research with different

experimental settings or with different datasets. However, if similar use of kernels is to

be adopted, we do not recommend the use of kernel methods as a weighting strategy

in ABE.

Unlike studies in different domains that use kernel methods and report improved

accuracy values [18, 47], we do not observe such an effect on software effort datasets.

The reason for different results may lie in different dataset characteristics. For instance

the datasets used in other domains are much more densely populated than software

effort datasets.

9.1 Answers To Research Questions

RQ1. Is there evidence that non-uniform weighting improves the performance of
ABE? The results of our experiments do not show such an evidence. On the contrary,

for all settings ABE0 yields much better results than N-ABE methods.
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(a) 50 Sample Points: Note the bad fit due to low sample size.

(b) 100 Sample Points: Note the better fit due to increased sample size.

(c) 1000 Sample Points: Note the optimum fit due to high sample size.

Fig. 9: The effect of sample size and bandwidth on kernel density estimation. The

choice of optimum bandwidth (h value) is important. However, even with the optimum

bandwidth, one still needs enough number of samples for successful estimation. Sample

size of 50 appears to be too small and when we increase it to 100, we get a better fit.

Yet, for a very close fit, we need to go up to 1000 sample points.



D
ra
ft

20

RQ2. What is the effect of different kernels for non-uniform weighting in ABE?
There are only slight variations in performance when different kernels are used. How-

ever, these variations do not follow a definite pattern and they are far from being

considerable.

RQ3. What is the effect of different bandwidths? Change of bandwidths shows

a random and insignificant effect, which is very similar to that of kernel change effect.

Therefore, we cannot say that applying different bandwidths has a certain effect on

N-ABE performance.

RQ4. How do the characteristics of software effort datasets influence the per-
formance of kernel weighting in N-ABE? Effort datasets are much smaller than most

of the datasets in different domains. The dependent variable (effort value of a com-

pleted project) is highly variable. Furthermore, the attribute values are very open to

personal judgment and error. All these factors suggest that non-parametric methods

may be failing due to inherent characteristics of software effort data.

10 Future Work

The experiments shown in this research took three months to research, design, execute,

then write up. It turns out that we could have spent the time more productively on other

issues. Our pre-experimental intuition that “non-uniform weighting in the data sparse

domain of software effort estimation may not provide an improvement in estimation

accuracy” turned out to be correct. We want to remind researchers, who want to follow

afore mentioned future directions that those future directions may as well end up in

negative results.
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