The Inductive Software Engineering Manifesto:
Principles for Industrial Data Mining

Tim Menzies
Lane Dept. of CS & EE,
West Virginia University

Morgantown, USA
tim@menzies.us

Abstract—The practices of industrial and academic data
mining are very different. These differences have significant
implications for (a) how we manage industrial data mining
projects; (b) the direction of academic studies in data mining;
and (c) training programs for engineers who seek to use data
miners in an industrial setting.

Keywords-data mining, induction, process

I. INTRODUCTION

It is important for industrial practitioners to document
their methods. Such documentation lets newcomers become
more effective, sooner. Accordingly, this article documents
our principles of industrial inductive software engineering.

Engineering is the process of developing repeatable pro-
cesses that generate products to an acceptable standard
within resource constraints (e.g. time). Hence, inductive
software engineering is that branch of SE focusing on the
delivery of data mining-based software applications to users.
In our view, the practices of industrial inductive engineering
are (a) significantly different to those of academic data
mining research; and that (b) those differences have never
really been clearly articulated. Hence, this article.

This paper is a result of a reflection on our applied data
mining work (e.g. for defect prediction [29], [31], social
metrics [6], effort estimation [25], test case generation [2],
and others [3]-[5], [22], [39], [40]). In an initial informal
stage, we maintained the whiteboard of Figure 2. Any visitor
would be asked “what characterizes the difference between
academic and industrial data mining?”. The results of that
informal analysis was then formalized and systematized into
the seven principles of Figure 1 and a dozen other tips.

This paper is structured as follows. We state our guiding
principle: users before algorithms. This user-focus will lead
to three extensions to traditional descriptions of applied

Submitted to MALETS 2011: the International Workshop on Machine
Learning Technologies in Software Engineering, Lawrence, Kansas, U.S.A.
November 12, 2011. In association with the 26th International Conference
on Automated Software Engineering.

See http://bit.ly/002QZJ for an earlier draft of this paper.

This work was partially funded by the Qatar/West Virginia University
research grant NPRP 09-12-5-2-470.

Christian Bird,
Tom Zimmermann,
Wolfram Schulte
Microsoft Research, Redmond, USA
{cabird|tzimmer|schulte} @microsoft.com

Ekrem Kocaganeli
Lane Dept of CS & EE,
West Virginia University

Morgantown, USA
kocaguneli@ gmail.com

Inductive Software Engineering Manifesto

Users before algorithms
Plan for scale
Early feedback
Be open-minded
Do smart learning
Live with the data you have
Broad skill set, big toolkit

Figure 1. Manifesto, version 1.0.

data mining: user involvement, cycle evolution, and early
feedback. After that, we discuss some details of industrial
inductive engineering. We conclude with some notes on the
implications of our work for project management, training,
and research.

Where possible, the arguments of this paper will be
based in terms of standard academic rhetoric. However,
caveat emptor, much of this paper draws from personnel
experience and cannot be “proved” in some formal sense. As
argued at a recent panel on the relationship between industry
and academia at ICSE 2011 (see http://goo.gl/YHsYY), it
may be inappropriate to ask for such proofs on industrial
perspectives. Like Aranda et al. [1], we believe it useful to:

push for a better dissemination of our re-
sults and methods, making the argument that
there is more to science than trial runs and
statistical significance, and helping practition-
ers distinguish between good and bad science,
whatever its methods of choice. [1]

II. USER-FOCUSED DEVELOPMENT

The main difference we see between academic data min-
ing research and our industrial practices is that the former
is focused on algorithms and the latter is focused on users:
By this term, we do not mean the end-user of a product.
Rather, we mean the community providing the data and
domain insights vital to a successful project. Users provide
the funding for the project and, typically, need to see a value
added benefit, very early in a project. Hence:

4oy
/Q [¢ ‘\?0‘/
\ L)

it (kAT

pvess M-;(i‘l'_{,uh W ot Nerrve 5

\ ey
S 1 ey o

+'N°\'l‘ fow ldvn + < _Ec‘}) W\’.{S
ot of- (:\)

Figure 2.

Principle 1: Users before algorithms: Mining
algorithms are only useful in industry if users fund their
use in real-world applications.

The user perspective is vital to inductive engineering. The
space of models that can be generated from any data set is
very large!. If we understand and apply user goals, then we
can quickly focus an inductive engineering project on the
small set of most crucial issues.

Other researchers have noted the importance of under-
standing the user perspective. For example, Fenton builds
defect models from Bayes models as part of extensive user
sessions [19]. In addition, Valerdi & Boehm build effort
models via Delphi sessions that combine human judgment
with the output of data miners [7], [37], [38]. Based on that
work, and our own experience, we assert that:

Definition 1: Inductive Software Engineering: Un-
derstanding user goals to inductively generate the
models that most matter to the user.

We offer the following heuristics to gauge the success of the
user interaction meetings. In a good meeting:

o The users keep interrupting to debate the implications
of your results. This shows that (a) you are explaining
the results in a way they understand; also (b) your
results are commenting on issues that concern them.

TAnd the space of models not supported by the data is much larger.
Hence, on some days, we believe that the real role of science in general, or
inductive engineering in particular, is to quickly retire unfounded models
before they can do any damage.

S
| s Minceg
M aerele

tw (nrustiia {vecessag %_c‘. nohe) ,[/ u. « e

Y& i D\.)ou SM-N.

Manifesto, version 0.1.

o The users bring senior management to the meetings.

o The users start listing more and more candidate data
sources that you could exploit.

o After the meeting, the users invite you back to their
desks inside their firewalls to show them how to per-
form certain kinds of analysis.

When working with users, it is vital to make the best
use of their time. One issue with the user-modeling sessions
conducted by Fenton, Valerdi & Boehm is that they require
extensive user involvement. For example, Valerdi once re-
cruited 40 experts to three Delphi sessions, each of which
ran for three hours. Assuming an 8 hour day, then that study
took 3 x 4 * 40/8 = 60 days. Therefore, in our work, we try
to meet with users weekly for an hour or two. In between
meetings, our task is to conduct as much analysis as possible
to generate novel insights that interest the user.

III. THE STANDARD KDD CYCLE

We are now in a position to comment on the difference
of this paper to prior commentaries on how to organize
industrial data mining. Fayyad et al. [36] offer the classic
definition of data mining, as applied to real-world activities:

KDD (knowledge discovery in databases) is the
nontrivial process of identifying valid, novel, po-
tentially useful, and ultimately understandable pat-
terns in data [36].
Figure 3 summarizes their approach. While we take issue
with parts of their proposal, many aspects are insightful
and worthy of careful study. For example, Figure 3 clearly

shows data mining is just a small part of the total process.
Even just gaining permission to access data can be a long
process requiring extensive interaction with business user
groups. Copying large amounts of data from one city to
another can also consume a large amount of time. Once
data is accessed, then raw data typically requires extensive
manipulation before it is suitable for mining. This is:

Tip 1: Most of “data mining” is actually “data
pre-processing”: Before any learner can execute,
much effort must be expended in selecting and
accessing the data to process, pre-processing, and
transforming it some learnable form.

Figure 3 also clearly illustrates the cyclic nature of inductive
engineering:

o Usually, finding one pattern prompts new questions
such as “why does that effect hold?” or “are we sure
there is no bug in step X of the method?”. Each such
question refines the goals of the data mining, which
leads to another round of the whole process.

« As mentioned above, in the initial stages of a project,
engineers try different methods to generate the feedback
that let users refine and mature the goals of the project.

« Real world data is highly “quirky” and inductive engi-
neers often try different methods before they discover
how to find patterns in the data.

The repetitive nature of inductive engineering implies:

Principle 2: Plan for scale: In any industrial applica-
tion, the data mining method is repeated multiples time
to either answer an extra user question, make some
enhancement and/or bug fix to the method, or to deploy
it to a different set of users.

This, in turn, has implications on tool choice:

Tip 2: Thou shall not click: For serious studies,
to ensure repeatability, the entire analysis should
be automated using some high level scripting
language; e.g. R-script, Matlab, or Bash [32].
Figure 3 was highly insightful when it was published in
1996. In 2011, we would we augment it as follows:

A. User involvement;
B. Cycle evolution;
C. Early feedback.

We expand on these points, below.

A. User Involvement

We made the case above that successful inductive software
engineering projects require extensive user input. User input
is not a primary concern of Figure 3.

B. Cycle Evolution

Our experience is that while inductive software engi-
neering is cyclic, the cycles evolve as the project matures.
For example, consider the CRANE application developed
by inductive engineers at Microsoft [14]. CRANE is a
risk assessment and test prioritization tool used at Mi-
crosoft that alerts developers if the next software check-
in might be problematic. CRANE makes its assessments
using metrics collected from static analysis of source code,
dynamic analysis of tests running on the system, and field
data. CRANE’s development process only partially matches
Figure 3. Instead, development of CRANE required the
following phases:

1) The scout phase: an initial rapid prototyping phase
where many methods were applied to the available

J’lrp:w:\:ssmg

Selection

Target Date

LD

Preprocessed Data

In [(‘IPI(‘I:IHDD !
Bvalu,&dpn

D

Patterns

Transformed
Drata

Figure 3.

Fayyad et al.’s classic depiction of applying data miners. From [36].

data. In this phase, experimental rigor is less important
than exploring the range of user hypotheses. The other
goal of this phase is to gain the interest of the users
in the induction results.

2) The survey phase: After securing some interest and
good will amongst the user population, inductive en-
gineers conducted careful experiments focusing on the
user goals found during the scouting phase. Of these
three phases, the survey phase is closest to Figure 3.

3) The build phase: After the survey has found stable
models of interest to the users, a systems engineering
phase begins where the learned models are integrated
into some turn-key product that is suitable for deploy-
ment to a very wide user base.

In terms of development effort, the specific details of
CRANE’s development schedule are proprietary. We have
observed that for greenfield applications which have not
been developed previously:

o The development effort often takes weeks/ months/
years of work for scout/ survey/ build (respectively).

« The team size doubles and then doubles again after the
scout and survey phases; e.g one scout, two surveyors,
and four builders (assisted by the analysis of the
SUrveyors).

For product line applications (where the new effort is some
extension to existing work), the above numbers can be
greatly reduced when the new effort reuses analysis or tools
developed in previous applications.

C. Early Feedback

The point of the initial scout phase is to get feedback,
as early as possible, from the users about appropriate di-
rections for the project. We are continually surprised at

preg plas

599

skin insu

ThE 375
age

pedi
el 67

lgnorable

how much insight our users gain even from our prelimi-
nary pre-processing results. For example, as part of data
pre-processing, Dougherty et al. recommend discretization
of continuous attributes [16]. Supervised discretizers hunt
for divisions to numeric data where the class distributions
change the most. Discretization can determine which at-
tributes are ignorable. Figure 4 shows one data set where two
of the attributes do not split at all; i.e. the discretizer found
no value in dividing up certain columns. Such displays can
be profoundly insightful to users since it lets them ignore
side issues and lets them focus on the most important factors.

Note that discretizers run on log-linear time [18] and,
hence, can terminate even when more elaborate data miners
fail. Other pre-processors that can offer rapid feedback are
linear-time feature selection [23] or instance selection [34]
tools. Hence, we recommend:

Principle 3: Early feedback: Continuous and early feed-
back from users, allows needed changes to be made as
soon as possible (e.g. when they find that assumptions
don’t match the users’ perception) and without wasting
heavy up-front investment.

Tip 3: Simplicity first: Prior to conducting very
elaborate studies, try applying very simple tools
to gain rapid early feedback.

In our work we stress that feedback to the users can and
must appear very early in a inductive engineering project.
Users, we find, find it very hard to express want they want
from their data. This is especially true if they have never
mined it before. However, once we start showing them
results, their requirements rapidly mature as initial results
help them sharpen the focus of the inductive study. Hence:

pres

Z88 168
197
161
122

mass

546
202
- - B

class
401 500

268

Figure 4. Results of discreting the diabetes data set from the UCI repository; see http://goo.gl/76qYR. Black and gray denote two classes. Vertical bars
denote the splits found in eight independent variables. An ignorable column is one that cannot be divided to minimize class diversity. In this data, two

columns are ignorable.

Principle 4: Be open-minded: 1t is unwise to enter into
an inductive study with fixed hypotheses or approaches
particularly for data that has not been mined before. Don’t
resist exploring additional avenues when a particular idea
doesn’t work out.

Tip 4: Data likes to surprise: Initial results often
changes the goals of a study when (e.g.) business
plans are based on issues that irrelevant to local
data.

IV. DETAILS

Having made our main point about the difference of our
proposal to the 1996 version of the KDD cycle, this section
discusses some details of inductive engineering.

A. Avoiding Bad Learning

Principle 5: Do smart learning: Important outcomes
are riding on your conclusions. Make sure that you check
and validate them.

We stressed above that real-world inductive engineering
requires trying a range of methods on each data sets. One
danger with trying too many methods is “data dredging”;
i.e. the the inappropriate (sometimes deliberately so) use of
data mining to uncover misleading relationships in data.

Certainly, if data is tortured enough, it will reveal bogus
results [13]. On the other hand, sometimes it is appropriate
to conduct a “fishing expedition”, just to see what pat-
terns might exist. However, when fishing for patterns, it is
wise to maintain a healthy scepticism about the generated
conclusions. In this regard, rule-learners like RIPPER [12]
and INDUCT [20] are interesting since they check the
rules against randomly generated alternatives (and if the
probability of a rule is not better than that of random
selection, it is deleted). Such tests are not standard in other
tools and so we recommend the following:

Tip 5: Check the variance: Before asserting that
result A is better than result B, repeat the analysis
for multiple subsets of the data and perform some
statistical tests to check that any performance
differences are not just statistical noise?

Tip 6: Check the stability: Given any conclusion,
see if it holds if the analysis is repeated using (say)
10¥90% random samples of data.

The lower the support for the conclusion, the less likely that
it will hold across multiple sub-samples. Hence:

Tip 7: Check the support: Try to avoid conclu-
sions based on a very small percent of the data.

2Caution: standard tests such ANOVA and t-tests make Gaussian assump-
tions that do not hold in many domains. Consider the use of non-parametric
tests such as Wilcoxon or Mann-Whitney, Friedman/Nemenyi.

One trick for increasing conclusion support is to “chunk up”
numeric ranges into a few bins®, thus preventing the learner
from building models using very small numeric ranges.

B. Data and Hypothesis Collection

While the last 3 rules are useful, they do not necessarily
prevent data dredging. Making wrong conclusions from
observations is a problem for any inductive process. In fact,
humans can get induction just as wrong as an automated
algorithm. WIKIPEDIA lists 96 known human cognitive
biases*. As documented by Simons and Chabris [35], the
effects of these biases can be quite startling.

Since all inductive agents (be they human or artificial)
can make inductive errors, we must employ some methods
to minimize the frequency of those errors. The standard
solution is use some initial requirements gathering stage
where the goals of the learning are defined in a careful and
reflective way, as discussed in:

o Basili’s Goal-Question-Metric [28] approach;

« Easterbrook et al.’s notes on empirical SE [17].

The intent of this solution is to prevent spurious conclusions
by (a) carefully controlling data collection and by (b) focus-
ing the investigation on a very small space of hypotheses.
Where possible:
Tip 8: If you can, control data collection: The
Goal-Question-Metric approach suggests putting
specific data collection measures in place early to
address a goal.
The opportunity to use the above tip is rare in practice, and
you should take advantage of it when it comes. But one note
of caution:
Tip 9: Be smart about data collecting and clean-
ing.: Keep in mind that collecting data comes at
a cost (for example, related to hardware, runtime,
and/or operations) and should not negatively affect
the users’ system (avoid runtime overhead). It is
thus infeasible to collect all possible data. Collect
data that has high return on investment, i.e., many
insights for relatively little cost.
In the usual case, you cannot control data collection. For
example, when Menzies worked at NASA, he had to mine
information collected from layers of sub-contractors and
sub-sub-contractors. Any communication to data owners had
to be mediated by up to a dozen account managers, all of
whom had much higher priority tasks to perform. Hence, we
caution that usually you must:

Principle 6: Live with the data you have: You go min-
ing with the data you have—not the data you might want
or wish to have at a later time.

3e.g. divide them at the 33 and 66-th percentile change, or use some
supervised discretizer [18].

438 decision making biases; 30 biases in probability; 18 social biases;
and 10 memory biases. See http://goo.gl/Z7ij.

That is, the task of the inductive engineering is to make
the most of the data at hand, and not wait for some promised
future data set that might never arrive. Since we may not
have control over how data is collected, it is wise to cleanse
the data prior to learning:

Tip 10: Rinse before use: Before learning from
a data set, conduct instance or feature selection
studies to see what spurious data can be removed.
Many tool kits include feature selection tools (e.g.
WEKA). As to instance selection, try clustering
the data and reasoning from just a small percentage
of the data from each cluster. Data cleaning has a
cost too, and it is highly unlikely that you can
afford perfect data. Most data mining approaches
can handle a limited amount of noise.

Note that a standard result is that given a table of data,
80 to 90% of the rows and all but the square root of the
number of columns can be deleted before comprising the
performance of the learned model [10], [23], [25], [27].

As to controlling the space of hypotheses to be explored,
we have often found that

Tip 11: Helmuth von Moltke’s rule: Few hypothe-
ses survive first contact with the data.

Even if the users are most concerned about X,Y, the data
may be silent on X, only comment on some modified form
of Y’, but contain significant insights about Z (something
the users have never considered before). This is particularly
true for data that has not been mined before.

For example, it is clear that product complexity is a critical
factor in determining the development cost of software. But
this critical factor is an irrelevancy in the NASA93 data
set from http://goo.gl/WI1zCC where 83% of all the data is
labeled “high complexity” [11]. Experiences like the above
tell that until we “lift the lid” and look at the actual data,
we need to take a respectful, but doubtful, approach to all
domain hypothesis offered by the users.

C. Tool Choice

Researchers have the luxury of working on a single
algorithm (perhaps for many years). Industrial inductive
engineers, on the other hand, may try multiple algorithms
each day, to generate some novel and insightful feedback to
the users. Hence:

Principle 7: Broad skill set, big toolkit: Successful in-
ductive engineers routinely try multiple inductive tech-
nologies.

To handle the wide range of possible goals of different
goals, an inductive engineer should be ready to deploy a
wide range of tools. For example, Figure 5 comes from a a
survey of the decision making requirements of hundreds of
Microsoft developers [8].

past present future
exploration trends alerts forecasting
(find)
analysis | summarization overlays goals
(explain)
experimentation modeling benchmarking simulation
(what-if)

Figure 5. Nine kinds of decision making needs found in a sample of
industrial practitioners. From [8].

Note that no single data miner supports all parts of Fig-
ure 5:

« Regression methods, or data stream miners [21], could
detect and track trends.

« Anomaly detectors [9] or contrast set learners [30], [33]
can alert users that old models need to be changed.

o A supervised discretization algorithm can offer an sum-
marization of how each variable effects the domain.

o For more detailed modeling, learn models showing the
interactions between multiple variables in the data.

« Suppose a separate Naive Bayes classifier is built for
each cluster in the data [26]. The statistics collected
in this way can generate forecasts for what to expect if
the business moves into a particular cluster.

o Suppose the clusters from the last point are grouped
into a dendrogram (a hierarchical cluster tree). Sum-
maries of the data could be generated by examining all
the examples that fall into any node of the dendogram:

— An overlay (describing the current state of the data)
would just be a display of (e.g.) the mean and
variance of the class variable in each node.

— A comparisons against benchmark data would just
be a display of the delta between acceptable stan-
dard results and the mean performance score.

— To understand how close the data comes to desired
goals, display the delta between stated goals and
the performance score mean.

o Finally, in this framework, simulation is just pushing
what-if queries into the models learned via data mining,
and seeing what effects they generate.

Note that the set of useful inductive technologies is large
and constantly changing. To have access to the cutting edge
of data mining tools:

Tip 12: Big ecology: Use tools supported by a
large ecosystem of developers who are constantly
building new learners and fixing old ones; e.g. R,
WEKA, MATLAB.

V. IMPLICATIONS

A. Implications for Project Management

We listed above our preferred approach to data mining
applications: scout (initial tentative conclusions); survey
(more careful explorations); then build (standard scale-up).

Our experience tells us that scouting, surveying, and building
takes weeks, months, and years (respectively).

B. Implications for Training

The current set of data mining/ machine learning/ pattern
recognition classes are excellent at training academic data
miners. That said, it would be useful to augment those
classes with inductive engineering project work (either as
part of those classes or as a capstone project or as a separate
inductive inductive engineering class). Such projects could
structure their training around the scout and survey stage. For
example, at Menzies’ WVU graduate data mining classes,
students spend 7 weeks learning basic tools. This is followed
by a three week scout project where each week, they are
required to report back to the class something profound
in their data. To meet such a tight schedule, they will
by necessity have to cut corners as they race to generate
preliminary results. One deliverable of that scout project is
a list of all the short cuts they made in their analysis. This
becomes a specification of a final five week survey project
where they repeat their entire analysis, much slower, much
more thoroughly.

We stressed above the need to present results to users,
to gain their feedback. Since communication is such an
essential skill for an inductive engineer, we recommend that
student training also includes written report generation as
well as presenting that material in a briefing.

Another requirement we would add to training programs
is the need to teach the scripting skills needed to automate
some data mining analysis.

C. Implications for Academic Research

From the above, we can isolate research themes that might
most benefit industrial data mining:

o Analysis patterns of inductive engineers: Skilled engi-
neers make better use of the data miners than novices. It
would be useful to document the patterns of the expert
users and the anti-patterns of the novices.

o Design patterns for data miners: The tool kits we use
constantly change. It would be useful to be able to
easily and quickly maintain and extend them.

o Optimizations of learning algorithms: To better support
the “scout” phase, it would be preferable to have faster,
more scalable learners.

o Anomaly detectors: It would be useful to have auto-
matic detectors that alert us when the models learned
from scouting or surveying need revisions and/or up-
dating.

o Business-aware learners: It would be useful to be able
to quickly adjust the biases of our learners towards the
user biases. For preliminary notes on that kind of work,
see the WHICH learner described in [31].

« Instead of viewing data mining as a “one-shot” process,
we characterize it as incremental exploration, with the

assistance of the user. Research on the following areas
would assist such an exploration:

— Visualization: To support scouting, it would be
useful to have better visualizations of data and
the learned models. Such learned models are very
useful when offering insights to users.

— Anytime learning: An anytime algorithm can offer,
at any time, a working result. Also, at any future
time, it can offer a better result. Anytime learners
would be useful for incremental exploration.

— Active learning: Active learning assumes that some
examples are more informative than the others
when building a learner [15], [24]. It can be defined
as a learning process, where a learner is given a
data set without labels and some oracle can label
the instances upon request. Ideally, the learner
discovers as few labels as possible by choosing the
most informative instances that are most beneficial
for the learning process. Active learning would
reduce the time required by users involved in the
incremental exploration.

VI. CONCLUSION

This article has listed our conclusions from decades of
combined work into data mining. We hope it has demon-
strated that, in the field of inductive software engineering,
there are important generalities which we can, and should,
share. Such a pooling of knowledge is essential to maturing
an engineering profession since that knowledge:

o Defines certification criteria for new inductive engi-
neers;

o Improves our ability to recruit new hires to a site
performing inductive engineering (since we will have a
clearer understanding of the skill set we need to hire);

o Allow training organizations (universities and private
consultancy companies) to create better, more industry
relevant, training programs.

We look forward to a rapid evolution of this manifesto as
more inductive engineers (a) discuss their methods and (b)
find common themes in their work.

REFERENCES

[1] How do practitioners perceive software engineering research?

[2] James H. Andrews, Tim Menzies, and Felix C.H. Li. Genetic
algorithms for randomized unit testing. [EEE Transactions on
Software Engineering, March 2010. Available from http://menzies.
us/pdf/10nighthawk.pdf.

[3] E. Barr, C. Bird, E. Hyatt, Tim Menzies, and G. Robles. On the
shoulders of giants. In FOSER 2010, November 2010. Available from
http://menzies.us/pdf/10giants.pdf.

[4] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and
Anand Swaminathan. Mining email social networks. In Proceedings
of the 2006 international workshop on Mining software repositories,
MSR 06, pages 137-143, 2006.

[5] Christian Bird, Brendan Murphy, Nachiappan Nagappan, and Thomas
Zimmermann. Empirical software engineering at microsoft research.
In Proceedings of the ACM 2011 conference on Computer supported
cooperative work, CSCW ’11, pages 143-150, 2011.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Christian Bird, Nachiappan Nagappan, Premkumar Devanbu, Harald
Gall, and Brendan Murphy. Does distributed development affect
software quality?: an empirical case study of windows vista. Commun.
ACM, 52:85-93, August 2009.

Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Brad-
ford K. Clark, Bert Steece, A. Winsor Brown, Sunita Chulani, and
Chris Abts. Software Cost Estimation with Cocomo II. Prentice Hall,
2000.

Raymond P L Buse and Thomas Zimmermann. Information needs
for software development analytics. MSR-TR-2011-8, 2011.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly
detection: A survey. ACM Comput. Surv., 41:15:1-15:58, July 2009.
C.L. Chang. Finding prototypes for nearest neighbor classifiers. /EEE
Trans. on Computers, pages 1179-1185, 1974.

Zhihoa Chen, Tim Menzies, and Dan Port. Feature subset selection
can improve software cost estimation. In PROMISE’05, 2005.
Available from http://menzies.us/pdf/05/fsscocomo.pdf.

W.W. Cohen. Fast effective rule induction. In ICML’95, pages 115-
123, 1995. Available on-line from http://www.cs.cmu.edu/~wcohen/
postscript/ml-95-ripper.ps.

R.E. Courtney and D.A. Gustafson. Shotgun correlations in software
measures. Software Engineering Journal, 8(1):5 —13, jan 1993.

J. Czerwonka, R. Das, N. Nagappan, A. Tarvo, and A. Teterev. Crane:
Failure prediction, change analysis and test prioritization in practice
— experiences from windows. In Software Testing, Verification and
Validation (ICST), 2011 IEEE Fourth International Conference on,
pages 357 —366, march 2011.

Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for active
learning. Proceedings of the 25th international conference on Machine
learning - ICML 08, pages 208-215, 2008.

James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and
unsupervised discretization of continuous features. In International
Conference on Machine Learning, pages 194-202, 1995. Available
from http://www.cs.pdx.edu/~timm/dm/dougherty95supervised.pdf.
S.M. Easterbrook, J. Singer, M. Storey, and D. Damian. Selecting
empirical methods for software engineering research. In F. Shull and
J. Singer, editors, Guide to Advanced Empirical Software Engineering.
Springer, 2007.

U M Fayyad and I H Irani. Multi-interval discretization of continuous-
valued attributes for classification learning. In Proceedings of the
Thirteenth International Joint Conference on Artificial Intelligence,
pages 1022-1027, 1993.

Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Lukasz
Radlinski, and Paul Krause. Project data incorporating qual-
itative factors for improved software defect prediction. In
PROMISE’09, 2007. Available from http://promisedata.org/pdf/
mpls2007FentonNeilMarshHeartyRadlinskiKrause.pdf.

B.R. Gaines and P. Compton. Induction of ripple down rules. In
Proceedings, Australian Al ’92, pages 349-354. World Scientific,
1992.

Joao Gama and Carlos Pinto. Discretization from data streams:
applications to histograms and data mining. In SAC ’06: Proceedings
of the 2006 ACM symposium on Applied computing, pages 662—
667, New York, NY, USA, 2006. ACM Press. Available from
http://www.liacc.up.pt/~jgama/IWKDDS/Papers/p6.pdf.

Gregory Gay, Tim Menzies, Misty Davies, and Karen Gundy-Burlet.
Automatically finding the control variables for complex system behav-
ior. Automated Software Engineering, (4), December 2010. Available
from http://menzies.us/pdf/10tar34.pdf.

M.A. Hall and G. Holmes. Benchmarking attribute selection tech-
niques for discrete class data mining. /IEEE Transactions On Knowl-
edge And Data Engineering, 15(6):1437— 1447, 2003. Available from
http://www.cs.waikato.ac.nz/~mhall/HallHolmesTKDE.pdf.

M Kidridinen. Active learning in the non-realizable case. Algorithmic
Learning Theory, 2006.

E. Kocaguneli, T. Menzies, A. Bener, and J. Keung. Exploiting
the essential assumptions of analogy-based effort estimation. /EEE
Transactions on Software Engineering, 2011 (preprint). Available
from http://menzies.us/pdf/11teak.pdf.

R. Kohavi, D. Sommerfield, and J. Dougherty. Data minining using
mlc++: A machine learning library in c++. In Tools with Al 1996,

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

1996.

Ron Kohavi and George H. John. Wrappers for feature subset
selection. Artificial Intelligence, 97(1-2):273-324, 1997.

Yasuhiro Mashiko and Victor R. Basili. Using the gqm paradigm
to investigate influential factors for software process improvement.
Journal of Systems and Software, 36:17-32, 1997.

Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static
code attributes to learn defect predictors. IEEE Transactions on
Software Engineering, January 2007. Available from http://menzies.
us/pdf/O6learnPredict.pdf.

Tim Menzies and Y. Hu. Data mining for very busy people. In
IEEE Computer, November 2003. Available from http://menzies.us/
pdf/03tar2.pdf.

Tim Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener.
Defect prediction from static code features: Current results, lim-
itations, new approaches. Automated Software Engineering, (4),
December 2010. Available from http://menzies.us/pdf/10which.pdf.
Adam Nelson, Tim Menzies, and Gregory Gay. Sharing experiments
using open-source software. Softw. Pract. Exper., 41:283-305, March
2011.

Petra Kralj Novak, Nada Lavrac, and Geoffrey I. Webb. Supervised
descriptive rule discovery: A unifying survey of contrast set, emerging
pattern and subgroup mining. J. Mach. Learn. Res., 10:377-403, June
2009.

J. Arturo Olvera-Lépez, J. Ariel Carrasco-Ochoa, J. Francisco
Martinez-Trinidad, and Josef Kittler. A review of instance selection
methods. Artif. Intell. Rev., 34:133-143, August 2010.

D.J. Simons and C.F. Chabris. Gorillas in our midst: Sustained
inattentional blindless for dynamic events perception. Perception,
28:1059-1074, 1999.

Gregory Piatetsky-Shapiro Usama Fayyad and Padhraic Smyth. From
data mining to knowledge discovery in databases. Al Magazine, pages
37-54, Fall 1996.

Miller C.-Thomas G. Valerdi, R. Systems engineering cost estimation
by consensus. In 17th International Conference on Systems Engineer-
ing, September 2004.

R. Valerdi. Convergence of expert opinion via the wideband del-
phi method: An application in cost estimation models. In In-
cose International Symposium, Denver, USA, 2011. Available from
http://goo.gl/Zo9HT.

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy.
Cross-project defect prediction. In ESEC/FSE’09, August 2009.
Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha
Just, Adrian Schrter, and Cathrin Weiss. What makes a good bug
report? [EEE Transactions on Software Engineering, 36(5):618—643,
September 2010.

