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ABSTRACT: It is now well established that predictive models can be

generated from the artifacts of software projects. So it is time to ask

“what’s next?”. I suggest that predictive modeling tools can and should

be refactored to address the near-term issue of decision systems and the

long-term goal of social reasoning.

INTRODUCTION: In software engineering (SE) there is much we are

seeing, but little we are learning. The sheer volume of SE data is

overwhelming. As of October 2011, 10,000 projects are monitored at

http://CIA.vc- with one new commit every 17 seconds. The open source

platform SourceForge.Net hosts over 300K projects, and according to

Github.com 1M people host 2.9M GIT repositories. The bug database of

the Mozilla Firefox projects now contains almost 700K reports according

to Ohloh.Net. Yet from that data, we have extracted nearly zero general

principles- the usual result is, across all this data, is that what works one

project may not work on another [28, 29].

Hence there is an urgent need for better analysis of this data. Further,

due to the volume of information, that analysis must be (at least partially)

automated. Hence, AI research in data mining has been widely adopted

in predictive modeling community with SE. In this brief note, I critique

the state of the art in that field and suggest a future direction.

In summary, I think we need to move beyond mere predictive mod-

eling. Last century, it was not known if software projects contained suf-

ficient structure to support data mining, though some preliminary results

by Porter were encouraging [37]. Now, we know better. Many different

kinds of artifacts from software projects contain a signal that can be

revealed via data mining including:

• apps store data [13];

• process data which can predict overall project effort [18];

• process models which can find effective project changes [30, 40];

• operating system logs that predict software power consumption [15];

• natural language requirements documents which can be text-mined

to find connections between program components [14];

• XML descriptions of design patterns that can be used to recom-

mend particular designs [35];

• email lists that reveal the human networks inside software teams [2];

• execution traces that generate normal interface usage patterns [10];

• bug databases that can generate defect predictors to guide inspec-

tion teams to where the code is most likely to fail [23, 27, 34, 37].

It is now well-established that predictive models can be built from

software projects artifacts. So it is now time to ask “what’s next?”.

Stepney et al. [43] assert that an ideal research roadmap “decomposes

into identified intermediate research goals, whose achievement brings sci-

entific or economic benefit, even if the project as a whole fails”. Hence

I propose the following progression that can refocus our exist tools and

talent into new and novel areas. According this progression, we are now

leaving the age of prediction systems and entering the age of decision

systems. After that, we should move to the era of social reasoning:

prediction
︸ ︷︷ ︸

now

→ decision
︸ ︷︷ ︸

next

→ social reasoning
︸ ︷︷ ︸

future

This progression can use the current skills of the predictive modeling

community while still stepping us towards some distant grand goal. For

example, consider the W case-based planning system (also known as

“Dub-ya” or the “the decider”) [5]. One way to make project estimates

is to reflect on the k-th nearest neighbors to a current example. W sorts

those k neighbors into l examples that is most “loves” and h examples

it most “hates” (so k = l + h). For example, the “loved” examples

might have least effort while the “hate” examples are most defects. W

then applies contrast set learning [24] to find attribute ranges that are

more common in “loved” than “hate”. From those ranges, W proposes a

change to the current project in order to (say) push towards projects that

are built faster and away from projects that have most defects.

As to the next step (from decision systems to social reasoning), that

is discussed below. For now, all we need observe is that with a little

refactoring, this community has the tools and talents that can take

it to the next level of research. For example, W is a decision system

(about how to best change a project) that is a small change to a current

prediction technology (case-based reasoning and contrast-set learning).

It turns out that, at least is this field, building decision systems is

somewhat of a radical idea. To see why, we need a little history lesson:

HISTORICAL PATTERNS: While it is rarely stated, the original premise

of predictive modeling was that predictions should guide software man-

agement. That is, once upon a time, the aim of predictions were decisions.

Sadly, that original aim seems to be forgotten. Too many researchers

in that field are stuck in a rut, just publishing papers about L learners

applied to D data sets and evaluated via some M ∗ N cross-validation

study. Trying every learner on every data set is not particularly insightful.

Many SE data sets have limited information content- they are a shallow

well whose information can be thoroughly extracted by relatively simple

methods. My students have found SE defect data sets with 1100 examples

that can be reduced to 40 without damaging the model learned from that

data [16]. For such data, it may be a waste of time to try the latest and

greatest most complex learner1. Hall et al. [11] and Dejaeger [8] report

that for effort estimation and defect prediction, simpler data miners do

just as well, or better than more elaborate ones.

D ∗L∗M ∗N results are problematic since they are highly unstable.

No learner is best for all data sets [4] since data can change over time,

making prior results outdated [44]. Hence, many researchers now explore

“local learners” that eschew single global conclusions in favor of more

context-dependent conclusions [1, 22, 38].

Lastly, another issue with D ∗ L ∗M ∗ N -style research is that it is

often driven by the data available to particular researchers, rather than an

over-arching vision of the field. Such research is “driven by opportuni-

ties, not issues” (a phrase taken from the seminar outcome slides of the

2010 Dagstuhl seminar on New Frontiers for Empirical SE). Surely, as a

research community, we should explore issues that are general to more

than just the next data set we happen to stumble across.

1Though some form of data mining is still essential for understanding
this data. Even though most of the data is superfluous, data miners are
required to isolate the essential portions of that data.



BETTER STUDIES ON PREDICTION: What are the alternatives to

simplistic D ∗ L ∗M ∗N studies? One approach, recommended by Pat

Langley [20], is to reflect on why different learners give different deci-

sions on the same data set. Such delta explanation studies can be highly

insightful. For example, once I compared learners that built models using

at most N attributes [19]. The performance of the N = 1 learner was

always worse than those that used N ≥ 1, thus showing that software

projects are complex multi-dimensional entities that cannot be character-

ized via simplistic models (e.g. the infamous McCabe v(g) > 10 rule).

Another approach is to study the people who build and use the predic-

tive models. If we focused less on the algorithms, and more on the people

and processes that use them, then we might understand the black art of

(i) parameter tuning [39] or (ii) how multiple learners might be effectively

combined into ensemble [18]. Studying skilled practitioners is important

since recent evidence suggests that even amongst supposed experts, skill

levels can vary dramatically, [41]. This means that the usability of data

mining tools is an open and pressing matter. Issues in this area include

what are the difference between expert and novice data miners.

One way to improve the skill of non-experts might be to catalog and

analyze the data mining analysis patterns used by expert data miners [21].

For an example of such a data mining analysis patterns, consider the “bad

smells” detectors of Shepperd et al. [42] or (b) the “we are here” pattern

used by my colleague Christian Bird when he presents results at user

meetings at Microsoft. To prepare for those meetings, he:

• Writes a few slides describing his analysis and conclusions;

• Creates a spreadsheet containing interesting subsets of the data

(where “most interesting” might be selected by a data miner).

At the meetings, he presents his slides then turns the spreadsheet over

to the users. According to Bird, their first act is usually to check “we are

here”; i.e. that they can find interesting parts of their project data in Bird’s

spreadsheets. If the data passes that sanity check, then they start running

queries (sorts, selects, etc) to confirm (or refute) Bird’s conclusions. In

this way, Bird increases user engagement and user ownership of the anal-

ysis process. Tools to support this kind of analysis might include feature

selection and instance selection.

FROM PREDICTION TO DECISION: At a recent panel on software

analytics [31] at ICSE’2012, industrial practitioners reviewed the state of

the art in data mining. Panelists commented “prediction is all well and

good, but what about decision making?”. Predictive models are useful

since they focus an inquiry onto particular issues- but predictive models

are sub-routines in a higher level decision process.

We know of two definitions of such decision making processes- one

very general from Brookes [6] and one very specific structure developed

recently at Microsoft [7]. According to Brookes (who worked from an

early model by Mintzberg [32]), the goal of a decision system is a sense

of “comfort” that all problems are known and managed. He defines “com-

fort” as having three components:

• Finding a problem (i.e. detection + diagnosis);

• Solving a problem (i.e. find alternatives + evaluation + judgment);

• and Resolution (i.e. monitoring the effect of the solution).

An alternate view, more grounded in recent research, comes from Buse

and Zimmermann who report a survey of 100+ managers and program-

mers at Microsoft [7]. They report information needs concerning

• The past: what trends exist over time? what relationships hold in

the historical data?;

• The present: what alerts are raised by the current data? how does

our data compare to known benchmarks? and

• The future: What forecasts might we generate? What is the space

of the possible what-ifs in this area? How does our data compare

to the end goals of this project?.

An open question is how (or indeed, if) we can unify and implement

these two different descriptions of decision systems. Just as a thought

experiment, for the purposes of this paper, I tried to combine predictive

tools with the models of Brookes, Buse & Zimmermann:

• Clearly, any number of predictive technologies (e.g. classifiers,

regression models) could be applied to the forecasts used in the

Buse&Zimmermann model.

• As to the other parts of those models, they recommend monitor-

ing a current solution to detect trends that lead to alerts where

more action is required. Brooke’s problem detection might be im-

plemented as continually running the forecasts recommended by

Buse&Zimmerman (to look for undesired outcomes).

• As to relationships in the data, the contrast sets of W might offer a

succinct summary of the relationships that most effect planning:

– W ’ contrast sets could evaluating and judging alternatives via

distance metrics that comment on the cost of moving from

“hated” projects to all the known “liked” projects.

– If a current project falls into a “hated” cluster then to generate

alternatives for the Brookes model, we need only seek the

contrast set of differences between this “hated” cluster and

another that managers might “like” more.

• Contrast learners could also support diagnosis and monitoring:

– To diagnose why suddenly a project has moved from “like”

to “hate”, find the contrast set between where it was liked to

its current context (where it is “hated”).

– Further, to monitor for changes that could most hurt a project

that is currently liked, build a disjunction of all the contrast

between this liked context and all the nearly hated contexts.

My conclusion from this preliminary analysis is that decision tools can

be built by refactoring prediction tools. That is, this community is

well-positioned to move from prediction to decision systems.

As an aside- I note that decision systems are more than just traditional

operations research since it focuses more on symbolic models (assertions

of the form “do this!” or “don’t do that!”) rather than numeric represen-

tations. Having separated these fields, I rush to add that there is a wealth

of insight that operations research can offer decision systems. Also, deci-

sion systems might help operations research- particularly for generating

succinct and understandable symbolic models from numeric results.

SOCIAL REASONING: Pablo Picasso once said “computers are stupid-

they only give you answers”. Social reasoners are not stupid- they know

that while predictions and decisions are important, so to are the questions

and insights generated on the way to those conclusions. Within a society

of carbon and/or silicon-based agents, social reasoners share, reflect, and

try to improve each other’s insights.

Social reasoning is the next great challenge for the predictive model-

ing community. In the digital world of the 21st century, such social rea-

soners are essential tools. Without them, humans will be unable to navi-

gate and exploit the ever-increasing quantity of readily-accessible digital

information.

My thesis is that social reasoners can be built by refactoring of pre-

dictive technologies. For example, the following example extends W to

social reasoning:

• Consider two different cost estimates E1 and E2 from different

contractors competing to build some software.

• Using the COCOMO effort prediction model [3], an analyst might

identify different assumptions A1 and A2 made by each contractor.

• If we apply W ’s contrast set learners to those assumptions, we

could then isolate the factors that separate the two estimates.

• Then, we might report “the core issue here is the difference be-

tween A1 and A2; here is my analysis of the probability of that

difference; what do you think?”.

Note the key features of this example: the outcome is not a prediction or

a decision on what to change, but questions that focused on key issues in

the domain (specifically, which assumptions were most believable).



As shown in Figure 1, the idea of improving inference by connecting

human and computer and computer agents dates back to at least 1939.

The new idea of this paper is that, as shown in Figure 2, social reasonong

can be implemented as a refactoring of our current predictive tech-

nologies. Note how, in Figure 2, the underlying tools are predictive and

decision systems. Apart from that, rest of a social reasoner is concerned

with the discussion around those models. For example:

• A social reasoner must be able to succinctly say what is in the

data. It is axiomatic that you cannot interact and critique and extend

the ideas of another agent unless you can understand that agent.

That is, social reasoning systems need a shared discussion language

that is used and understood by all parties in that society. Hence,

social reasoning should avoids learners that rely on arcane internal

representation such as SVM, random forests, naive Bayes, neural

nets, or PCA. On the other hand, social reasoning systems could

use feature/instance selection tools to discard spurious details; then

contrast set learners to find the deltas between the remaining data.

• Another task is to reflect on a model to learn how models can and

should change over the space of the data.

• Social reasoners need also share the data and rules which means

transferring the essence of the data between agents (and ensuring

the shared data does not violate confidentiality [36]).

• Finally, to accommodate large societies, all the above must hap-

pen very quickly so this can scale to large data sets. One reason

that I focus on data mining for social reasoning is that data mining

methods can scale to very large tasks. The same cannot be said for

other methods. Previously, I found that a purely logical method for

unifying different reasoning tasks suffered from exponential run-

times [26].

In some sense, a social reasoner is the opposite of the world wide web.

The web was designed for information transport and access. The web’s

primary goal was the rapid sharing of new information. If the web was a

social reasoning system, it would be possible to (i) instantly query each

web page to find other pages with similar, or disputing, beliefs; (ii) find

the contrast set between then agreeing and disputing pages; (ii) then run

queries that helped the reader assess the plausibility of each item in that

contrast set. In the social reasoning web, most of the authoring would re-

late to critiquing and updating content, rather than just creating new con-

tent. Note that much of the current predictive modeling research would

not qualify as a social reasoner since, in the usual case, most of that lit-

erature is still struggling with methods to create one model, let alone

updating a model as time progresses.

As a final note, one fascinating open issue is how to assess social

reasoners. In social reasoning, the goal of a model is to find its own flaws

and to replace itself with something better- which brings to mind a quote

from Susan Sontag: “the only good answers are the ones that destroy

the questions”. That is, we should not assess such models by accuracy,

recall, precision etc. Rather, the assessment should be on the audience

engagement they engender. For example- the audience involvement seen

in the “we are here” pattern on page 2, but perhaps with more ways to

assess the coverage of the options space.

ACKNOWLEDGMENTS: All that is sensible in this paper comes from

the careful comments made by Alexander Egyed, Mark Harman, Abram

Hindle, Ekrem Kocaguneli, Andrian Marcus & Tom Zimmermann (but

any nonsense in the above should be attributed solely to me).

• Alan Turing believed that systems of logic could execute inside
silicon or carbon [9]. In his 1939 Ph.D. thesis, he discussed the
value of the interactions within a society of such systems: “The
well-known theorem of Gödel (1931) shows that every system
of logic is in a certain sense incomplete, but at the same time it
indicates means whereby from a system L of logic a more com-
plete system L′ may be obtained. By repeating the process we

get a sequence L, L1 = L′, L2 = L
′

1, . . . each more complete
than the proceeding. A logic Lω may then be constructed in
which the provable theorems are the totality of theorems prov-
able with the help of logics L, L1, L2...” [45].

• In the 1950s, Kelly proposed personnel construct theory as a
methodology for using modeling to reveal previously hidden
domain assumptions [17].

• In the 1970s and 1980s, the knowledge acquisition community
propose rapid (?rabid) construction of executable knowledge
bases to reveal previously unrecognized interactions between
chunks of expert knowledge [25].

• At a 2003 keynote to the ProSim process simulation confer-
ence, Walt Scacchi reported on his experience where software
process models are rarely executed. Rather, their value (accord-
ing to Scacchi) was as tools to help explicit domain details [46].

• Since 2009, Tao Xie has been exploring “cooperative testing
schemes” where humans and algorithms interact to propose in-
formative test cases. His framework infers likely test inten-
tions to reduce the manual effort in specification of test inten-
tions [47].

• In a 2010 keynote to the PROMISE conference on predictive
models, Mark Harman said that modeling systems should offer
more than just conclusions- rather they should also “yield in-
sight into the trade offs inherent in the modeling choices avail-
able” [12].

• In 2012, Egyed et al. used the differences between incorrect
and incomplete reasoning. They demonstrated that it is even
possible to eliminate incorrect reasoning in the presence of in-
consistencies at the expense of marginally less complete rea-
soning [33]

Figure 1: Some related work.

what tasks uses
0 do predict, decide regression, clas-

sification, nearest
neighbor reason-
ing,...

1 say summarize, plan, describe instance section,
feature selection,
contrast sets

2 reflect trade-offs, envelopes, diagno-
sis, monitoring

clustering, multi-
objective opti-
mization, anomaly
detectors

3 share privacy, data compression, in-
tegration old & new rules, rec-
ognize and debate deltas be-
tween competing models

contrast set learn-
ing, transfer learn-
ing

4 scale do all the above, very quickly ?

Figure 2: Four layers of social reasoning.
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