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Recent research has shown the value of social metrics for defect prediction. Yet many re-

positories lack the information required for a social analysis. So, what other means exist to

infer how developers interact around their code? One option is static code metrics that have

already demonstrated their usefulness in analyzing change in evolving software systems. But
do they also help in defect prediction? To address this question we selected a set of static code

metrics to determine what classes are most \active" (i.e., the classes where the developers

spend much time interacting with each other's design and implementation decisions) in 33
open-source Java systems that lack details about individual developers. In particular, we

assessed the merit of these activity-centric measures in the context of \inspection

optimization" ��� a technique that allows for reading the fewest lines of code in order to ¯nd

the most defects. For the task of inspection optimization these activity measures perform as
well as (usually, within 4%) a theoretical upper bound on the performance of any set of

measures. As a result, we argue that activity-centric static code metrics are an excellent

predictor for defects.
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1. Introduction

A remarkable recent discovery is that social metrics, which model the sociology of

the programmers working on the code, can be an e®ective predictor for defect in-

jection and removal [1�4]. For example, Guo et al. [4] demonstrate that the repu-

tation of the developer who reported a defect naturally relates to the odds that this

defect will get ¯xed eventually.

Models that o®er predictions on likely location of defects have traditionally relied

on static code metrics [16, 17, 20]. Yet, the premise of social metrics research is that

code repositories contain more than just static code measures and that these mea-

sures provide a valuable dimension worth investigating. But, not all code repositories

contain detailed knowledge about how developers interact around a code base.

Consider, for example, the Helix project [5] which has studied 40+ multi-year large

open-source Java systems under active development. Many developers contributed

to those systems but their code repositories are very weak sources for information

regarding a developer's social context. This occurs because the systems in use to

support software development do not always capture the social dimension consis-

tently. Additionally, aspects like \reputation" [4] are fuzzy and there is no widely

accepted standard to measure these social dimensions.

Nevertheless, social aspects do add a valuable and useful dimension that we

should aim to measure objectively. In this paper, we show that it is possible to use

static code measures to capture how programmers interact with their code by taking

into consideration software evolution, that is, we add the dimension of time. Spe-

ci¯cally, it is feasible to ¯nd what parts of the code are most \active," that is, are the

focus of much of the shared attention of all developers working to organize behavior

and functionality at suitable system-speci¯c levels [6�8]. This opens intriguing

options for guiding quality assurance (QA) processes. In particular, we demonstrate

that a small set of activity-centric static code metrics [7, 8] can serve as a good

predictor for defects in object-oriented software.

Now, defect prediction techniques, in general, rely heavily on the available input

[64, 65] and, depending on the amount of processing required, can be characterized as

either lightweight or complex quality assurance methods. Early approaches were

based on univariate logistic regression [43, 66]. Later models for defect prediction

incorporated multiple explanatory variables in the analysis in recognition of the fact

that the actual probability of defects is a function of several factors [36�39]. Re-

cently, machine learning [15, 40, 41] has become a formidable contender in the area of

defect prediction that o®ers an promising alternative to standard regression-based

methods. However, the more complex these approaches become the more di±cult

they are to master, especially, when the reasons as to why the underlying model

characterizes some modules more defect-prone than others are hard to grasp. This

can hamper adoption of these techniques in industry.

An ideal approach for defect prediction, we advocate, would be relatively

straightforward, based on simple measures, easy to understand, and directly
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associated with the developer's mental model for e®ective software development [6].

This is the domain of activity-centric static code metrics [7, 8]. In particular, we

present evidence in this paper that, based on experiments with 33 open-source Java

software systems, shows that activity-centric metrics perform very close to the

theoretical upper bound on defect prediction performance [67]. To compute that

upper bound, we adopt the defect density inspection bias proposed by Arisholm &

Briand [20] which aims at an optimal inspection policy in order to locate defects in

the code base. Such a policy seeks to identify the most faults while reading the least

amount of code and ¯ts within the developer's work°ow as it yields an inspection

strategy that orders classes based on their defect probability.

The rest of this paper is structured as follows. The next section presents the

economic case for defect detection (¯nd more bugs, earlier) then introduces the

concepts of static code defect predictors and inspection optimization. We then turn

to the experiments showing the value of activity measures. We demonstrate that in

our selected systems, activity-based defect predictors work within 4% of a theoretical

upper bound on predictor performance (this is the basis for our claim that a small set

of static metrics can generate an excellent performance within the context of in-

spection optimization). The validity of our conclusions is then discussed, which will

lead into a review of possible future directions for this work.

2. Background

This section reviews the core motivation of this work: the reduction of software

construction costs by an earlier detection of defects. We start with a discussion of

some of the practical considerations governing defect detection in the software life

cycle. Then, we shift our focus on lightweight sampling policies. In particular, we

explore one special kind: static code defect predictors. Finally, we explore the use of

data miners for the task of inspection optimization.

2.1. Defect detection economics

Boehm & Papaccio advise that reworking software is far cheaper earlier in the life

cycle than later \by factors of 50 to 200 " [9]. This e®ect has been widely documented

by other researchers. A panel at IEEE Metrics 2002 concluded that ¯nding and ¯xing

severe software problems after delivery is often 100 times more expensive than

¯nding and ¯xing them during the requirements and design phase [10]. Also, Arthur

et al. [11] conducted a small controlled experiment where a dozen engineers at

NASA's Langley Research Center were split into development and specialized ver-

i¯cation teams. The same application was written with and without specialized

veri¯cation teams. Table 1 shows the results: (a) more issues were found using

specialized veri¯cation than without; (b) the issues were found much earlier. That is,

if the veri¯cation team found the same bugs as the development team, but found

them earlier, the cost-to-¯x would be reduced by a signi¯cant factor. For example,
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consider Table 2 that shows the cost of quickly ¯xing an issue relative to leaving it for

a later phase (data from four NASA projects [12]). The last line of that table reveals

that delaying issue resolution even by one phase increases the cost-to-¯x to

� ¼ 2 . . . 5. Using this data, Dabney et al. [12] calculate that a dollar spent on

veri¯cation returns to NASA, on those four projects, $1.21, $1.59, $5.53, and $10.10,

respectively.

The above notes leads to one very strong conclusion: ¯nd bugs earlier. But how?

Software assessment budgets are ¯nite while assessment e®ectiveness increases ex-

ponentially with assessment e®ort. However, the state space explosion problem

imposes strict limits on how much a system can be explored via automatic formal

methods [68, 69]. As to other testing methods, a linear increase in the con¯dence C

that we have found all defects can take exponentially more e®ort. For example, for

one-in-a-thousand detects, moving C from 90% to 94% to 98% takes 2301, 2812, and

3910 black box probes, respectively.a Exponential costs quickly exhaust ¯nite

resources. Standard practice is to apply the best available assessment methods on the

Table 2. Cost-to-¯x escalation factors. From [12].

Phase issue found

f ¼ 1 f ¼ 2 f ¼ 3 f ¼ 4 f ¼ 5 f ¼ 6

i Phase issue introduced Requirements Design Code Test Int Operations

1 Requirements 1 5 10 50 130 368

2 Design 1 2 10 26 74

3 Code 1 5 13 37

4 Test 1 3 7
5 Integration 1 3

� ¼ meanð C½f;i�
C½f;i�1�Þ 5 2 5 2.7 2.8

Note: C½f; i� denotes the cost-to-¯x escalation factor relative to ¯xing an issue in the phase where

it was found (f) versus the phase where it was introduced (i). The last row shows the cost-to-¯x

delta if the issue introduced in phase i is ¯xed immediately afterwards in phase f ¼ iþ 1.

aA randomly selected input to a program will ¯nd a fault with probability p. After N random black-box
tests, the chances of the inputs not revealing any fault is ð1� pÞN . Hence, the chances C of seeing the fault

is 1� ð1� pÞN which can be rearranged to NðC; pÞ ¼ logð1�CÞ
logð1�pÞ . For example, Nð0:90; 10�3Þ ¼ 2301.

Table 1. Defects found with and without specialized veri¯cation teams. From [11].

4 M. Lumpe et al.

September 21, 2012 5:46:58pm WSPC/117-IJSEKE 00593
1stReading

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



sections of the program that the best available domain knowledge declares is most

critical. We endorse this approach. Clearly, the most critical sections require the best

known assessment methods. However, this focus on certain sections can blind us to

defects in other areas. Therefore, standard practice should be augmented with a

lightweight sampling policy to explore the rest of the system. This sampling policy will

always be incomplete. Nevertheless, it is the only option when resources do not

permit a complete assessment of the whole system.

2.2. Static code defect prediction

A typical, object-oriented, software project can contain hundreds to thousands of

classes. In order to guarantee general and project-related ¯tness attributes for those

classes, it is commonplace to apply some quality assurance (QA) techniques to assess

the classes's inherent quality. These techniques include inspections, unit tests, static

source code analyzers, etc. A record of the results of this QA is a defect log. We can

use these logs to learn defect predictors, if the information contained in the data

provides not only a precise account of the encountered faults (i.e., the \bugs"), but

also a thorough description of static code features such as Lines of Code (LOC),

complexity measures (e.g., McCabe's cyclomatic complexity [31]), and other suitable

object-oriented design metrics [6�8, 14].

For this, data miners can learn a predictor for the number of defective classes from

past projects so that it can be applied for QA assessment in future projects. Such a

predictor allows focusing the QA budgets on where it might be most cost e®ective.

This is an important task as, during development, developers have to skew their

quality assurance activities towards artifacts they believe require most e®ort due to

limited project resources.

Now, static code defect predictors yield a lightweight sampling policy that, based

on suitable static code measures, can e®ectively guide the exploration of a system and

raises an alert on sections that appear problematic. One reason to favor static code

measures is that they can be automatically extracted from the code base, with very

little e®ort even for very large software systems [16]. The industrial experience is that

defect prediction scales well to a commercial context. Defect predicting technology

has been commercialized in Predictive [17] a product suite to analyze and predict

defects in software projects. One company used it to manage the safety critical

software for a ¯ghter aircraft (the software controlled a lithium ion battery, which

can over-charge and possibly explode). After applying a more expensive tool for

structural code coverage, the company ran Predictive on the same code base. Pre-

dictive produced results consistent with the more expensive tool. But, Predictive was

able to faster process a larger code base than the more expensive tool [17].

In addition, defect predictors developed at NASA [15] have also been used in

software development companies outside the US (in Turkey). When the inspection

teams focused on the modules that trigger the defect predictors, they found up to

70% of the defects using just 40% of their QA e®ort (measured in sta® hours) [18].
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Finally, a subsequent study on the Turkish software compared how much code

needs to be inspected using random selection versus selection via defect predictors.

Using random testing, 87% of the ¯les would have to be inspected in order to detect

87% of the defects. However, if the inspection process was restricted to the 25% of the

¯les that trigger the defect predictors, then 88% of the defects could be found. That

is, the same level of defect detection (after inspection) can be achieved using 87�25
87 ¼

71% less e®ort [19].

2.3. Inspection optimization

Inspection optimization is a term proposed by Arisholm & Briand [20]. It is a tech-

nique for assessing the value of, say, a static code defect predictor. They de¯ne it as

follows:

If X% of the classes are predicted to be defective, then the actual faults

identi¯ed in those classes must account for more than X% of all defects in

the system being analyzed. Otherwise, the costs of generating the defect

predictor is not worth the e®ort.

In essence, this is inspection optimization ��� ¯nd some ordering to project arti-

facts such that humans have to read the least code in order to discover the most

faults, which we model as outlined below:

. After a data miner predicts a class is defective, then a secondary human team

examines the code.

. This team correctly recognizes �% of the truly defective classes (and � ¼ 100%

means that the inspection team is perfect at its task and ¯nds every defect pres-

ent).

. A good learner is one that ¯nds the most defective classes (measured in terms of

probability of detection, pd ) in the smallest classes (measured in terms of lines of

code, LOC).

Inspection optimization can be visualized using Fig. 1 that illustrates three

plausible inspection ordering policies:

. The blue optimal policy combines knowledge of class size and the location of the

actual defects.

. The green activity policy guesses defect locations using a defect predictor learned

from the activity measures.

. The red baseline policy ignores defect counts and just sorts the classes in ascending

order of size.

Each of these ordering policies sorts the code base along the x-axis. The code is

then inspected, left to right, across that order, so that, by the end of the x-axis, we

have read 100% of the code. Along the way, we encounter classes containing y% of

6 M. Lumpe et al.
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defects (a.k.a. recall ). A better policy ¯nds more defects sooner, that is, it yields a

larger area under the curve of %LOC-vs-recall. In Fig. 1, we note that that the green

activity policy does better than the red baseline (and comes close, within 95%, of the

blue optimal ).

These three policies are de¯ned by an equation modeling the distance to some

utopia point of most defects and smallest LOC:

0 � ðscoreðDc;Lc; �ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D 2

c þ ð1� LcÞ2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
�þ 1

p � 1

Here, Dc and Lc are the number of defects and lines of code in class C (nor-

malized to range between 0 and 1), whereas � is a constant controlling the sorting.

At � ¼ 0, we ignore defects and sort only on LOC. This implements the baseline

policy. This baseline policy is the Koru ordering advocated by researchers who argue

that smaller classes have a relatively higher density of errors [21�23]. Note that if

the activity policy cannot out-perform baseline, then our notion of activity is

super°uous.

The other policies use � ¼ 1. For the activity policy, we have to:

. Train a learner using the measures of Table 3 without LOC,

. Set Dc via the learned model,

. Sort using score, Dc, LOC, and � ¼ 1,

. Calculate Fig. 1 and determine the area under the %LOC-vs-recall curve.

The optimal policy does the same, but setsDc using the historical defect logs. Note

that optimal is di®erent to activity since the former knows exactly where the defects

are, whereas the latter must guess the defect locations using the learned model.

0

 20
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 100

0  25  50  75  100

%
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ef
ec

ts
 fo

un
d

% loc read

baseline

active

optimal

sort on LOC
sort on LOC,predictions

sort on LOC,actual

Fig. 1. Percentage of defects found after sorting the code using di®erent inspection ordering policies. Note

that, in this case, developers were continually modifying a small number of very active classes handling
complex interfacing tasks. Hence for the blue curve, reading just this 1% of the code found nearly a quarter

of the defects.
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In practice, the optimal policy is impossible to apply since it implies that we were

to know the number of defects before the classes would be inspected. However, it is

the theoretical upper-bound on the performance of inspection optimization. Hence,

we report activity and baseline performances as a ratio of the area under the curve of

optimal.

This ratio calculation has another advantage. Note that the � e®ectiveness of the

secondary human inspection team is the same, regardless of the oracle that sorts the

code. Hence, in the ratio calculation, � cancels out and we can ignore it from our

analysis.

3. Activity

The novel feature of this paper is augmenting the usual static code measures with the

concept of activity. As discussed below, we ¯nd that activity can be a very useful

concept for inspection optimization.

When do we call a software artifact, say a class, \active"? We contend that

activity arises when code is being modi¯ed, typically via enhancement or correction.

This is change and we can detect and measure it through the evolution of the

associated volumetric and structural properties of a class [6].

However, one surprising observation from the Helix studies [6, 7] has been that

(a) only a small set of highly active classes undergoes change frequently and

(b) predictable patterns of modi¯cation emerge very early in the lifetime of a soft-

ware system. Therefore, we ask whether the same metrics used to analyze the Helix

data set can also guide defect discovery, since change and defects are closely related

concepts. In particular, we argue that change can lead to defects via:

. Defect discovery: Since active classes are used more frequently by developers, then

developers are most likely to discover their defects earlier.

. Defect injection: When developers work with active classes, they make occasional

mistakes, some of which lead to defects. Since developers work on active classes

more than other classes, then most developer defects accumulate in the active

classes.

(The second point was ¯rst proposed by Nagappan & Ball who say \code that

changes many times prerelease will likely have more post-release defects than code

that changes less over the same period of time" [13].)

Table 3 summarizes our choices of measures of activity, each tagged with a ra-

tionale motivating its selection. These measures capture volumetric and the struc-

tural properties of a class and provide us with an empirical component for detecting

and measuring change. Furthermore, these measures are su±ciently broad to en-

compass, from a design perspective, the amount of functionality as well as how the

developers have structurally organized the solution, and how they chose to decom-

pose the functionality.

8 M. Lumpe et al.

September 21, 2012 5:47:00pm WSPC/117-IJSEKE 00593
1stReading

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



The measures NoM, Getters, and Setters de¯ne simple class-based counts

(cf. Table 4). For the complexity measures InDegree, OutDegree, and Clustering

Coe±cient, however, we need to construct a complete class dependency graph ¯rst.

The class dependency graph captures the dependencies between these classes. That

is, when a class uses either data or functionality from another class, there is a

dependency between these classes. In the context of Java software, a dependency is

created if a class inherits from a class, implements an interface, invokes a method on

another class (including constructors), declares a ¯eld or local variable, uses an

exception, or refers to class types within a method declaration. Thus, a class de-

pendency graph is an ordered pair ðN;LÞ, where N is a ¯nite, nonempty set of types

(i.e., classes and interfaces) and L is a ¯nite, possibly empty, set of directed links

between types (i.e., L � N �N) expressing the dependencies between classes. For

the purpose of the metrics extraction, we analyze each node n 2 N in the graph to

compute the structural complexity metrics of class C type node n represents as

shown in Table 4.

Table 4. Activity-centric metrics de¯nitions.

Metrics De¯nition

NoM Counts all member functions de¯ned by class C.
Getters Counts all non-overloaded member functions in class C with arity

zero, whose name starts with \get."

Setters Counts all non-overladed member functions in class C with arity

one, whose name starts with \set."
InDegree Let n be the type node for class C. Then jfðn 0;nÞ 2 L j n 6¼ n 0gj is

the in-degree of class C.

OutDegree Let n be the type node for class C. Then jfðn;n 0Þ 2 L j n 6¼ n 0gj is
the out-degree of class C.

Clustering coe±cient Let n be the type node for class C. Then

2jfðni;njÞ 2 Ljni;nj 2 Nngj
jNnjðjNnj � 1Þ

is the clustering coe±cient of class C, whereNn is the neighborhood

of n with

Nn ¼ fn 0jðn 0;nÞ 2 L _ ðn;n 0Þ 2 Lg

Table 3. Measures used in this study (collected separately for each class).

Measure Description Rationale for selection

Bugs annotations in the source control logs Used to check our predictions
LOC lines of code in the class Used to estimate inspection e®ort

Getters get methods Read responsibility allocation

Setters set methods Write responsibility allocation
NoM all methods Breadth of functional decomposition

InDegree other classes depending on this class Coupling within design

OutDegree other classes this class depends upon Breadth of delegation
Clustering coe±cient degree to which classes cluster together Density of design
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An important feature of these measures is that they are relatively easy to collect.

For example, one measure we rely on for defect prediction is the Number of Getter

Methods (Getters) that developers have added to a class. Parsers for such simple

measures are easy to obtain from early design representation (e.g., UML models) and

can, with little e®ort, be adapted to new languages. Moreover, all measures are

pairwise independent [7, 8] (measured using Spearman's rank correlation). In par-

ticular, Getters and Setters do not occur in pairs and are not being used as a means to

expose simply the private ¯elds of a class [8]. In general, the odds are only 1:3 that if a

class de¯nes a getter, then this class will also provide a matching setter method.

4. Activity and Inspection Optimization

To assess the value of the selected activity-centric metrics (cf. Table 3), we distilled

them for 33 open-source Java projects from the Helix project and used to resulting

information to build defect predictors. As shown below, the median value for the
learning
oracle ratio is 96%, that is, very close to the theoretical upper bound possible for any

defect predictor for the task of inspection optimization.

4.1. Data selection

The data used in this study was built as a join between two complementary data sets:

. The PROMISE repository [24] contains defect information for various open-source

object-oriented systems. The defect data for this study was collected by Jureczko

[25].

. The Helix repository [5, 6] provides static source code metrics for a compilation of

release histories of non-trivial Java open-source software systems.

The joined data sets represent 33 releases of the projects listed in Table 5. All

projects are \long term" (at least 15 releases span over a development period of 36

months or more) and comprise more than 100 classes each. In addition, every project

can be characterized as either application, framework, or library, a broad \binning"

Table 5. Java systems used in this study.

System Description

ant Build management system
ivy Dependency manager

jedit Text editor

lucene Text search engine

poi API for O±ce Open XML standards
synapse Enterprise service bus

velocity Template language engine

xalan XSLT processor
xerces XML processor

10 M. Lumpe et al.
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strategy that re°ects the inherent, yet recurring, di®erences in software design and

composition. For a detailed description of these data sets, see Vasa's Ph.D. thesis [6].

For LOC (i.e., the Lines of Codes) we use an estimator based on the size of the

compiled byte code rather than the actual source code. The byte code provides us

with a noise-free image of the class's de¯ned functionality. LOC of a class C is given

as the sum of the following components extracted from the binaries:

. out-degree of C line(s) for import statements

. 1 line for the class declaration

. 1 line for super class declaration if not java.lang.Object

. 1 line for each interface implemented by C

. 1 line for each ¯eld de¯ned in class C

. 1 line for each method m de¯ned in class C, plus

— # parameters of m

— # throws de¯ned by m

— MaxLocals attribute (i.e., local variables) of m

— # byte code instructions in m

We selected these components as they provide a very consistent approximation of

the size of source code independent of the actual coding style used. The LOC esti-

mator correlates very well with the lines of source code (cf. Fig. 2). Furthermore, for

the purpose of inspection optimization, an added bene¯t of processing byte code

rather than source is that the data miner will only report those classes that actually

appear in the released version. That is, the secondary human inspection team is given

further guidance to focus its QA e®ort. Previous research [26�29] found that, in

Spearman’s rho = 0.9774

0
50

0
10

00
15

00
20

00
25

00

LO
C

 (
B

yt
ec

od
e)

0 200 400 600 800
LOC (Source Code)

Fig. 2. Lines of Code (LOC) extracted from byte code is a very strong approximation of the LOC

extracted directly from source code.
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general, not all parts of the code base are included in the ¯nal release build. This is

due to the release build con¯guration settings used. Hence, processing 10% of the

classes as per byte code, is equivalent to analyzing 10% of the active source code

classes (i.e., the classes that must be inspected in the QA process).

The joined, activity-based, data sets are constructed as follows:

(1) From the PROMISE repository we fetch the bug information for release N per

class.

(2) We extract from the Helix repository the static code metrics, including LOC, for

release N per class.

(3) Using the fully quali¯ed class name as key, both information is merged into the

activity data set for release N per class.

Table 6 shows the distribution of defects seen in our classes. Usually, most clas-

ses have no defects, but in 10% of cases, each class has more than 1 to 5 recorded

defects.

4.2. Experimental setup

For the purpose of ¯nding a predictor for inspection optimization we employed a

technique, called N-way cross-evaluation [30]. The data set is divided into N ¼ 10

buckets. For each bucket in the N-way, a predictor is learned on the nine of the

buckets, then tested on the remaining bucket. These N studies implement N hold out

studies where a model is tested on data not used in training.

To appreciate cross-validation, consider another approach called self-test where

the learned model is assessed on the same data that was used to create it. Self-tests

are deprecated by the research community [30]. If the goal is to understand how well

a defect predictor will work on future projects, it is best to assess the predictor via

hold-out modules not used in the generation of that predictor.

In the WEKA 3.7.3 implementation of the cross-val procedure used in this study,

results are reported once for each test-instance as that instance appears in one of the

N hold-outs.b So a data set containing C examples will generate C predictions,

regardless of the value of N used for the number of hold-outs.

4.3. Selection of learners

As mentioned above, there are many methods for converting static code measures

into defect predictors [15, 31�41]. We adopted Holte's simplicity-¯rst heuristic [42]

and applied a simple linear regression (LSR) algorithm available in WEKA [30], with

no pre-processing.

bNote that prior to WEKA 3.7.2, the cross-val procedure java -cp weka.jar $learner -t file.arff

incorrectly returns self-test results.

12 M. Lumpe et al.
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Note that WEKA's LSR tool uses a simple greedy back-select, which is applied

after the linear model has been generated. In that back- select, WEKA steps through

all the attributes removing the one with the smallest standardized coe±cient until no

improvement is observed in the estimate of the model error given by the Akaike

information criterion. As a consequence, some attributes may be absent from the

¯nal learned model.

Initially, we planned to test various learners, feature extractors, instance selec-

tors, and discretization methods (as we have done in the past [15, 40, 41]). But our

results were so encouraging that there was little room for further improvement over

simple LSR.

Table 6. Percentile distributions, defects per class.

System # Classes 10% 30% 50% 70% 90%

ant-1.3 125 0 0 0 0 1
ant-1.4 178 0 0 0 0 1

ant-1.5 293 0 0 0 0 1

ant-1.6 351 0 0 0 0 2

ant-1.7 493 0 0 0 0 2
ivy-1.4 241 0 0 0 0 0

ivy-2 352 0 0 0 0 1

jedit-3.2 272 0 0 0 1 4

jedit-4 306 0 0 0 0 2
jedit-4.1 312 0 0 0 0 2

jedit-4.2 367 0 0 0 0 1

jedit-4.3 492 0 0 0 0 0
lucene-2 195 0 0 0 1 4

poi-2 314 0 0 0 0 1

synapse-1 157 0 0 0 0 0

synapse-1.1 222 0 0 0 0 1
synapse-1.2 256 0 0 0 1 2

velocity-1.6 229 0 0 0 1 2

xalan-2.4 428 0 0 0 0 1

xalan-2.5 763 0 0 0 1 2
xalan-2.6 875 0 0 0 1 2

xerces-1 162 0 0 0 2 2

xerces-1.2 438 0 0 0 0 1
xerces-1.3 452 0 0 0 0 1

lucene-2.2 247 0 0 1 2 4

lucene-2.4 428 0 0 1 2 5

poi-1.5 237 0 0 1 1 4
poi-2.5 348 0 0 1 2 2

poi-3 442 0 0 1 1 2

velocity-1.4 196 0 1 1 1 2

velocity-1.5 214 0 0 1 2 4
xalan-2.7 908 1 1 1 1 2

xerces-1.4 329 0 0 1 2 4

Note: The table is sorted by the median defects (see the 50%

percentile column). For example, in xalan-2.7 the median (50th
percentile) defects per class is 1, whereas in lucene-2.4, 10% of

classes have 5 defects or more.
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5. Results

5.1. Sanity check

Table 7 shows the distribution of actual-predicted defects for our classes where

actual comes from historical logs and predicted comes from the C predictions seen

in our 10-way. This result is our sanity check: if the actual-predicted values were

large, then we would doubt the value of activity-based defect prediction. Note

that, in the median case (shown in the middle 50% column), the predictions are

very close to actuals (�0 to �0.3). Since our estimates are close to actuals, we may

continue.

Table 7. Percentile distributions of actual-pre-

dicted number of defects per class.

System 10% 30% 50% 70% 90%

lucene-2.4 �2.0 �0.9 �0.3 0.4 2.6
velocity-1.6 �1.4 �0.6 �0.3 0.0 1.4

xerces-1.0 �1.1 �0.6 �0.3 0.7 1.0

ant-1.4 �0.4 �0.3 �0.2 �0.1 0.8

lucene-2.0 �2.0 �0.8 �0.2 0.1 1.7
poi-1.5 �1.6 �0.9 �0.2 0.0 2.3

synapse-1.2 �0.8 �0.4 �0.2 0.0 1.0

xalan-2.5 �0.9 �0.5 �0.2 0.5 0.8
xalan-2.6 �0.9 �0.5 �0.2 0.4 1.2

xalan-2.7 �0.5 �0.3 �0.2 0.1 0.7

xerces-1.2 �0.5 �0.2 �0.2 0.0 0.9

xerces-1.4 �2.2 �0.4 �0.2 0.4 0.8
ant-1.3 �0.5 �0.3 �0.1 0.0 0.6

ant-1.7 �0.8 �0.3 �0.1 0.0 0.8

ivy-2.0 �0.3 �0.1 �0.1 0.0 0.3

lucene-2.2 �2.5 �0.8 �0.1 0.4 2.0
poi-2.0 �0.2 �0.1 �0.1 �0.1 0.7

poi-3.0 �1.1 �0.4 �0.1 0.0 1.0

synapse-1.0 �0.3 �0.2 �0.1 0.0 0.0
synapse-1.1 �0.7 �0.4 �0.1 0.0 0.9

velocity-1.5 �1.5 �0.7 �0.1 0.3 1.5

xalan-2.4 �0.5 �0.2 �0.1 0.0 0.7

ant-1.5 �0.3 �0.1 0.0 0.0 0.3
ant-1.6 �0.8 �0.3 0.0 0.0 0.9

ivy-1.4 �0.2 �0.1 0.0 0.0 0.0

jedit-3.2 �2.3 �0.8 0.0 0.0 1.8

jedit-4.0 �1.3 �0.5 0.0 0.0 1.0
jedit-4.1 �1.1 �0.4 0.0 0.0 1.0

jedit-4.2 �0.6 �0.2 0.0 0.0 0.3

jedit-4.3 �0.1 0.0 0.0 0.0 0.0
poi-2.5 �1.3 �0.6 0.0 0.7 0.9

velocity-1.4 �1.2 �0.2 0.0 0.1 1.0

xerces-1.3 �1.4 �0.2 0.0 0.0 0.7

Note: For example, the median (50th percentile)

value of actual-predicted is �0.3 to 0.
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5.2. Baseline and activity versus optimal

Figure 3 shows the ratio of the optimal policy achieved with the activity policy (the

green curve) and the baseline policy (the red curve). These curves are statistically

signi¯cantly di®erent (Wilcoxon, 95% con¯dence). For both curves, the result are

expressed in as a ratio of the optimal policy that uses historical knowledge to de-

termine the number of defects in each class.

We observe that the results of the baseline policy are far more erratic than for the

activity policy. The spread of a distribution is the di®erence between the 75% and

25%th percentile range. The spread of the values in Fig. 3 are:

. Activity: 98� 91 ¼ 7

. Baseline: 95� 82 ¼ 13

That is, the results of the activity policy are more predictable (fall into a narrower

range), whereas the results from baseline can spread nearly twice as far. Moreover,

the activity results not only are more predictable, but also out-perform the baseline

policy. The median value of the red baseline policy results (i.e., inspecting the code

based on increasing class size) is 91% of optimal. Note that baseline is rarely any little

better than activity, and often, it is much worse:

. When baseline out-performs activity (in only 3
33 of our comparisons), it does so only

by a small margin.

. In the 30
33 data sets where baseline does worse than activity, sometimes it does

much worse (see the velocity-1.5 and velocity-1.6 results which fall to 70% of

optimal ).
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Fig. 3. Performance results expressed as a ratio of the optimal policy. Data sets are sorted according to the
activity results. Median values for baseline, activity are 91% and 96% of optimal, respectively.
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The median value of the activity policies results are 96%, which is within 4% of

optimal. Further, the top ten results of activity all score 100% of optimal (see the

right-hand side of the green curve in Fig. 3). That is, for the purpose of optimizing

inspection, there is little to no room for improvement on top of the activity-centric

measures. Hence, we strongly recommend the activity policy.

5.3. Summary

Our key observations in this study are as follows:

. According to Table 7, activity-centric measures combined with linear regression

lead to defect predictors with low error rates in open-source object-oriented sys-

tems.

. According to Fig. 3, for the task of inspection optimization, activity-centric defect

prediction works signi¯cantly better than the baseline and very close to the op-

timum.

6. Discussion

The results here are quite unequivocal ��� activity is a strong predictor for software

defects, and this e®ect can be detected with a simple model such as linear regression.

Hence, we need to explain why this e®ect has not been reported before. We con-

jecture that the use of a small set of activity-centric static metrics is too simple and

too novel a concept to be reported previously.

6.1. Too simple?

We can broadly classify object-oriented software quality research as (a) studies with

more focus on prediction models than the metrics, and (b) studies with more focus on

metrics validation than the models (as in this study). It is no surprise that the former

kind of studies did not explicitly investigate the concept of activity, as they usually

operate within existing sets of common metrics in order to choose the best model

among many. The literature o®ers many complex methods for data mining such as

support-vector machines, random forests, and tabu search to tune the parameters of

a genetic algorithm (i.e., [32�35]). In this era of increasing learner complexity,

something as easy as linear regression on a small set of static code measures aiming

especially on activity may have been discounted before being explored rigorously.

Therefore, our ¯rst explanation is that the use of activity as a concept is so simple

that it escaped the attention of this type of research.

Nevertheless, we cannot ignore the latter type of studies, in which the focus has

usually been validating object-oriented metrics as predictors of defects through

correlational methods (i.e., [43�47]). Briand & Wüst provide an extensive survey of

empirical studies of quality in object-oriented systems, and observe that the majority
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of studies falls in this category [48]. However, they also state that only half of the

studies employ multivariate prediction models, and the other half just reports uni-

variate relations between object-oriented metrics and defects. Further, only half of

the studies with a prediction model, conduct a proper performance analysis through

cross-validation. After this ¯ltering, remaining work contains hard-to-compare em-

pirical studies, where the size and the number of data sets are so small that the

combined results are con°icting and do not reveal a common trend possibly due to

varying contexts of the studies.

Another aspect of related studies is that they consider certain subgroups of object-

oriented metrics relating to concepts such as coupling, cohesion, inheritance and

polymorphism, and size [48]. Briand & Wüst report that the signi¯cance of the

relation between di®erent subgroups of metrics and defects are mostly inconclusive,

and only a number of size and coupling measures are consistent. We have further run

a smaller-scale review of major studies conducted with the guidelines of the original

survey [20, 38, 43�45, 47, 49�52]. Similar to Briand & Wüst, we observed that the

table of metrics versus di®erent systems used to assess those metrics were sparsely

populated.

6.2. Too novel?

The starting point for this research was the observation in the Helix data sets that

most classes stabilize very early in their life cycle while a very small number of active

classes garner the most attention by developers [6, 7]. As discussed above in Sec. 3,

this is not the standard picture of the life cycle of a class. To us, this observation was

so unique that it prompted the question \does the amount a class is used by devel-

opers predict for system defects" (i.e., this study). However, without that initial

surprising observation, we would not have conducted the study reported in this

paper.

Compared to other studies (e.g., studies surveyed in [48]), the size and number of

data sets used in our study is extensive and reveals a clear bene¯t of using activity-

centric metrics in the context of open-source object-oriented systems. In contrast to

our concept of activity, Turhan et al. [53] investigate popularity. Their approach is to

augment standard static code metrics within a call graph-based ranking framework,

which is inspired by the PageRank algorithm [54]. Rather than constructing learners

with a standard set of metrics that value each module equally, Turhan et al. ¯rst

rank the modules using the dependency graph information and weigh the informa-

tion learned from \popular" modules more. Their approach reduced the false alarm

rates signi¯cantly. However, this technique is an indirect way of utilizing activity,

and does not include explicit activity-centric metrics that are used in this study.

Similarly, Zimmermann et al. include eigenvector centrality, a measure of closeness

centrality of network nodes similar to PageRank, in their analysis of complexity

versus network metrics for predicting defects from software dependencies [55].

Though, eigenvector centrality is found to be correlated with defects for the
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Windows system they have evaluated, this metric did not stand out among other

network or complexity based metrics to allow a discussion on \activity" (see the next

section below for a possible cause). Finally, Kpodjodo et al. monitored their pro-

posed, again PageRank inspired, Class Rank metric among several versions of a

single system and found moderate evidence in favor [56]. In this paper, we handle

activity as a concept rather than relying on a single measure, and we achieve near

optimal results compared to moderate improvements of similar work.

6.3. Hidden?

It is possible that activity was buried under other e®ects. When we look at the

measures that we have used in previous studies (e.g., [15]), we can see some overlap

between those measures and ones used here (cf. Table 3). Miller [57], Witten & Frank

[30], and Wagner [58] o®er a theoretical analysis discussing how an excess of attri-

butes containing multiple strong predictors for the target class can confuse learning.

For example, both Wagner and Miller note that in a model comprising N variables,

any noise in variable Ni adds to the noise in the output variables.

We have also observed supporting evidence for this explanation in our small scale

quality-in-object-oriented-systems review. In all cases, where both an univariate and a

multivariate analysis is being utilized, it is common for metrics that have been veri¯ed

by the univariate model to not be included in themultivariate model for the same data

[43, 44, 47, 49, 51, 52]. El Emam et al. use this phenomenon to control for the con-

founding e®ects of size on metrics believed to serve as suitable predictors for defects

[22]. Similarly, the multivariate model metrics may include those that are not veri¯ed

by the univariate model [20, 38, 49], for which Guyon et al. provide simple examples

showing that the prediction power can be signi¯cantly increased when features are

used together rather than individually [59]. Hence, even though somemeasures exist in

a data set, noise from the other variables may have drowned out their e®ect.

7. Validity and Future Work

Internal validity: Apart from joining the PROMISE data sets (for defect counts) with

the Helix data sets (for the activity-centric measures), we did not pre-process the

datasets in any way. This was done to enable replication of our results.

Construct validity: We have made the case above that the measures listed in Table 3

re°ect the \activity" of di®erent classes, that is, how often a developer will modify or

extend the services of a class as an expression of the attractiveness of this class for the

developer's design choices. This case has not been tested here. Hence:

Future work 1: Analyze participant observation of developers to determine what

classes they inspect as part of their work°ow.

External validity: Our use of cross-validation means that all the results reported

above come from the application of our models to data not seen during training. This

gives us some con¯dence that these results will hold for future data sets.
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As to our selection of data sets, the material used in this study represents real-

world use, collected from real-world projects. Measured in terms of number of data

sets, this paper is one of the largest defect prediction studies that we are aware of.

Nevertheless, there is a clear bias in our sample: Open-source Java systems. Hence:

Future work 2: Test the validity of our conclusions to close-sourced, non-object-

oriented, and non-Java projects.

Conclusion validity: We take great care to only state our conclusions in terms of areas

under a %LOC-vs-recall curve. For the purpose of ¯nding the most defects after

inspecting the fewest lines of code (i.e., the inspection optimization criterion pro-

posed by Arisholm & Briand [20]), the activity-centric metrics exhibit an excellent

performance (median results within 96% of the optimum).

While the area under a %LOC-vs-recall is an interesting measure, it is not the only

one seen in the literature. Hence:

Future work 3: Explore the value of activity for other evaluation criteria. Those other

criteria may include:

. Counting the number of ¯les inspected, rather than the total LOC, as done, for

example, by Weyuker, Ostrand, and Bell [60, 61],

. Precision, as advocated, for example, by Zhang & Zhang [62] (but depreciated by

Menzies et al. [63]),

. Area under the curve of the pd-vs-pf curves, as used by Lessmann et al. [32].

8. Conclusion

We have shown above that a repository containing just static code measures can still

be used to infer interaction patterns amongst developers. Speci¯cally, we studied the

\active" classes, that is, the classes where the developers spend much time inter-

acting with each other's design and implementation decisions. In 33 open-source

Java systems, we found that defect predictors based on static code measures that

model \activity" perform within 96% of a theoretical upper bound. This upper bound

was derived assuming that the goal of the detectors was \inspection optimization,"

that is, read the fewest lines of code to ¯nd the most defects.

Though, we have focused on inspection optimization and limited our discussions

around it, application of our techniques is not limited within the scope of this par-

ticular QA method. For example, our techniques can be directly applied to address

regression test case selection (or regression test prioritization) problem, especially in

very large systems. The important challenges for such systems are (a) to identify

speci¯c parts of the system against which regression tests should be developed and

(b) to determine which tests should have priority over others within the existing

(possibly huge) regression test library. In practice, it usually takes from a few hours

to weeks for developers to get feedback from regression test results (without con-

sidering the cost of mental context switch overheads for developers). Our techniques
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can be used to address both problems: (a) they point to most problematic parts, so

regression tests should cover those parts, (b) they provide a prioritization of prob-

lematic parts, so a small portion of all tests consisting of high priority ones could be

run more frequently to provide faster feedback to developers. While the scope of our

hypothetical example is the whole system, it is straightforward to scale it down to the

operational level where developers can also bene¯t from our techniques directly:

developers can be guided to develop and run local regressions tests on the critical

parts in their local machines as pointed out by our techniques. In summary, appli-

cations of our techniques in di®erent QA activities allow cost reductions through

e±cient management of resources and faster (early) feedback cycles to stakeholders.

There is another aspect of activity-centric measures that recommends their use. In

this paper, we show that simple linear regression over these measures works very well

indeed. That is, the machinery required to convert these measures into defect pre-

dictors is far less complex than alternative approaches, such as:

. Lessmann's random forests and support-vector machines [32],

. The many methods explored by Khoshgoftaar [33–35],

. Defect prediction via multiple explanatory variables [38, 39],

. Our own defect predictors via feature selection [15], instance selection [40], or novel

learners built for particular tasks [41].

The comparative simplicity of activity-centric prediction, suggests that previous

work [31�39], including our own research [15, 40, 41] may have needlessly compli-

cated a very simple concept, that is, defects are introduced and discovered due to all

the activity around a small number of most active classes.
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