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ABSTRACT 
Background: Most software effort estimation research focuses on 
methods that produce the most accurate models but very little 
focuses on methods of mapping those models to business needs.  
Aim: In our experience, once a manager knows a software effort 
estimate, their next question is how to change that estimate. We 
propose a combination of inference + visualization to let 
managers quickly discover the important changes to their project.  
Method: (1) We remove superfluous details from project data 
using dimensionality reduction, column reduction and feature 
reduction. (2) We visualize the reduced space of project data. In 
this reduced space, it is simple to see what project changes need to 
be taken, or avoided. 
Results: Standard software engineering effort estimation data sets 
in the PROMISE repository reduce to a handful of rows and just a 
few columns. Our experiments show that there is little information 
loss in this reduction: in 20 datasets from the PROMISE 
repository, we find that there is little performance difference 
between inference over all the data and inference over our reduced 
space. 
Conclusion: Managers can be offered a succinct representation of 
project data, within which it is simple to find critical the decisions 
that most impact project effort. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Management—Time Estimation; 
I.2.6 [Artificial Intelligence]: Learning—Analogies, induction  

General Terms 
Algorithms, experimentation  

Keywords 
Effort Estimation, Optimization 

1. INTRODUCTION 
Software engineering projects produce data. Strangely, despite the 
abundance of such data, it is still difficult to offer useful insight 
about projects to project managers (and by “useful”, we mean lists 
of critical decisions that managers should either take or avoid).  
Menzies & Shull [16], followed by Menzies & Shepperd [15] 
discuss the difficulties associated with reaching clear conclusions 
using current data mining methods. 
 

A likely contributing factor to these software project failures is 
that there continues to be a substantial disconnect between the 
information and insights needed by project managers to make 
good decisions and that which is typically available to them [21]. 
Much research in software effort estimation focuses on 
introduction and evaluation of software estimation methods (as 
much as 61% of topics collected in a study of over 300 papers 
from 76 journals [17]). Very little research has focused on 
connecting the methods and models to business needs.  

When project managers cannot understand method results or do 
not have access to data mining tools they have to fall back on 
intuition. Such intuition-based decisions can sometimes work out 
well, but often they are unnecessarily suboptimal or even 
destructive [10]. This may also be the case when managers are 
overloaded with results too complex, which, although may be 
very accurate, are not straightforward and the manager does not 
understand how to correctly apply them. 

In this paper we intend to focus on simplifying the task of 
reviewing project data.  The goal of this task is to read project 
data and find the critical decisions that most change a project’s 
estimate. We find that after applying three data reduction 
operators and one visualization operator (dimensionality 
reduction, row reduction, column reduction and rule reduction) to 
project data from the PROMISE repository, the reduced data is 
small enough for manual browsing.  These reductions are 
implemented within our IDEA tool (IDEA is short for Iterative 
Dichotomization on Every Attribute). 

Our pre-experimental concern was that the reductions performed 
by IDEA might remove important data. Hence, this paper 
compares leave-one-out predictions using:  

1) a nearest neighbor method in our reduced set of project data 
2) the predictions made by 90 other methods on 20, PROMISE, 

effort estimation data sets. Note that the predictions in this 
second study could use all the project data. 

As discussed below, there is little difference between the 
predictions found using (1) the reduced data or using (2) all the 
data, that is, our reductions were not discarded information 
essential to learning significant project changes.  Hence, we can 
recommend IDEA as a tool for generating project 
recommendations. 

This paper is structured as follows. §2 discusses the motivation 
behind the research. §3 summarizes the main algorithm 
supporting the research called IDEA. §4 talks about the practical 
application by giving worked examples of IDEA. In §5 we discuss 
our results when compared over 20 datasets against 90 methods 
commonly found in SE effort literature [1, 2, 5, 9, 11, 12, 17, 19, 
20]. In §6 we summarize our results and discuss their significance. 
§7 are some acknowledgements. §8 are references. 
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2. MOTIVATION 
The ability to explain how a conclusion was reached is a very 
powerful tool for helping users to understand and accept the 
conclusions of a data miner. Despite this, sometimes explanatory 
power must be decreased in order to increase the efficacy of the 
predictor [14].  

Industrial practitioners of data mining might need a fast algorithm 
but may lack the skill to understand how it works and therefore be 
unsure of its trustworthiness. We propose there is a method to 
have both a sufficient understanding and a fast algorithm by using 
accurate visualization of the results. In this paper there are many 
visualizations, but, the simplicity of IDEA result’s makes it much 
easier to comprehend its predictions straight out of the method. 

Data mining methods grow more and more complex as well as 
faster and more accurate. Combining learners may produce even 
more accurate results. This combination of learners is known as 
multi-methods. Given the state of the art in data mining, we can 
now arrive at predictions which prove accurate but we cannot 
comprehend their meaning because the complexity necessary to 
reach those conclusions seems too great.  

Hence, for this paper, we explore simplifications of the data sets 
rather than elaborations of algorithms.  Surprisingly, in a field 
called “data mining”, there are few reports about invariants in the 
data being explored. Rather, most papers (e.g. at PROMISE) 
discuss details of how different algorithms might explore this 
data. Here, we show that the information content of the PROMISE 
effort estimation data sets can be represented in a handful of rows 
and columns. We hope this paper prompts other researchers to 
spend more time exploring features of the data rather than minor 
details about their algorithms. 

3. DATA REDUCTION OPERTORS 
This section is an overview of IDEA’s data reduction operators. 

The premise of IDEA is that we study the data to find insights 
beneath any irrelevancies. To do this, we must first remove these 
irrelevancies and use what lies beneath to make good predictions.  

Our method IDEA is a divisive hierarchical clustering algorithm 
based on FastMap [7].  IDEA performs dimensionality reduction 
by recursive clustering decent where at each level it computes a 
new derived dimension.  Note that this generates a dendrogram (a 
tree of clusters) with leaf clusters. The original data can then be 
tagged with the identifier of the leaf cluster than contains them.  

In the following discussion, we will use the following definition. 
We will say that a project’s context is its nearest leaf cluster.  Note 
that a context is characterized by the centroid of that cluster. 

After dimensionality reduction comes row reduction.  All rows in 
one leaf cluster (found via FastMap) are replaced with their 
centroid. To generate this centroid, a new row is synthesized using 
the median/mode of all numeric/symbolic columns.    

After row reduction comes column reduction. We apply an 
adaption of the Fayyad-Irani discretizer. All rows are tagged with 
the context that contains them. All columns are then ranked via 
the probability that the values in that column will select for the 
fewest contexts. In this way, we can select the columns whose 
values are only found in a few contexts.  

After column reduction comes rule reduction. Rather that 
generate complex summaries of the reduced data, we merely 
report paired contrast sets between contexts. This generates very 

simple rules since (1) we focus the learning on contrasts between 
some current context and one other; (2) we only use the reduced 
set of attributes found via column reduction and (3) we only 
report the differences between pairs of centroids generated via 
row reduction.   

We divide these reduction operators into three inference operators 
(dimensionality reduction, column reduction, and row reduction) 
and one visualization operator (rule reduction). The reason for 
this division is as follows. If rule reduction runs last, then it 
executes over a very small set of rows and columns. In that 
reduced space, “inference” can be replaced by a simple visual 
comparison between either (now and feared) or (now and envied). 

• Now:   the user’s current context.  

• Feared: a close context with much worse effort values. 

• Envied: a close context with much better effort value. 

Examples of these four data reduction operators are given below. 
Before showing those examples, we offer some details on how we 
defined distance between rows (this inter-row measure is used 
extensively in IDEA). In Aha’s et. al. [6]’s work on instance-
based reasoning, they use a Euclidean measure to compute the 
distance between two rows. Within that measure is a function to 
compute the difference between two values from the same 
column. Their difference function, which is used in IDEA, is as 
follows. Note that this approach handles numeric, symbolic, and 
missing values: 

function difference (X , Y) 
 if both are missing then 
  return “1” (max value) 
 else if non-numeric values then 
  if one is missing then return 1 
  else return X  == Y 

  end if 
 else if numeric then 
  normalize each one via 1-min max-min    
  if none are missing then return (X - Y )2

  

  else if present <0.5 then return (1-present)2  
  else return (present)2 
  end if 
 end if  
   

 

3.1 Dimensionality reduction with FastMap 
FastMap [7] is a linear-time algorithm time that maps objects in n-
dimensions to points in some lower-dimensionality space. 
Formally, FastMap is a Nystrom algorithm [18] for finding an 
approximation to the components of PCA. We use it here since it 
is simple to code, runs in linear time, and has proven useful on 
other software engineering data [13]. 

For this work IDEA recursively map project data down to one 
dimension; then divides the data at the median point of that 
mapping; then recurses on each half. It works as follows: 

1. First choose any row X at random then find the farthest 
row from this initial point and call it East.  
 

2. Locate the farthest row from East, call it West. Now we 
can draw an imaginary line between rows East and 
West. Examples of these lines are shown in Figure 1. 
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3. The line from East to West approximates the 

dimensionality of greatest variance since these are the 
farthest points from each other in the group. All other 
rows have a distance (a, b) to (East, West).  
 

4.  Let the distance East to West be c. All other rows can 
be projected into the East, West line at some distance 
from East, using the cosine rule: (a2 + c2 – b2) / (2c).  
 

5. Once all points are plotted we find the median point and 
spit the rows into two groups either side of the median.  
 

In Figure 2 we see dimensionality reduction of an N-dimensional 
data set by using the median value to split each cluster into two 
smaller clusters. In IDEA, this recursion terminates when too few 
examples fall into each split (for N projects, we stop at less than 
10 examples or sqrt(N) whichever is satisfied first). 

 
Figure 1. Inferring a dimension of greatest variability by 

joining two distant points. 
 

3.2 Row reduction by clustering centroids  
After clustering rows via recursive FastMap we condense clusters 
and replace numeric attributes by their mean value, including the 
class attribute, and nominal attributes are replaced by the median, 
mode of the numeric, symbolic attributes. A similar but slower 
approach is Principle Direction Divisive Partitioning (PDDP) [3].   

Row reduction is shown in Figure 3. Here, the dendrogram of 
clusters found by recursive FastMap is shown as a set of grey 
boxes. Each leaf cluster contains one example synthesized from 
the leaf clusters of Figure 2. 
 
 

 
Figure 2 FastMap recursive clustering. The black line shows 

the inferred FastMap dimension. Arrows indicate half the 
data being moved to a sub-region. Note that this process 
works for data of arbitrary initial dimensionality. This 

example starts with N=12 examples and stops when sub-
regions contain N < sqrt(12)=3.46 examples.  

 

 

 
Figure 3 Centroids chosen by median 

 

For example the Miyazaki94 data set in the PROMISE repository 
contains 48 projects. After dimensionality and row reduction, 
IDEA would represent that data as 5 contexts; i.e. that data set 
clusters into five regions.  In a similar analysis, the 93 projects of 
PROMISE’s nasa93 data set clusters into 13 contexts. 
 

3.3 Column reduction via entropy 
IDEA sorts columns by the probability they select for fewer 
contexts then remove the more ambiguous ones. We use the 
following heuristic: choose the attribute that produces the “purest” 
nodes. We use the popular impurity criterion: information gain. 
Information gain is the information content before a split 
compared to the information content after splitting on the 
attribute. We can calculate it using the measure of Shannon 
entropy [4], where Shannon entropy is given by equation 1.  

Entropy = ∑(-p log(p))                    (1) 

This process lets us focus on columns that are better at selecting 
for a smaller number of contexts.  For example, Figure 4 is some 
data from the PROMISE data set NASA93. For illustrative 
purposes, we assume that the data contains 9 projects described by 
analyst capability and programmer capability. We further assume 
that dimensionality and row reduction found two clusters: c1 and 
c2. 

Figures 5 and 6 show the entropy calculation for analyst capability 
and programmer capability. In Figure 5 we see how a split on the 
values of analyst capability usually selects for a single cluster 
either 75% to 80% of the time. By contrast, in Figure 6, we see 
that a split on the values of programmer capability selects for a 
single cluster at most 66% of the time. Those figures show the 
calculation of the expected value for entropy: 0.239 and 0.273 for 
analyst and programmer capability (respectively). Based on this 
calculation, we find analyst capability most informative since it 
selects for a more specific (smaller) set of clusters. 

 
Figure 4 Sorted columns 
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Figure 5 Entropy calculation on analyst capability 

 

 
Figure 6 Entropy calculation on programmer capability 

 

Table 1 Miyazaki94 centroid results. The cluster ids (in 
column one) come from an internal numbering scheme that is 

not related to (say) row number in the original file. 

 

IDEA, we prune attributes which have a value of more than one 
half (0.5) of the maximum entropy of any column.  

3.4 Rule reduction  
To implement the final rule reduction operator, we collect some 
contextual knowledge from the user. Using that knowledge, we 
can find: 

Now:  which context is closest to their current project. 

Feared/ Envied: contexts close to now that the user most wants to 
avoid/ achieve. 

Given this information we can generate very small rules that list 
recommendations of what to do or what to avoid. These 
recommendations are the contrast sets between the centroid values 
of the different contexts: 

What2Do = Envied – Now 

What2Avioid = Feared – Now 

IDEA runs rule reduction last. Hence, these contrast sets come 
from the reduced data space found by the above reduction 
operators. Consequently, rule reduction is very simple to 
implement (since all the smart data selection has already been 
done already). The current version of IDEA just prints tables 
visualizing the What2Do and What2Avioid contrast sets. 

What happens after that is up to managers.  IDEA reports minimal 
rules that can drive a project from one context to another. What 
the manager does with that information depends on many factors 
that are specific to particular projects. For example: 

• Some column values might be easier to change than others. 
Managers might heuristically elect to manipulate just these 
easier-to-change values. 

• Sometimes a manager might ignore an improvement to a 
better context if (a) that improvement is only slight and (b) 
the changes required to reach that new context are very 
drastic. 

• Sometimes, a manager may recognize a near-by Feared 
context, but realize that the project is perilously close to 
making some of the What2Avoid decisions.  In this case, the 
manager might alert higher management of a train wreck in 
progress in order to discuss risk mitigation strategies. 

Note that these actions require extensive business knowledge that 
is not currently collected in the PROMISE repository. Hence, for 
know, IDEA terminates when it can map out the space of options 
(leaving the final decisions regarding actions up to the manager). 

4. Examples 
4.1 Miyazaki94 
The results for Miyazaki94 from IDEA were shown in Table 1.  
Note the effects of dimensionality reduction, row reduction, and 
column reduction: 

• From the 9 columns, IDEA has reduced these to 3  
• From the 48 rows, IDEA has reduces these to 6 contexts.  

To illustrate how IDEA handles this information, assume that the 
Home context of some manager is cluster 59 of Table 11. Note 
that these cluster ids, shown in column one of that figure, come 
from an internal numbering scheme that is not related to, e.g., row 
number in the original data set.  This Home context is shown in 
Table 2. The contrast sets (column attribute differences) between 
this Home context and all others are shown in Table 3.  

Table 2 Closest related centroid to project Miyazaki94 

 
Table 3 Miyazaki94 Effort percentage changes 

 

                                                                    
1 Cluster ids, shown in column 1 of that figure, come from an internal 

numbering scheme unrelated to the original row number in original set. 
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From the differences in Table 3, we can compute a distance 
between Home and the other contexts. This is shown in Figure 7. 
From that figure, we note that this manager has nothing to Fear 
(since no other context contains projects with greater effort) and 
many things to Envy: 

• The closest cluster is cluster 62 with a 16% reduction in 
effort.  

• But with a few more changes, cluster 58 offers a 
dramatic reduction in effort (70%). 

As discussed above, what happens now is up to the manager and 
how much control they have of their local environment. A rational 
manager would at least consider the contrast between 59 and 58 to 
consider if those changes are possible in the local context. 

4.2 Nasa93 
Table 4 shows the columns and rows that IDEA selects from the 
PROMISE Nasa93 data set.  

To illustrate how IDEA handles this information, assume that: 

• The Home context of some manager is cluster 121 of Table 4 
(shown in Table 5).  

• This manager most Fears projects of similar size but which 
take much longer to develop. 

In order to explore the Fears of this manager, we isolate the 
contexts with similar lines of code to cluster 121: these are the 
four projects shown in Table 6.  Note cluster 120: this project 
takes much greater effort than the Home context of 121.  

 
Figure 7 Possible effort changes for Miyazaki94 
 
Table 4  Results for NASA93 

 

 
Table 5 Centroid 121 Software Effort Parameters for NASA93 

 
Table 6 NASA93 centroids with similar KLOC to [121] 

 
 
Table 7 Contrast set between Home=121 and Feared=120 

 
Table 7 table shows the difference between cluster 121 and 120. 
Note that this table shows What2Avoid contrast set since it 
displays the column changes that would drive this manager’s 
project into a Feared context where projects tale 300/192= 156% 
longer to build. Due to IDEA’s dimensionality, column, and row 
reduction operators, the size of this contrast set is very small (only 
two columns, plus some KLOC differences):   

• In Feared, developers have a little more application 
experience (apex). 

• In Feared, developers have more programmer experience 
(pcap). 

Our business-level interpretation of this result is as follows. In 
Cluster 120, the more capable programmers are using their 
increased application experience to implement a more complex 
solution. Perhaps they are building a domain-specific language for 
problems like Cluster120. Perhaps they are working on reusable 
design patterns to enhance productivity of future developers 
working on that kind of project.  Whatever the reason, the 
business question must now be, is there a business case for the 
increased cleverness of the Cluster 120 implementation: 

• If Cluster 120 is implementing core services that will be used 
in many future applications, then perhaps the added cost of 
the Cluster 120 projects will be regained in savings from 
faster future developments. 

• But if the Cluster 120 developers are racing other vendors to 
get products to a highly competitive market, then perhaps the 
Cluster 120 developers need to be directed towards shorter 
incremental solutions where the base functionality is 
delivered quickly which, in turn, could fund their more 
advanced development work. 

As mentioned above, IDEA cannot make that kind of business 
case since it is reasoning over the PROMISE data sets that lack 
that kind of business meta-knowledge. Nevertheless, what IDEA 
can usefully do is at least prune away the irrelevancies and offer a 
clear visualization (like Table 7) of the key business decisions. 
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Table 8: Data used in the Assessment study 

Dataset Cols Rows Description 
cocomo81 17 63 NASA projects 
cocomo81e 17 28 Cocomo81 embedded projects 

cocomo81o 17 24 Cocomo81 organic projects 

cocomo81s 17 11 Cocomo81 semi-detached projects 

nasa93 17 93 NASA projects 
nasa93center_1 17 12 Nasa93 projects from center 1 
nasa93center_2 17 37 Nasa93 projects from center 2 
nasa93center_5 17 40 Nasa93 projects from center 5 
desharnais 12 81 Canadian software projects 
desharnaisL1 11 46 Language1 desharnais projects  

desharnaisL2 11 25 Language2 desharnais projects  
desharnaisL3 11 10 Language3 desharnais projects 
sdr 22 24 Turkish software projects 
albrecht 7 24 Projects from IBM 
finnish 8 38 inland software projects 
kemerer 7 15 Large business applications   

maxwell 27 62 Finland commercial-bank projects 
miyazaki94 8 48 Japanese COBOL projects 
telecom 3 18 Telecom maintenance projects 
china 18 499 Chinese software company projects 
    

5. ASSESSMENT 
The examples of the last section demonstrate the benefits of an 
IDEA-style analysis (business users can be focused on a very 
small number of key issues that most effect their domain). But 
how accurate are the recommendations of IDEA? The data 
reductions reported above for Miyazaki94 and Nasa93 are quite 
drastic (most rows removed, over half the columns removed). If 
such a drastic reduction deleted important project data, the rules 
generated by IDEA (e.g. Table 7) would be spurious. 

To test this, we explored the accuracy of the effort estimates made 
by a k=1 nearest neighbor algorithm that ran over IDEA’s cluster 
centroids2. For the Miyazaki94 and Nasa93 data sets, those 
centroids were shown in Tables 3 and 4. In that study, “nearest” 
was defined using: 

• just the columns selected by column reduction and 
• distance calculation of Section 3. 

IDEA’s recommendations were compared to combinations of ten 
learners and nine pre-processors (so 10*9 = 90) methods in all. To 
pick those learners and pre-processors, we reviewed the effort 
estimation literature and selected methods with some support in 
that literature. For full details of those 90 methods, see [8]. In 
summary, the nine pre-processors were: 
 

                                                                    
2 The centroids, for the Miyazaki94 and Nasa93 data sets, were 

shown in Tables 3 and 4. 

1. norm: normalize numerics 0..1, min..max 
2. log: replace numerics of the non-class columns with  

      their logarithms 
3. PCA: replace non-class columns with principle 

components 
4. SWReg: cull uninformative columns with stepwise 

regression 
 

5. Width3bin: divide numerics into 3 bins with boundaries  
 (max-min)/3 

6. Wdith5bin: divide numerics into 5 bins with boundaries  
(max-min)/5 

7. Freq3bins: split numerics into 3 equal size percentiles.  
8. Freq5bins: split numerics into 5 equal size percentiles. 
9. None: no pre-processor. 

 
Also, the 10 learners were: 

1. INN: simple one nearest neighbor 
2. ABE0-1nn: analogy-based estimation using nearest 

neighbor. 
3. ABE0-5nn: analogy-based estimation using  the median 

of the five nearest neighbors. 
4. CART(yes): regression trees, with sub-tree post-

pruning. 
5. CART(no): regression trees, no post-pruning. 
6. NNet: two-layered neural net. 
7. LReg: linear regression 
8. PLSR: partial least squares regression. 
9. PCR: principle components regression 
10. SWReg: Stepwise regressions. 

!
Our performance statistics was MRE; i.e. the magnitude of 
relative error: 

!"#$="|%&'(%)"−*+,-$&',-|"/""%&'(%)                       (3) 

 
These MRE numbers were collected in leave-one-experiments. 20 
data sets were used from the PROMSE repository (see Table 8). 
The results from k=1 nearest neighbor were sorted into the other 
90 and a Mann-Whitney test was applied to test if there was a 
significant difference between (1) predictions generated from 
IDEA’s reduced data; (2) predictions generated from all the 
methods with better median performance scores; and (3) 
predictions generated from all methods with worse median 
performance scores.   

Figure 8 shows all the MRE results for the 20 data sets; the 
positions of the predictions from IDEA’s reduced data are shown 
as blue dots (one per data set).  From left to right MRE scores 
rank from better to worst. In each line we see that some methods 
just do very poorly on some datasets. IDEA’s score always tends 
to be in the range comparable to the better methods and always 
stays in the lower area of the graph. 
 
Cocomo81 is the third best dataset IDEA performs well on. If we 
follow the purple line that represents the 91 method’s MRE values 
we can see that, at a certain point, methods just start performing 
worse; this is when predictions get statistically worse, and it’s 
about halfway through. Each line in the graph shows a similar 
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behavior. The blue dots representing IDEA’s performance, we can 
see, are only statistically different a few times. 
 
Table 9 comments on IDEA’s results compared to everything to 
the right and left of each blue dot: Group1, Group3 are all the 
results with a median MRE less, more than IDEA.  We perform 
statistical Mann-Whitney U-test with a 95% difference measure. 
The Win-Tie-Loss numbers in Table 9 come from the following 
MWU (Mann-Whitney U-test) comparison: 
 
  if MWU(Ei, Ej , 95) statistically same then 
   tiei = tiei + 1; 
    tiej = tiej + 1; 
  else 
          if  (Ei, Ej ) then 
   wini = wini + 1 
   lossj = lossj + 1 
         else 
   winj = winj + 1 
   lossi = lossi + 1 
         end if 
  end if 

Table 9 Win-Tie-Loss statistics for IDEA against 90 methods

 
 

 
Figure 8 Sorted methods by Median MRE, IDEA score below for each abbreviated dataset 
 
As shown in Table 9 several data sets generated results were the 
best and worst results were statistically indistinguishable (e.g. the 
Albrecht results on line one).  This is not a new finding- we have 
seen and reported on this effect before [8]. 

At first glance, Table 9 seems somewhat negative regarding 
IDEA; observe how in Cocomo81, DesharnaisL2, DesharnaisL3, 
Finnish, Maxwell, and NasaCenter5, IDEA’s results are 
indistinguishable from the worst result. However, a closer 
inspection of the raw data reveals a different conclusion.  

In Figure 8, all the results have a left-hand-side valley (low errors) 
and a raised right-hand-side mountain (high errors). While in the 
valley all the methods exhibit a very similar performance, it is the 
mountain where we see the major performance differences. Note 
that none of IDEA’s results (the blue spots) appear in those 
mountains. That is, even though in the Mann-Whitney tests, other 
methods do better than IDEA, qualitatively, we can recommend 
IDEA since in no case do its results fall into the left-hand-side 
region where methods most malfunction 
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6. CONCLUSION 
We seek a “next generation” methods for empirical software 
engineering where humans can use the insights gained from data 
miners. To date, papers at PROMISE have been very weak at 
moving from mere estimation to offering project planning advice. 
We show here that a combination of data reduction operators 
(dimensionality, row, column, rule) can produce tiny human-
readable recommendations relating to how to change a project to 
best, or worst, effect. We also show that those reduction operators 
do not remove the essential features of the data. If they did, they 
we would expect IDEA to perform very poorly. However, as 
argued above, IDEA’s explanation system does not greatly 
compromise a data set’s effectiveness.   

We can conclude from this research that to learn we must cut and 
chip away at the data. We have to actually throw data away to be 
able to see the patterns more easily. 
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