
Learning to Change Projects

Raymond Borges
Lane Department of CS&EE

West Virginia University, USA
borgesraymond@gmail.com

Tim Menzies
Lane Department of CS&EE

West Virginia University, USA
tim@menzies.us

ABSTRACT
Background: Most software effort estimation research focuses on
methods that produce the most accurate models but very little
focuses on methods of mapping those models to business needs.
Aim: In our experience, once a manager knows a software effort
estimate, their next question is how to change that estimate. We
propose a combination of inference + visualization to let
managers quickly discover the important changes to their project.
Method: (1) We remove superfluous details from project data
using dimensionality reduction, column reduction and feature
reduction. (2) We visualize the reduced space of project data. In
this reduced space, it is simple to see what project changes need to
be taken, or avoided.
Results: Standard software engineering effort estimation data sets
in the PROMISE repository reduce to a handful of rows and just a
few columns. Our experiments show that there is little information
loss in this reduction: in 20 datasets from the PROMISE
repository, we find that there is little performance difference
between inference over all the data and inference over our reduced
space.
Conclusion: Managers can be offered a succinct representation of
project data, within which it is simple to find critical the decisions
that most impact project effort.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Management—Time Estimation;
I.2.6 [Artificial Intelligence]: Learning—Analogies, induction

General Terms
Algorithms, experimentation

Keywords
Effort Estimation, Optimization

1. INTRODUCTION
Software engineering projects produce data. Strangely, despite the
abundance of such data, it is still difficult to offer useful insight
about projects to project managers (and by “useful”, we mean lists
of critical decisions that managers should either take or avoid).
Menzies & Shull [16], followed by Menzies & Shepperd [15]
discuss the difficulties associated with reaching clear conclusions
using current data mining methods.

A likely contributing factor to these software project failures is
that there continues to be a substantial disconnect between the
information and insights needed by project managers to make
good decisions and that which is typically available to them [21].
Much research in software effort estimation focuses on
introduction and evaluation of software estimation methods (as
much as 61% of topics collected in a study of over 300 papers
from 76 journals [17]). Very little research has focused on
connecting the methods and models to business needs.

When project managers cannot understand method results or do
not have access to data mining tools they have to fall back on
intuition. Such intuition-based decisions can sometimes work out
well, but often they are unnecessarily suboptimal or even
destructive [10]. This may also be the case when managers are
overloaded with results too complex, which, although may be
very accurate, are not straightforward and the manager does not
understand how to correctly apply them.

In this paper we intend to focus on simplifying the task of
reviewing project data. The goal of this task is to read project
data and find the critical decisions that most change a project’s
estimate. We find that after applying three data reduction
operators and one visualization operator (dimensionality
reduction, row reduction, column reduction and rule reduction) to
project data from the PROMISE repository, the reduced data is
small enough for manual browsing. These reductions are
implemented within our IDEA tool (IDEA is short for Iterative
Dichotomization on Every Attribute).

Our pre-experimental concern was that the reductions performed
by IDEA might remove important data. Hence, this paper
compares leave-one-out predictions using:

1) a nearest neighbor method in our reduced set of project data
2) the predictions made by 90 other methods on 20, PROMISE,

effort estimation data sets. Note that the predictions in this
second study could use all the project data.

As discussed below, there is little difference between the
predictions found using (1) the reduced data or using (2) all the
data, that is, our reductions were not discarded information
essential to learning significant project changes. Hence, we can
recommend IDEA as a tool for generating project
recommendations.

This paper is structured as follows. §2 discusses the motivation
behind the research. §3 summarizes the main algorithm
supporting the research called IDEA. §4 talks about the practical
application by giving worked examples of IDEA. In §5 we discuss
our results when compared over 20 datasets against 90 methods
commonly found in SE effort literature [1, 2, 5, 9, 11, 12, 17, 19,
20]. In §6 we summarize our results and discuss their significance.
§7 are some acknowledgements. §8 are references.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

PROMISE '12, September 21-22, 2012 Lund, Sweden
Copyright 2012 ACM 978-1-4503-1241-7/12/09... $15.00

11

2. MOTIVATION
The ability to explain how a conclusion was reached is a very
powerful tool for helping users to understand and accept the
conclusions of a data miner. Despite this, sometimes explanatory
power must be decreased in order to increase the efficacy of the
predictor [14].

Industrial practitioners of data mining might need a fast algorithm
but may lack the skill to understand how it works and therefore be
unsure of its trustworthiness. We propose there is a method to
have both a sufficient understanding and a fast algorithm by using
accurate visualization of the results. In this paper there are many
visualizations, but, the simplicity of IDEA result’s makes it much
easier to comprehend its predictions straight out of the method.

Data mining methods grow more and more complex as well as
faster and more accurate. Combining learners may produce even
more accurate results. This combination of learners is known as
multi-methods. Given the state of the art in data mining, we can
now arrive at predictions which prove accurate but we cannot
comprehend their meaning because the complexity necessary to
reach those conclusions seems too great.

Hence, for this paper, we explore simplifications of the data sets
rather than elaborations of algorithms. Surprisingly, in a field
called “data mining”, there are few reports about invariants in the
data being explored. Rather, most papers (e.g. at PROMISE)
discuss details of how different algorithms might explore this
data. Here, we show that the information content of the PROMISE
effort estimation data sets can be represented in a handful of rows
and columns. We hope this paper prompts other researchers to
spend more time exploring features of the data rather than minor
details about their algorithms.

3. DATA REDUCTION OPERTORS
This section is an overview of IDEA’s data reduction operators.

The premise of IDEA is that we study the data to find insights
beneath any irrelevancies. To do this, we must first remove these
irrelevancies and use what lies beneath to make good predictions.

Our method IDEA is a divisive hierarchical clustering algorithm
based on FastMap [7]. IDEA performs dimensionality reduction
by recursive clustering decent where at each level it computes a
new derived dimension. Note that this generates a dendrogram (a
tree of clusters) with leaf clusters. The original data can then be
tagged with the identifier of the leaf cluster than contains them.

In the following discussion, we will use the following definition.
We will say that a project’s context is its nearest leaf cluster. Note
that a context is characterized by the centroid of that cluster.

After dimensionality reduction comes row reduction. All rows in
one leaf cluster (found via FastMap) are replaced with their
centroid. To generate this centroid, a new row is synthesized using
the median/mode of all numeric/symbolic columns.

After row reduction comes column reduction. We apply an
adaption of the Fayyad-Irani discretizer. All rows are tagged with
the context that contains them. All columns are then ranked via
the probability that the values in that column will select for the
fewest contexts. In this way, we can select the columns whose
values are only found in a few contexts.

After column reduction comes rule reduction. Rather that
generate complex summaries of the reduced data, we merely
report paired contrast sets between contexts. This generates very

simple rules since (1) we focus the learning on contrasts between
some current context and one other; (2) we only use the reduced
set of attributes found via column reduction and (3) we only
report the differences between pairs of centroids generated via
row reduction.

We divide these reduction operators into three inference operators
(dimensionality reduction, column reduction, and row reduction)
and one visualization operator (rule reduction). The reason for
this division is as follows. If rule reduction runs last, then it
executes over a very small set of rows and columns. In that
reduced space, “inference” can be replaced by a simple visual
comparison between either (now and feared) or (now and envied).

• Now: the user’s current context.

• Feared: a close context with much worse effort values.

• Envied: a close context with much better effort value.

Examples of these four data reduction operators are given below.
Before showing those examples, we offer some details on how we
defined distance between rows (this inter-row measure is used
extensively in IDEA). In Aha’s et. al. [6]’s work on instance-
based reasoning, they use a Euclidean measure to compute the
distance between two rows. Within that measure is a function to
compute the difference between two values from the same
column. Their difference function, which is used in IDEA, is as
follows. Note that this approach handles numeric, symbolic, and
missing values:

function difference (X , Y)
 if both are missing then
 return “1” (max value)
 else if non-numeric values then
 if one is missing then return 1
 else return X == Y

 end if
 else if numeric then
 normalize each one via 1-min max-min
 if none are missing then return (X - Y)2

 else if present <0.5 then return (1-present)2
 else return (present)2
 end if
 end if

3.1 Dimensionality reduction with FastMap
FastMap [7] is a linear-time algorithm time that maps objects in n-
dimensions to points in some lower-dimensionality space.
Formally, FastMap is a Nystrom algorithm [18] for finding an
approximation to the components of PCA. We use it here since it
is simple to code, runs in linear time, and has proven useful on
other software engineering data [13].

For this work IDEA recursively map project data down to one
dimension; then divides the data at the median point of that
mapping; then recurses on each half. It works as follows:

1. First choose any row X at random then find the farthest
row from this initial point and call it East.

2. Locate the farthest row from East, call it West. Now we
can draw an imaginary line between rows East and
West. Examples of these lines are shown in Figure 1.

12

3. The line from East to West approximates the

dimensionality of greatest variance since these are the
farthest points from each other in the group. All other
rows have a distance (a, b) to (East, West).

4. Let the distance East to West be c. All other rows can
be projected into the East, West line at some distance
from East, using the cosine rule: (a2 + c2 – b2) / (2c).

5. Once all points are plotted we find the median point and
spit the rows into two groups either side of the median.

In Figure 2 we see dimensionality reduction of an N-dimensional
data set by using the median value to split each cluster into two
smaller clusters. In IDEA, this recursion terminates when too few
examples fall into each split (for N projects, we stop at less than
10 examples or sqrt(N) whichever is satisfied first).

Figure 1. Inferring a dimension of greatest variability by

joining two distant points.

3.2 Row reduction by clustering centroids
After clustering rows via recursive FastMap we condense clusters
and replace numeric attributes by their mean value, including the
class attribute, and nominal attributes are replaced by the median,
mode of the numeric, symbolic attributes. A similar but slower
approach is Principle Direction Divisive Partitioning (PDDP) [3].

Row reduction is shown in Figure 3. Here, the dendrogram of
clusters found by recursive FastMap is shown as a set of grey
boxes. Each leaf cluster contains one example synthesized from
the leaf clusters of Figure 2.

Figure 2 FastMap recursive clustering. The black line shows

the inferred FastMap dimension. Arrows indicate half the
data being moved to a sub-region. Note that this process
works for data of arbitrary initial dimensionality. This

example starts with N=12 examples and stops when sub-
regions contain N < sqrt(12)=3.46 examples.

Figure 3 Centroids chosen by median

For example the Miyazaki94 data set in the PROMISE repository
contains 48 projects. After dimensionality and row reduction,
IDEA would represent that data as 5 contexts; i.e. that data set
clusters into five regions. In a similar analysis, the 93 projects of
PROMISE’s nasa93 data set clusters into 13 contexts.

3.3 Column reduction via entropy
IDEA sorts columns by the probability they select for fewer
contexts then remove the more ambiguous ones. We use the
following heuristic: choose the attribute that produces the “purest”
nodes. We use the popular impurity criterion: information gain.
Information gain is the information content before a split
compared to the information content after splitting on the
attribute. We can calculate it using the measure of Shannon
entropy [4], where Shannon entropy is given by equation 1.

Entropy = ∑(-p log(p)) (1)

This process lets us focus on columns that are better at selecting
for a smaller number of contexts. For example, Figure 4 is some
data from the PROMISE data set NASA93. For illustrative
purposes, we assume that the data contains 9 projects described by
analyst capability and programmer capability. We further assume
that dimensionality and row reduction found two clusters: c1 and
c2.

Figures 5 and 6 show the entropy calculation for analyst capability
and programmer capability. In Figure 5 we see how a split on the
values of analyst capability usually selects for a single cluster
either 75% to 80% of the time. By contrast, in Figure 6, we see
that a split on the values of programmer capability selects for a
single cluster at most 66% of the time. Those figures show the
calculation of the expected value for entropy: 0.239 and 0.273 for
analyst and programmer capability (respectively). Based on this
calculation, we find analyst capability most informative since it
selects for a more specific (smaller) set of clusters.

Figure 4 Sorted columns

13

Figure 5 Entropy calculation on analyst capability

Figure 6 Entropy calculation on programmer capability

Table 1 Miyazaki94 centroid results. The cluster ids (in
column one) come from an internal numbering scheme that is

not related to (say) row number in the original file.

IDEA, we prune attributes which have a value of more than one
half (0.5) of the maximum entropy of any column.

3.4 Rule reduction
To implement the final rule reduction operator, we collect some
contextual knowledge from the user. Using that knowledge, we
can find:

Now: which context is closest to their current project.

Feared/ Envied: contexts close to now that the user most wants to
avoid/ achieve.

Given this information we can generate very small rules that list
recommendations of what to do or what to avoid. These
recommendations are the contrast sets between the centroid values
of the different contexts:

What2Do = Envied – Now

What2Avioid = Feared – Now

IDEA runs rule reduction last. Hence, these contrast sets come
from the reduced data space found by the above reduction
operators. Consequently, rule reduction is very simple to
implement (since all the smart data selection has already been
done already). The current version of IDEA just prints tables
visualizing the What2Do and What2Avioid contrast sets.

What happens after that is up to managers. IDEA reports minimal
rules that can drive a project from one context to another. What
the manager does with that information depends on many factors
that are specific to particular projects. For example:

• Some column values might be easier to change than others.
Managers might heuristically elect to manipulate just these
easier-to-change values.

• Sometimes a manager might ignore an improvement to a
better context if (a) that improvement is only slight and (b)
the changes required to reach that new context are very
drastic.

• Sometimes, a manager may recognize a near-by Feared
context, but realize that the project is perilously close to
making some of the What2Avoid decisions. In this case, the
manager might alert higher management of a train wreck in
progress in order to discuss risk mitigation strategies.

Note that these actions require extensive business knowledge that
is not currently collected in the PROMISE repository. Hence, for
know, IDEA terminates when it can map out the space of options
(leaving the final decisions regarding actions up to the manager).

4. Examples
4.1 Miyazaki94
The results for Miyazaki94 from IDEA were shown in Table 1.
Note the effects of dimensionality reduction, row reduction, and
column reduction:

• From the 9 columns, IDEA has reduced these to 3
• From the 48 rows, IDEA has reduces these to 6 contexts.

To illustrate how IDEA handles this information, assume that the
Home context of some manager is cluster 59 of Table 11. Note
that these cluster ids, shown in column one of that figure, come
from an internal numbering scheme that is not related to, e.g., row
number in the original data set. This Home context is shown in
Table 2. The contrast sets (column attribute differences) between
this Home context and all others are shown in Table 3.

Table 2 Closest related centroid to project Miyazaki94

Table 3 Miyazaki94 Effort percentage changes

1 Cluster ids, shown in column 1 of that figure, come from an internal

numbering scheme unrelated to the original row number in original set.

14

From the differences in Table 3, we can compute a distance
between Home and the other contexts. This is shown in Figure 7.
From that figure, we note that this manager has nothing to Fear
(since no other context contains projects with greater effort) and
many things to Envy:

• The closest cluster is cluster 62 with a 16% reduction in
effort.

• But with a few more changes, cluster 58 offers a
dramatic reduction in effort (70%).

As discussed above, what happens now is up to the manager and
how much control they have of their local environment. A rational
manager would at least consider the contrast between 59 and 58 to
consider if those changes are possible in the local context.

4.2 Nasa93
Table 4 shows the columns and rows that IDEA selects from the
PROMISE Nasa93 data set.

To illustrate how IDEA handles this information, assume that:

• The Home context of some manager is cluster 121 of Table 4
(shown in Table 5).

• This manager most Fears projects of similar size but which
take much longer to develop.

In order to explore the Fears of this manager, we isolate the
contexts with similar lines of code to cluster 121: these are the
four projects shown in Table 6. Note cluster 120: this project
takes much greater effort than the Home context of 121.

Figure 7 Possible effort changes for Miyazaki94

Table 4 Results for NASA93

Table 5 Centroid 121 Software Effort Parameters for NASA93

Table 6 NASA93 centroids with similar KLOC to [121]

Table 7 Contrast set between Home=121 and Feared=120

Table 7 table shows the difference between cluster 121 and 120.
Note that this table shows What2Avoid contrast set since it
displays the column changes that would drive this manager’s
project into a Feared context where projects tale 300/192= 156%
longer to build. Due to IDEA’s dimensionality, column, and row
reduction operators, the size of this contrast set is very small (only
two columns, plus some KLOC differences):

• In Feared, developers have a little more application
experience (apex).

• In Feared, developers have more programmer experience
(pcap).

Our business-level interpretation of this result is as follows. In
Cluster 120, the more capable programmers are using their
increased application experience to implement a more complex
solution. Perhaps they are building a domain-specific language for
problems like Cluster120. Perhaps they are working on reusable
design patterns to enhance productivity of future developers
working on that kind of project. Whatever the reason, the
business question must now be, is there a business case for the
increased cleverness of the Cluster 120 implementation:

• If Cluster 120 is implementing core services that will be used
in many future applications, then perhaps the added cost of
the Cluster 120 projects will be regained in savings from
faster future developments.

• But if the Cluster 120 developers are racing other vendors to
get products to a highly competitive market, then perhaps the
Cluster 120 developers need to be directed towards shorter
incremental solutions where the base functionality is
delivered quickly which, in turn, could fund their more
advanced development work.

As mentioned above, IDEA cannot make that kind of business
case since it is reasoning over the PROMISE data sets that lack
that kind of business meta-knowledge. Nevertheless, what IDEA
can usefully do is at least prune away the irrelevancies and offer a
clear visualization (like Table 7) of the key business decisions.

15

Table 8: Data used in the Assessment study

Dataset Cols Rows Description
cocomo81 17 63 NASA projects
cocomo81e 17 28 Cocomo81 embedded projects

cocomo81o 17 24 Cocomo81 organic projects

cocomo81s 17 11 Cocomo81 semi-detached projects

nasa93 17 93 NASA projects
nasa93center_1 17 12 Nasa93 projects from center 1
nasa93center_2 17 37 Nasa93 projects from center 2
nasa93center_5 17 40 Nasa93 projects from center 5
desharnais 12 81 Canadian software projects
desharnaisL1 11 46 Language1 desharnais projects

desharnaisL2 11 25 Language2 desharnais projects
desharnaisL3 11 10 Language3 desharnais projects
sdr 22 24 Turkish software projects
albrecht 7 24 Projects from IBM
finnish 8 38 inland software projects
kemerer 7 15 Large business applications

maxwell 27 62 Finland commercial-bank projects
miyazaki94 8 48 Japanese COBOL projects
telecom 3 18 Telecom maintenance projects
china 18 499 Chinese software company projects

5. ASSESSMENT
The examples of the last section demonstrate the benefits of an
IDEA-style analysis (business users can be focused on a very
small number of key issues that most effect their domain). But
how accurate are the recommendations of IDEA? The data
reductions reported above for Miyazaki94 and Nasa93 are quite
drastic (most rows removed, over half the columns removed). If
such a drastic reduction deleted important project data, the rules
generated by IDEA (e.g. Table 7) would be spurious.

To test this, we explored the accuracy of the effort estimates made
by a k=1 nearest neighbor algorithm that ran over IDEA’s cluster
centroids2. For the Miyazaki94 and Nasa93 data sets, those
centroids were shown in Tables 3 and 4. In that study, “nearest”
was defined using:

• just the columns selected by column reduction and
• distance calculation of Section 3.

IDEA’s recommendations were compared to combinations of ten
learners and nine pre-processors (so 10*9 = 90) methods in all. To
pick those learners and pre-processors, we reviewed the effort
estimation literature and selected methods with some support in
that literature. For full details of those 90 methods, see [8]. In
summary, the nine pre-processors were:

2 The centroids, for the Miyazaki94 and Nasa93 data sets, were

shown in Tables 3 and 4.

1. norm: normalize numerics 0..1, min..max
2. log: replace numerics of the non-class columns with

 their logarithms
3. PCA: replace non-class columns with principle

components
4. SWReg: cull uninformative columns with stepwise

regression

5. Width3bin: divide numerics into 3 bins with boundaries
 (max-min)/3

6. Wdith5bin: divide numerics into 5 bins with boundaries
(max-min)/5

7. Freq3bins: split numerics into 3 equal size percentiles.
8. Freq5bins: split numerics into 5 equal size percentiles.
9. None: no pre-processor.

Also, the 10 learners were:

1. INN: simple one nearest neighbor
2. ABE0-1nn: analogy-based estimation using nearest

neighbor.
3. ABE0-5nn: analogy-based estimation using the median

of the five nearest neighbors.
4. CART(yes): regression trees, with sub-tree post-

pruning.
5. CART(no): regression trees, no post-pruning.
6. NNet: two-layered neural net.
7. LReg: linear regression
8. PLSR: partial least squares regression.
9. PCR: principle components regression
10. SWReg: Stepwise regressions.

!
Our performance statistics was MRE; i.e. the magnitude of
relative error:

!"#$="|%&'(%)"−*+,-$&',-|"/""%&'(%) (3)

These MRE numbers were collected in leave-one-experiments. 20
data sets were used from the PROMSE repository (see Table 8).
The results from k=1 nearest neighbor were sorted into the other
90 and a Mann-Whitney test was applied to test if there was a
significant difference between (1) predictions generated from
IDEA’s reduced data; (2) predictions generated from all the
methods with better median performance scores; and (3)
predictions generated from all methods with worse median
performance scores.

Figure 8 shows all the MRE results for the 20 data sets; the
positions of the predictions from IDEA’s reduced data are shown
as blue dots (one per data set). From left to right MRE scores
rank from better to worst. In each line we see that some methods
just do very poorly on some datasets. IDEA’s score always tends
to be in the range comparable to the better methods and always
stays in the lower area of the graph.

Cocomo81 is the third best dataset IDEA performs well on. If we
follow the purple line that represents the 91 method’s MRE values
we can see that, at a certain point, methods just start performing
worse; this is when predictions get statistically worse, and it’s
about halfway through. Each line in the graph shows a similar

16

behavior. The blue dots representing IDEA’s performance, we can
see, are only statistically different a few times.

Table 9 comments on IDEA’s results compared to everything to
the right and left of each blue dot: Group1, Group3 are all the
results with a median MRE less, more than IDEA. We perform
statistical Mann-Whitney U-test with a 95% difference measure.
The Win-Tie-Loss numbers in Table 9 come from the following
MWU (Mann-Whitney U-test) comparison:

 if MWU(Ei, Ej , 95) statistically same then
 tiei = tiei + 1;
 tiej = tiej + 1;
 else
 if (Ei, Ej) then
 wini = wini + 1
 lossj = lossj + 1
 else
 winj = winj + 1
 lossi = lossi + 1
 end if
 end if

Table 9 Win-Tie-Loss statistics for IDEA against 90 methods

Figure 8 Sorted methods by Median MRE, IDEA score below for each abbreviated dataset

As shown in Table 9 several data sets generated results were the
best and worst results were statistically indistinguishable (e.g. the
Albrecht results on line one). This is not a new finding- we have
seen and reported on this effect before [8].

At first glance, Table 9 seems somewhat negative regarding
IDEA; observe how in Cocomo81, DesharnaisL2, DesharnaisL3,
Finnish, Maxwell, and NasaCenter5, IDEA’s results are
indistinguishable from the worst result. However, a closer
inspection of the raw data reveals a different conclusion.

In Figure 8, all the results have a left-hand-side valley (low errors)
and a raised right-hand-side mountain (high errors). While in the
valley all the methods exhibit a very similar performance, it is the
mountain where we see the major performance differences. Note
that none of IDEA’s results (the blue spots) appear in those
mountains. That is, even though in the Mann-Whitney tests, other
methods do better than IDEA, qualitatively, we can recommend
IDEA since in no case do its results fall into the left-hand-side
region where methods most malfunction

17

6. CONCLUSION
We seek a “next generation” methods for empirical software
engineering where humans can use the insights gained from data
miners. To date, papers at PROMISE have been very weak at
moving from mere estimation to offering project planning advice.
We show here that a combination of data reduction operators
(dimensionality, row, column, rule) can produce tiny human-
readable recommendations relating to how to change a project to
best, or worst, effect. We also show that those reduction operators
do not remove the essential features of the data. If they did, they
we would expect IDEA to perform very poorly. However, as
argued above, IDEA’s explanation system does not greatly
compromise a data set’s effectiveness.

We can conclude from this research that to learn we must cut and
chip away at the data. We have to actually throw data away to be
able to see the patterns more easily.

7. ACKNOWLEDGMENTS
This work was funded by NSF grant CCF:1017330 and the
Qatar/West Virginia University research grant NPRP 09- 12-5-2-
470.

8. REFERENCES
[1] A. Venkatachalam. 1993. Software cost estimation using

artificial neural networks. Proceedings of international joint
conference on neural networks, pp. 987–990.

[2] Boehm B., Abts C., and Chulani S. 2000. Software
development cost estimation approaches \– A survey. Ann.
Softw. Eng. 10, 1-4 (January 2000), 177-205.

[3] Boley D. 1998. Principal Direction Divisive Partitioning.
Data Min. Knowl. Discov. 2, 4 (December 1998), 325-344.
C. E. Shannon. 1948. A mathematical theory of
communication. Bell System Technical Journal, vol. 27, pp.
379-423 and 623-656, July and October, 1948.

[4] Chang C. 1974. Finding Prototypes For Nearest Neighbor
Classifiers. IEEE Trans. Comput. 23, 11 (November 1974),
1179-1184.

[5] D. Aha, D. Kibler, M. Albert. 1991. Instance-based learning
algorithms. Machine Learning 6 (1991) 37–66.

[6] Faloutsos C. and Lin K. 1994. Fastmap: A Fast Algorithm
for Indexing, Data-Mining and Visualization of Traditional
and Multimedia Datasets. Technical Report. University of
Maryland at College Park, College Park, MD, USA.

[7] Kocaguneli E., Menzies t., Keung J. 2011. On the Value of
Ensemble Effort Estimation. IEEE Transactions on Software
Engineering, vol. 99, no. PrePrints.

[8] Kultur, Y., Turhan B., and Basar B.A. 2008. ENNA:
software effort estimation using ensemble of neural networks
with associative memory. In Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of

software engineering (SIGSOFT '08/FSE-16). ACM, New
York, NY, USA, 330-338.

[9] Lorenzo Strigini L., 1996. Limiting the Dangers of Intuitive
Decision Making. IEEE Softw. 13, 1 (January 1996), 101-
103. DOI=10.1109/52.476293
http://dx.doi.org/10.1109/52.476293

[10] Lum K., Menzies T., & Baker D. 2008. 2cee, a twenty first
century effort estimation methodology. ISPA/SCEA,p12–14.

[11] Mendes E., Watson I., Triggs C., Mosley N., and Counsell S.
2003. A Comparative Study of Cost Estimation Models for
Web Hypermedia Applications. Empirical Softw. Engg. 8, 2
(June 2003), 163-196. DOI=10.1023/A:1023062629183
http://dx.doi.org/10.1023/A:1023062629183

[12] Menzies, T.; Butcher, A.; Marcus, A.; Zimmermann, T.;
Cok, D. 2011. Local vs. global models for effort estimation
and defect prediction. Automated Software Engineering
(ASE), 2011 26th IEEE/ACM International Conference on,
vol., no., pp.343-351, 6-10 Nov. 2011
DOI: 10.1109/ASE.2011.6100072 . URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6
100072&isnumber=6100039.

[13] Menzies T., Mizuno O., Y. Takagi and T. Kikuno. 2009.
Explanation vs Performance in Data Mining: A Case Study
with Predicting Runaway Projects, Journal of Software
Engineering and Applications, Vol. 2 No. 4, pp. 221-236.

[14] Menzies T. and Shepperd M. 2012. Special issue on
repeatable results in software engineering prediction. Journal
of Empirical Software Engineering, 17(1):1-17.

[15] Menzies T. and Shull F. 2010. The Quest for Convincing
Evidence. Making Software: What Really Works and We
Believe It. A. Oram, G. Wilson, eds, O’Reilly Books, 2010.

[16] M. Jorgensen and M. Shepperd. 2007. A Systematic Review
of Software Develoment Cost Estimation Studies. IEEE
Trans. Softw. Eng., vol. 33 no. 1, pp. 33-53.

[17] Platt J.C. 2005. FastMap, MetricMap, and Landmark MDS
are all Nystrom Algorithms. Microsoft Research Technical
Memo. URL: http://goo.gl/DoMzg.

[18] Shepperd M. and Schofield C. 1997. Estimating Software
Project Effort Using Analogies. IEEE Trans. Softw. Eng. 23,
11 (November 1997), 736-743.

[19] Shepperd M., Schofield C., & Kitchenham B. 1996. Effort
estimation using analogy. (ICSE '96). IEEE Computer
Society, Washington, DC, USA, 170-178.

[20] Raymond P.L. Buse and Thomas Zimmermann. 2011.
Information Needs for Software Development Analytics, no.
MSR-TR-2011-8, 30

18

