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Abstract Background: Conclusion Instability in software effort estimation (SEE)
refers to the inconsistent results produced by a diversity of predictors using different
datasets. This is largely due to the “ranking instability” problem, which is highly
related to the evaluation criteria and the subset of the data being used.

Aim: To determine stable rankings of different predictors.
Method: 90 predictors are used with 20 datasets and evaluated using 7 perfor-

mance measures, whose results are subject to Wilcoxon rank test (95 %). These re-
sults are called the “aggregate results”. The aggregate results are challenged by a
sanity check, which focuses on a single error measure (MRE) and uses a newly de-
veloped evaluation algorithm called CLUSTER. These results are called the “specific
results.”

Results: Aggregate results show that: (1) It is now possible to draw stable con-
clusions about the relative performance of SEE predictors; (2) Regression trees or
analogy-based methods are the best performers. The aggregate results are also con-
firmed by the specific results of the sanity check.

Conclusion: This study offers means to address the conclusion instability issue in
SEE, which is an important finding for empirical software engineering.
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1 Introduction

Being able to choose the most appropriate software development effort predictor
for the local software projects remains elusive for many project managers and re-
searchers. For decades, researchers have been seeking for the “best” software effort
predictor. At the time of writing, there is no such a commonly agreed “best” predictor
found, which provides consistently the most accurate estimate. The usual conclusion
from studies is that effort estimation suffers from a ranking instability syndrome; i.e.
different researchers offer conflicting rankings as to what is “best” (Shepperd and
Kadoda 2001; Myrtveit et al. 2005). It seems, given different historical datasets, dif-
ferent sets of best effort predictors exist under various different situations.

This is an open and imminent issue as accurate effort estimation is crucial to Soft-
ware Engineering, and is known as a major challenge for many software project man-
agers. Both overestimating and underestimating would result in unfavorable impacts
to the business competitiveness and project resource planning. Conventionally, the
single most familiar effort predictor may be used for different situations, however
this approach may not produce the best effort estimates for different projects.

Being able to compare and determine the best effort predictor for different scenar-
ios is critically important to the relevance of the estimates to the target problem. Soft-
ware effort estimation research focuses on the learner used to generate the estimate
(e.g. linear regression, neural nets, etc.) in many cases, overlooking the importance
of the quality and characteristics of the data being used in the estimation process. We
argue that this approach is somewhat misguided since, as demonstrated in this study,
learner performance is greatly influenced by the data preprocessing and the datasets
being used to evaluate the learner. A combination of a preprocessor and a learner
forms a complete effort estimation predictor; e.g. the data normalization technique as
a preprocessor with linear regression as the learner.

Ranking stability in software effort estimation is of the primary research focus.
Being able to correctly classify the characteristics of each method allows the most
suitable predictors to be used in the estimation process. This study is not at an early
stage, it is based on the success of a previous study described in Menzies et al. (2010),
where a large number of predictors were applied on COCOMO datasets, and they
were able to derive precise and stable ranking of all the predictors under changing
parameters in the random number seeds, different evaluation criteria and subsets of
the data used.

The hypothesis in our study is that if we are able to derive a stable ranking conclu-
sion using simulated data, similar behavior should be observed when applying real
heterogeneous datasets from public domains, Note that data sets from public domains
come from different sources with various differences in project characteristics and
evaluation criteria. The main contribution is that this comprehensive study presents a
method, which can be used to determine the best effort predictors to use at different
situations.

Method combinations can produce vastly different results, in all, this study applies
90 predictors (9 preprocessors × 10 learners) to 20 datasets and measure their per-
formance using seven performance criteria subject to a statistical check via Wilcoxon
non-parametric statistical test. The statistical test is used to generate the so called
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win-tie-loss statistics. One result of exploring such a large space of data and algo-
rithms is that we are able to report stable conclusions. We will refer to our results
coming from the aggregate of 90 predictors, 20 data sets and 7 error measures as the
“aggregate results.” The aggregate results are validated through focusing on a spe-
cific case of a single error measure and a statistical method other than win-tie-loss
statistics. For the error measure we chose to use magnitude of relative error (MRE)
as it is one of the mostly used performance measures in software effort estimation.
As for the statistical method, we developed and applied an algorithm that is called the
“CLUSTER,” whose details are given in Sect. 4.1. CLUSTER first sorts 90 predictors
from best to worst (according to median MRE, i.e. MdMRE) and allows each data
set to group 90 predictors into a number of clusters. The methods in every cluster are
statistically the same according to Kruskal-Wallis statistical test (an ANOVA alter-
native) and the neighboring methods in consecutive clusters (i.e. the methods where
two cluster became disjoint) are statistically different from one another according to
Wilcoxon statistical test. So, CLUSTER uses:

– Wilcoxon to compare 2 learners to see whether or not the second method should
start a new cluster;

– and Kruskal-Wallis to compare n-many learners to see if the methods within a
single cluster would still be statistically the same after the addition of a new learner.

This sanity check showed us that:

– Some data sets (6 out of 20) are non-diverse, i.e. for these data sets the grouping
of 90 methods into clusters do not create diversity (measured with Gini index).

– It is unnecessary to seek for a sanity check in non-diverse data sets (as most of the
learners are grouped into a big cluster), which gives 20 − 6 = 14 data sets for the
sanity check.

– It is possible to have data sets, where the aggregate results and the specific results
do not completely agree on which group of methods is the best.

– However, such data sets are very rare (1 out of 14), i.e. aggregate results hold for
most of the data sets (13 out of 14) in a specific setting.

This paper is structured as follows. Section 2 discusses effort estimation and the
prior reports on conclusion instability. The experimental settings of this research are
given in Sect. 3. Section 4 firstly summarizes the aggregate results, which show that if
we extend the experiments to a broader set of methods and project data we are able to:
(1) discover stable conclusions and (2) list the best (and the worst) effort predictors.
In Sect. 4.1 we conduct a sanity check on the aggregate results. Then we provide
the discussion of our findings and list the threats to validity in Sect. 5. Section 6
concludes the paper.

2 Background

2.1 Comparison of multiple software effort estimation methods

With the availability of different SEE methods, it is becoming a more non-trivial task
to select the most appropriate modeling methods for a particular software develop-
ment situation. Despite decades of research, there is still no consensus on which effort
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predictors are better or worse than others. Researchers have expressed concerns and
even doubt that such a ranking of predictors can ever be generated.

For example, Shepperd and Kododa (2001) compared regression, rule induction,
nearest neighbor and neural nets, in an attempt to explore the relationship between
accuracy, choice of prediction system, and different dataset characteristics by using a
simulation study based on artificial datasets. A number of conflicting results exist in
the literature as to which method provides superior prediction accuracy, and possible
explanations are offered including the misuse of an evaluation criteria such as MMRE
or a malformed dataset being used etc. All of these can have a strong influence on
the relative effectiveness of different prediction models. The conclusion of Shepperd
et al.’s study based on simulation is that it is generally infeasible to determine which
prediction technique is the “best”:

– None of these existing predictors were consistently the “best”;
– The accuracy of an estimate depends on the dataset characteristic and a suitable

prediction model for the given dataset.

2.2 Ranking instability

More recent results suggest that it is appropriate to revisit the ranking instability
hypothesis. Menzies et al. (2010) applied 158 predictors to various subsets of two
COCOMO datasets. In a result consistent with Shepperd and Kododa, they found the
precise ranking of the 158 predictors changed according to

– the random number seeds used to generate train/test sets;
– the performance evaluation criteria used;
– and which subset of the data was used.

In addition, there are 4 methods consistently outperformed the other 154 across all
datasets, across 5 different random number seeds, and across three different evalua-
tion criteria, making the result stable.

The hypothesis in here is that if we are able to derive a stable conclusion using sim-
ulated data across 5 different random number seeds as source of changes, and across 3
different evaluation criteria, similar behavior should be observed when applying het-
erogenous datasets from public domains where they are from different sources with
various differences in project characteristics. Figure 1 lists 20 real world software de-
velopment project datasets which have become available at the PROMISE repository
of reusable SE data.1 This enables a more in-depth understanding of a more stable
conclusion using real SE project data instead of simulated data (as reported by Shep-
perd and Kadoda 2001) or to study merely two datasets (as reported by Menzies et al.
2010). A more extensive empirical analysis can be carried out.

With previous studies and conclusions are considered, unless we address the insta-
bility issue, we cannot make conclusive remarks about neither the algorithms nor the
datasets. Our fundamental motivation is to question the stability issue; accordingly,
we propose a methodology for evaluating the stability (see methodology of Fig. 6).

1http://promisedata.org/data.

http://promisedata.org/data
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Fig. 1 The 1198 projects used in this study come from 20 data sets. Indentation in column one denotes a
dataset that is a subset of another dataset. For notes on these datasets, see the Appendix

2.3 Estimation methods for software development projects

2.3.1 Algorithmic methods

There are different algorithmic effort predictors introduced over the past 15 years.
For instance, in the class of instance-based algorithms, Fig. 2 shows that there are
thousands of options just in that one sub-field. As to non-instance methods, there
are many proposed in the literature including various kinds of regression (simple,
partial least square, stepwise, regression trees), and neural networks just to name a
few. Refer to Sect. 3.3 for further information. The combination of the instance and
non-instance-based methods can create even more algorithms. For example, once an
instance-based method finds its nearest neighbors, those neighboring items can be
used for adaptation to the problem under investigation using regression or neural nets
(Li et al. 2009).

2.3.2 Non-algorithmic methods

An alternative popular approach to algorithmic approaches (e.g. the instance-based
methods of Fig. 2) is to utilize the best knowledge of an experienced expert. Expert
based estimation (Jørgensen 2004) is a human intensive approach that is most com-
monly adopted in practice. Estimates are usually produced by domain experts based
on their very own personal experience. It is flexible and intuitive in a sense that it can
be applied in a variety of circumstances where other estimating techniques do not
work (e.g. when there is a lack of historical data).

Jorgensen (2005) provides guidelines for producing realistic software develop-
ment effort estimates derived from industrial experience and empirical studies. An
interesting finding was that the combined estimation method in expert based estima-
tion offers the most robust and accurate estimation method, as combining estimates
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Instance-based learners draw conclusions from instances near the test instance. Mendes et al. (2003)
discuss various near-ness measures.

M1 : A simple Euclidean measure;
M2 : A “maximum distance” measure that that focuses on the single feature that maximizes inter-

project distance.
M3 : More elaborate kernel estimation methods.

Once the nearest neighbors are found, they must be used to generate an effort estimate via...

R1 : Reporting the median effort value of the analogies;
R2 : Reporting the mean dependent value;
R3 : Reporting a weighted mean where the nearer analogies are weighted higher than those further

away (Mendes et al. 2003);

Prior to running an instance-based learning, it is often recommended to handle anomalous rows by:

N1 : Using in an “as is” manner;
N2 : Using outlier removal (Keung et al. 2008);
N3 : Prototype generation; i.e. replace the data set with a smaller set of most representative exam-

ples (Chang 1974).

When computing distances between pairs, some feature weighting scheme is often applied:

W1 : All features have uniform weights;
W2..W9 : Some pre-processing scores the relative value of the features using various methods (Keung

et al. 2008; Li et al. 2009; Hall and Holmes 2003). The pre-processors may require discretiza-
tion.

Discretization breaks up continuous ranges at points b1, b2, . . . , each containing counts of c1, c2, . . .

of numbers (Gama and Pinto 2006). Discretization methods include:

D1 : Equal-frequency, where ci = cj ;
D2 : Equal-width, where bi+1 − bi is a constant;
D3 : Entropy (Fayyad and Irani 1993);
D4 : PKID (Yang and Webb 2002);
D5 : Do nothing at all.

Finally, there is the issue of how many k neighbors should be used:

K1 : k = 1 is used by Lipowezky et al. (1998) and Walkerden & Jeffery (1999);
K2 : k = 2 is used by Kirsopp & Shepperd (2002)
K3 : k = 1,2,3 are used by Mendes el al. (2003)
K4 : Li et al. use k = 5 (Li et al. 2009);
K5 : Baker tuned k to a particular training set using an experimental method (Baker 2007).

Fig. 2 Each combination of the above N×W×D×M×R×K techniques is one algorithm for in-
stance-based effort estimation. This figure shows 3 × 3 × 3 × 9 × 5 × 5 > 6,000 algorithms for effort
estimation. Some of these ways can be ruled out, straight away. For example, at k = 1 all the adaptation
mechanisms return the same result. Also, not all the feature weighting techniques require discretization,
decreasing the space of options by a factor of five. However, even after discarding some combinations,
there are still hundreds to thousands of algorithms to explore

captures a broader range of information that is relevant to the target problem. For
example combining estimates of analogy based with expert based method. Data and
knowledge relevance to the project’s context and characteristics are more likely to
influence the prediction accuracy.

Although widely used in industry, there are still many ad-hoc methods for ex-
pert based estimation. Shepperd et al. (1996) do not consider expert based estimation
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an empirical method because the means of deriving an estimate are not explicit and
therefore not repeatable, nor are they easily transferable to other staff. In addition,
knowledge relevancy is also a problem, as an expert may not be able to justify esti-
mates for a new application domain. Hence, the rest of this paper does not consider
non-algorithmic methods.

3 Experimental design

In our experiments, numerous performance measures were collected after various
predictors (combinations of preprocessors and learners) were applied to the data of
Fig. 1. This section describes those performance measures, preprocessors, and learn-
ers.

Since it is impractical to explore (say) the thousands of options described in Fig. 2,
we elected to explore variants commonly used in the literature. For example, we ex-
plore neural nets, regression, and analogy because those methods were explored by
Shepherd and Kododa (2001). Nevertheless, it is important to note that our conclu-
sions come from the predictors, performance criteria and datasets used in this study.
Further work may be required to confirm our findings on other predictors, perfor-
mance criteria, datasets.

The following sections will provide details of the experiment on 20 datasets:

– 3.1. Evaluation Criteria
– 3.2. Pre-Processors
– 3.3. Predictors/Learners
– 3.4. Method/Procedure

3.1 Performance evaluation criteria

Performance measures comment on the success of a prediction. For example, the
absolute residual (AR) is the difference between the predicted and the actual:

ARi = |xi − x̂i | (1)

(where xi , x̂i are the actual and predicted value for test instance i).
The Magnitude of Relative Error measure a.k.a. MRE is a very widely used eval-

uation criterion for selecting the best effort predictor from a number of competing
software prediction models (Shepperd and Schofield 1997; Foss et al. 2003). MRE
measures the error ratio between the actual effort and the predicted effort and can be
expressed as the following equation:

MREi = |xi − x̂i |
xi

= ARi

xi

(2)

A related measure is MER (Magnitude of Error Relative to the estimate (Foss et al.
2003)):

MERi = |xi − x̂i |
x̂i

= ARi

x̂i

(3)
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The overall average error of MRE can be derived as the Mean or Median Magni-
tude of Relative Error measure (MMRE and MdMRE respectively):

MMRE = mean(all MREi ) (4)

MdMRE = median(all MREi ) (5)

A common alternative to MMRE is PRED(25), and it is defined as the percent-
age of successful predictions falling within 25 % of the actual values, and can be
expressed as follows, where N is the dataset size:

PRED(25) = 100

N

N∑

i=1

{
1 if MREi ≤ 25

100

0 otherwise
(6)

For example, PRED(25) = 50 % implies that half of the estimates are failing
within 25 % of the actual values (Shepperd and Schofield 1997).

There are other performance measures including Mean Balanced Relative Error
(MBRE) and the Mean Inverted Balanced Relative Error (MIBRE) studied by Foss
et al. (2003):

MBREi = |x̂i − xi |
min(x̂i , xi)

(7)

MIBREi = |x̂i − xi |
max(x̂i , xi)

(8)

3.2 Pre-processors

In this study, we use 10 pre-processors for investigation:

– x3 simple preprocessors: none, norm, and log;
– x1 feature synthesis methods called PCA;
– x2 feature selection methods: SFS (sequential forward selection) and SWR;
– x4 discretization methods: divided on 3 and 5-bins based on equal frequency and

width.

None is just the simplest option of avoiding a pre-processor, i.e. all data values are
unadjusted. With the norm (max-min) preprocessor, numeric values are normalized
to a 0–1 interval using (9).

normalizedValue = (actualValue − min(allValues))

(max(allValues) − min(allValues))
(9)

With the log preprocessor, all numerics are replaced with their logarithm. This
logging procedure minimizes the effects of the occasional very large numeric values.

Principal component analysis (Alpaydin 2004), or PCA, is a feature synthesis pre-
processor that converts a number of possibly correlated variables into a smaller num-
ber of uncorrelated variables called components.

Some of the preprocessors aim at finding a subset of all features according to cer-
tain criteria such as SFS (sequential forward selection) and SWR (stepwise regres-
sion). SFS adds features into an initially empty set until no improvement is possible
with the addition of another feature. Whenever the selected feature set is enlarged,



Autom Softw Eng

some oracle is called to assess the value of that set of features. In this study, we used
the MATLAB, objective function (which reports the mean-squared-error of a simple
linear regression on the training set). One caution to be made here is that exhaustive
search algorithms over all features can be very time consuming (2n combinations in
an n-feature dataset), therefore SFS was designed to work only in forward direction
(no backtracking).

SWR adds and removes features from a multilinear model. Addition and removal
is controlled by the p-value in an F-Statistic. At each step, the F-statistics for two
models (models with/out one feature) are calculated. Provided that the feature was
not in the model, the null hypothesis is: “Feature would have a zero coefficient in the
model, when it is added”. If the null hypothesis can be rejected, then the feature is
added to the model. As for the other scenario (i.e. feature is already in the model),
the null hypothesis is: “Feature has a zero coefficient”. If we fail to reject the null
hypothesis, then the term is removed.

Discretizers are pre-processors that map every numeric value in a column of data
into a small number of discrete values:

– width3bin: This procedure clumps the data features into 3 bins, depending on
equal width of all bins see (10).

binWidth = ceiling

(
max(allValues) − min(allValues)

n

)
(10)

– width5bin: Same as width3bin but 5 bins instead.
– freq3bin: Generates 3 bins of equal population size;
– freq5bin: Same as freq3bin, but 5 bins instead.

3.3 Predictors (learners)

Based on the effort estimation literature, we identified 9 commonly used learners:

– x2 instance-based learners: ABE0-1NN, ABE0-5NN;
– x2 iterative dichotomizers: CART(yes),CART(no);
– x1 neural net: NNet;
– x4 regression methods: LReg, PCR, PLSR, SWR.

Instance-based learning can be used for analogy-based estimation. A large class of
ABE algorithms was described in Fig. 2. Since it is not practical to experiment with
the 6000 options defined in Fig. 2, we focus on two standard variants. ABE0 is our
name for a very basic type of ABE that we derived from various ABE studies (Mendes
et al. 2003; Li et al. 2009; Kadoda et al. 2000). In ABE0-kNN, features are firstly nor-
malized to 0–1 interval, then the distance between test and train instances is measured
according to Euclidean distance function, k nearest neighbors are chosen from train-
ing set and finally for finding estimated value (a.k.a adaptation procedure) the median
of k nearest neighbors is calculated. We explored two different kNN:

– ABE0-1NN: Only the closest analogy is used. Since the median of a single value
is itself, the estimated value in ABE0-1NN is the actual effort value of the closest
analogy.
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– ABE0-5NN: The 5 closest analogies are used for adaptation.

Iterative Dichotomizers seek the best attribute value splitter that most simplifies the
data that fall into the different splits. Each such splitter becomes a root of a tree.
Sub-trees are generated by calling iterative dichotomization recursively on each of
the splits. The CART iterative dichotomizer (Breiman et al. 1984) is defined for con-
tinuous target concepts and its splitters strives to reduce the GINI index of the data
in each split. In this study, we use two variants:

– CART (yes): This version prunes the generated tree using cross-validation. For
each cross-validation, an internal node is made into a leaf (thus pruning its sub-
nodes). The sub-tree that resulted in the lowest error rate is returned.

– CART (no): Uses the full tree (no pruning).

In Neural Nets, or NNet, an input layer of project details is connected to zero or
more “hidden” layers which then connect to an output node (which yields the effort
prediction). The connections are weighted. If the signal arriving to a node sums to
more than some threshold, the node “fires” and a weight is propagated across the net-
work. Learning in a neural net compares the output value to the expected value, then
applies some correction method to improve the edge weights (e.g. back propagation).
Our NNet uses four layers: Input layer, two hidden layers and an output layer.

This study also uses four regression methods. LReg is a simple linear regression
algorithm. Given the dependent variables, this learner calculates the coefficient esti-
mates of the independent variables. SWR is the stepwise regression discussed above.
Whereas above, SWR was used to select features for other learners, here we use
SWR as a learner (that is, the predicted value is a regression result using the features
selected by the last step of SWR). Partial Least Squares Regression (PLSR) as well
as Principal Components Regression (PCR) are algorithms that are used to model
independent variables. While modeling, they both construct new independent vari-
ables as linear combinations of original ones. However, the ways they construct the
new independent variables are different. PCR generates new independent variables
to explain the observed variability in the actual ones. While generating new variables
the dependent variable is not considered at all. In that respect, PCR is similar to se-
lection of n-many components via PCA (the default value of components to select is
2, so we used it that way) and applying linear regression. PLSR, on the other hand,
considers the independent variable and picks up the n-many of the new components
(again with a default value of 2) that yield lowest error rate. Due to this particular
property of PLSR, it usually results in a better fitting.

3.4 Experimental procedure

This study reused the experimental procedure of a recent prominent study (Li and
Ruhe 2007). In the leave-one-out experiment, given N projects, 1 project at a time
is selected as the test and the remaining N − 1 projects are used for training, so
eventually we have N predictions (this procedure refers to Jack-knifing in statistics).
The resulting N predictions are then used to compute our seven evaluation criteria
given in Sect. 3.1.
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Fig. 3 Comparing algorithms
(i, j) on their performance
(Pi,Pj ). P stands for a
particular performance measure.
The “better” predicate changes
according to P . For error
measures like MRE, “better”
means lower values. For
PRED(25), “better” means
higher values

To compare the performance of one predictor versus the rest, we used a Wilcoxon
non-parametric statistical hypothesis test. Wilcoxon is more robust than the Student’s
t-test as it compares the sums of ranks, unlike Student’s t-test which may introduce
spurious findings as a result of possible outliers in the given datasets. Ranked sta-
tistical tests like the Wilcoxon are also useful if it is not clear that the underlying
distributions are Gaussian (Kliijnen 1997).

Using the Wilcoxon test, for each dataset, the performance measures collected
from each of our 90 predictors was compared to the 89 others. This allowed us to
collect win-tie-loss statistics using the algorithm of Fig. 3. First, we want to check if
two distributions i, j are statistically different according to the Wilcoxon test (95 %
confident); otherwise we increment tiei and tiej . If the distributions are statistically
different, we update wini ,winj and lossi , lossj , after checking which one is better
w.r.t. current performance measure.

4 Results

After applying leave-one-out to all 20 data sets, the procedure of Fig. 3 was re-
peated seven times (once for MAR, MMRE, MMER, MBRE, MIBRE, MdMRE and
PRED(25)). Our ninety predictors were then sorted by their total number of losses
over all datasets. The resulting sort order is shown in Fig. 4. The predictor, with
fewest losses (norm/CART(yes)) was ranked #1 and the predictor with the most
losses (PCA/LReg) was ranked #90.

Given 89 comparisons and seven performance measures and 20 datasets, the max-
imum number of losses for any predictor was 89 × 7 × 20 = 12,460. Figure 5 sorts
all 90 predictors according to their total losses seen in all seven performance criteria
(expressed as a percentage of 12,460). The x-index of that figure corresponds to the
ranks of Fig. 4; e.g. the top ranked predictor of norm/CART(yes) lost in nearly zero
percent of our experiments.

Figure 6 tests the stability of the predictors. In this plot, we check if the sort orders
are changed by different performance criteria:

– In Fig. 6, we report the mean of maximum rank changes for each predictor with
respect to their ordering in Fig. 4.
– Each error measure defines its own ordering of predictors w.r.t. its win, loss or

win − loss values.
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Fig. 4 Detailed pre-processor and algorithm combinations (i.e. predictors), sorted by the sum of their
losses seen in all performance measures and all data sets. The predictor with fewest losses is ranked #1
and is norm/CART(yes). At the other end of the scale, the predictor with the most losses is ranked #90
and is PCA/LReg

– Maximum rank change is the maximum absolute difference between either of
these orderings.

– Then, mean of maximum rank changes coming from 7 performance measures
gives us Fig. 6.

The sort order on the x-axis of Fig. 6 was kept the same as the before. A line drawn
parallel to x-axis at y = 10 gives predictors, whose mean rank change is less/more
than 10. See in Fig. 6 that y = 10 line divides all predictors into 3 regions: a (from
predictor 1 to 13), b (from predictor 14 to 64) and c (from predictor 65 to 90). Re-
gions a and c show “high-ranked” and “low-ranked” predictors respectively. None of
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Fig. 5 The ninety predictors of
Fig. 4, sorted by their percentage
of maximum possible losses (so
100 % = 12,460)

Fig. 6 Predictors and the mean of their maximum rank changes over all performance measures. Mean
rank change of smaller than 10 divides 90 predictors into 3 regions. Region “a” consists of high-ranked
stable predictors, whereas region “c” contains low-ranked but still stable predictors. Region “b” on the
other hand shows middle-ranked and non-stable predictors

the predictors in regions a and c exceed mean rank change of 10, i.e. they are “sta-
ble” in high and low ranks. In region b “medium-ranked” predictors are accumulated.
However, all predictors in region b have mean rank changes above 10, i.e. they are
“unstable” in this region. In a result consistent with prior reports on ranking instabil-
ity, the lines in each region are not exactly smooth. However, they do closely follow
the same general trends as Fig. 5.

Since the sort orders seen using the number of losses and mean rank changes
over seven performance criteria are mostly stable, we use them to draw Fig. 7. In
that figure, each x, y position shows the results of 623 comparisons (each predictor
compared to 89 others using seven performance measures; 89 × 7 = 623). The y-axis
of that figure shows the 90 predictors sorted in the rank order of Fig. 4. For example,
the top-ranked predictor norm/CART(yes) appears at y = 1; the log/ABE0-1NN
result appears at y = 12; the log/LReg results appear at y = 80; and the worst-ranked
predictor PCA/LReg appears at y = 90.

In order to discuss which learners/preprocessors are “best”, we divide Fig. 7 into
3 bands of Fig. 6. We reserve the lowest band from predictor 1 to 13 (containing the
“best” predictors) for the region where all predictors have a mean rank change of
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Fig. 7 Number of losses seen
in 90 predictors and 20 datasets
expressed as a percentage of the
maximum losses possible for
one predictor in one dataset (so
100 % = 89 comparisonx ×
7 error measures = 623;
50 % = 311; 25 % = 156;
12.5 % = 78). The predictors on
the y-axis are sorted according
to Fig. 4

smaller than 10. Note that predictors in that region almost always lose less than 1
8 th

of the time (i.e. the rows y = 1 to y = 13 that are almost completely yellow in Fig. 7).
In the other bands (boundaried at y = 14 to y = 64 and y = 65 to y = 90), predictors
lose much more frequently, i.e. behavior of predictors in the loss percentage graph of
Fig. 7 are in agreement with the rank change graph of Fig. 6.

Figure 8 shows the spectrum of PRED(25) values across the 3 bands. As might be
expected, the y-axis sort order of Fig. 8 predicts for estimation accuracy. As we move
over the three bands from worst to best, the PRED(25) values double (approximately),
thus confirming the unique performance of predictors in each band.

Figure 9 shows the frequency counts of preprocessors and learners grouped into
the three bands:

– A “good” preprocessor/learner appears often in the lower bands (tendency towards
band a). In Fig. 9, CART is an example of a “good” learner.

– A “poor” preprocessor/learner appears more frequently in the higher bands (ten-
dency towards band c). In Fig. 9, all the discretization preprocessors (e.g. freq3bin)
are “poor” preprocessors.

– The gray rows of Fig. 9 shows preprocessor/learner that are neither “good” nor
“poor” (since they exist in all 3 bands and have high frequency counts in bands b
and c); e.g. see the log preprocessor.
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Fig. 8 Spectrum of Pred(25)
across the bands

Fig. 9 Frequency counts over 7
error measures for preprocessor
and learners in the three bands
of Fig. 6

4.1 Sanity check

Our purpose in the sanity check is two-fold:

– To ensure our observations from the aggregate of loss values over 7 error measures
and 20 data set would hold for a specific case due to a single error measure;

– Subjecting a specific error measure to a statistical procedure other than win-tie-loss
statistics.

We chose to focus on the specific error measure of MRE. As for the proposed sta-
tistical assessment, we devised an algorithm called CLUSTER, which makes use of 2
statistical tests in combination: Wilcoxon and Kruskal-Wallis (an ANOVA alternative
for the cases where ANOVA’s normality assumptions may be invalid). For each data
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set, CLUSTER groups 90 predictors into “c” clusters. The predictor(s) grouped in
each one of the “c” clusters have statistically the same MRE values with one another
according to Kruskal-Wallis. The neighboring predictors in two consecutive clusters
have statistically different MRE values from one another according to Wilcoxon. The
detailed steps of CLUSTER are as follows:

1. Take a single data set D

2. Sort 90 predictors according to their MdMRE values for D in ascending order (i.e.
best predictor appears at #1).

3. Set i = 1 and j = 1
4. Place predictor #i into group #j .
5. Compare MRE values of predictor #i with #i + 1 w.r.t. Wilcoxon
6. Compare if MRE values of all the predictor(s) in group #j and MRE values of

predictor #i + 1 w.r.t. Kruskal-Wallis.
7. If both Wilcoxon and Kruskal-Wallis indicate MRE values are statistically the

same; then set i = i + 1 and go to Step 4; else set i = i + 1 and j = j + 1 and go
to Step 4. Do this until all the 90 predictors are exhausted.

Note that the procedure of CLUSTER enables each data set to define its own groups
of predictors (clusters), where MRE values of the predictors within each group are
statistically the same. The number of groups formed for each data set through the
CLUSTER as well as the number of predictors appearing in each group are given in
Fig. 10. Except the china data set, all the data sets have less than 6 groups. For the
reasons of space, we summed the number of predictors appearing in groups #7 to #16
of china under the Rest column. The number distribution of predictors into groups #7
to #16 are: 1, 9, 4, 8, 7, 7, 6, 1, 1, 6 (respectively).

Fig. 10 The number distribution of 90 predictors to the groups formed by CLUSTER as well as the Gini
indices (Breiman 1996) calculated by that distribution. Data sets are sorted w.r.t. their Gini indices in
descending order



Autom Softw Eng

The group counts as well as the distribution of the 90 predictors to these groups
for each data set can be used as an indicator of the impurity of the data sets. One
of the most commonly used measures of impurity is the Gini index (Breiman 1996),
which had also been used as a splitting criterion in the classification and regression
trees (Breiman et al. 1984). The formula for the Gini index of a data set D with
“c” clusters is given in (11), where |ci | denotes the number of predictors within ith

cluster.

Gini(D) = 1 −
c∑

i=1

( |ci |
90

)2

(11)

Given that the data set D forms only a single cluster of 90 predictors, then its Gini
index becomes Gini(D) = 1− (1)2 = 0. Such pure data sets with a Gini index of zero
are “non-diverse” data sets, meaning that they are unable to help us identify predictors
with high and low MRE values. telecom1 and kemerer data sets are examples to “non-
diverse” data sets.

Note that the data sets of Fig. 10 are sorted according to their Gini indices. Starting
from Gini index of 0 we grouped all the 20 data sets into 3 bins with increment of
30 in the Gini index. The resulting bins are called: Diverse (with 6 data sets), semi-
diverse (with 8 data sets) and non-diverse (with 6 data sets). These bins are indicated
on Fig. 10. When performing our sanity check, we will focus on diverse and semi-
diverse data sets only.

Figure 11 is our sanity check on the top 13 learners. It shows the success of top 13
learners in the diverse and semi-diverse data sets. The cells of Fig. 11 show in which
group (top 1, 2 and so on) each one of the top 13 learners appeared. The cells in which
top 13 learners do not appear within the best group (i.e. top “1”) are highlighted. Note
that there are only two data sets for which the majority of the cells are highlighted:

Fig. 11 The number of groups per dataset (only diverse and semi-diverse data sets) and the group-rank of
the top 13 learners. The cells where the top 13 predictors do not appear on the top group are highlighted
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Fig. 12 The number of groups per dataset and the group-rank of the bottom 26 learners to these groups.
The cells where the bottom 26 learners appear on the top group are highlighted

china and desharnaisL3. Thinking that china data set has 16 groups and that the top
group has only 2 predictors in it, top 13 learners to be in the 2nd best group is not
dramatic result either. Among the 14 data sets, there is only 1 contradictory example,
where top 13 learners found through an aggregate analysis do not hold for a specific
analysis.

Our sanity check on the worst performing (i.e. bottom) 26 learners is given in
Fig. 12, which also only shows the diverse and semi-diverse data sets. Figure 12
shows in which group (top 1, 2 and so on) bottom 26 learners appeared. The cells
where the bottom 26 learners appear within the best group (i.e. top “1”) are high-
lighted. The data set that contradicts the most with our aggregate conclusions is co-
como81s, which has 11 highlighted cells. For the rest of the data sets, the bottom 26
learners, which were identified through an aggregate analysis also perform poorly in
a specific analysis.

In the sanity check, we checked the performance of the top and bottom learners of
the aggregate analysis in a specific scenario. In this specific scenario, we focused our
attention to a single error measure (MRE) and we also used a statistical procedure
other than the win-tie-loss statistics. For both top and bottom learners we saw contra-
dictory cases, where the results of the aggregate analysis did not hold for the specific
case. However, these cases were only 1 out of 14 data sets. Hence, we can conclude
that our results presented in this paper through an aggregate analysis are most likely
to be valid for a specific case too.

5 Discussion

5.1 Findings

Based on these figures and results, we summarize our findings as follows.
Finding1: Observing the small amounts of fluctuation (or jitter) in Fig. 6 we can

see that our results may not be considered 100 % stable, however they are sufficiently
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stable to draw conclusions. We conjecture that prior reports on ranking instability
could stem from using too few data sets or too few predictors.

Finding2: Figure 4 shows the preprocessor and learner combination is important,
as their current rank can be changed if a different preprocessor is used in combina-
tion with the learner. For example, the top-ranked predictor that uses CART(yes), is
driven down to rank 60 if the preprocessor is changed from norm to freq3bin. Clearly,
the effectiveness of a learner can be significantly altered by seemingly trivial details
relating to data preprocessing, as it will change the dataset characteristics input to the
learner. Hence, in future, researchers should explore learners and the preprocessors,
as they are both equally important.

Finding3: Observe in Fig. 9 how SWR, LReg and NNet are standout learners that
fall entirely into the worst two bands. Proponents of these learners need to defend
their value for the purposes of effort estimation.

The relatively poor performance of simple linear regression is a highly significant
result. LReg, with a log preprocessor, is the core technology of many prior publica-
tions; e.g. the entire COCOMO project (Boehm 1981). Yet as shown in Fig. 7, w.r.t.
loss values over all error measures, log/LReg ranks very poorly (position 80 out of
a maximum of 90 predictors). We also did experiments at individual level of error
measures. At individual level the ranking is not very different either, i.e. the ranking
of LReg w.r.t. loss values over MAR, MMRE, MMER, MBRE, MIBRE, MdMRE
and Pred(25) are 80, 76, 81, 80, 75, 76 and 78 respectively.

Finding4: While SWR falls into the worst two bands of the learners, it is most
commonly found in the best two bands of the preprocessors. That is, stepwise regres-
sion is a poor learner but a good preprocessor. Hence, in future, the fate of SWR
might be as an assistant to other learners.

Finding5: While simple regression learners like LReg are deprecated by this study,
more intricate regression learners like regression trees (CART) and partial linear re-
gression PLSR are found in the better bands. Hence, in future, proponents of regres-
sion for effort estimation might elect to explore more intricate forms of regression
than just simple LReg.

Finding6: The top-ranked learner was norm/CART(yes).
Finding7: Simple predictors (e.g. k = 1 nearest neighbor on the log of the nu-

merics) perform nearly as well as the top-ranked predictor. Figure 13 compares the
PRED(25) results between rank = 12 and rank = 1. The datasets in that figure are
sorted by the difference between the top-ranked and the twelfth-ranked predictor. Ex-
cept for China dataset, the difference in PRED(25) values is either slightly negative,
or positive. That is, even though the rank = 1 predictor is relatively “best” (measured
according to our comparative Wilcoxon tests), when measured in an absolute sense,
it is not impressively better than simpler alternatives.

Finding7 is an important result, for three reasons. Firstly, there are many claims in
the literature that software project follows a particular parametric form. For example,
in the COCOMO project, that form is effort ∝ KLOCx ). The fact that non-parametric
instance predictors perform nearly as well as our best predictor suggests that debates
about the parametric form of effort estimation is misguided. Also, it means that the
value of certain commercial estimation tools based on a particular parametric form
may not be much more than simple instance-based learners.
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Fig. 13 Using all data sets to
compare the Pred(25) of
norm/CART(yes) (rank = 1)
and log/ABE0-1NN (rank = 12)

Secondly, analogy-based estimation methods are widely used (Auer et al. 2006;
Walkerden and Jeffery 1999; Kirsopp et al. 2003; Shepperd et al. 1996; Li and Ruhe
2006; Li and Ruhe 2007; Li et al. 2009; Keung 2008; Keung et al. 2008; Keung and
Kitchenham 2008). Finding7 says that while this approach may not be 100 % optimal
in all cases, compared to our best predictor found by this study, there is not a dramatic
lost if estimates are generated by analogy. Prior to this publication, we are unaware
of a large comparative study relating to this matter.

Thirdly it is easier to teach and experiment with simpler predictors (like the
log/ABE0-1NN predictor at rank = 12) than more complex predictors (like the
norm/CART predictor at rank = 1). For example, recently we have been experi-
menting with a very simple variant of ABE0-1NN that is useful as a learner to find
software process change (Brady and Menzies 2010). Such experimentation would
have been hindered if we tried to modify the more complex CART learner (particu-
larly if we included sub-tree pruning).

Finding8: The aggregate results are “mostly” confirmed by the specific results in
our study. This has two implications: (1) The aggregate analysis on a large space of
predictors and data sets helps us derive stable conclusions that are valid for most of
the cases. (2) Practitioners should be cautious that—although being rare, e.g. 1 out of
14 data sets—there are specific cases where aggregate results may not apply.

5.2 Validity

Construct validity (i.e. face validity) assures that we are measuring what we actually
intended to measure (Robson 2002). Previous studies have concerned themselves
with the construct validity of different performance measures for effort estimation
(e.g. Foss et al. 2003). While, in theory, these performance measures have an impact
on the rankings of effort estimation predictors, we have found that other factors dom-
inate. For example, Fig. 7 showed that some of the datasets have a major impact on
what could be concluded after studying a particular estimator on these datasets. We
also show empirically the surprising result that our results regarding predictors are
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stable across a range of performance criteria. Furthermore, for a majority of the data
sets (13 out of 14) these results (aggregate results) hold in the case of a specific sanity
check.

External validity is the ability to generalize results outside the specifications of
that study (Milicic and Wohlin 2004). To ensure external validity, this paper has
studied a large number of projects. Our data sets are diverse, measured in terms of
their sources, their domains and the time they were developed in. We use datasets
composed of software development projects from different organizations around the
world to generalize our results (Bakir et al. 2010). Our reading of the literature is
that this study uses more data, from more sources, than numerous other papers. For
example, Table 4 of Kitchenham et al. (2007) list the total number of projects used
by a sample of other studies. The median value of that sample is 186; i.e. one-sixth
of the 1198 projects used here.

As to the external validity of our choice of predictors, recalling Fig. 2, it is clear
that this study has not explored the full range of effort estimation predictors. Clearly,
future work is required to repeat this study using the “best of breed” found here (e.g.
bands “a” and “b” of Fig. 9 as well as other predictors).

Having cast doubts on our selection of predictors, we hasten to add that this paper
has focused on predictors that have been extensively studied in the literature (Shep-
perd and Schofield 1997) as well as the commonly available datasets (that is, the
ones available in the PROMISE repository of reusable SE data). That is, we assert
that these results should apply to much of the current published literature on effort
estimation.

One last point: the analysis of this paper crucially rests on the results of Fig. 7. It
is therefore prudent to consider the validity of this figure. In that figure, the majority
result was that most methods tied for most methods. There are two reasons why this
figure might not be valid:

– These methods are actually different, but our statistical tests are not of sufficient
power to distinguish them apart.

– The methods we are using as so weak that there is no way to tell them apart.

If these two theoretical problems are actual problems, then that would be an issue
not only for this paper but for the entire field of effort estimation. Our reading the
of effort estimation literature is that the methods in Fig. 7 are in widespread use
throughout this field (indeed, much of Boehm’s entire career is based on log/LReg).
As to the statistical tests used in this paper, they are also quite standard. For example,
in Table 3 of the extensive literature review of Kitchenham et al. (2007), those authors
list the statistical methods used in papers that past all of Kitchenham et al.’s sanity
checks that, otherwise, would have rejected an “reasonable” analysis. We note that
the Wilcoxon method used in this paper features prominently in that table.

6 Conclusion

In this study, 10 learners and 9 data preprocessors were combined into 90 effort es-
timation predictors. These were applied to 20 datasets. Performance was measured
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using 7 performance indicators (AR, MRE, MER, MdMRE, MMRE, PRED(25),
MBIRE). Performances were compared using a Wilcoxon ranked test (95 %). This
procedure can be used as a ranking stability indicator for selecting the most suitable
effort predictor in SEE, which is an important stage in the estimation process. Eight
findings are noteworthy:

1. Prior reports of ranking instability about effort estimation may have been overly
pessimistic. Given relatively large number of publicly available effort estimation
datasets, it is now possible to make stable rankings about the relative value of
different effort predictors.

2. The effectiveness of a learner used for effort estimation (e.g. regression or anal-
ogy methods) can be significantly altered by data preprocessing (e.g. logging all
numbers or normalizing them zero to one).

3. Neural nets and simple linear regression perform much worse than other learners
such as analogy learners.

4. Stepwise regression was a very useful preprocessor, but surprisingly a poor
learner.

5. Non-simple regression methods such as regression trees and partial linear regres-
sion are relatively strong performers.

6. Regression trees that use tree pruning performed best of all in this study (with a
preprocessor that normalized the numerics into the range zero to one).

7. Very simple predictors (e.g. K = 1 nearest neighbor on the log of the numerics)
performed nearly as well as regression trees.

8. It is important to validate the stable conclusions derived from aggregate results
through specific scenarios. Such a validation in this study showed that stable con-
clusions hold for the specific scenarios. Yet, it is still a possibility that “rarely” the
aggregate and specific results will favor different predictors.

Lastly, we offer an hypothesis on why certain predictors were better than others.
Recall from Fig. 4 that none of the top 13 ranked predictors fit single model to the
training data:

– The CART regression tree learner appears at ranks 1 through 10 of Figure 6. Each
branch of a regression tree defines one context in which an estimate may be differ-
ent.

– Analogy-based estimation (ABE) appears at ranks 11, 12, 13. ABE builds a differ-
ent model for each test instance (using the test instances k-th nearest neighbors).

Based on this observation, we conjecture that it may be a mistake to fit a single
model to effort data. Software engineering is a highly idiosyncratic process where
highly trained engineers produce novel solutions for rapidly changing business sit-
uations using toolkits and languages that are constantly evolving. Hence, it seems
unlikely that effort models conform to a single distribution. In terms of future direc-
tions in effort estimation, we speculate that the next generation of models will explore
combinations of multiple predictors.
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Appendix: Data Used in This Study

All the data used in this study is available either at http://promisedata.org/data or
through the authors. As shown in Fig. 1, we use a variety of different data sets in this
research. The standard COCOMO data sets (cocomo*, nasa*), which are collected
with the COCOMO approach (Boehm 1981). The desharnais data set, which con-
tains software projects from Canada. It is collected with function points approach.
SDR, which contains data from projects of various software companies in Turkey.
SDR is collected by Softlab, the Bogazici University Software Engineering Research
Laboratory (Bakir et al. 2010). albrecht data set consists of projects completed in
IBM in the 1970’s and details are given in Albrecht and Gaffney (1983). finnish
data set originally contains 40 projects from different companies and data were col-
lected by a single person. The two projects with missing values are omitted here,
hence we use 38 instances. More details can be found in Kitchenham and Känsälä
(1993). kemerer is a relatively small dataset with 15 instances, whose details can
be found in Kemerer (1987). maxwell data set comes from finance domain and is
composed of Finnish banking software projects. Details of this dataset are given in
Maxwell (2002). miyazaki data set contains projects developed in COBOL. For de-
tails see Miyazaki et al. (1994). telecom contains projects which are enhancements to
a U.K. telecommunication product and details are provided in Shepperd and Schofield
(1997). china dataset includes various software projects from multiple companies de-
veloped in China.
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