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Abstract—Existing research is unclear on how to generate lessons learned for defect prediction and effort estimation. Should

we seek lessons that are global to multiple projects, or just local to particular projects? This paper aims to comparatively evaluate

local vs. global lessons learned for effort estimation and defect prediction. We applied automated clustering tools to effort and

defect data sets from the PROMISE repository. Rule learners generated lessons learned from all the data, from local projects,

or just from each cluster. The results indicate that the lessons learned after combining small parts of different data sources (i.e.,

the clusters) were superior to either generalizations formed over all the data or local lessons formed from particular projects.

We conclude that when researchers attempt to draw lessons from some historical data source, they should (a) ignore any existing

local divisions into multiple sources; (b) cluster across all available data; then (c) restrict the learning of lessons to the clusters

from other sources that are nearest to the test data.

Index Terms—Data mining, clustering, defect prediction, effort estimation

✦

1 INTRODUCTION

P ROCESS and product data are used in software en-
gineering (SE) to support a variety of tasks, such

as, defect prediction, effort estimation, refactoring of
source code, determination of the social networks of
programmers, learning the expected interface between
modules, etc. Two questions are at the center of much
of the research in the field: (a) what data (e.g., which
metrics) are best suited to support specific tasks?; and
(b) what is the best way to reason about SE data? This
paper explores the latter question, in the context of:

• Software effort reduction: finding rules for re-
ducing a project’s development time;

• Software defect reduction: finding rules for re-
ducing a project’s defect count.

Our focus in this paper is not on what data (e.g.,
process or product data) are used for building models
for defect prediction or effort estimation, but rather on
the source of the data and implicitly the applicability
of the lessons derived by the models. Software data
come from some sources (e.g., different companies
for effort data or different projects for defect data).
These data show the defects or effort associated with
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examples (e.g., projects for effort data or classes for
defect data) from that source.

How should we reason about these data? On this
point, the literature is contradictory. Some existing
work argues that data from multiple sources can gen-
erate rules that apply in any context (i.e., project or
company) [1], [2], [3], [4]. We call these global lessons
(or rules).

On the other hand, other papers indicate that the
best lessons are learned from within one source (rather
than across all sources), which implies that these
lessons are only useful in their context [5], [6], [7].
We call these local lessons.

When project managers want to make changes in
their projects in order to minimize the development
effort or the rate of defects, they are faced with two
options: (a) make changes based on global lessons
available from existing data; or (b) mine data about
the current project and infer local lessons. The dilemma
of the manager is obvious. In the first case, expensive
changes (based on the global lessons) may be under-
taken without reaching the desired goal, if the global
lessons prove to be wrong for this context. In the sec-
ond case, an upfront investment is needed to collect
and analyze data and to generate the local lessons,
which may be unnecessary if the global lessons apply
to this context.

This paper addresses this dilemma and reports on
experiments where:

• Data from different sources are combined;
• Within that combination, automatic tools find

clusters of related examples. Note that clusters
may contain examples from multiple sources.
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• Data mining is then used to learn lessons from
the examples in each cluster.

• The generated lessons are compared.

Before this experiment, our previous work indi-
cated that local lessons seem to be best for defect
prediction and effort estimation [8], [9]. The surprising
result of the experiment presented in this paper is that
the best lessons for a project from one source come
from neighboring clusters with data from nearby sources,
but not inside, that source. We will call such lessons
neighbor lessons.

We conclude that when project managers attempt
to draw lessons (i.e., about defect or effort reduction)
from some historical data source, they should (a) ig-
nore any existing local divisions into multiple sources;
(b) cluster across all available data; then (c) restrict the
learning of lessons to the clusters that are nearest to
the test data (regardless of the source of the data).
While the paper is focusing on defect prediction and
effort estimation data, we believe that our conclusions
can translate to other types of data, related to different
SE tasks.

This paper extends a prior publication [10] in the
following way:

• That paper only explored four data sets. Here, we
explore over twice that number of data sets.

• That prior publication only explored local vs.
global lessons and found evidence that supported
local lessons over the global ones. In this paper
we offer new experiments in §4 (which have not
appeared previously) that explore clusters from
multiple sources.

• This paper’s literature review is more extensive
(see Figure 2).

The rest of this paper is structured as follows. First,
we explore in §2 the literature on defect prediction
and effort estimation. This highlights the lack of sta-
ble conclusions on what is the best way to create
predictors (i.e., how to best learn lessons from the
existing data). §4 presents two experiments that com-
pare rules for defect prediction and effort estimation
generated from global data, from strict local data, and
from clusters, whereas §3 discusses the details of the
clustering and rule learning algorithms used in these
experiments. §5 discusses the external validity of the
conclusions resulting from the two experiments.

2 LITERATURE REVIEW

THE main goal of this section is not to provide
a generic review of defect prediction and effort

estimation work, but to highlight work that docu-
ments contradictory results, which make it difficult
to generalize solutions for defect prediction or effort
estimation.

KEY =
acap = analyst capability
apex = applications experience
cplx = product complexity
data = database size

docu = documentation
lexp = language and tool-set experience

modp = use of modern programing practices
pcap = programmer capability
pcon = personnel continuity
plex = platform experience
pvol = platform volatility
rely = required reliability
ruse = required reuse
sced = dictated development schedule
site = multi-side development
stor = required % of available RAM

time = required % of available CPU
tool = use of software tools
turn = turnaround time

vexp = virtual machine experience
virt = machine volatility

Fig. 1. Sorted βi values from local calibration on

20*(66%) samples of NASA93 data (From [11]). Co-

efficients learned using Boehm’s recommended meth-

ods [12]. A greedy backward selection removed at-

tributes with no impact on estimates (so some at-

tributes have less than 20 results).

2.1 Effort Estimation

Conclusion instability in effort estimation may be a
fundamental property of the data sets we are ex-
ploring [11]. For example, Figure 1 tests the stability
of Boehm’s COCOMO software development effort
estimation model [11]. In that analysis, 20 times, we
learned effort = β0+β1x1+β2x2+. . . using a random
2

3
rds sample from 93 NASA projects (this subset size

was chosen to be similar in size to the 61 projects
used to find the original COCOMO coefficients). As
shown in Figure 1, only the coefficient on lines of code
(loc) was stable. The observed ranges on the other βi

coefficients were very large (e.g. −8 ≤ vexp ≤ −3.5).
In fact, the signs of five coefficients even changed from
positive to negative (see stor, aexp, modp, cplx, sced).
This coefficient instability is particularly troubling
since we know of NASA project managers who have
made acquisition decisions worth tens of millions of
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ref cbo rfc lcom dit noc wmc #p
ro

je
ct

s

size type
[13] + + + - - + 6 95-201 classes 6 versions of rhino (java)
[14] + + + - - + 12 86 classess (3-12kloc) student
[15] + + - 1 1700 classes (110kloc) commercial telecom
[16] + + - + + + 8 113 classes student
[17] + + - + + + 8 114 classes student
[18] + + + + - 1 83 classes commercial: lalo (c++)
[19] + + 1 32 classes commercial: telecom c++
[20] + - 1 42-69 classes commercial java word proc.
[21] + - - - - - 1 85 classes telecom c++
[22] - + - - + 3 92 classes 3 c++ subsystems,commercial
[23] + + + - + + 1 123 classes (34kloc) java commercial
[24] + + + 1 706 classes commercial c++ and java
[25] + + + - + + 1 145 classes kc1-nasa
[26] + + + + - + 1 3677 classes open source:mozilla
[27] + + + + 1 ? java (sap) commercial
[28] + + + + + + 3 ? eclipse 2.0, 2.1, 3.0
[29] - + + - - + 8 113 classes student
[30] + + + + 2 64 classes sales and cd-selection system
[31] - - - - 1 3344 modules (2mloc) commercial telecom c++
[32] + + + - - + 5 395 classes commercial telecom c++
[33] + + - - + 1 1412 classes open source:jdt
[34] + + - - + 2 9713 classes eclipse 2.0, 2.1
[35] + + - - - + 1 145 classes kc1-nasa
[36] + - 1 145 classes commercial java xml editor
[37] - - - - - - 1 174 classes commercial telecom c++
[38] - - 0 50 classes student
[39] + + - - - + 1 145 classes kc1-nasa
[40] + + + 2 294 classes commercial c++

total + 18 20 11 11 8 17
total - 4 3 7 14 16 4 KEY: Strong consensus (over 2/3rds)

Total percents: “*” denotes majority conclusion in each column Some consensus (less than 2/3rds)

+ * 64% * 71% * 39% 39% 29% * 61% Weak consensus (about half)

- 14% 11% 25% * 50% * 57% 14% No consensus

Fig. 2. Contradictory conclusions from OO-metrics studies for defect prediction. Studies report significant (“+”)

or irrelevant (“-”) metrics verified by univariate prediction models. Blank entries indicate that the corresponding

metric is not evaluated in that particular study. Colors comment on the most frequent conclusion of each

column. CBO= coupling between objects; RFC= response for class (#methods executed by arriving messages);

LCOM= lack of cohesion (pairs of methods referencing one instance variable, different definitions of LCOM are

aggregated); NOC= number of children (immediate subclasses); WMC= #methods per class.

dollars based on the COCOMO coefficients (i.e., they
decided to acquire the technologies that had most
impact on the variables with largest coefficients).

Other papers also report contradictory findings
about effort estimation. Jørgensen [41] reviewed 15
studies comparing model-based to expert-based meth-
ods. Five of those studies favored expert-based meth-
ods, five found no difference, and five favored model-
based methods. Kitchenham et al. [42] reviewed stud-
ies that checked if data imported from other organiza-
tions were as useful as local data (for the purposes of
building effort models). From a total of seven studies,
three found that models from other organizations
were not significantly worse than those based on local
data, while four found that they were significantly
different (and worse). MacDonell and Shepperd [43]
also performed a review on the value of local vs.
global effort estimation models through a replication
of [42]. From a total of 10 studies, two were found to
be inconclusive, three supported global models, and
five supported local models. Similarly, Mair and Shep-
perd [44] compared regression to analogy methods
for effort estimation and found conflicting evidence.

From a total of 20 empirical studies, seven favored
regression, four were indifferent, and nine favored
analogy.

2.2 Defect Prediction

In the area of defect prediction, there are also many
contradictory findings. For example, Zimmermann
et al. [45] learned defect predictors from 622 pairs
of projects 〈project1, project2〉. In only 4% of pairs,
the defect predictors learned in project1 worked in
project2. Similar findings (of contradictory conclu-
sions) concern the OO metrics as well. Figure 2 lists 28
studies that offer contradictory conclusions regarding
the effectiveness of OO metrics for predicting defects
(exception: response for class is often a useful indica-
tor of defects). To create Figure 2, we:

1) Used our domain knowledge to pick three high-
impact seed articles [19], [20], [21];

2) Used Google Scholar1 to find 500+ relevant stud-
ies that cited any of those seed articles;

1. http://scholar.google.com
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3) Removed false positives by scanning titles and
abstracts. This reduced the 500+ articles to 86;

4) Applied the following relevancy rule to reduce
the 86 studies to 28: reject all papers that do
not offer a univariate predictive analysis for the
validation of the metric(s) under investigation.

5) Checked the literature reviews of important pa-
pers in this field [38], [46], for papers not in our
sample.

For the manager of a software project Figure 2 is
particularly troubling. Each study makes a clear, but
usually different, conclusion. Hence, it is difficult for
a manager to make clear decision about, for example,
the merits of a proposed coding standard where max-
imum depth of inheritance is required to be less than
some expert-specified threshold.

As to the root cause of the instabilities of Figure 2,
we offer the following conjecture. We showed above
in §2.1 that models learned from different regions
within effort data can have very different properties.
If defect data was as varied as effort data, then
we would naturally expect that different samples of
different projects would yield different models (e.g.,
as seen in Figure 2) due to dataset shift [47].

If this conjecture is correct, then we would expect
that clusters within the data should produce different
models. This paper is a test of that conjecture. In
short, we show that different regions of the data
generate different models. Further, the models built
from specialized regions within the data set perform
better than those learned across all data.

d
im

en
si

o
n

attribute project1 project2 project3
independent 1 afp 1587 260 152

2 input 774 9 5
3 output 260 4 3
4 enquiry 340 3 2
5 file 128 193 42
6 interface 0 41 35
7 added 1502 51 16
8 changed 0 138 0
9 deleted 0 61 0
10 pdr afp 4.7 16 4.4
11 pdr ufp 5 16.6 4.1
12 npdr afp 4.7 16 4.4
13 npdu ufp 5 16.6 4.1
14 resource 4 2 1
15 dev.type 0 0 0
16 duration 4 17 9

dependent 1 effort 7490 5150 668

Fig. 3. Example data. Three examples from the CHINA

effort estimation data set.

3 INSIDE THE LEARNERS

B EFORE we describe our experiments, this section
reviews the technical details of the clustering

algorithm and the rule learner used in these exper-
iments. Note that our algorithms are agnostic with
respect to the semantics of their input data, which
means that we use the same algorithms for defect data
and effort data.

In order to better relate the algorithms to our
context (i.e., defect prediction and effort estimation)
and to better understand the experiments of the
subsequent sections, Figure 3 and Figure 4 provide
examples of instances from one of the actual effort
estimation data sets used in the experiments. In this
data set, each project is a point in a 16-dimensional
space of “independent” attributes. Each point also
has one “dependent” attribute (in Figure 3 it is the
development effort associated with each project). The
attribute names in this figure concern function points
of these projects and are defined in Figure 5.

Figure 4 shows the same data as Figure 3, but
each value has been categorized into “hi” or “lo”,
depending on whether it falls above or below the
mean value for each row. This figure classifies our
projects into two “hi” effort projects (project1 and
project2) and one “lo” effort project (project3).

Contrast sets list the differences between classes. To
find a contrast set, we look for an attribute where
(1) all the values from one class are similar but
(2) those values differ in different classes. The only
such contrast set in Figure 4 is the row marked in gray
and denotes the function points of internal logical
files. Using this contrast set, we would say that “lo”
file function points is the factor that most selects for
low effort projects.

While the rules generated with contrast sets are
simple, they are quite powerful and our choice is not

d
im

en
si

o
n

attribute project1 project2 project3
independent 1 afp hi lo lo

2 input hi lo lo
3 output hi lo lo
4 enquiry hi lo lo
5 file hi hi lo
6 interface lo hi hi
7 added hi lo lo
8 changed lo hi lo
9 deleted lo hi lo
10 pdr afp lo hi lo
11 pdr ufp lo hi lo
12 npdr afp lo hi lo
13 npdu ufp lo hi lo
14 resource hi lo lo
15 dev.type lo lo lo
16 duration lo hi lo

dependent 1 effort hi hi lo

Fig. 4. Example data of Figure 3, all data categorized

as “hi” or “lo” depending on whether it is above or below

the mean value for each row, respectively.
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afp adjusted function points adjusted size by the standard value adjustment factor (vaf)
input function points (ufp) of input

output function points (ufp) of external output
enquiry function points (ufp) of external enquiry

file function points (ufp) of internal logical files or
entity references

interface function points (ufp) of external interface added function points (ufp) of new or added functions
changed function points (cfp) of changed functions
deleted function points (cfp) of deleted functions
pdr ufp normalized level 1 productivity delivery rate norm. level 1 effort (for development team ) divided by functional size

(unadjusted function points).
npdr afp normalized productivity delivery rate normalized effort divided by functional size (unadjusted function

points).
npdu ufp productivity delivery rate (adjusted function

points)
summary work effort divided by adjusted function point count.

resource team type 1 = development team effort (e.g., project team, project management);
2 = development team support (e.g., database administration, data
administration, quality assurance); 3 = computer operations involve-
ment (e.g., information center support, computer operators, network
administration); 4 = end users or clients (e.g., user liaisons, user training
time)

dev.type development type 1= new development, 2= enhancement; 3= redevelopment.
duration total elapsed time for the project in calendar months.

effort summary work effort provides the total effort in hours recorded against the project.

Fig. 5. Function point measures used in the CHINA effort estimation data set. The last line shows the dependent

attribute (total effort in hours).

accidental. We have previously conducted extensive
evaluations of contrast set learning with other learners
on software engineering data [48]. We found that these
succinct rules out-performed more complex models
generated by standard classifier or optimization algo-
rithms [49]. Also, using stochastic sampling, contrast
set learning can process very large data sets in linear
time, which is an advantage when the data sets are
large. Further, a major advantage of contrast set learn-
ing for software engineering is that it generates very
succinct rules. For example, the single rule generated
by this example is:

if file=lo then effort=lo

In [50] we argued that such brevity was important
when explaining data mining results to business users
and we prefer such rules (when possible) over more
complex ones, which tend to be harder to understand.

In order to test this rule, we run a selection study
where we look at the class distribution of all projects
where file=lo. In this case, 100% of projects with file=lo
have “lo” effort. Note that for this test to be valid, it
should be conducted on data not used for learning
the rule.

3.1 Clustering Data with WHERE

Our clustering algorithm, named WHERE, assumes
that the dimensions of most interest are the dimensions
of greatest variability. This assumption is shared by
other researchers such as those using feature weight-
ing based on variance [51] or principal component
analysis (PCA), e.g., [4].

Matrix factorization methods like PCA take poly-
nomial time to execute [52]. We focus in this paper

on defect and effort data, but our long term view is
that these techniques can be used for other types of SE
data. Hence, we adopt a more efficient solution for our
tools. Faloutsos & Lin [53] offer a linear-time heuristic
for generating these dimensions, which we use in our
work. Given N instances, their “FASTMAP” heuristic
finds the dimension of greatest variability to a line
drawn between the two furthest points. These two
points are found in linear time, as follows: firstly
select any instance Z at random; secondly find the
instance X that is furthest away from Z; thirdly find
the instance Y that is furthest away from X . The line
XY is an approximation to the first component found
by PCA.

As shown in Figure 6.a, an orthogonal dimension
to XY can be found by declaring that the line XY is
of length c and runs from point (0, 0) to (0, c). Each
instance now has a distance a to the origin (instance
X) and distance b to the most remote point (instance
Y ). From the Pythagoras theorem and cosine rule,
each instance is at the point x = (a2 + c2 − b2)/(2c)
and y =

√
a2 − x2. Figure 6.a shows four quadrants

defined by the median values of each dimension (x̂, ŷ):
NorthWest, NorthEast, SouthWest, and SouthEast.

WHERE constructs Figure 6.a using a standard
Euclidean distance operator, then it recurses on each
quadrant. This generates a balanced tree of quadrants,
stopping when a sub-quadrant has less than a min-
imum number instances (currently the square root of
the total number of instances). The resulting tree of
quadrants is then pruned from the leaves back to
the root: leaf quadrants with similar density (currently,
within 50%) are grouped together.

Figures 6.b shows the CHINA effort estimation data
set from the PROMISE repository mapped into the
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Figure 6.a: all data presented
in 2 dimensions
found by FASTMAP.

Figure 6.b: Figure 6.c: Figure 6.d:
raw FASTMAP’s after grid
data leaf clusters clustering

Fig. 6. Each dot is a D-dimensional instance from the CHINA data set mapped into two dimensions (for an

example of three such dots, see Figure 3). From that data, a new dimension is synthesized on a line between

X (at the origin) and the most remote instance Y (at 0, c)- see Figure 6.a . Each dot has distance a from the

origin and b from the most remote point. The median point on the x and y axis are x̂ and ŷ, respectively. The

algorithm then recurses on each quadrant to generate grids. Leaf pruning then combines the smaller clusters

into the colored regions shown in Figure 6.d.

axes found by FASTMAP. Each dot describes one
project using multiple independent attributes and one
dependent attribute showing the development effort
(in months). For an example of one of those dots, see
Figure 3.

Figure 6.c shows the leaf quadrants found by
WHERE’s recursive exploration of the NorthWest,
NorthEast, SouthWest, and SouthEast quadrants.

Figure 6.d shows the results of leaf pruning: those
clusters are colored to show the median intra-cluster
development effort (dark red = highest effort while
dark green = lowest effort).

Now consider the three clusters labeled C,C ′, C ′′.
Suppose a manager of a project in the orange cluster C
is considering how to decrease the development effort
of that project (of all the neighbors of that cluster, the
green cluster C ′ has the lowest development effort).
Accordingly, that manager would learn rules over the
C ′ data to find treatments that convert projects of type
C to C ′ (note that such a strategy is not available to
the manager of projects in the dark green cluster C ′′

because no neighbor of C ′′ has a shorter development
effort, so there we would advise to maintain the status
quo).

3.2 Learning Rules with WHICH

A vital requirement for this work is that whatever
data miner is used, it can generate rules that can
be compared with the general truisms in the field.
Therefore, we eschew learners that use statistical
distributions and probability calculations to generate
models which, even if they work successfully, are
opaque to a human reader. Hence, we do not use
Bayes classifiers [54] or neural networks [55]. For the

same reason, we also choose not to use learners that
generate numeric combinations of project influences,
e.g., linear regression, logistic regression, simulated
annealing [56], model trees [57], or support vector ma-
chines. Finally, we avoid learners that produce large
and hard to read theories, e.g., genetic programming
algorithms [58] that can learn large and intricate rules.

For this research, we use the the WHICH contrast
rule learner [59]. WHICH was informally introduced
at the start of §3. More formally, we say that WHICH
learns rules of the form

if Rx then (change = ǫ1/ǫ0 ∗ support)
Here, Rx is a treatment containing a set of attribute
value pairs av ; ǫ0 is the median score for instances in
the untreated population. Referring back to Figure 4,
we say that the untreated population is all the test
data (i.e., all of Figure 4) and the treated population
are the rows found by the selection study (i.e., all the
examples that do not conflict with the treatment). ǫ1
is the median score for the population subset selected
by the rule. For effort and defect prediction, the
ratio ǫ1/ǫ0 is smaller if the treatment selects for better
instances. For an example of such a rule, see the start
of this section.

WHICH builds these rules by looping over at-
tribute value combinations, combining those that look
most promising (for the AI-literate reader, we note
that WHICH is a fuzzy beam search). Continuous
attributes are first discretized to a few discrete values.
A stack is created containing one item for every
attribute value. The items in that stack are sorted
using ǫ1/ǫ0 ∗ support (where support is the percent of
the data selected by that rule). WHICH generates new
rules as follows: several times, (a) select two items
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at random, favoring those with better ǫ1/ǫ0 ∗ support;
(b) combine the pair into a new item and score it. The
new rules are then sorted back into the stack. This
process repeats until no new improvements are seen
at the top-of-stack. WHICH returns the rule at the top-
of-stack.

4 EXPERIMENTS

W E ran a set of experiments that compare the re-
sults of defect prediction and effort estimation

obtained from learning rules from global data, local
data, and clusters, respectively.

The objects of our experiments are the nine data sets
shown in Figure 7. Each of the nine data sets used in
the experiments were scored with their project effort
or number of defects. There are two data sets used for
effort estimation and seven used for defect prediction.
The projects have three sets of attributes:

1) NASACOC contains the independent attributes
from Figure 1. Its dependent attribute is devel-
opment effort, measured in terms of calendar
months (at 152 hours per month, including de-
velopment and management hours).

2) CHINA contains the independent attributes of
Figure 5 and the dependent attribute shown in
the last row of that table (summary work effort).

3) The other seven data sets contain the indepen-
dent attributes of Figure 8 and the dependent
attribute of defect counts (as seen in a post-
release bug tracking system).

NASACOC and CHINA are effort estimation data sets
while the other seven are defect prediction data sets.
Thanks to the researchers who shared the data via the
PROMISE repository [60], we were able to experiment
with a diverse set of data, which remains available for
future replications.

The main research question we are addressing is
how to generate lessons that lead to rules for mini-
mizing effort and defects. On one hand, we generated
lessons from global data and applied them to individ-
ual project data. On the other hand, we clustered the
data and for each cluster, we applied lessons from
the best neighboring cluster (i.e., with better defect
or effort values). We present an informal example,
followed by the formal description of the treatments
we chose.

Assume that we have data from two sources (e.g.,
effort or defect data from different companies) A and
B:

• Data set A = {Xa, Ya, Za}
• Data set B = {Xb, Yb, Zb}

We combine the data {Xa, Ya, Xb, Yb, Za, Zb} and
cluster it. We obtain three clusters: C = {Xa, Xb}, C’
= {Ya, Yb}, and C” = {Za, Zb}. We want to see what
treatments to each cluster of data result in lowering
the defect (or effort) values. The question we are

About System Description Size
effort CHINA Function points 499 projects

NASACOC COC81 + NASA93 156 projects
defects JEDIT Text editor 306 classes

LUCENE Text search engine 428 classes
SYNAPSE Enterprise service bus 256 classes
TOMCAT Apache servlet container 858 classes

VELOCITY Template language engine 229 classes
XALAN XSLT processor 875 classes
XERCES XML processor 329 classes

Fig. 7. Data from http://promisedata.googlecode.com/

for this study.

addressing is how to infer the rules (using WHICH).
We have the following options:

1) Global learning. For cluster C, WHICH learns the
rules from all the data (minus what is in the
cluster - {Ya, Yb, Za, Zb}) and test it on the data
in C, i.e., {Xa, Xb}.

2) Cluster learning. For cluster C, WHICH learns the
rules on the data from cluster C’, i.e., {Ya, Yb},
(we assume here that C’ is the neighbor cluster
to C with the best defect/effort values) and we
test it on the data in C, i.e., {Xa, Xb}. We further
refine the cluster learning:

a) Neighbor learning (cross). For the data in C
from one source (e.g., Xa), WHICH learns
on the data from C’ that does not come
from the same source (i.e., Yb in this ex-
ample). Note that this is an overfitting-
avoidance strategy since it somewhat in-
creases the difference of the training data
from the test data. More details on this issue
are provided later in this section.

b) Local learning (within). For the data in C
from one source (e.g., Xa), WHICH learns
on the data from C’ that also comes from
the same source (i.e., Ya in this example).

We conducted the experiment in two stages: one
for steps 1 and 2 above and one for steps 2.a and 2.b.
Before we describe the experiments more formally, we
need to introduce some notation.

• Let all refer to all examples in C.
• Let treated refer to the examples of C selected

by the rules predicting for lower class values
(treated ⊆ all). In the case of the defect data sets,
the class is “number of defects” while in the case
of the effort data sets, the class is “development
effort”. Note that in both cases, we wish to mini-
mize the class value.

• Let Dtreated be the distribution of class variables
seen in treated.

• Let Dall be the distribution of the class variables
seen in all and max be the maximum value of
that distribution (i.e., the worst case result). Nor-
malize all values in Dall by expressing them as
a percent of the max worst case. For example, in
Dtreated, a value of 50 would denote a class value
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amc average method complexity e.g. number of JAVA byte codes
avg cc average McCabe average McCabe’s cyclomatic complexity seen in class

ca afferent couplings how many other classes use the specific class.
cam cohesion amongst classes summation of number of different types of method parameters in every method

divided by a multiplication of number of different method parameter types in
whole class and number of methods.

cbm coupling between methods total number of new/redefined methods to which all the inherited methods are
coupled

cbo coupling between objects increased when the methods of one class access services of another.
ce efferent couplings how many other classes is used by the specific class.

dam data access ratio of the number of private (protected) attributes to the total number of
attributes

dit depth of inheritance tree
ic inheritance coupling number of parent classes to which a given class is coupled (includes counts of

methods and variables inherited)
lcom lack of cohesion in methods number of pairs of methods that do not share a reference to an instance variable.
locm3 another lack of cohesion measure if m,a are the number of methods, attributes in a class number and µ(a) is the

number of methods accessing an attribute,
then lcom3 = (( 1

a

∑a

j
µ(aj))−m)/(1−m).

loc lines of code
max cc maximum McCabe maximum McCabe’s cyclomatic complexity seen in class

mfa functional abstraction number of methods inherited by a class plus number of methods accessible by
member methods of the class

moa aggregation count of the number of data declarations (class fields) whose types are user
defined classes

noc number of children
npm number of public methods
rfc response for a class number of methods invoked in response to a message to the object.

wmc weighted methods per class
defects defects number of defects per class, seen in post-release bug-tracking systems.

Fig. 8. OO measures used in the LUCENE, XALAN, JEDIT, VELOCITY, SYNAPSE, TOMCAT, XERCES defect

data sets. The last line shows the dependent attribute (defects reported to a post-release bug-tracking system).

that is half of the maximum value seen in the raw
data Dall.

• Find the 25, 50, 75, 100th percentile normalized
value in Dtreated and Dall. For both distributions,
let the median, stability, and worst case values to be
the 50th, 75th-25th, and 100th percentile values,
respectively.

Formally, in each case, the following steps were done:

1. Combine all the data from all sources; e.g., for
defect reduction, combine together data from
S1 =JEDIT, S2 =XERCES, S3 =XALAN, etc.

2. Cluster the combined data using WHERE. Note
that each cluster may now contain examples
from multiple sources.

3. For each cluster C, find C ′ (the neighboring clus-
ter with the best median score of its dependent
variable).

4. Apply WHICH to C ′ to learn some rules. then
apply those learned rules, i.e., that predicts for
lower defects, to C.

5. Report the median, stability, and worst case values
in all and some.

For experiments 2.a and 2.b, step 3 becomes:

3ab. For data in C from source Si, find examples in
C ′ from other sources Sj , where i 6= j.

For experiment 2.a, step 4 becomes:

4a. Apply WHICH to the Sj data from C ′. In this
experiment, the Si examples in C are the all set

while some are the examples selected by the rules
learned from other sources Sj in C ′.

For the experiment 2.b, step 4 becomes:

4b. The Si examples in C are treated with the rules
learned from the same sources Si in C ′.

Next, we discuss the details of the experiments sepa-
rately along with their results.

4.1 Experiment #1: Global Rules are Sub-Optimal

In the first experiment we compared global lessons
with cluster lessons. We used WHERE to cluster all
the available data, separately for effort estimation and
defect prediction. Our clustering algorithm takes care
to skip the dependent variable during clustering. That
is, when computing the distance between examples
(i.e., projects for effort estimation and classes for
defect prediction), the defect or effort values in those
examples are ignored. The dependent variable is used
only after clustering.

Once WHERE divides the data, WHICH is applied
to each cluster C to find the cluster rules for se-
lecting lower defect/effort values. Next, the depen-
dent values are used to score each cluster (median
defect/effort values of projects in that cluster). For
each cluster C we search its neighbors for the cluster
C ′ 6= C∧adjacent(C,C ′)∧(score(C ′) < score(C)) with
the best score (lowest median defect/effort values).
The rule C ′.cluster is then applied to C to find
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effort defect

cluste
r

NASACOC

CHIN
A

LUCENE

XALAN

JEDIT
VELOCITY

SYNAPSE

TOMCAT

XERCES

global kloc=1 afp=1 rfc=2 loc=1 rfc=2 cam=7 amc=1 loc=2 cbo=1
C0
C1 rely=n added=4 amc=7 amc=1 ic=7 noc=1 dit=4 cbm=1 dit=1
C2 prec=h deleted=1 ca=1 cam=2 noc=1 dam=1 or 5 dam=1 dam=1
C3 deleted=1 dam=5 cam=3 amc=6 avg cc=4 noc=1 ca=1 or 7
C4 mfa=1 dit=2 or 4 noc=1 moa=1 rfc=5 cbo=1
C5 moa=1 loc=1 lcom3=5
C6 loc =1 or 2 max cc=1
C7 moa=1 cbm=1

Fig. 9. Global and cluster rules for each cluster Ci. In this study, all the numerics were discretized

into seven equal frequency bins so, e.g., kloc=1 should be read as “set kloc to its minimal value”. The

underlined bold entries denote the rules that were the same globally as at cluster level. Note that there are

very few rules that are the same globally as at cluster level.

effort defect

N
A

SA
C

O
C

C
H

IN
A

LU
C

EN
E

X
A

LA
N

JE
D

IT

SY
N

A
PS

E

V
EL

O
C

IT
Y

TO
M

C
A

T

X
ER

C
ES ∑

global∑
cluster

median global 17 4 3 12 0 0 0 0 0 0.64
(50th percentile) cluster 7 3 0 12 0 0 0 0 1

stability global 16 7 10 12 0 11 8 0 1 0.37
(75th-25th percentile) cluster 6 6 3 0 0 0 8 0 1

worst-case global 100 100 100 100 100 100 100 100 100 0.39
(100th percentile) cluster 9 100 23 62 8 33 50 33 32

Fig. 10. Global vs. cluster reasoning. In this figure, smaller values are better. All values are percentages of

the maximum effort or defect values seen in the untreated data sets so, e.g., a median global value of “17” in

NASACOC is 17% of the maximum effort value in the NASACOC data sets.

treated ⊆ C. See above the definition for treated and
score.

For every cluster C we compared the two treated
sets:

• One using C ′.cluster and
• The other using rules generated globally across

all the data (by applying WHICH to all the data
sets, rather than to a single cluster).

We found that the rules generated from cluster
lessons were better and different than those learned
globally. Figure 9 shows the rules learned in dif-
ferent data sets. Each data set generated between 2
(SYNAPSE) to 8 (XALAN) clusters. One cluster always
had the best score (lowest effort or defects) and this
cluster was labeled C0. No rules were learned for this
cluster since our recommendation for projects in C0
is to “maintain the status quo” - i.e., we do not know
how to improve the median value of the dependent
variable (defect or effort) for this cluster, given the
current data. Lines Ci ∈ C1..C7 show the cluster
rules learned from Ci’s best neighbor. The underlined
cluster rules are those that are same as the global rules
(these appear in the results for XALAN and XERCES).
Note that there are very few cluster rule sets that are
the same as the global rules.

The effects of applying these rules are shown in
Figure 10. These results are expressed in terms of
percentile bands: median, stability, and worst-case. All
values are expressed as ratios of maximum values

seen in the untreated data set (e.g., “50” means the
middle value of the untreated data).

The first thing to note in Figure 10 is that our rule
learning method is effective: the median and stability
values of the above are small percentages of original
data. Indeed, in five of the seven defect prediction
experiments, the cluster rules selected projects with
zero defects.

The second important conclusion of Figure 10 is
that the cluster rules performed better than the global
rules:

• The median performance of cluster rules is signifi-
cantly better than the median performance of the
global rules (Wilcoxon, 95% confidence).

• The stability around the median is greater with
cluster rules than with global rules, i.e., if we use
the global rules, then we will be less confident in
our predictions on the effects of those rules.

• The worst-case results with global rules are far
worse than the worst-case results of cluster rules.
In all cases, the worst-case performance of the
global rules is the same as the untreated data
(see the second last row of the table). On the
other hand, in seven results, the worst-case per-
formance of the cluster rules is one-third or less
of the maximum in the untreated data.

Why is the performance of the global rules sub-
optimal? Our hypothesis is that software construction
is such a diverse task that any global conclusion that



IEEE TRANSACTIONS OF XYZ VOL. 0, NO. 0, JANUARY 2012 10

V
E

L
O

C
IT

Y
1

.4
P

O
I1

.5
,

A
N

T
1.

6

p
o

i-
3

.0
,

V
E

L
O

C
IT

Y
1.

6,
X

E
R

C
E

S
1.

3

A
N

T
1

.5
,

X
E

R
C

E
S

1.
4,

V
E

L
O

C
IT

Y
1.

4

P
O

I2
.5

,
JE

D
IT

3.
2,

L
U

C
E

N
E

2.
4

A
N

T
1

.4
,

IV
Y

1.
4,

X
E

R
C

E
S

1.
2

IV
Y

1
.4

,
A

N
T

1.
4,

JE
D

IT
4.

3

P
O

I3
.0

,
JE

D
IT

4.
0,

iv
y

-1
.4

P
O

I2
.5

,
X

E
R

C
E

S
1.

3,
A

N
T

1.
5

∑
cross∑
within

median within 5 0 2 4 0 0 0 0 0.4
(50th percentile) cross 0 0 2 2 0 0 0 0

stability within 4 0 2 0 0 0 0 0 1.3
(75th-25th percentile) cross 0 0 0 0 0 0 4 8

worst case within 10 32 15 16 33 67 9 23 0.3
(100th percentile) cross 0 11 2 11 33 0 4 3

Fig. 11. Experiment 2. Using groups of three projects, Sj (the test cluster) is picked at random (marked in bold).

holds across all projects may be somewhat different to
the conclusions learned from individual projects.

In summary, the data we obtained is not supportive
of the claim that global lessons are the best for defect
prediction or effort estimation. However, it would be
a mistake to conclude that this experiment supports
delphi localisms. As shown in our next experiment,
the best way to divide the data is not via delphi
localizations (into, say, just the JEDIT or LUCENE data
sets) but by automatic localizations that cross data set
boundaries.

4.2 Experiment #2: Local Rules are Sub-Optimal

I F a data miner is overly zealous, then it could read
too much into the training data. In this situation,

the learner may overfit its models to spurious details
in the training data. Hence, many data mining al-
gorithms employ overfitting-avoidance strategies to
prune away needless elaborations. For example:

• Early versions of decision tree learners produced
very big and bushy decision trees. One of the key
innovations of C4.5 [61] was leaf pruning which
prunes leaves until the error rate in the pruned
tree starts increasing.

• After the INDUCT rule learner builds a rule
condition, it runs a greedy back-select algorithm
that checks if any condition can be removed,
while preserving the accuracy of that rule [62].

Accordingly, the following experiment checked
if WHERE and WHICH can be improved by an
overfitting-avoidance strategy. Specifically, we se-
lected the data used for training in each cluster, based
on which source they come from (as explained in the
beginning of this section - see step 3ab). This resulted
in two ways of learning the rules.

We call the steps selecting data from different
sources the cross treatment since it ensures that data
from one source are treated with rules learned from
data from other sources. We call the generated rules
neighbor rules, because the source of the data is not
random, as it comes from a neighboring cluster. The
second treatment is referred to as within treatment and
the rules are called local rules, as the data are treated
with the rules learned from the same sources (caveat:
providing that the data falls into separate neighboring
C,C ′ clusters). It is important to note that in both
treatments, rules are applied to the same subset Si

of C and that these rules select only some subset of
that data.

As before, our results are expressed in terms of
median, stability, and worst-case. We express those per-
centiles as a ratio of the maximum value seen in the
untreated Si data of C (i.e., the maximum value seen
before any rule selects some subset). That is to say, all
our results are expressed as values ranging from 0%
to 100%.

The results are shown in Figure 11. In order to
ensure external validity, the above procedure is re-
peated multiple times. The results of each repeti-
tion are shown in different columns of Figure 11.
Each repetition combines together the data from three
sources. Within each group of three, one source is the
designated test cluster Sj (again, selected at random).
While the data sets were picked at random from
the PROMISE data repository, all had to conform
to the same ontology (in practice, that meant that
Experiment #2 was conducted on data sets of the OO
ontology of Figure 8, since this is the most frequently
shared ontology in PROMISE).

One issue that arises in these results is that the
within treatment is so effective that it is sometimes
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hard to distinguish further improvements. For ex-
ample, at first glance, the stability results of cross
seem worse than within. However, the raw values for
stability are so small that a single value (the “8” in
the last column) can throw off the results. The same
effect (that the baseline within results are very small)
also confuses an analysis of the median results.

However, when we turn to the worst case results,
the numbers are large enough to allow for a differ-
entiation of the within and cross results. We observe
that the worst case results of the cross study are much
better than the within.

In summary, based on an analysis of rules learned
from neighboring clusters in different sources, we
conclude that it is sub-optimal to learn purely local
rules from the clusters within the same source as the
test data. This is the standard overfitting-avoidance
result [54]: it is best not to learn too much from local
data. Rather, it is better for a learner to step back
a little and train from related concepts (rather than
concepts that are too similar).

We conjecture that the diverse nature of software
construction means that even for projects built within
the same organization, it is more useful to chase ex-
ternal data sources than just to use the local historical
data. However, when using data from other sources, it
is best to cluster that data and just use a small portion
of data from the nearest cluster.

5 EXTERNAL VALIDITY

E XTERNAL validity is the issue of the generality
of the conclusions of a study to data not used

in that particular study. Within the specific context
of effort estimation and defect prediction, the central
claim of this paper is that any standard discussion on
external validity cannot be trusted for SE data. That
is, the methodology of this paper precludes a claim of
external validity about specific conclusions (e.g., the
relationship of inheritance depth to defects).

But this paper is not a counsel of despair. An
essential feature of our work is that the same algo-
rithms were used to generate recommendations for
both defect reduction and effort reduction. This makes
this paper somewhat unique since, in the literature,
effort estimation and defect prediction are usually
explored by different research teams2 and techniques.
That is:

• While this paper has shown that any specific
conclusion about reducing effort or defects may
not be externally valid (since they are project
dependent) ...

• ... our externally valid meta-conclusion is that there
are general techniques (i.e., WHERE+WHICH)
for finding local conclusions in different projects.

2. Exception- see the work of Martin Shepperd who explores both
areas [63], [64].

In other words, while we do not provide general
lessons that work for defect prediction or effort esti-
mation on any project, we provide instead a technique
(using WHERE and WHICH) that can be used on any
project with the available data.

To disprove the external validity of this meta-
conclusion, a research team would need to demon-
strate the stability of conclusions across multiple
projects. We would propose one sanity check for
that demonstration: the project-independent conclu-
sion must be “significant”.

For examples of less-than-significant conclusions,
we refer the reader to the global results shown in the
first line of Figure 9. Here, we read that effort or
defects can be reduced by:

• minimizing lines of code: see the kloc=1 results
for NASACOC and loc = 1 for XALAN;

• minimizing function points: see the afp=1 result
from CHINA.

That is, those global conclusions are just trite state-
ments that if programmers write less code, they can
do so in less time (and introduce fewer defects). In
most development projects, programmers do not have
the option of writing less code. What makes WHICH’s
local conclusions non-trite is that most often they are
not about merely reducing the size of a system. Rather,
as seen in Figure 9, they are about system reorgani-
zation (such as reorganizing the class hierarchy).

Note that, in terms of the current literature, current
results support the external validity of the conclusions
of this paper. Inspired by our earlier work [10], Bet-
tenburg et al. [6] recently repeated our experiment
#1 using different clustering tools. That study found
the same conclusion as ours, i.e., that cluster rules do
better than rules learned across the whole data.

6 CONCLUSION AND FUTURE WORK

THIS paper has discussed ways to collect training
data for learning lessons from SE projects and to

generate rules for reducing the number of defects or
the development effort.

At issue here is how the chief information officers
should set policies for their projects. Should they
demand that all their projects rigorously apply all
the advice from the standard SE textbooks or other
literature? Or should they devote resources to a “local
lessons team” that explores local data to find the best
local practices?

The results of this paper strongly endorse the cre-
ation of the local lessons team. However, that team
should apply automatic algorithms to build clusters
from all available data. The best cluster is the one that
is nearby (see Experiment #1) but not from the same
source as the test data (see Experiment #2). While
we experimented only on defect prediction and effort
estimation data, our procedure is data agnostic and
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we believe it would apply to other kinds of data, for
other tasks.

More generally, in terms of SE research, the experi-
ments of this paper show that a software engineering
project is an intricate entity that is best described in
terms of a complex combination of multi-dimensional
factors. Hence:

• Trite global rules are not sufficient for controlling
such complex entities, at least when it comes to
defect prediction and effort estimation.

• Neither is it sufficient to characterize the data
with simple divisions of data into local contexts.
Before researchers attempt to draw lessons from
some historical data source, they should (a) ig-
nore any existing local divisions into multiple
sources; (b) cluster across all available data; then
(c) restrict the learning of lessons to the clusters
from other sources that are nearest to the test
data.

As to future work, it is important to check how
often, in other data sets, cluster rules are better than
global rules.

Other future work might include improving
WHICH and WHERE. WHICH contains numerous
design options that deserve closer attention. Like any
beam search, WHICH only stores the top (N = 50)
rules in its stack. Also, prior to building rules, WHICH
discretizes numeric data into B = 7 equal frequency
bins. It is possible that different values of N and
B would result in better rules. More fundamentally,
WHICH is one of a large class of contrast set learners.
Other candidate contrast set learners, which might do
better than WHICH, are MINWAL [65], STUCCO [66],
and others [67].

Another task deserving future research is to explore
multi-goal optimization. In the results of Figure 10, we
tried to minimize effort in the NASACOC and CHINA
data sets while minimizing defects in the remaining
seven data sets. A more challenging goal would be
to reduce defects and effort at the same time. The
search-based software engineering literature [68] lists
many techniques that might be useful in this regard,
including tabu search [69], ant algorithms [70], and
particle swarm optimization [71].
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