
Privacy and Utility for Defect Prediction: Experiments with MORPH

Fayola Peters, Tim Menzies
Lane Department of Computer Science and Electrical Engineering,

West Virginia University, Morgantown, USA
fpeters@mix.wvu.edu, tim@menzies.us

Abstract—Ideally, we can learn lessons from software
projects across multiple organizations. However, a major im-
pediment to such knowledge sharing are the privacy concerns
of software development organizations. This paper aims to
provide defect data-set owners with an effective means of
privatizing their data prior to release. We explore MORPH
which understands how to maintain class boundaries in a
data-set. MORPH is a data mutator that moves the data a
random distance, taking care not to cross class boundaries.
The value of training on this MORPHed data is tested via a
10-way within learning study and a cross learning study using
Random Forests, Naive Bayes, and Logistic Regression for ten
object-oriented defect data-sets from the PROMISE data repos-
itory. Measured in terms of exposure of sensitive attributes,
the MORPHed data was four times more private than the
unMORPHed data. Also, in terms of the f-measures, there was
little difference between the MORPHed and unMORPHed data
(original data and data privatized by data-swapping) for both
the cross and within study. We conclude that at least for the
kinds of OO defect data studied in this project, data can be
privatized without concerns for inference efficacy.

Keywords-privacy; defect prediction; data mining

I. INTRODUCTION

Within-company defect prediction is the means by which
organizations predict the number of defects in their software.
Cross-company defect prediction looks at the feasibility of
learning defect predictors using data from other companies.
Recent studies show that defect and effort predictors built
from cross-company data can be just as effective as predic-
tors learned using within-company data [1]–[3] (caveat: the
cross-company data must be carefully filtered when being
applied locally). The success of such cross-company learn-
ing experiments suggests that there exist general principles
of software engineering that transcend project boundaries
and which can be used to learn general models of software
engineering.

However, before we conduct widespread cross-company
learning experiments, we must first address the privacy
concerns of data owners who are willing to share their data.
Unless we can address these concerns, continued progress
in this promising area will be stalled. Extracting project data
from organizations is often very difficult due to the business
sensitivity associated with the data. For example, for eleven
years the second author worked at NASA’s software IV&V
center. NASA divides its IV&V work between multiple
contractors who all work on similar projects. Every three

years, all the contracts are subject to competitive bidding.
Hence, those contractors are very reluctant to share data
about (say) the effort associated with finding mission-critical
errors in manned spacecraft, lest that data is used against
them during the bidding process. Consequently, researchers
and NASA managers suffer from a severe “data drought”
that inhibits their ability to learn effective defect detection
models for life-threatening software errors [4].

For these reasons, many researchers doubt the practicality
of data sharing for the purposes of research. In a personal
communication, Barry Boehm reports he can release none
of the data that his COCOMO team collected after 1981.
Similarly, at a recent keynote address at ESEM’11, Elaine
Weyuker doubted that she will ever be able to release the
AT&T data she used to build defect predictors [5].

These examples are a clear indication of data owners who
are willing to share their data for research purposes but
are unable to do so because of privacy concerns. One way
to convince data owners to publish their data is to offer
them a means to privatize their data in such a way as to
1) prevent the competition from learning specific sensitive
metric values from their released data and 2) ensuring that
this privatized data remain useful for research purposes such
as cross-company learning. With cross-company learning
where the goal of a researcher is to find defects in a software
system before deployment, all that is required of the data is
that the relationship between the class values and attribute
values remain intact. On the other hand, the attacker’s goal is
to seek out sensitive information without concerns for defect
prediction.

We find we can exploit the difference between the goals of
an attacker and the goals of defect prediction. We show that
it is possible to secure against attackers while preserving
the relationships required for effective defect prediction.
MORPH 1 is a privacy algorithm designed to reduce the
attacker’s trust in the released data. In contrast, a researcher
looking for defects in their software systems will still find
the privatized data “useful”. In the context of this paper, we
will say that a data-set is “useful” if it can be used to learn
defect predictors.

1The term MORPH in this work refers to data transformation via
perturbation to create synthetic data.

This paper proposed MORPH as a sharing mechanism
for privacy-sensitive data. Using MORPH, we can ensure
privacy while supporting defect prediction since MORPH
as an instance mutator perturbs all instance values by a
random amount. This amount is selected to move an instance
to a new location in n-space without moving it across the
boundaries between classes. Potentially, MORPH increases
the privacy of all mutated individuals since their original
data is now distorted.

In support of the adoption of MORPH, we address three
specific research questions:

• RQ1: Does MORPH improve privacy?
• RQ2: Does MORPH improve privacy better than any-

thing else?
• RQ3: Does MORPH degrade performance?

To the best of our knowledge, this is the first report of a data
mining method that increases the privacy of a data-set with-
out damaging inference power. This is a significant result
since prior studies [6] have reported that the application of
standard privacy methods such as k-anonymity, l-diversity or
t-closeness both damaged inference power, and offered little
overall improvements in privacy. Hence, for learning from
data that must be privatized, we recommend MORPHing
over k-anonymity, l-diversity or t-closeness.

II. BACKGROUND

In this section, we provide background on the following:
a) defect prediction b) the cross company defect prediction
process; c) privacy-preserving data publishing d) problems
with privacy and provide e) attack models and f) utility
models used in this paper.

A. Defect Prediction

Boehm & Papaccio advise that reworking software (e.g.
to fix bugs) is cheaper earlier in the life cycle than later “by
factors of 50 to 200” [7]. Other research makes the same
conclusion. A panel at IEEE Metrics 2002 concluded that
finding and fixing severe software problems after delivery
is often 100 times more expensive than finding and fixing
them during the requirements and design phase [8].

Defect prediction allows software companies to take ad-
vantage of early defect detection. Models made for defect
prediction are built with within-company data-sets using
common machine learners. The data-sets are comprised of
independent variables such as the code metrics used in this
work and one dependent variable or prediction target with
values (labels) to indicate whether or not defects are present.

A prediction model created from a defect data-set can then
take a new unlabeled instance and label it as defective or
not defective. When evaluating the prediction models we use
the 10*10 cross-validation technique. Here the defect data
is divided into ten(10) folds. One fold is used as a test-
set representing new unlabeled instances, while the other
nine(9) folds are combined and act as the training-set used

to create prediction models. The test instances are then
labeled according to the models and these new labels can be
compared to the original labels using various performance
measures (discussed in Section II-F).

B. Cross Company Defect Prediction

When data can be shared between organizations, defect
predictors from one organization can generalize to another.
For example, defect predictors developed at NASA [9] have
also been used in software development companies outside
the US (in Turkey). When the inspection teams focused on
the modules that trigger the defect predictors, they found
up to 70% of the defects using just 40% of their QA effort
(measured in staff hours) [10].

Such cross-company learning is useful since, as Zimmer-
mann et. al. [11] observed, defect prediction via local data
is not always available to many software companies as

• The companies may be to small.
• The product might be in its first release and so there is

no past data.
Kitchenham et al. [12] also see problems with relying

on within-company data-sets. They note that the time re-
quired to collect enough data on past projects from a single
company may be prohibitive. Additionally, collecting within-
company data may take so long that technologies used by the
company would have changed and therefore older projects
may no longer represent current practices.

Initial experiments with cross-company learning were
either very negative [11] or inconclusive [12]. Recently,
we have had more success using better selection tools for
training data [2], [3] but this success was only possible if the
learner had unrestricted access to all the data. As discussed
below, this is a problem.

C. Privacy Preserving Data Publishing

Data sharing across companies exposes the data provider
to unwanted scrutiny. Some of these concerns reflect the low
quality of our current anonymization technologies. For ex-
ample, the state of Massachusetts once released some health-
care data, anonymized according to HIPPA regulations
(http://goo.gl/HQiW6). When this supposedly “anonymized”
data was joined to other data (voters lists and census data)
it was possible to find data of prominent individuals such as
former Massachusetts governor William Weld [13].

We say that re-identification occurs when an attacker
with external information such as census data can identify
an individual from a privatized data-set. For the kinds of
data used in this study (which are aggregated at the project
level, but not at the developer level), these data-sets do not
contain personnel information. Hence, re-identification of
individuals is not explored further in this study.

On the other hand, sensitive attribute value disclosure is
of great concern with the data used in this study. This is
where an individual in a data-set can be associated with a

sensitive attribute value; e.g. to identify the quality attributes
of corporations in data-sets. Such sensitive attribute value
disclosure can prove problematic. Some of the metrics con-
tained in defect data can be considered as sensitive to the
data owners. These can include any size measures such as
lines of code (loc) or cyclomatic complexity (max-cc or avg-
cc). If these size measures are joined to development time, it
would be possible for rivals competing on a bid to discredit
their opposition by revealing (say) slower development times
amongst their competitors.

The goal of privacy preserving data publishing (PPDP)
is to ensure that the published data can preserve individual
privacy while remaining useful for workloads such as data
mining [13]–[15] or defect prediction. The data is looked
at as having three components: 1) quasi identifiers (QIDs)
such as age, and zip code that help identify an individual in
a data-set; 2) sensitive attributes (S), that are a privacy threat
when matched to an individual (e.g. medical diagnosis); 3)
and non-sensitive attributes. As discussed next, the goals of
PPDP are hard to reach.

D. Problems with Privacy

Many researchers comment on how privatization algo-
rithms can distort data. For example, consider privatization
via these three methods: 1) Replacing exact numeric values
with intervals that cover a range of values; e.g. 17 might
become 15-20; 2) Replacing symbols with more general
terms; e.g. “date of birth” becomes “month of birth”; or “en-
gineer” or “lawyer” becomes “professional”; 3) Suppressing
exact values by replacing them; e.g. replace specific values
with “don’t know” [16]; or perturbing specific values by an
amount selected randomly from a distribution.

According to [13], these methods hide potentially impor-
tant details in the QID that can confuse a data miner. Worse,
these transforms may not guarantee privacy. For example,
consider privacy-via-perturbation (e.g. data-swapping). Sup-
pose an attacker has access to multiple independent samples
from the same distribution from which the original data was
drawn. In that case, a principal component analysis could
reconstruct the transform from the original to privatized
data [17].

Widely-used privatization approaches include k-
anonymity, l-diversity and t-closeness. K-anonymity [18]
makes each record in the table be indistinguishable with k-1
other records by suppression or generalization [18]–[20].
The limitations of k-anonymity, as listed in [6] are many
fold and include the fact that it does not hide whether
a given individual is in the database. Also, in theory,
k-anonymity hides uniqueness (and hence identity) in a
data-set, thus reducing the certainty that an attacker has
uncovered sensitive information. However, in practice,
k-anonymity does not ensure privacy if the attacker has
background knowledge of the domain [6].

Machanavajjhala et al. [21] proposed l-diversity. The aim
of l-diversity is to address the limitations of k-anonymity
by requiring that for each QID group 2, there are at least
l distinct values for each sensitive attribute value. In this
way an attacker is less likely to “guess” the correct sensitive
attribute value of any member of a QID group.

Work by Li et al. [22], later showed that l-diversity was
vulnerable to skewness and similarity attacks making it
insufficient to prevent attribute disclosure. Hence, Li et al.
proposed t-closeness to address this problem. T-closeness
focuses on keeping the distance between the distributions of
a sensitive attribute in a QID group and that of the whole
table no more than a threshold t apart. The intuition is
that even if an attacker can locate the QID group of the
target record, as long as the distribution of the sensitive
attribute are similar to the distribution in the whole table, any
knowledge gained by the attacker cannot be considered as
a privacy breach because the information is already public.
However, with t-closeness, information about the correlation
between QIDs and sensitive attributes is limited and so
causes degradation of data utility [22].

In practice, the above issues with privacy algorithms are
very real problems. Grechanik et al. [23] found that k-
anonymity greatly degraded the test-coverage of data-centric
applications. Furthermore, Brickell and Shmatikov [6] report
experiments where to achieve privacy using the above meth-
ods “requires almost complete destruction of the data mining
capability”. They concluded that depending on the privati-
zation parameter, the privatized data provided no additional
utility vs. trivial privatization. Worse, they also reported that
simplistic trivial privatization provides better privacy results
than supposedly better methods like l-diversity, t-closeness
and k-anonymity.

The reason for this poor performance of such widely
explored privacy algorithms is unclear. We speculate that the
empirical basis for certifying these standard privacy methods
may not be very strong. Fung et al. [13] report that one data-
set (the 48,842 records of ADULT; see http://goo.gl/1XZT7)
is the “de facto benchmark for testing anonymization al-
gorithms” and list 13 papers that use it as the only test
case for their algorithms. In this regard, our results have
more external validity since we base our experiments on ten
different data-sets (caveat: they have some similarities in that
they are all are open source object-oriented JAVA projects).

E. Attack Models

To precisely define privacy, we must first define how we
model an attacker trying to access data. In this section we
review three standard attack models from the literature [6],
[21], [22] and present the one used in this work which was
adapted from Brickell and Shmatikov [6] (we will use this
last one since it includes and extends the others).

2A QID group is a set of instances whose QID values are the same
because of generalization or suppression.

Before continuing, note that examples used to explain
the following attack models and later on sensitive attribute
disclosure (Section ??), are based on the Top and Bottom
tables of Figure 2. The data-set used is an abbreviated
ant13 defect data-set from the PROMISE data repository
(http://goo.gl/mStAY). In the examples to follow Top repre-
sents an original data-set while Bottom is the 2-anonymity
version of Top.

1) Machanavajjhala et al.’s Attack Models: The homo-
geneity attack and the background knowledge attack are
defined in [21] and are seen as an attack on k-anonymity. The
homogeneity attack results in groups that leak information
due to the lack of diversity in the sensitive attribute. For
an example of this kind of attack, consider Figure 2. If
an attacker knows that a target file has the value of 11
for rfc and zero for lcom (Q(2) = {rfc11, lcom0}), the
Bottom table produces two possibilities for the target file
(types.EnumeratedAttribute and NoBannerLogger). Since
both have the same sensitive attribute value the attacker is
100% sure that the target file has 59 lines of code.

The background knowledge attack is explained by the
following example. Using the 2-anonymity data of Figure 2,
suppose the attacker has the following knowledge about a
target file: Q(1) = {cbo8}. Here Q(1) says that the query
size is 1 and cbo is a QID with the value 8. From the results
of that query, the attacker knows that the target is contained
in the first group of files (taskdefs.ExecuteOn, taskdefs.Cvs
and DefaultLogger) with sensitive values of 395, 310 and
257 respectively. Assuming that the attacker has additional
knowledge that files with cbo values ≤ 8 tend to also have
loc less than 300, then the attacker can be almost certain
that the target file has 257 lines of code.

2) Li et al.: Similarity Attack: Unlike the previous attack
models the similarity attack explored by Li et al. [22] is
considered as an attack on l-diversity. This attack occurs
when sensitive attribute values in a QID group are distinct
but semantically similar, for instance, if the sensitive at-
tribute values fall within a narrow range. Consider the fol-
lowing example: Suppose the 2-anonymity data in Figure 2
consisted of all but the last two records. This will leave a
table that conformed to 2-diversity. If an attacker poses the
query: Q(1) = {cbo8}, the first group of files is returned
as before. With this result, an attacker will know with 33%
guarantee that the target has either 395, 310 or 257 lines of
code. Although this may seem like a good result in terms of
privacy, since loc is a numerical attribute, this narrow range
of results can be considered as sensitive information being
revealed [24]. This is because the attacker can infer that the
target file has a relatively high number for loc.

3) Brickell and Shmatikov Attack: This attack model is
based on the previous models. To investigate how well the
original defect data is privatized, we assume the role of an
attacker armed with some background knowledge from the
original data set and also supplied with the private data-set.

ID Quasi Identifiers (QIDs) S
name wmc dit noc cbo rfc lcom ca ce loc
taskdefs.
ExecuteOn

11 4 2 14 42 29 2 12 395

Default
Logger

14 1 1 8 32 49 4 4 257

taskdefs.
TaskOut-
putStream

3 2 0 1 9 0 0 1 58

taskdefs.
Cvs

12 3 0 12 37 32 0 12 310

taskdefs.
Copyfile

6 3 0 4 21 1 0 4 136

types. Enu-
merated
Attribute

5 1 5 12 11 8 11 1 59

NoBanner
Logger

4 2 0 3 16 0 0 3 59

ID Quasi Identifiers (QIDs) S
name wmc dit noc cbo rfc lcom ca ce loc
taskdefs.
ExecuteOn

11-14 <5 ≤5 8-14 32-42 29-49 * * 395

taskdefs.
Cvs

11-14 <5 ≤5 8-14 32-42 29-49 * * 310

Default
Logger

11-14 <5 ≤5 8-14 32-42 29-49 * * 257

taskdefs.
TaskOut-
putStream

<7 <5 ≤5 1-4 * ≤8 0 ≤4 58

taskdefs.
Copyfile

<7 <5 ≤5 1-4 * ≤8 0 ≤4 136

types. Enu-
merated
Attribute

<7 <5 ≤5 * 11-16 ≤8 * ≤4 59

NoBanner
Logger

<7 <5 ≤5 * 11-16 ≤8 * ≤4 59

Figure 1: Privatization example using an abbreviated ant13 data-
set from the PROMISE data repository (http://goo.gl/mStAY). The
number of lines of code (loc) is the sensitive attribute (S). Top:
This represents the original data-set. Bottom: This is the original
data-set after 2-anonymity using generalization and suppression.

In order to keep the privatized data-set truthful, Brickell
and Shmatikov [6] kept the sensitive attribute values as is
and privatized only the QIDs. However in this work in
addition to privatizing the QIDs with MORPH, we apply
Equal Frequency Binning (EFB)3 to the sensitive attribute to
create ten(10) sub-ranges of values in order to easily report
on the privacy level of the privatized data-set.

F. Utility Model

Utility is the measure of the “usefulness” of a data-set
after privatization. An inherent understanding in the field of
PPDP is that there exists a trade-off between privacy and
utility in that with increased privacy, the utility of a data-set
decreases [6]. Therefore a measure of privacy alone is not
enough to judge the success of a privacy algorithm: we also
need to judge the utility of the result.

Like Brickell and Shamtikoc, we measure the utility of
our privatized data-set empirically. Using Random Forests,
Naive Bayes and Logistic Regression, we create defect

3A column of data is divided at the 10,20,30,...,90-th percentile to create
ten bins with equal frequency.

prediction models for the privatized and original data-sets.
These learners were chosen since we wanted to test the
impact of our privacy tools on a wide range of learners
including iterative dichotomizers such as Random Forests;
statistical learners such as Naive Bayes; Neighbors; and
parametric methods such as logistic regression.

We then compare the performance of our defect predictors
using f-measures. An f-measure is the harmonic mean of
precision and recall. These three measures are defined and
calculated as follows:

• Let A, B, C and D represent true negatives, false
negatives, false positives and true positives respectfully;

• Recall, which reveals how much of the target was
found, is the result of true positives divided by the sum
of false negatives and true positives, D / (B + D);

• Precision reveals how many of the rows that triggered
the detector actually contained the target concept. It is
the result of true positives divided by the sum of false
positives and true positives, D/ (C + D).

• f-measure allows for a dual assessment of both recall
and precision (2×precision×recall

precision+recall). It has the property
that if either precision or recall is low, then the f-
measure is decreased.

Note that in those comparisons, we set aside some test data,
privatize the remaining training data, then perform our tests
on the privatized data.

III. MORPH DESIGN AND PRIVACY FRAMEWORK

This section introduces MORPH, a privacy algorithm
for defect data. It is based on a Nearest Unlike Neighbor
(NUN) [25] approach (explained in Section III-A) coupled
with randomization. MORPH has two goals: achieve a
proficient level of privacy while maintaining the utility of
the defect data. In other words, defect predictors built from
the privatized data must be as good as those from the original
data-set. Further, the privatized data should reveal little or
no excess information than the original data. To fulfill these
requirements, MORPH changes each row of the original data
just enough to avoid a change in its outcome, that is, its class
(defects) label must not change.

In Section III-A, we describe MORPH in detail. This
is followed by the privacy metric used to measure its
performance.

A. Privacy Algorithm

MORPH acts to preserve the general topology of the space
of the instances in the data, while changing the location of
specific instances within that space. MORPH is an instance
mutator that changes the attribute values of each instance
by replacing these original values to MORPHed values.
MORPH takes care never to change an instance such that
it crosses the boundary between the original instance and
instances of another class.

The MORPHed instances are created by applying Equa-
tion 1 to each attribute value of the instance.

yi = xi ± (xi − zi) ∗ r (1)

Let x ∈ D be the original instance to be changed, y the
resulting MORPHed row and z ∈ D the nearest unlike
neighbor (NUN) of x. NUN is the nearest neighbor of x
whose class label is different from x’s class label (and
distance is calculated using the Euclidean distance). The
random number r is calculated with the property α ≤ r ≤
β ≤ delta/2, where α = 0.15 and β = 0.35.

A simple hashing scheme lets us check if the new in-
stance y is the same as an existing instance (and we keep
MORPHing x until it does not hash to the same value as
an existing instance). Hence, we can assert that none of the
original instances are found in the final privatized data-set.

B. Privacy Measure

In this work we measure privacy in terms of sensitive at-
tribute disclosure (SAD). Here we determine if an attacker’s
query will allow them to identify a group of individual files
in a data-set and associate them with a sensitive attribute
value sub-range. In the following sections we describe how
the attacker’s knowledge is modeled using random queries
to measure SAD.

1) The Query Generator: Before discussing the query
generator, a few details must be established. First, to main-
tain some “truthfulness” to the data, a selected sensitive
attribute and the class attribute are not used as part of query
generation. Here we are assuming that the only information
an attacker could have is information about the QIDs in the
data-set. As a result these attribute values are unchanged in
the privatized data-set.

For the purposes of experimentation, we will assume
that each query can be of length 1, 2 or 4 (denoted
Q(1), Q(2) and Q(4) respectively) and are made up of
randomly selected attribute value pairs. To represent the
attacker’s knowledge, we first discretize the original data set
using EFB. For these experiments, we will create 10 equal
frequency bins.

After binning is complete, queries of lengths 1, 2 and 4
are randomly generated. For each query length we generate
up to 1000 queries because it is not practical to test every
possible query (with these data-sets the number of possible
queries with arity 4 and no repeats is 42, 296, 805).

Each query must also satisfy the following sanity checks:
• They must not include attribute value pairs from neither

the designated sensitive attribute nor the class attribute;
• They must return at least 2 instances after a search of

the original data-set;
• They must not be the same as another query no matter

the order of the individual attribute value pairs in the
query.

2) Sensitive Attribute Disclosure: Once a query is gen-
erated, it is used on the original and privatized data-sets
to select instances that adhere to the query. SAD is then
measured for each of the ten(10) sensitive attribute sub-
ranges using the following formula:

SADi =
#vi
#G

(2)

where #Vi is the number of rows with a specific sensitive
attribute sub-range, and #G is the number of rows selected
by a query.

The intuition here is that an attacker will use a “best
guess” approach i.e. find the sensitive attribute sub-range
with the highest SAD using Equation 2. If a query results
in the same sub-range being selected for both the original
and privatized data-sets then we consider this to be a breach
of privacy. On the other hand, if they are different, then the
attack is unsuccessful and privacy is preserved.

Here is an example for one query: Using the tables in
Figure 2, we create sensitive attribute sub-ranges [58−136]0
and [257−395]1. Assume that an attacker has the following
query from our original data-set, Top: Q(1) = {cbo8−12}.
Applying this query to Top produces the following SAD
results: SAD0 = 1

3 and SAD1 = 2
3 . Here, the highest

SAD returns the range [257-395]. Applying this query to the
privatized data-set, Bottom, produces the following SAD
results: SAD0 = 1

1 and SAD1 = 0
1 . Here, the highest SAD

returns the range [58-136]. Since the ranges returned are
different we say that the attacker’s query did not breach the
privacy of the data-set and so the attacker’s “best-guess” was
wrong.

3) Increase Privacy Ratio: Finally, we can define the
IPR. When all the sensitive attribute sub-ranges for each
query are selected via the attacker’s “best-guess” strategy,
they are compared. If the query returns the same sub-range
for the original and the privatized data-sets this is counted as
a privacy breach. We then find the total number of breaches
from all the queries and return the percentage.

Next, for the purposes of reporting the effects of MORPH
on privacy, we say that the IPR is the ratio of the baseline
of full disclosure i.e. the ability of the attacker to guess
correctly for all queries; i.e. 100% to the percent of actual
correct guesses by the attacker:

IPR =
100

Correct
(3)

Based on our discussions with business users on different
methods for defining privacy, we prefer Equation 3 to,
say, the entropy measures used by Clause et al. [26]. Our
users find the simplicity of the above expression easier to
understand than Shannon’s entropy.

IV. EXPERIMENTAL EVALUATION

In this section we evaluate MORPH using a within and
cross data study. To show how our privacy framework

performs against a state-of-the-art privacy algorithm, we
compare our work to data-swapping, a standard perturbation
technique used for privacy [13], [24], [27] (discussed in
Section IV-A). In our experiments, the WEKA [28] im-
plementation of Random Forests, Logistic Regression and
Naive Bayes are used to create defect models. In order to
assist replication, our data comes from the on-line PROMISE
data repository (http://goo.gl/mStAY). Figure 3 lists those
data-sets and Figure 4 describes their attributes. The class
labels are made categorical: “0” denotes no defects and “1”
denotes more than zero defects.

Using these learners, we conducted two studies:
• For the within, a 10 × 10 cross-validation experiment

was conducted where the defect data was shuffled and
then separated into ten bins. For each bin, MORPH
is applied to nine of the ten bins and tested on the
remaining bin. In order to avoid order effects (where the
conclusions are a result of some serendipitous ordering
of the data), this process is repeated 10 times using
different random shuffles of the rows in the data-sets.

• For the cross study, for all data-sets, each acts as a test-
set while the remaining data-sets are training sets used
as cross company data.

Recall from the introduction that our results are geared
toward answering the following research questions:

• RQ1: Does MORPH improve privacy?
• RQ2: Does MORPH improve privacy better than any-

thing else?
• RQ3: Does MORPH degrade performance?

RQ1 and R2 accounts for the privacy level of the priva-
tized defect data-sets. This is measured via an attack model
to determine if an attacker can associate an instance in
the privatized data-set to a sensitive attribute value range.
With RQ1 and R2 we directly address the main concern of
data owners, “Will privacy be preserved after data has been
published?”

Unlike RQ1 and R2, in RQ3 we examine the performance
of defect models created from privatized data-sets based of
the original data. The goal here is to show data owners
and researchers, that privatized data can be used to make

Data Symbol Instances Attributes Class Defect%
ant13 ant 125 20 2 20.2
arc arc 234 20 2 11.5
camel10 cam 339 20 2 4
poi15 poi 237 20 2 40.5
redaktor red 176 20 2 15.3
skarbonka ska 45 20 2 20
tomcat tom 858 20 2 9
velocity14 vel 196 20 2 25
xalan24 xal 723 20 2 15.2
xerces12 xer 440 20 2 16.1

Figure 2: Defect Data Set Characteristics

amc average method complexity e.g. number of JAVA byte codes
avg cc average McCabe average McCabe’s cyclomatic complexity seen in class

ca afferent couplings how many other classes use the specific class.
cam cohesion amongst classes summation of number of different types of method parameters in every method divided by a

multiplication of number of different method parameter types in whole class and number of methods.
cbm coupling between methods total number of new/redefined methods to which all the inherited methods are coupled
cbo coupling between objects increased when the methods of one class access services of another.
ce efferent couplings how many other classes is used by the specific class.

dam data access ratio of the number of private (protected) attributes to the total number of attributes
dit depth of inheritance tree
ic inheritance coupling number of parent classes to which a given class is coupled (includes counts of methods and variables

inherited)
lcom lack of cohesion in methods number of pairs of methods that do not share a reference to an instance variable.

locm3 another lack of cohesion measure if m,a are the number of methods, attributes in a class number and µ(a) is the number of methods
accessing an attribute, then lcom3 = ((1

a

∑a

j
µ(aj))−m)/(1−m).

loc lines of code
max cc maximum McCabe maximum McCabe’s cyclomatic complexity seen in class

mfa functional abstraction number of methods inherited by a class plus number of methods accessible by member methods of
the class

moa aggregation count of the number of data declarations (class fields) whose types are user defined classes
noc number of children
npm number of public methods
rfc response for a class number of methods invoked in response to a message to the object.

wmc weighted methods per class
defects defects number of defects per class, seen in post-release bug-tracking systems.

Figure 3: The C-K metrics of the data-sets used in this work (see Figure 3). The last row is the dependent variable.

adequate defect models which produce comparable and/or
negligibly degraded results to the original data.

A. Data Swapping

In order to benchmark our approach, we need to compare
it against some alternative. Since Grenchanik et al. and
Brickell and Shmatikov [6], [23] report that k-anonymity,
l-diversity, and t-closeness damage the utility of a data-set,
we elect to use another privacy algorithm.

Since MORPH is a perturbation technique for generating
synthetic data, for our comparisons, we implemented data
swapping, a standard perturbation technique used for pri-
vacy [13], [24], [27]. This is a permutation approach that de-
associates the relationship between a QID and a numerical
sensitive attribute.

In our implementation of data swapping, for each QID
a certain percent of the values are swapped with any other
value in that QID. For our experiments, these percentages
are 10, 20 and 40%.

B. Defect Predictors

Many machine learning techniques have been used for the
purpose of defect prediction [29]. For this work we focus
on Random Forest, an ensemble method, and two statistical
methods, Naive Bayes and Logistic Regression. Recall, these
were chosen since they are very different algorithms (iter-
ative dichotomization, statistical, parametric). The WEKA
implementation of these methods are used along with any
default values [30]. Below is a brief description of these
methods. Detailed descriptions can be found elsewhere [31].

• Random Forests (RF): Breiman [31] describes RF as
a combination of tree predictors such that each tree
depends on the values of a random vector sampled
independently and with the same distribution for all
trees in the forest. Each tree in the collection is used
to classify a new instance. The forest then selects a
classification by choosing the majority result.

• Naive Bayes (NB): Lewis [32] describes NB as a
classifier based on Baye’s rule. It is a statistical based
learning scheme which assumes that attributes are
equally important and statistically independent. To clas-
sify an unknown instance, NB chooses the class with
the maximum likelihood of containing the evidence in
the test case.

• Logistic Regression (LR): Afzal [33] describes LR
as a method to be used when the dependent variable
is dichotomous (e.g. either fault-prone or non-fault-
prone). The method avoids the Gaussian assumption
used in standard Naive Bayes.

C. Methodology

In the field of Privacy-Preserving Data Publishing, it is
often remarked that there is a tension between gain in
privacy results and degradation in the utility of that data
[6]. Therefore one cannot report on the privacy of a data-
set without considering its effects on data utility i.e. the
“usefulness” of the privatized data. To that end, we report
two sets of results:

• The increased privacy ratio, measured via Equation 3;
• The utility of the learning, measured via the f-measure.

Algorithms Symbol Meaning
MORPH m data privatized by MORPH
swappedX sX: s10, s20, s40 X represents the percentage of the

original data swapped

Figure 4: Algorithm Characteristics

Note that prior results reported that attempts to increase
privacy tended to damage utility [6].

D. Results

This section presents the results of our experiments.
Before going forward, Figure 5 shows the notation and
meaning of the algorithms used in this work.

RQ1: Does MORPH improve privacy? Figure 8 shows
the increase privacy ratios seen in these experiments. To
generate that figure we first privatize our data-sets using
MORPH and data-swapping guided by the policy that the
sensitive attribute values of loc and the defects attribute
remain unchanged after privatization. Next, using the query
generator described in Section II, queries (the attackers’
background knowledge) are drawn from the original data-
sets. Applying Equation 3 we then calculated the increased
privacy ratio by comparing the original and privatized data
sets. The sub-ranges with the highest SADs from each are
chosen and compared using Equation 3 (so our results are
in that sense worst case since we focus on the largest SADs
and the least increased privacy ratios).

The results of those calculations are shown in Figure 8.
Interestingly, the more knowledgeable the attacker, the less
they can learn from MORPHed data or data privatized by
data-swapping. As we increase the background knowledge of
the attacker (from one attribute to two to four), the increased
privacy ration increases. This is due to the randomization
of the data provided by MORPH. As we push data into
random corners, it becomes less lucky that larger and larger
conjunctions will find items of interest in the MORPHed
data. The same can be said for the data-swapping algorithms.

From these results, the worse-case scenario for privacy is
the attacker with the most general knowledge (i.e. fewest
constraints, smallest queries). In that worse case, the size of
the query is one and the median increased privacy ratio for
MORPH is 4.4 while the data-swapping algorithms(s10, s20
and s40) are 2.8, 3.3 and 4.2 respectively. That is, even in
the worst case MORPH is able to a make data-set at least
four times more private than the original data-set.

RQ2: Does MORPH improve privacy better than any-
thing else? It is important to note that RQ2 says anything
else and not everything else. While we have shown that
MORPH performs better than data swapping for s10 and
s20, and has comparable results for s40 (see Figure 8), we
have not explored the space of all possible data privacy
algorithms. This paper has compared to privacy methods that
have some successful track record (i.e. we compared to data

swapping but not, say, k-anonymity since the Brickell and
Shamtikoc [6] results were so negative on that approach). In
future work, we will explore a broader range of methods.

RQ3: Does MORPH degrade performance? Figure 6
and Figure 7 report high f-measures for both cross and within
learning with two exceptions:

1) the within Naive Bayes experiment in Figure 6b with
f-measures below 55% for the poi15(poi) data-set;

2) the f-measures for poi15 and velocity14(vel) for the
cross experiment which uses Random Forests for
defect prediction (see Figure 7).

Also shown on those figures are the f-measures seen in
the privatized data. Both MORPH and the data-swapping
algorithms perform just as well as the original data-sets in
most cases for both the within and cross experiments. With
MORPH however, poi15 is somewhat different to the other
data-sets since, when it was used as a training set for cross-
company learning with redaktor(red) and skarbonka(ska)
(see Figure 7), it performed worse than all the other results.
The reason for this outlier is unknown and will be subject
of our future work. Otherwise, for nine out of ten training
sets, those privatized by MORPH remain as useful as the
original data.

V. THREATS TO VALIDITY

As with any empirical study, biases can affect the final
results. Therefore any conclusions made from this work must
be considered with the following issues in mind:

First, sampling bias threats any data mining experiment;
i.e., what matters there may not be true here. For example,
the data-sets used here comes from the PROMISE repository
and supplied by one individual. The best we can do is define
our methods and publicize our data so that other researchers
can try to repeat our results and, perhaps, point out a
previously unknown bias in our analysis. Hopefully, other
researchers will emulate our methods in order to repeat,
refute, or improve our results.

Second, another source of bias in this study is the learner
used for the defect prediction studies. Data mining is a large
and active field and any single study can only use a small
subset of the known data mining algorithms. In this work,
results for Naive Bayes, Random Forests and Logistical
Regression are published.

Third, the field of privacy-preserving data publishing is
active, and so it would be difficult compare the performance
of MORPH to all of them. In this work we chose to use
data-swapping as a baseline to judge the performance of
our method.

Last, the utility of a privatized data-set can be measured
semantically (where the workload is unknown) or empiri-
cally (known workload e.g. classification or aggregate query
answering). In this work we measure utility empirically for
defect prediction. As a result we cannot guarantee positive
outcomes for other utility measures.

Figure 5: Increased Privacy Ratio (ipr) of Query sizes 1, 2 and 4.

Figure 6: Within results: F-measures compared among the original and privatized data seen in 10*10-way cross-validation experiments.

VI. RELATED WORK

A. Privacy Research in Software Engineering

To the best of our knowledge this is the first paper
to address the issue of privacy in cross company defect
prediction. However it is closely related to privacy work for
software testing and debugging [26], [27]. Here although
the work uses within company data, the privacy becomes an
issue when it involves outsourcing the testing to third parties
as is the case with [27] or collecting user information after
a software system has been deployed [26]. In the former
case, since companies do not wish to release actual cases for
testing, they anonymize the test cases before releasing them
testers. In this situation if the test cases are not able to find
the bugs like the original data then the field of outsourced
testing is in danger. Similarly cross company prediction can
suffer the same fate.

Clause et al. [26] presented an algorithm which
anonymizes input sent from users to developers for debug-
ging. Since the information from the user is likely to contain
sensitive information, Clause et al. proposed a method which
relies on the premise that there is more than one path
to a “bug”. In other words their aim is to supply the
developer with anonymized input which causes the same
failure as the original input. To accomplish this they first
use a novel path condition relaxation technique to relax
the constraints in path conditions thereby increasing the

number of solutions for computed conditions. Next, the
author applied a technique called breakable input conditions
to ensure that the constraints do not select values from the
original input data.

In contrast to the work done in [26], Taneja et. al.
proposed PRIEST. Unlike our work, which privatizes data
randomly within NUN border constraints, the privacy al-
gorithm in PRIEST is based on data-swapping where each
value in a data-set is replaced by another distinct value
of the same attribute. This is done according to some
probability that the original value will remain unchanged.
An additional difference to our work is in the privacy metric
used. They make use of a “guessing anonymity” technique
that generates a similarity matrix between the original and
privatized data. The values in this matrix are then used to
calculate three privacy metrics: 1) mean guessing anonymity,
2) fraction of records with a guessing anonymity greater than
m = 1 and 3) unique records which determine if any records
from the original data remains after privatization.

MORPH takes a different approach to the above research.
Firstly, the techniques of Clause et al. assumes detailed
connection knowledge between parts of a system. Such
detailed connection knowledge is not present in defect data-
sets like Figure 4. As to PRIEST, we have some reservations
to data-swapping methods that use fixed distributions since
Zhang & Zhao argue that that distribution can be reverse
engineered from the privatized data [34].

Figure 7: Cross results: The y-axis shows F-measures compared
among the original and privatized data. Here Random Forests
is chosen to build the defect models. Naive Bayes and Logistic
Regression have similar results but these are left out due to the
space constraint. KEY: original + , m × ,
s10 ∗ , s20 ◦ , s40 ◦

VII. CONCLUSION

Studies have shown that early detection and fixing of
defects in software projects is less expensive than finding de-

fects later on [7], [8]. Organizations with local data can take
full advantage of this early detection benefit by doing within-
company defect prediction. When an organization does not
have enough local data to build defect predictors, they might
try to access relevant data from other organizations in order
to perform cross-company defect prediction. That access will
be denied unless the privacy concerns of the data owners can
be addressed. Current research in privacy, seek to address
one issue, i.e. providing adequate privacy for data while
maintaining the efficacy of the data. However reaching an
adequate balance between privacy and efficacy has proven to
be a challenge since intuitively - the more data is privatized
the less useful the data becomes.

To address this issue, in this paper we presented MORPH,
a privacy algorithm designed to privatize defect data-sets for
cross company defect prediction. Unlike previous studies,
we show that MORPH (1) increases data privacy of data
without (2) damaging our ability to reason about that data.
Note that this is a significant result since prior work with the
standard privatization technologies could not achieve those
two goals.

Our work was framed in terms of three research questions:
• RQ1: Does MORPH improve privacy? Measured in

terms of exposure of sensitive attributes, it was shown
in Figure 8 that MORPHed data is four times (or more)
private than the original data.

• RQ2: Does MORPH improve privacy better than any-
thing else? Figure 8 shows that MORPH does better
than s10 and s20. However it is comparable to s40.

• RQ3: Does MORPH degrade performance? We showed
in Figure 6 and Figure 7 that for the purposes of learn-
ing defect predictors, training on the MORPHed data is
just as effective as training on the unMORPHED data;
i.e. MORPHing does not degrade inference efficacy.

We hope that this result encourages more data sharing,
more cross-company experiments, and more work on build-
ing software engineering models that are general to large
classes of systems.

Our results suggest the following future work:
• The experiments of this paper should be repeated on

other data-sets.
• The current NUN algorithm is O(N2). We are explor-

ing ways to optimize that with some clustering index
method (e.g. k-means).

• While Figure 8 showed that we can increase privacy,
they also showed that we cannot 100% guarantee it. At
this time, we do not know the exact levels of privacy
required in industry or if the results of Figure 8 meet
those needs. This requires further investigation.

ACKNOWLEDGMENTS

The work was funded by NSF grant CCF:1017330 and
the Qatar/West Virginia University research grant NPRP 09-
12-5-2-470.

REFERENCES

[1] E. Kocaguneli and T. Menzies, “How to find relevant data
for effort estimation?” in Proceedings ESEM’11 (to appear),
2011.

[2] B. Turhan, T. Menzies, A. Bener, and J. Di Stefano, “On the
relative value of cross-company and within-company data for
defect prediction,” Empirical Software Engineering, vol. 14,
pp. 540–578, 2009.

[3] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, and J. W. Keung,
“When to use data from other projects for effort estimation,”
in Proceedings of the IEEE/ACM international conference on
Automated software engineering, ser. ASE ’10. New York,
NY, USA: ACM, 2010, pp. 321–324.

[4] T. Menzies, M. Benson, K. Costello, C. Moats, M. Northey,
and J. Richarson, “Learning better IV&V practices,” Innova-
tions in Systems and Software Engineering, March 2008.

[5] E. Weyuker, T. Ostrand, and R. Bell, “Do too many cooks
spoil the broth? using the number of developers to enhance
defect prediction models,” Empirical Software Engineering,
October 2008.

[6] J. Brickell and V. Shmatikov, “The cost of privacy: destruction
of data-mining utility in anonymized data publishing,” in Pro-
ceeding of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, ser. KDD ’08.
New York, NY, USA: ACM, 2008, pp. 70–78.

[7] B. Boehm and P. Papaccio, “Understanding and control-
ling software costs,” IEEE Trans. on Software Engineering,
vol. 14, no. 10, pp. 1462–1477, October 1988.

[8] F. Shull, V. B. ad B. Boehm, A. Brown, P. Costa, M. Lindvall,
D. Port, I. Rus, R. Tesoriero, and M. Zelkowitz, “What we
have learned about fighting defects,” in Proceedings of 8th
International Software Metrics Symposium, Ottawa, Canada,
2002, pp. 249–258.

[9] T. Menzies, J. Greenwald, and A. Frank, “Data mining
static code attributes to learn defect predictors,” Software
Engineering, IEEE Transactions on, vol. 33, no. 1, pp. 2 –13,
jan. 2007.

[10] A. Tosun, B. Turhan, and A. Bener, “Practical considerations
in deploying ai for defect prediction: a case study within the
turkish telecommunication industry,” in Proceedings of the
5th International Conference on Predictor Models in Software
Engineering, ser. PROMISE ’09. New York, NY, USA:
ACM, 2009, pp. 11:1–11:9.

[11] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Mur-
phy, “Cross-project defect prediction: a large scale experiment
on data vs. domain vs. process.” in ESEC/SIGSOFT FSE’09,
2009, pp. 91–100.

[12] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross
versus within-company cost estimation studies: A systematic
review,” IEEE Transactions on Software Engineering, vol. 33,
pp. 316–329, 2007.

[13] B. C. M. Fung, R. Chen, and P. S. Yu, “Privacy-Preserving
Data Publishing: A Survey on Recent Developments,” Com-
puting, vol. V, no. 4, pp. 1–53, 2010.

[14] J. Domingo-Ferrer and U. Gonzalez-Nicolas, “Hybrid micro-
data using microaggregation,” Information Sciences, vol. 180,
no. 15, pp. 2834–2844, 2010.

[15] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan, “Workload-
aware anonymization techniques for large-scale datasets,”
ACM Transactions on Database Systems, vol. 33, no. 3, pp.
1–47, 2008.

[16] V. Verykios, E. Bertino, I. Fovin, L. Provenza, Y. Saygin, and
Y. Theodoridis, “State-of-the-art in privacy preserving data
mining,” SIGMOD RECORD, vol. 33, no. 1, pp. 50–57, MAR
2004.

[17] C. Aggarwal and P. Yu, “A general survey of privacy-
preserving data mining models and algorithms,” in Privacy
preserving data mining: models and algorithms. Springer-
Verlag, 2008, pp. 11–43.

[18] L. Sweeney, “k-anonymity: A model for protecting privacy,”
Ieee Security And Privacy, vol. 10, no. 5, pp. 557–570, 2002.

[19] P. Samarati and L. Sweeney, “Protecting privacy when dis-
closing information: k-anonymity and its enforcement through
generalization and suppression,” 1998.

[20] H. Park and K. Shim, “Approximate algorithms with gen-
eralizing attribute values for k-anonymity,” INFORMATION
SYSTEMS, vol. 35, no. 8, pp. 933–955, DEC 2010.

[21] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasub-
ramaniam, “L-diversity: Privacy beyond k-anonymity,” ACM
Trans. Knowl. Discov. Data, vol. 1, March 2007.

[22] N. Li and T. Li, “t-closeness: Privacy beyond k-anonymity
and -diversity,” in In Proc. of IEEE 23rd Intl Conf. on Data
Engineering (ICDE07, 2007.

[23] M. Grechanik, C. Csallner, C. Fu, and Q. Xie, “Is data privacy
always good for software testing?” in Proceedings of the 2010
IEEE 21st International Symposium on Software Reliability
Engineering, ser. ISSRE ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 368–377.

[24] Q. Zhang, N. Koudas, D. Srivastava, and T. Yu, “Aggregate
Query Answering on Anonymized Tables,” 2007 IEEE 23rd
International Conference on Data Engineering, pp. 116–125,
2007.

[25] B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques. IEEE Computer Society Press,
1991.

[26] J. Clause and A. Orso, “Camouflage : Automated anonymiza-
tion of field data,” Proceeding of the 33rd international
conference on Software engineering, p. 2130, 2011.

[27] K. Taneja, M. Grechanik, R. Ghani, and T. Xie, “Testing
Software In Age Of Data Privacy: A Balancing Act,” Public
Policy, 2011.

[28] I. H. Witten and E. Frank, Data mining. 2nd edition. Los
Altos, US: Morgan Kaufmann, 2005.

[29] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Bench-
marking classification models for software defect prediction:
A proposed framework and novel findings,” Software Engi-
neering, IEEE Transactions on, vol. 34, no. 4, pp. 485 –496,
july-aug. 2008.

[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
SIGKDD Explor. Newsl., vol. 11, pp. 10–18, November 2009.

[31] L. Breiman, “Random forests,” Machine Learning, vol. 45,
pp. 5–32, 2001.

[32] D. Lewis, “Naive (bayes) at forty: The independence assump-
tion in information retrieval,” in Machine Learning: ECML-
98, ser. Lecture Notes in Computer Science, C. Ndellec and
C. Rouveirol, Eds. Springer Berlin / Heidelberg, 1998, vol.
1398, pp. 4–15.

[33] W. Afzal, “Using faults-slip-through metric as a predictor
of fault-proneness,” in Proceedings of the 2010 Asia Pacific
Software Engineering Conference, ser. APSEC ’10, 2010, pp.
414–422.

[34] N. Zhang and W. Zhao, “Privacy-preserving data mining
systems,” Computer, vol. 40, no. 4, pp. 52–58, April 2007.

