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ABSTRACT
Background: Size features such as lines of code and function points
are deemed essential for effort estimation. No one questions under
what conditions size features are actually a “must”.
Aim: To question the need for size features and to propose a method
that compensates their absence.
Method: A baseline analogy-based estimation method (1NN) and
a state-of-the-art learner (CART) are run on reduced (with no size
features) and full (with all features) versions of 13 SEE data sets.
1NN is augmented with a popularity-based pre-processor to cre-
ate “pop1NN”. The performance of pop1NN is compared to 1NN
and CART using 10-way cross validation w.r.t. MMRE, MdMRE,
MAR, PRED(25), MBRE, MIBRE, and MMER.
Results: Without any pre-processor, removal of size features de-
creases the performance of 1NN and CART. For 11 out of 13 data
sets, pop1NN removes the necessity of size features. pop1NN (us-
ing reduced data) has a comparable performance to CART (using
full data).
Conclusion: Size features are important and their use is endorsed.
However, if there are insufficient means to collect software size
metrics, then the use of methods like pop1NN may compensate for
size metrics with only a small loss in estimation accuracy.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management — cost estimation

General Terms
Management, Measurement

Keywords
lines of code, function points, instance selection, popularity, analogy-
based estimation, k-NN
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1. INTRODUCTION
Software effort estimation (SEE) is a maturing field of software

engineering (SE). Yet even after decades of research and model
development, SEE still remains a tricky task under the best of cir-
cumstances. There are extensive debates as to which methods are
best, mostly focusing on model vs. analogy based methods. Shep-
perd et al. reports analogy-based estimation (ABE) methods as the
high performing methods [1]; whereas within DOD and NASA,
parametric effort models like COCOMO [2] are extensively used
and have been shown to be high performing methods under the
right conditions [3]. Hihn et al. have found that among practi-
tioners ABE and expert-based methods are the most widely used
methods, while among the SEE professionals, parametric models
are the dominantly used methods [4]. Although the development
of parametric effort models has made the estimation process re-
peatable, there are still concerns with their overall accuracy [5–8].
Difficulty with accurately sizing software systems is a major cause
of this observed inaccuracy.

Unfortunately, it is difficult to get around the sizing problem, be-
cause if there is something considered a “law of physics” in the
world of SEE; it is that the bigger a system is, the more effort it
requires. There are other effort “laws” such as: The more com-
plex a system is, the more effort it requires as well. But in this
paper we will focus on system size, especially as most, if not all,
of the models used in industry require size as the primary input [9].
The primary sizing metrics used in effort models are logical lines
of code (LOC) [9] and function points (FP) [10]. However, there
are many other sizing metrics such as physical LOC, number of
requirements, number of modules [11], number of web pages [12]
and so on. From now on we will refer to such size related met-
rics generally as “size features”. Based on the work done at the
NASA Software Engineering Laboratory (SEL), it seems that soft-
ware systems can be sized in all of these ways and after the task
is completed one will find relatively high correlations between the
delivered size and actual effort, as long as the data is collected in a
consistent and accurate manner.

Part of the sizing problem comes down to the fact that primary
sizing metrics have different advantages and disadvantages. For
example, LOC can be automated for counting and is good a pos-
teriori, but is difficult to estimate early on. There exist other prob-
lems associated with using LOC as the primary size metric as well,
which is a major reason why the FP sizing metric was developed:
To provide a way to produce a size metric based on early design
information; hence, FP would be more accurate a priori. The prob-
lem is that FP cannot be automated and is subjective, even though
it has been shown that with training the estimate variation can be
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reduced [4]. In any case, both of these methods require significant
expertise to be applied successfully.

The heart of the problem is that early on we do not know the char-
acteristics of a system well enough. We often really do not know
how big a system will be nor how much the requirements change,
nor how much code can effectively be reused, especially when there
are major new capabilities that need to be developed. One exam-
ple of relatively successful attempt to get around this problem at
the NASA Jet Propulsion Laboratory (JPL) was to develop an inte-
grated effort and sizing model that uses system level characteristics,
e.g. the number of instruments, the data rate and what planet you
are going to. It took several years to develop this model and it is
“hard-wired” to a specific type of system. Unfortunately, this is a
very expensive local solution and not a global one.

So for accurate estimates that need to be made very early in the
software life-cycle what is very much needed is a simple global
method that can work without size features. Unfortunately, stan-
dard SEE methods such as a standard ABE method (1NN) as well
as classification and regression trees (CART) cannot be this global
method. Our results show that standard SEE methods perform
poorly with the lack of size features. In this paper we propose
an ABE method (“pop1NN”) augmented with a popularity-based
instance selection mechanism. pop1NN is a simple method that
only requires normalization of an array of numbers and Euclidean
distance calculation. Our results show that pop1NN (compared to
1NN) compensates for the lack of size features in 11 out of 13 data
sets. A simple method like pop1NN running on data sets without
size features can attain the same performance as a more complex
learner like CART running on data sets with size features.

Practitioners, who are able to measure size features accurately
in all phases of the software development life-cycle should do so.
On the other hand, if practitioners lack the resources or means to
measure size features, we deter the use of standard methods such as
1NN and CART without any pre or post processor. Our recommen-
dation for circumstances where size features cannot be measured
accurately is to use pop1NN-like methods, which can compensate
for size features through instance selection.

The rest of this paper is organized as follows: In §2 we summa-
rize the motivation behind this research. §3 discusses the related
work in SEE and instance selection. The methodology of this re-
search is presented in §4, which is followed by §5 that explains
the algorithms and experiments. In §6 we present our results. The
threats to the validity of our results are discussed in §7. The discus-
sion of this research is given in §8 and it is followed by the possible
future directions in §9. We conclude with §10.

2. MOTIVATION
Although SEE is a maturing field of SE with hundreds of publi-

cations, among which a significant portion (61% according to a re-
cent survey by Jorgensen and Shepperd [13]) offers new estimation
methods, the number of companies interested in SEE is limited. For
example, commercial companies like Google1 and Microsoft2 and
others (e.g. from Turkey [14]) do not use an algorithmic estimation
method.

The lack of adoption of methods suggested by SEE research in
industrial environments is a serious issue. Without addressing the
problems that hinder the knowledge transfer from SEE research to
industry, the future of SEE is bound to be a mostly theoretical field
rather than a practical one.

There are various reasons from which the adoption problem stems,

1Personal communication.
2Personal communication.

such as the difficulty of attaining accurate estimates, difficulty of
collecting effort related data and the difficulty of adopting complex
methods. It is possible to increase the items in this list. However,
at the heart of the most widely accepted SEE methods lies the mea-
surement of software size. For example, parametric models such as
COCOMO use LOC to measure software size and FP approaches
use the number of basic logical transactions in a software system.
Accurate measurement of both LOC and FP can be problematic in
industrial settings [14, 15].

Aside from the difficulty of accurate measurement, the concept
of measuring the “size” of software is not well adopted. Quoting
the former CEO of Microsoft, Bill Gates [15]:“Measuring software
productivity by lines of code is like measuring progress on an air-
plane by how much it weighs.” A similar notion is also adopted
by Dijkstra [16]: “... This (referring to measuring productivity
through LOC) is a very costly measuring unit because it encour-
ages the writing of insipid code, but today I am less interested in
how foolish a unit it is from even a pure business point of view. ”

Our notion in this paper is that it is possible to develop SEE
methods that avoid the use of software size. We propose an es-
timation method that works without size features, yet can attain
performance values as good as methods that use size features. We
see the implications of this work as threefold:

• Promoting development of SEE methods that do not require
software size features.

• A proof-of-concept for data collection activities (in research
and in industry) that size is not a “must”.

• Providing industry practitioners an easy-to-adopt estimation
method that does not require size features.

3. RELATED WORK

3.1 Software Effort Estimation
SEE can be defined as the process of estimating the total effort

necessary to complete a software project [17]. An extensive sys-
tematic review conducted by Jorgensen and Shepperd reports that
developing new estimation models is the biggest research topic in
SEE since 1980s [13]. Hence, there is a big number of SEE mod-
els and a taxonomy is necessary to classify such a large corpus.
According to Myrtveit et al. taxonomy is an explanation of a con-
cept, which highlights the similarities and differences between that
particular concept and the others [18].

There are different taxonomies for SEE methods [18,19]. Briand
et al. report that there is no agreement on the best taxonomy [19].
For example Menzies et al. divide SEE methods into two groups:
Model-based and expert-based [20]. According to this taxonomy
model-based methods use some algorithm(s) to summarize old data
and to make predictions for the new data. Expert-based methods
make use of human expertise, which is possibly supported by pro-
cess guidelines and/or checklists. Myrtveit et al. propose a dataset
dependent differentiation between methods [18]. According to that
taxonomy the methods are divided into two:

• Sparse-data methods that require few or no historical data:
e.g. expert-estimation [21].

• Many-data approaches where certain amount of historical
data is a must: e.g. functions and arbitrary function approxi-
mations (such as classification and regression trees).

Shepperd et al. propose a 3-class taxonomy [22]: 1) expert-based
estimation, 2) algorithmic models and 3) analogy. Expert based
models target the consensus of human experts. Jorgensen et al. de-
fine expert-based methods as a human-intensive process of negoti-
ating the estimate of a new project [21]. There are formal methods
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Table 1: The 494 projects used in this study come from 13 data
sets. Indentation in column one denotes a dataset that is a sub-
set of another dataset.

Dataset Fe
at

ur
es

Si
ze

Description Units
cocomo81 17 63 NASA projects months

cocomo81e 17 28 Cocomo81 embedded projects months
cocomo81o 17 24 Cocomo81 organic projects months
cocomo81s 17 11 Cocomo81 semi-detached projects months

nasa93 17 93 NASA projects months
nasa93c1 17 12 nasa93 projects from center 1 months
nasa93c2 17 37 nasa93 projects from center 2 months
nasa93c5 17 40 nasa93 projects from center 5 months

desharnais 10 81 Canadian software projects hours
desharnaisL1 10 46 projects developed with Language1 hours
desharnaisL2 10 25 projects developed with Language2 hours
desharnaisL3 10 10 projects developed with Language3 hours

sdr 22 24 Turkish software projects months
Total: 494

proposed for expert-based estimation like Delphi [23]. However,
Shepperd et al. notes in another study that companies mostly fol-
low an informal process for expert-based estimation [24]. Algo-
rithmic models include the adaptation of a formula to local data.
Prominent examples to these methods are the COCOMO [2] and
FP [25]. Analogy based methods find similar past projects, then
adapt the effort values for the current project.

3.2 Instance Selection in SEE
The proposed method in this study is a standard ABE method

augmented with a popularity based instance selector. Our results
show that a standard ABE method is incapable of dealing with
the lack of size features. However, the same ABE method aug-
mented with instance selection can compensate for the lack of size
features. We hypothesize that instance selection makes the signal
within the data clearer. For example in a prior study Kocaguneli et
al. use a variance-based instance selection mechanism in an ABE
context [26]. In this variance-based instance selection mechanism
instances of a data set are clustered according to their distances and
only the clusters with low dependent variable variance are selected.
The estimates made from the remaining clusters have a much lower
error rate than standard ABE methods.

The fundamental idea behind instance selection is that most of
the instances in a data set are uninformative and can be removed.
In [27] Chang finds prototypes for nearest neighbor classifiers. Chang’s
prototype generators explore data sets A,B,C of size 514, 150, 66
instances, respectively. He converts A, B, C into new data sets
A�, B�, C� containing 34, 14, 6 prototypes, respectively. Note that
the new data sets contain only 7%,9% and 9% of the original data.

There are a number of instance selection studies in SEE. Ke-
ung et al.’s Analogy-X method also works as an instance selection
method in an ABE context [28]. Analogy-X selects the instances
of a data set based on the assumed distribution model of that data
set, i.e. only the instances that conform to the distribution model
are selected. Another example is Li et al.’s study, where they use
a genetic algorithm for instance selection to provide estimation ac-
curacy improvements [29]. Turhan et al. use instance selection as
a filtering mechanism to enable cross-company data usage [30] in
software defect prediction. This study is followed by Kocaguneli
et al. where they propose another instance selection filter for SEE
cross-company data usage [31].

Table 2: The full data sets, their features and collection
methodology. The bold-face features are identified as size (or
size related) features.

Methodology Dataset Features

C
O

C
O

M
O

cocomo81 RELY, ACAP, SCED,
cocomo81o DATA, AEXP, KLOC,
cocomo81s CPLX, PCAP, EFFORT,
nasa93 TIME, VEXP,
nasa93c1 STOR, LEXP,
nasa93c2 VIRT, MODP,
nasa93c5 TURN, TOOL,

C
O

C
O

M
O

II

sdr addition to COCOMO features:
PREC,
FLEX,
RESL,
TEAM,
PMAT

FP

desharnais TeamExp, Effort, Adjustment,
desharnaisL1 ManagerExp, Transactions, PointsAjust,
desharnaisL2 YearEnd, Entities, Language,
desharnaisL3 PointsNonAdjust

4. METHODOLOGY

4.1 Datasets
The data used in this study is available at http://promisedata.

org/data or through the authors (sdr data set). See in Table 1
that a variety of different data sets are used in this research. The
standard COCOMO data sets (cocomo*, nasa*) contain contractor
projects developed in USA and are collected with the COCOMO
approach [2]. The desharnais data set and its subsets are col-
lected with FP approach from software companies in Canada [32].
sdr contains data from projects of various software companies in
Turkey and it is collected by SoftLab with COCOMO approach [33].

Using the data sets of Table 1 we would like to define two key-
words that will be fundamental to our discussion: full data set and
reduced data set. We will refer to a data set used with all the fea-
tures (including the size feature(s)) as a “full data set.” A data set
whose size feature(s) are removed (for the experiments of this pa-
per) will be called a “reduced data set.” The features of the full
data sets are given in Table 2. Note in Table 2 that the full data
sets are grouped under 3 categories (under the “Methodology” col-
umn) depending on their collection method: COCOMO [2], CO-
COMOII [9] and FP [25, 32]. These groupings mean that all the
data sets in one group share the features listed under the “Features”
column. The difference between COCOMO data sets (cocomo81*
and nasa93*) and COCOMOII data sets (sdr) is the additional five
cost drivers: prec, flex, resl, team, pmat. Hence instead of repeating
the COCOMO features for COCOMOII, we listed only the addi-
tional cost driver features for COCOMOII under the column “Fea-
tures”.

The bold-font features in Table 2 are identified as size (or size re-
lated) features. These features are removed in reduced data sets. In
other words, the full data sets minus the highlighted features gives
us the reduced data sets. For convenience, the features that remain
after removing the size features are given in Table 3. Note that both
in Table 2 and in Table 3, the acronyms of the features are used.
These acronyms stand for various software product related features.
For example COCOMO groups features under 6 categories:

• Product Factors

– RELY: Required Software Reliability
– DATA: Database Size
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– CPLX: Product Complexity
– RUSE: Required Reusability
– DOCU: Documentation match to life-cycle needs

• Platform Factors

– TIME: Execution Time Constraint
– STOR: Main Storage Constraint
– PVOL: Platform Volatility

• Personnel Factors

– ACAP: Analyst Capability
– PCAP: Programmer Capability
– PCON: Personnel Continuity
– AEXP: Applications Experience
– PEXP: Platform Experience
– LTEX: Language and Tool Experience

• Project Factors

– TOOL: Use of Software Tools
– SITE: Multi-site Development
– SCED: Development Schedule

• Input

– LOC: Lines of Code

• Output

– EFFORT: Effort spent for project in terms of man month

In addition to the original COCOMO method, the improved CO-
COMOII version defines an additional new category called expo-
nential cost drivers, under which the following features are defined:

• Exponential Cost Drivers:

– PREC: Precedentedness
– FLEX: Development Flexibility
– RESL: Arch/Risk Resolution
– TEAM: Team Cohesion
– PMAT: Process Maturity

For detailed information and an in depth discussion regarding the
above-listed COCOMO and COCOMOII features refer to [2, 9].
The FP approach adopts a different strategy than COCOMO. The
definitions of the FP data sets (desharnais*) features are as follows:

• TeamExp: Team experience in years

• ManagerExp: Project management experience in years

• YearEnd: The year in which the project ended

• Transactions: The count of basic logical transactions

• Entities: The number of entities in the systems data model

• PointsNonAdjust : Equal to Transactions + Entities

• Adjustment: Function point complexity adjustment factor

• PointsAdjust: The adjusted function points

• Language: Categorical variable for programming language

• Effort: The actual effort measured in person-hours
For more details on these features refer to the work of Deshar-
nais [32] or Li et al. [34]. Note that 4 projects out of 81 in de-
sharnais data set have missing feature values. Instead of removing
these projects from the data set, we employed a missing value han-
dling technique called simple mean imputation [35].

Table 3: The reduced data sets, their collection methodology
and their non-size features. Reduced data sets are defined to be
the full data sets minus size-related features (bold-face features
of Table 2).

Methodology Dataset Features

C
O

C
O

M
O

cocomo81 RELY, ACAP, SCED,
cocomo81o DATA, AEXP,
cocomo81s CPLX, PCAP, EFFORT,
nasa93 TIME, VEXP,
nasa93c1 STOR, LEXP,
nasa93c2 VIRT, MODP,
nasa93c5 TURN, TOOL,

C
O

C
O

M
O

II

sdr addition to COCOMO features:
PREC,
FLEX,
RESL,
TEAM,
PMAT

FP

desharnais TeamExp, Effort,
desharnaisL1 ManagerExp
desharnaisL2 YearEnd, Language
desharnaisL3

4.2 Error Measures
Error measures are used to assess the success of a prediction.

The absolute residual (AR) is defined to be the difference between
the predicted and the actual:

ARi = |xi − x̂i| (1)

(where xi, x̂i are the actual and predicted value for test instance i).
MAR is the mean of all the AR values.

The Magnitude of Relative Error measure (MRE) is one of the
de facto error measures [1, 36]. MRE measures the ratio between
the effort estimation error and the actual effort:

MREi =
| xi − x̂i |

xi
=

ARi

xi
(2)

A related measure is the Magnitude of Error Relative to the es-
timate (MER) [36]):

MERi =
| xi − x̂i |

x̂i
=

ARi

x̂i
(3)

The overall average error of MRE can be derived as the Mean or
Median of MRE, i.e. MMRE and MdMRE, respectively:

MMRE = mean(allMREi) (4)
MdMRE = median(allMREi) (5)

A common alternative to MMRE is PRED(25), and it is defined
as the percentage of successful predictions falling within 25% of
the actual values, and can be expressed as follows, where N is the
dataset size:

PRED(25) =
100

N

N�

i=1

�
1 if MREi ≤ 25

100
0 otherwise

(6)

For example, PRED(25)=50% implies that half of the estimates
are failing within 25% of the actual values [1].

There are many other error measures including Mean Balanced
Relative Error (MBRE) and the Mean Inverted Balanced Relative
Error (MIBRE) studied by Foss et al. [36]:
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MBREi =
|x̂i − xi|

min(x̂i, xi)
(7)

MIBREi =
|x̂i − xi|

max(x̂i, xi)
(8)

Mere use of error measures without the support of appropriate
statistical tests can be misleading [36]. A detailed discussion re-
garding problems in SEE studies due to the lack of statistical tests
in method comparisons is provided by Kitchenham et al [37]. In
this research we employ Mann-Whitney Rank-Sum test (95% con-
fidence). We use Mann-Whitney instead of Student’s t-test, as as it
compares the sums of ranks, unlike Student’s t-test, which may in-
troduce spurious findings as a result of outliers in the given datasets.
Also, non-parametric tests are useful when Gaussian assumption
about the underlying distributions is not clear [38].

We use Mann-Whitney to generate win, tie, loss statistics. The
procedure used for that purpose is defined in Figure 1: Firstly two
distributions i, j (e.g. arrays of MRE’s or AR’s) are compared
to see if they are statistically different (Mann-Whitney rank-sum
test, 95% confidence); if not, then the related tie values (tiei and
tiej) are incremented. If the distributions are different, we update
wini, winj and lossi, lossj after error measure comparison.

When comparing the performance of a method (methodi) run
on reduced data sets to a method methodj run on full data sets, we
will specifically focus on loss values. Because note that to make
the case for methodi, we do not need to show that its performance
is “better” than methodj . We can recommend methodi over
methodj as long as its performance is no worse than methodj ,
i.e. as long as it does not “lose” against methodj .

if Mann-Whitney(Erri, Errj , 95) says there is no statistical
difference. then

tiei = tiei + 1;
tiej = tiej + 1;

else
if better( Erri, Errj) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Figure 1: Comparing error measures of method (i,j)
(Erri,Errj). The “better” predicate changes according to er-
ror measures; e.g. for MRE, “better” means lower values,
whereas for PRED(25), “better” means higher values.

5. EXPERIMENTAL CONDITIONS

5.1 The Algorithms Adopted
In this study two algorithms are used: 1) a baseline analogy-

based estimation method called ABE0 [39] and 2) a decision tree
learner called Classification And Regression Trees (CART) [40].
Our justification for the selected learners is based on prior work
in SEE. Several papers conclude that CART and nearest neighbor
methods are useful comparison algorithms for SEE. For example,
Walkerden & Jeffrey [41] endorse CART as a state-of-the-art SEE
method. Dejaeger et al. also claim that, in terms of assessing new
SEE methods, methods like CART may prove to be more adequate.
The work of Dejaeger et al. has found that learners more elaborate
than CART fall short of offering any significant value-added.

Our own results support the conclusions of Walkerden, Jeffrey,
Dejaeger et al. Our 2011 study reports an extensive comparison
of 90 SEE methods (generated using all combinations of 10 pre-
processors and 9 learners) [42]. In this study the most successful
SEE methods turn out to be ABE0 with 1 nearest-neighbor (which
will be referred as 1NN from now on) and CART.

ABE methods generate an estimate for a future project by re-
trieving similar instances from a database of past projects. Then
the effort values of the retrieved past projects are adapted into an
estimate. There are various design options associated with ABE
methods. Reading from the ABE methods used in Kadoda & Shep-
perd [43], Mendes et al. [44], and Li et al. [29], here we define
ABE0, which is a baseline ABE method that works as follows:

• Input a database of past projects

• For each test instance, retrieve k similar projects (analogies).

– For choosing k analogies use a similarity measure.
– Before calculating similarity, scale independent features

to equalize their influence on the similarity measure.
– Use a feature weighting scheme to reduce the effect of

less informative features.

• Adapt the effort values of the k nearest analogies to come up
with the effort estimate.

ABE0 uses the Euclidean distance as a similarity measure, whose
formula is given in Equation 9, where wi corresponds to feature
weights applied on independent features fAi and fBi of instances
A and B, respectively. t is the total number of independent fea-
tures. ABE0 framework does not favor any features over the others,
i.e. wi = 1. For adaptation ABE0 takes the median of retrieved
k projects. The ABE0 adopted in this research uses a 1 nearest
neighbor (i.e. k=1), hence the name 1NN.

Distance =

����
t�

i=1

wi(fAi − fBi)2 (9)

Iterative dichotomizers like CART find the feature that most di-
vides the data such that the variance of each division is minimized [40].
The algorithm then recurses into each division. Once the tree is
generated, the cost data of the instances in the leaf nodes are aver-
aged to generate an estimate for the test case. For more details on
CART refer to Breiman et al. [40]

5.2 Proposed Method: pop1NN
In this study we propose a variant of the 1NN algorithm. The

proposed variant makes use of the popularity of the instances in
a training set. We define the “popularity” of an instance as the
number of times it happens to be the nearest-neighbor of other in-
stances. The proposed method is called pop1NN (short for popularity-
based-1NN). The basic steps of pop1NN can be defined as follows:
Step 1: Calculate distances between every instance tuple in the
training set.
Step 2: Convert distances of Step 1 into ordering of neighbors.
Step 3: Mark closest neighbors and calculate popularity.
Step 4: Order training instances in decreasing popularity.
Step 5: Decide which instances to select.
Step 6: Return Estimates for the test instances.
The following paragraphs describe the details of these steps:

Step 1: Calculate distances between every instance tuple in the
training set: This step uses the Euclidean distance function (as in
1NN) to calculate the distances between every pair of instances
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within the training set. The distance calculation is kept in a ma-
trix called D, where ith row keeps the distance of the ith instance
to other instances. Note that this calculation requires only the in-
dependent features. Furthermore, since pop1NN runs on reduced
data sets, size features are not used in this step .

Step 2: Convert distances of Step 1 into ordering of neighbors:
This step requires us to merely replace the distance values with
their corresponding ranking. We work one row at a time on ma-
trix D: Start from row #1, rank distance values in ascending order,
then replace distance values with their corresponding ranks, which
gives us the matrix D�. The ith row of D� keeps the ranks of the
neighbors of the ith instance.

Step 3: Mark closest neighbors and calculate popularity: Since
pop1NN uses only the closest neighbors, we leave the cells of D�

that contain 1 (i.e. that contains a closest neighbor) untouched and
replace the contents of all the other cells with zeros. The remaining
matrix D�� marks only the instances that appeared as the closest
neighbor to another instance.

Step 4: Order training instances in decreasing popularity: This
step starts summing up the “columns” of D��. The sum of, say, ith

column shows how many times the ith instance was marked as the
closest neighbor to another instance. The sum of the ith column
equals the popularity of the ith instance. Finally in this step, we
rank the instances in decreasing popularity, i.e. the most popular
instance is ranked #1, the second is ranked #2 and so on.

Step 5: Decide which instances to select: This step tries to find
how many of the most popular instances will be selected. For that
purpose we perform a 10-way cross validation on the train set. For
each cross-validation (i.e. 10 times), we do the following:

• Perform steps 1 to 4 for the popularity order;

• Build a set S, into which instances are added one at a time
from the most popular to the least popular;

• After each addition to S make predictions for the hold out
set, i.e. find the closest neighbor from S of each instance
in the hold-out set and use the effort value of that closest
instance as the estimate;

• Calculate the error measure of the hold-out set for each size
of S. As the size of S increases (i.e. as we place more and
more popular instances into S) the error measure is expected
to decrease;

• Traverse the error measures of S with only one instance to S
with t instances (where t is the size of the training set minus
the hold-out set). Mark the size of S (represented by s�)
when the error measure has not decreased more than ∆ for
n − many consecutive times.

Note that since we use a 10-way cross-validation, at the end of the
above steps, we will have 10 s� values (one s� value from each
cross-validation). We take the median of these values as the final
s� value. This means that pop1NN only selects the most popular
s�-many instances from the training set. For convenience, we refer
to the new training set of selected s�-many instances as Train�.

Step 6: Return Estimates for the Test Instances: This step is fairly
straightforward. The estimate for a test instance is the effort value
of its nearest neighbor in Train�.

For the error measure in Step 5, we used “MRE”, which is only
one of the many possible error measures. As shown in §6, even

Figure 2: A simple illustration of the pop1NN method. Note
that the test and train sets are generated through a 10-way
cross-validation as well.

though we guide the search using only MRE, the resulting estima-
tions score very well across a wide range of error measures. In the
following experiments, we used n = 3 and ∆ < 0.1. The selection
of (n,∆) values is based on our engineering judgment. The sensi-
tivity analysis of (n,∆) values can be a promising future work.

5.3 Experiments
The experiments are performed in two stages: 1) 1NN and CART

performances on reduced data sets compared to their performance
on full data sets; 2) pop1NN performance on reduced data set com-
pared to 1NN and CART performance on full data sets.

In the first stage we question whether standard SEE methods can
compensate mere removal of the size features. For that purpose we
run 1NN as well as CART on reduced and full data sets separately
through 10-way cross-validation. Then each method’s results on
reduced data sets are compared to its results on full data set. The
outcome of this stage tells us whether there is a need for pop1NN
like methods or not. If the performance of CART and 1NN on
reduced data sets are statistically the same as their performances
on the full data sets, then this would mean that standard successful
estimation methods are able to compensate the lack of size features.
However, as we see in §6 that is not the case. The removal of size
features has a negative effect on 1NN and CART.

The second stage tries to answer whether simple SEE methods
like 1NN can be augmented with a pre-processing step, so that the
removal of size features can be tolerated. For that purpose we run
pop1NN on the reduced data sets and compare its performance
to 1NN and CART (run on full data sets) through 10 way cross-
validation. The performance is measured in 7 error measures.

6. RESULTS

6.1 Results Without Instance Selection
Table 4 shows the CART results for the first stage of our ex-

perimentation, i.e. whether or not standard estimation methods, in
that case CART, can compensate for the lack of size. In Table 4
we compare CART run on reduced data sets to CART run on full
data sets and report the loss values. The loss value in each cell is
associated with an error measure and a data set. Each loss value
shows whether CART on reduced data lost against CART on full
data. Note that it is acceptable for CART-on-reduced-data, as long
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as it does not lose against CART-on-full-data, since we want the
former to perform just as well as (not necessarily better than) the
latter. The last column of Table 4 is the sum of the loss values over
7 error measures. The rows in which CART on reduced data loses
for most of the error measures (4 or more out of 7 error measures)
are highlighted. See in Table 4 that 7 out of 13 data sets are high-
lighted, i.e. more than half the time CART cannot compensate the
lack of size features.

Although Table 4 is good to see the detailed loss information,
the fundamental information we are after is summarized in the last
column: total loss number. Repeating Table 4 for all the methods
in both stages of the experimentation is cumbersome and would
redundantly take too much space in this paper. Hence, from now
on we will use summary tables as given in Table 5, which shows
only the total number of losses. See that the “CART” column of
Table 5 is just the last column of Table 4 . Aside from the CART
results, Table 5 also shows the loss results for 1NN run on reduced
data vs. 1NN run on full data. The highlighted cells of “1NN”
column show the cases, where 1NN lost most of the time, i.e. 4
or more out of 7 error measures. Similar to the results of CART,
1NN-on-reduced-data loses against 1NN-on-full-data for 7 out of
13 data sets. In other words, for more than half the data sets mere
use of 1NN cannot compensate for the lack of size features.

The summary of the first stage of experimentation is that stan-
dard SEE methods are unable to compensate for the size features
for most of the data sets experimented in this paper. In the next
section we show the interesting result that it is possible to augment
a very simple ABE method like 1NN so that it can compensate for
size features in a big majority of the data sets.

6.2 Results With Instance Selection
The comparison of pop1NN (which runs on reduced data sets)

to 1NN and CART (which run on full data sets) is given in Ta-
ble 6. Table 6 shows the total loss values of pop1NN over 7 error
measures, so the highest number of times pop1NN can lose against
1NN or CART is 7. The cases where pop1NN loses more than half
the time (i.e. 4 or more out of 7 error measures) are highlighted.

The comparison of pop1NN against 1NN shows, whether the
proposed pop1NN method helps standard ABE methods to com-
pensate for the lack of size features. See that in the second column
of Table 6 there are only 2 highlighted cells. For 11 out of 13 data

Table 4: The loss values of CART run on reduced data set vs.
CART run on full data set, measured per error measure. The
last column shows the loss values in total of 7 error measures.
The data sets where CART running on reduced data sets lose
more than half the time (i.e. 4 or more out of 7 error measures)
against CART running on full data sets are highlighted.
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cocomo81 1 0 1 1 1 1 0 5
cocomo81e 0 0 0 0 0 0 0 0
cocomo81o 0 0 0 0 0 0 0 0
cocomo81s 0 0 0 0 0 0 0 0
desharnais 1 0 1 1 1 1 0 5

desharnaisL1 1 1 1 1 1 1 1 7
desharnaisL2 0 0 0 0 0 0 0 0
desharnaisL3 0 0 0 0 0 0 0 0

nasa93 1 1 1 1 1 1 1 7
nasa93c1 1 0 1 1 1 1 0 5
nasa93c2 1 1 1 1 1 1 1 7
nasa93c5 0 0 0 0 0 0 0 0

sdr 1 0 1 1 0 0 1 4

Table 5: The loss values of estimation methods run on reduced
data sets vs. run on full data sets. The cases where reduced
data set results lose more than half the time (i.e. 4 or more out
of 7 error measures) are highlighted.

Methods
CART 1NN

D
at
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cocomo81 5 5
cocomo81e 0 0
cocomo81o 0 0
cocomo81s 0 0
desharnais 5 7
desharnaisL1 7 7
desharnaisL2 0 2
desharnaisL3 0 0
nasa93 7 7
nasa93c1 5 6
nasa93c2 7 7
nasa93c5 0 6
sdr 4 0

sets, the performance of pop1NN is statistically the same to that of
1NN. The only 2 data sets, where pop1NN cannot compensate for
size are the cocomo81e and desharnais.

The fact that pop1NN compensates for size in cocomo81e’s su-
perset (cocomo81) and in desharnis’ subsets (desharnaisL1, deshar-
naisL2 and desharnaisL3) but not in these two data sets may at first
seem puzzling. Because, the expectation is that subsets share simi-
lar properties as their supersets. However, a recent work by Posnett
et al. have shown that this is not necessarily the case [45]. The
focus of Posnet et al.’s work is the “ecological inference”; i.e. the
delta between the conclusions drawn from subsets vs. the conclu-
sions from the supersets. They document the interesting finding
that conclusions from the subsets may be significantly different to
the conclusions drawn from the supersets. Our results support their
claim that supersets and subsets may have different characteristics.

The last column of Table 6 shows the number of times pop1NN
lost against CART. Again the cases where pop1NN loses for more
than 4 error measures are highlighted. The purpose of pop1NN’s
comparison to CART is to evaluate a simple ABE method like
pop1NN against a state-of-the-art learner like CART. As can be
seen in Table 6, there are 4 highlighted cells under the last column,
i.e. for 13-4=9 data sets, the performance of pop1NN is statistically
same to that of CART. This is an important result for two reasons:
1) a simple ABE method like pop1NN can attain performance val-

Table 6: The loss values of pop1NN vs. 1NN and CART over
7 error measures. The data sets where pop1NN (running on
reduced data sets) lose more than half the time (i.e. 4 or more
out of 7 error measures) against 1NN or CART (running on full
data sets) are highlighted.

pop1NN vs. 1NN pop1NN vs. CART
cocomo81 0 3

cocomo81e 7 3
cocomo81o 0 7
cocomo81s 0 0
desharnais 7 5

desharnaisL1 0 0
desharnaisL2 0 7
desharnaisL3 0 0

nasa93 3 0
nasa93c1 0 7
nasa93c2 0 3
nasa93c5 0 0

sdr 0 0
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ues as good as CART for most of the data sets; 2) the performance
of pop1NN comes from data sets without any size features.

7. THREATS TO VALIDITY
Internal validity questions to which extent the cause-effect rela-

tionship between dependent and independent variables holds [35].
The ideal case to observe that relationship would be to learn a the-
ory on the available data and apply the learned theory on com-
pletely new and unseen data. So as to simulate the ideal case of
new and unseen data, sampling methods are employed. In this re-
search we employed 10-way cross validation.

External validity questions the generalization of the results, i.e.
it asks how widely the results can be generalized [46]. For the
purpose of wider external validity, we have used a wide range of
data sets from the PROMISE data repository. Table 4 of [47] lists
the total number of projects used by a sample of other SEE studies.
The median value of that sample is 186; i.e. a fraction of the 494
projects used in this research. In terms of external validity, this
paper has higher validity than a standard effort estimation study.

Construct validity (i.e. face validity) questions whether or not
we are measuring what we intend to measure [48]. An insightful
discussion in the area can be found in [49], where Kitchenham et
al. state that different error measures evaluate different aspects of
the prediction accuracy. Hence, to maximize construct validity, we
use 7 different error measures. Another point made by Kitchenham
et al. in another study [37] is that sole usage of error measures is
wrong and they need to be supported with statistical checks. To
address that validity issue we use the method of Figure 1, where
we make use of Mann-Whitney at a significance level of 95%.

A further validity issue arises due to characteristics of the SEE
data sets. For example, the effects of correlation between non-
size features to size should be investigated further for these data
sets. For some data sets, the non-size features may already contain
enough information for a learner to select the most similar training
examples; whereas, for some other data sets -due to lack of corre-
lation between size and non-size features- the presence of size fea-
tures may turn out to be a necessity. Investigation of the correlation
between non-size and size features can be a good future direction
to this study and may reveal confounding factors. Also, the issue
of "project size comparison" between training instances selected by
pop1NN and test instances may show why the lack of size features
can be handled for certain test cases, whereas a minority of the test
instances suffer from it.

8. DISCUSSION
An important point of discussion is the meaning of our results for

practitioners. Should the size features and the models built on size
features be abandoned? The answer is simply: “No.” Parametric
methods whose fundamental input is size, like COCOMO, can be
calibrated to local environments for high estimation performances.
Also in the absence of size features, machine learning methods such
as 1NN and CART perform poorly. Hence, it would be a misinter-
pretation of this study to claim that size features are deprecated. On
the other hand, if practitioners need simple methods for the cases,
where measuring size features accurately (or at all) is not possi-
ble, then: 1) the use of parametric methods may be questionable
and 2) the use of machine learning methods (e.g. 1NN and CART)
may yield low estimation performances. For such cases the use of
methods like pop1NN can actually compensate for the lack of size
features and provide an alternative solution to practitioners.

9. FUTURE WORK
An interesting future direction would be to use pop1NN as a fea-

ture selector. pop1NN removes the instances of a data set based on
their Euclidean distances in a space defined by the independent fea-
tures. Such a distance based removal mechanism is not restricted to
instances and can also serve as a feature selector. Lipowezky [50]
notes that feature and case selection are similar tasks, which both
remove cells in the hypercube of all instances times all features.
According to the viewpoint of Lipowezky, it should be possible to
convert a case selection mechanism into a feature selector.

Another future direction we consider to follow is to use pop1NN
as a guidance mechanism for experts in data collection studies.
Note that pop1NN does not use dependent variable information.
Therefore, pop1NN can identify the popular instances of a data set,
for which the experts should collect the dependent variable infor-
mation. In scenarios, where it is cheap to collect independent vari-
able information but expensive to collect dependent variable infor-
mation, pop1NN like methods may serve as guidance mechanisms.

Lastly, it is possible to use the popularity based pre-processing
mechanism introduced in this paper for other learners. Here, we
used the popularity counts as a pre-processor for 1NN, however it
may as well be used for other learners.

10. CONCLUSION
Size features are fundamental to many estimation methods such

as COCOMO, COCOMOII, FP and so on. In this research we ques-
tion whether the size features are indispensable or not. We evaluate
1NN and CART, which are reported as the best methods out of 90
methods in a prior study [42]. Our results show that the perfor-
mance of 1NN and CART on reduced data sets are worse than their
performance on full data sets. Hence, mere use of these methods
without size features is not recommended.

Then we augmented 1NN with a popularity based pre-processor
to come up with pop1NN. We run pop1NN on reduced data sets
and compare its performance to 1NN and CART, which are both
run on full data sets. The results of this comparison show that for
most of the cases (11 out of 13 data sets), pop1NN running on
reduced data sets attains the same performance as its counterpart
1NN running on full data sets. Hence, pop1NN can compensate for
the lack of size features for a big majority of the cases. Also, for 9
out of 14 datasets, a Euclidean distance based learner like pop1NN
even attains performance values that are statistically significantly
the same as a state-of-the-art learner like CART.

Size features are essential for standard learners such as 1NN and
CART. SEE practitioners with enough resources to collect accurate
size features should do so. On the other hand, when standard learn-
ers (in this research it is 1NN) are augmented with pre-processing
options (in this research it is a popularity based pre-processor), it
is possible to remove the necessity of size features. Hence, SEE
practitioners without sufficient resources to measure accurate size
features should consider alternatives like pop1NN.
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