
Optimum Feature Selection in Software Product

Lines: Let Your Model and Values Guide Your

Search

Abdel Salam Sayyad Joseph Ingram Tim Menzies Hany Ammar

Lane Department of Computer Science and Electrical Engineering

West Virginia University

Morgantown, WV, USA

asayyad@mix.wvu.edu jingram3@mix.wvu.edu tim@menzies.us hany.ammar@mail.wvu.edu

Abstract—In Search-Based Software Engineering, well-known

metaheuristic search algorithms are utilized to find solutions to

common software engineering problems. The algorithms are

usually taken “off the shelf” and applied with trust, i.e. software

engineers are not concerned with the inner workings of

algorithms, only with the results. While this may be sufficient is

some domains, we argue against this approach, particularly

where the complexity of the models and the variety of user

preferences pose greater challenges to the metaheuristic search

algorithms. We build on our previous investigation which

uncovered the power of Indicator-Based Evolutionary Algorithm

(IBEA) over traditionally-used algorithms (such as NSGA-II),

and in this work we scrutinize the time behavior of user

objectives subject to optimization. This analysis brings out the

business perspective, previously veiled under Pareto-collective

gauges such as Hypervolume and Spread. In addition, we show

how slowing down the rates of crossover and mutation can help

IBEA converge faster, as opposed to following the higher rates

used in many other studies as “rules of thumb”.

Index Terms—Software Product Lines, Feature Models,

Optimal Feature Selection, Multiobjective Optimization,

Indicator-Based Evolutionary Algorithm, Search-Based Software

Engineering.

I. INTRODUCTION

Software Engineering technologies are increasingly having
a direct impact on business outcomes, so much so that software
decisions must be value-driven early on, i.e. business concerns
ought to play a central role in the selection of software tools,
technologies and processes. Barry Boehm states that: “software
has a major influence on most systems’ cost, schedule, and
value; and value-neutral software decisions can seriously
degrade project outcomes.” [4] This comment is most relevant
to the subject of this paper, in which we choose our
evolutionary optimization algorithm to best exploit the user
preferences in search for an optimal feature selection in a
software product line.

Many software engineering researchers who seek to apply
metaheuristic search methods to their problems choose the
algorithms based on popularity of the algorithm in the SE
literature, or its wide usage in other fields. Mark Harman
makes the following comment regarding the choice of
evolutionary search algorithms over non-evolutionary ones:
“We must be wary of the unquestioning adoption of

evolutionary algorithms merely because they are popular and
widely applicable or because, historically, other researchers
have adopted them for SBSE problems; none of these are
scientific motivations for adoption.” [9] We believe the same
comment applies to choosing certain evolutionary algorithms
over others.

In our previous work, we commented on the value of user
preferences in search-based software engineering problems
[12], where we concluded that the choice of which
evolutionary algorithm to apply should follow the degree of
complexity of the problem. High complexity in the decision
space and the objective space require an algorithm that takes
full advantage of the user preferences and we found that
Indicator-Based Evolutionary Algorithm (IBEA) fit that bill.
Compared to six other algorithms, including NSGA-II and
SPEA2, IBEA was the only one that delivered satisfactory
results when challenged with a complex model and four or five
optimization objectives. The defining factor behind this is the
way IBEA exploits the user preferences in computing the
fitness assignment of the candidate solutions, as opposed to
other algorithms that prioritize diversity of solutions in the
fitness ranking. This will be briefly explained in section III,
subsection D.

In this work, we build on the previous result in two
important ways. First, we track the development of the user
preferences over time to show the objectives as they get
optimized by the metaheuristic algorithm. We present this as a
way to demonstrate the benefit of the optimization method to
the business user, as we show the way multiple objectives play
trade-offs against one another while they get optimized
together in the Pareto sense. Second, we show an order-of-
magnitude improvement of IBEA via tuning down the
crossover and mutation rates. The “rule-of-thumb” rates often
used with evolutionary algorithms (including our own previous
work) amount to lengthening the duration of the search. This
highlights the fine-grained structure of the feature models,
where small changes in features have great effects on other
features, and thus the search needs to proceed slowly for better
exploration of the decision space.

The rest of the paper is organized as follows: section II
reviews related work in automated software product
configuration. Section III provides background material on
software product lines and MEOAs. Sections IV and V

978-1-4673-6284-9/13 c© 2013 IEEE CMSBSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

22

describe the experimental setup and the results of the
experiments. In sections VI, we discuss the findings and their
implications. We present our conclusion in section VII.

II. RELATED WORK

Here we discuss related work in the area of automated

product configuration and feature selection.

The idea of extending (or augmenting) feature models with

quality attributes was proposed by many, among them Zhang

et al. [17]. The following papers used a similar approach and

attached synthetic data to represent the attributes in SPLs for

the sake of experimentation, as did we in this study and the

previous one [12].

The following non-search-based methods were used in

earlier studies:

 Constraint Satisfaction Problem (CSP) solvers, used by

Benavides et al. [3] and White et al. [16].

 Filtered Cartesian Flattening used by White et al. [15].

 Hierarchical Task Network planning used by Soltani et al.

[13].

More recently, a Genetic Algorithm was used by Guo et al.
to tackle this problem [8]. Although the problem is obviously
multiobjective, the various objectives where aggregated into
one and a simple GA was used. The result was a single
“optimal” configuration, which is only optimal according to
the weights chosen in the objective formula. Also, they used a
repair operator to keep all candidate solutions in line with the
feature model all throughout the evolutionary process.

In our own previous study [12], we employed
Multiobjective Evolutionary Optimization Algorithms
(MEOAs) for the first time to address this problem, with a
maximum of 5 objectives. We treated “correctness” as one of
the optimization objectives, where the MEOAs were charged
with minimizing rule violations. We compared performances of
7 algorithms and showed that IBEA outperformed all others,
including NSGA-II and SPEA2.

In this study, we explore the behavior of various objectives
throughout the evolution process, and we demonstrate faster
convergence for IBEA when lower values are chosen for
crossover and mutation rates.

III. BACKGROUND

A. Feature Models for Software Product Lines

A feature is an end-user-visible behavior of a software
product that is of interest to some stakeholder. A feature model
represents the information of all possible products of a software
product line in terms of features and relationships among them.
A feature model encompasses a hierarchically arranged set of
features composed by:

1- Relationships between a parent feature and its child

features (or subfeatures).

2- Cross-tree constraints that are typically inclusion or

exclusion statements in the form: if feature F is included, then

features A and B must also be included (or excluded).

Figure 1: Example feature model

Figure 1, adopted from [1], depicts a simplified feature
model.

The full set of rules in a given feature model may include
the following:

 The root feature is mandatory.

 Every child requires its parent.

 If the child is mandatory, the parent requires the child.

 Every group adds a rule about how many members can be
chosen.

 Every cross-tree constraint (CTC) is a rule.

Thus it can be concluded that the feature model depicted in
Figure 1 includes a total of 23 rules.

In this experiment, the total number of rules is used as the
“full correctness” score in this experiment, thus making
“correctness” one of the optimization objectives.

B. Multiobjective Optimization

Many real-world problems involve simultaneous

optimization of several incommensurable and often competing

objectives. Often, there is no single optimal solution, but

rather a set of alternative solutions. These solutions are

optimal in the wider sense that no other solutions in the search

space are superior to them when all objectives are considered

[19].

Formally, a vector is said to dominate a

vector if and only if u is partially less than v,

i.e.

 , (1)

The set of all points in the objective space that are not

dominated by any other points is called the Pareto Front.

C. Multiobjective Evolutionary Optimization Algorithms

(MEOAs)

The algorithms we used in this study are implemented in

the jMetal framework [6]. They are:

1- NSGA-II: Nondominated Sorting Genetic Algorithm,

version 2 [5].

2- SPEA2: Strength Pareto Evolutionary Algorithm, version

2 [20].

3- IBEA: Indicator-Based Evolutionary Algorithm [18].

23

D. Ranking Criteria in MEOAs

All three MEOAs used in this study are based on Genetic

Algorithms. They share some basic qualities, such as: single-

point crossover, bit-flip mutation, binary tournament for

mating selection, and elitism. They also have differences, the

most relevant to mention here being the ranking criterion (i.e.

fitness assignment) used to determine which individuals have

stronger chance to survive to the next generation. Those

criteria are:

1- NSGA-II: The sorting procedure in NSGA-II is depicted

in Figure 2, taken from [5]. It shows how the combined

primary and secondary population gets sorted according to

domination, where F1 contains all nondominated solutions; F2

contains all nondominated solutions after excluding F1 and so

on. When the solutions within F3 need to be sorted for

truncation, they are ranked according to crowding distance, a

value calculated from distances to nearest neighbors in all

objective values. Thus diversity preservation is the second

criterion –after domination- to determine fitness for survival.

Figure 2: NSGA-II sorting procedure

2- SPEA2: The sorting procedure in SPEA2 is somewhat

similar to that depicted in Figure 2, with two differences. First,

domination sorting only takes place once, thus dividing the

population into F1 and F2. Second, the ranking criterion for

individuals in F2 is based on the strength of each solution,

defined as the number of solutions that are dominated by it.

The fitness value of a point is the sum of strengths of all

solutions that dominate that point added to a density

estimation that works to prioritize points with less proximity

to nearest neighbors.

3- IBEA: Equation 2 shows IBEA's fitness assignment.

 () ∑ ()

 ()

 Each solution is given a weight based on I(.), a dominance-

preserving quality indicator, thus factoring in more of the

optimization objectives of the user. The authors of IBEA,

Zitzler and Kunzli, designed the algorithm such that

“preference information of the decision maker” can be

“integrated into multiobjective search” [18]. It is noticed here

that the ranking criteria in IBEA place no emphasis on

diversity of solutions, thus diverging from the conventional

trend set by NSGA-II and SPEA2, and followed by many

others.

This difference in ranking criteria causes IBEA to

outperform NSGA-II and SPEA2 when the objective space

increases in dimension. In [14], it is experimentally

demonstrated with real-valued test functions that the

performance of NSGA-II and SPEA2 rapidly deteriorates with

increasing dimension, and that other algorithms like ε-MOEA,

MSOPS, IBEA and SMS-EMOA cope very well with high-

dimensional objective spaces. It is argued that NSGA-II and

SPEA2 tend to “increase the distance to the Pareto front in the

first generations because the diversity-based selection criteria

favor higher distances between solutions. Special emphasis is

given to extremal solutions with values near zero in one or

more objectives. These solutions remain non-dominated and

the distance cannot be reduced thereafter.”

E. Quality of Pareto Front

We compare the performance of MEOAs using the

following quality indicators:

1- Hypervolume (HV): defined in [19], is a measure of the

size of the space covered underneath the Pareto front. If the

objectives are all to be maximized, then the preferred Pareto

front is the one with the highest Hypervolume. In jMetal, all

objectives are minimized, but the Pareto front is inverted

before calculating hypervolume, thus the higher the

hypervolume the closer to optimum the Pareto front is.

2- Spread: defined in [5], measures the extent of spread in

the obtained solutions.

3- %correct: i.e. the percentage of fully-correct solutions,

which is an indicator particular to this problem. Since

correctness is an optimization objective that evolves over time,

there maybe points in the final Pareto front that have rule

violations. Such points are not likely to be useful to the user.

We are interested in percentage of points within the Pareto

front that have zero violations, and thus a full-correctness

score.

IV. SETUP

A. Setting Up the E-Shop Feature Model

The E-Shop feature model is the largest member of the

feature model repository at SPLOT website [11]. It consists of

290 features, 21 CTCs, and a total of 421 rules.

We augmented the feature model with 3 attributes per

feature: COST, USED_BEFORE, and DEFECTS. COST takes

real values distributed normally between 5.0 and 15.0,

USED_BEFORE takes Boolean values distributed uniformly,

and DEFECTS takes integer values distributed normally

between 0 and 10. The only dependency among these qualities

is:

 if (not USED_BEFORE) then DEFECTS = 0 (3)

24

B. Problem Encoding

The feature models were represented as binary strings,
where the number of bits is equal to the number of features. If
the bit value is TRUE then the feature is selected, otherwise the
feature is removed.

C. Defining the Optimization Objectives

In this work we optimize the following objectives:

1- Correctness; i.e. compliance to the relationships and
constraints defined in the feature model. Since jMetal treats all
optimization objectives as minimization objectives, we seek to
minimize rule violations.

2- Richness of features; we seek to minimize the number of
deselected features.

3- Features that were used before; we seek to minimize the
number of features that weren’t used before.

4- Known defects; which we seek to minimize.

5- Cost; which we seek to minimize.

V. RESULTS

The experiment is divided into three parts. In the first part,
we run IBEA over the augmented E-Shop feature model using
the same parameter values as in our previous work [12], and
we plot the quality indicators and the normalized mean
objective values over time. In the second part, we make the
same two plots with reduced values for crossover rate and
mutation rate. And in the third part, we explore the effect of
reducing the crossover and mutation rates on the performance
of all three MEOAs (IBEA, NSGA-II, and SPEA2).

A. IBEA Performance Over Time

In this part, we run IBEA with the same parameters that we

used in our previous work [12]. This includes a crossover rate

of 0.9 and a mutation rate of 0.05. The measurements are

taken over 5 hours of evolution.

First, we’re interested in the development of the quality

indicators over time, which is plotted in Figure 3. We make

the following observations:
1- The %correct indicator does not show any fully-correct
solutions until after 10 minutes of operation. After 5 hours,
there are 42 solutions out of a 100 members of the Pareto front
that are fully compatible with the feature model.
2- The Hypervolume (HV) indicator continues growing as we
edge closer to optimality, but the growth is rather slow. The
HV value at 3 hours is 99% of that achieved at 5 hours.
3- The Spread varies over the period of operation, and
reaches its highest values while the solutions are suboptimal
and highly inconsistent with the feature model.

Next, in Figure 4, we plot the normalized mean values for

each of the objectives over time. Since all the objectives are to

be minimized, plotting the mean values is expected to show a

trend towards minimum values. We observe the following:

1- Four of the five objectives trend downward, until they

reach their least values at the end of operation. The trend is

interrupted with swings upward, as the objectives play trade-

offs against one another along the way.

Figure 3: Quality indicators vs. time

Figure 4: Normalized mean objective values vs. time

2- The second objective –number of missing features- trends

upward, until it reaches its highest value at the end of

operation, despite being defined as a minimization objective.

The observation here is: there is an expected correlation

between having more features and higher cost, defects, and

features not used before. Therefore, the multiobjective

optimization process finds it best to push the missing features

upward (total features downward) in order to achieve best

overall Pareto optimality.

B. Reducing the Rates of Crossover and Mutation

We now tweak the genetic operator parameters downward;

we use a crossover rate of 0.1 and a mutation rate of 0.01. We

stop the operation after 1 hour since we see an early plateau in

the indicators.

The quality indicators are plotted in Figure 5, and the

observations are:

1- The %correct indicator begins showing 74% fully-correct
solutions after 12 minutes of operation. After 1 hour, the
percentage stands at 75%.

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 1000 10000

Time (sec)

HV

Spread

%correct

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 1000 10000

Time (sec)

Obj1

Obj2

Obj3

Obj4

Obj5

25

2- At 12 minutes, the HV indicator shows 99% of its final
value at the end of the operation. This tells us that the
continuing optimization after 12 minutes is a waste of CPU
power in return for insignificant gain. In part A above, HV
achieved its 99% after 3 hours. Thus the run time improvement
achieved by reducing the parameters is 15 folds, i.e. a whole
order of magnitude.

3- The Spread indicator reaches high values early in the
operation, when the solutions are suboptimal and inconsistent
with the feature model. The Spread values achieved after 12
minutes represent the nominal diversity measurements for
solutions whose majority fully-conforms to the feature model.

As for the normalized mean objective values, plotted in Figure
6, we observe similar trends as those mentioned in part A;
objective 2 trends upward as other objectives get minimized.
The main reason for this trend is correctness; the more features
included in configurations the more constraint violations there
would be. The algorithm learns to include fewer features as it
achieves full correctness.

Figure 5: Quality indicators vs. time

 Figure 6: Normalized mean objective values vs. time

C. Comparing MEOAs with High and Low Rates of

Crossover and Mutation

In this part, we run a large experiment, in which we seek to

compare the performance of the 3 MEOAs with varying

parameters, according to Table 1. Each method is run 10

times, each time for duration of 30 minutes.

TABLE 1: OUTLINE OF EXPERIMENT IN PART C

Method
Crossover

rate

Mutation

rate
Duration Runs

IBEA-h 0.9 0.05 30 min 10
IBEA-l 0.1 0.01 30 min 10

NSGA2-h 0.9 0.05 30 min 10

NSGA2-l 0.1 0.01 30 min 10
SPEA2-h 0.9 0.05 30 min 10

SPEA2-l 0.1 0.01 30 min 10

In Table 2, we show the resulting mean values and

standard deviations of the quality indicators. The methods are

sorted according to Hypervolume (HV). The “Effect size”

column shows Hedge’s effect size which is computed for the

HV of each method versus the method below it. The

description of the effect as large follows the classification in

Table 9 of Kampenes et al. [10].

TABLE 2: RESULTS OF EXPERIMENT IN PART C

Method
HV-

mean

HV-

stdev

Effect

Size

%correct

mean

Spread

mean

IBEA-l 0.293 0.0016
7.66

(large)
66.8% 0.89

IBEA-h 0.271 0.0033
13.35

(large)
9.9% 0.88

NSGA2-h 0.211 0.0047
1.57

(large)
0.6% 0.78

SPEA2-l 0.204 0.0032
1.14

(large)
0.8% 0.63

NSGA2-l 0.192 0.0130
1.58

(large)
2.4% 0.95

SPEA2-h 0.174 0.0066 -- 0.0% 0.56

These results show the following:

1- IBEA with low parameters performs remarkably better

than all, both in terms of HV and %correct, followed by IBEA

with high parameters which also beats all others by a large

margin in both HV and %correct.

2- The highest spread value was achieved by NSGA-II with

low parameters, which indicates a better diversity of results.

Nevertheless, since it falls short on optimality (measured with

HV) and correctness, the solutions are useless. In fact, IBEA

achieves very good spread values, both at high and low

parameters.

VI. DISCUSSION

First, we would like to comment on the different

viewpoints offered by quality indicators (Figures 3 & 5) and

the normalized mean values (Figures 4 & 6). MEOAs are

usually compared with the help of quality indicators, since

they offer an aggregate evaluation of the entire Pareto front.

This viewpoint is useful for researchers, but not so for

business end-users. When the objectives are spelled out and

plotted alongside one another in the form of normalized mean

values, the user can realize the benefit of multiobjective

optimization with IBEA.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.1 1 10 100 1000

Time (sec)

HV

Spread

%correct

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.1 1 10 100 1000

Time (sec)

Obj1

Obj2

Obj3

Obj4

Obj5

26

Reducing the crossover rate and mutation rate has

significantly improved the performance of IBEA. In fact, the

run time savings in this paper over our previous work [12] is

15 folds. This hints at the fine-grained structure of the feature

models. Low rates of crossover and mutation promote moving

slowly through the feature model to discover better solutions,

whereas high rates promote vast changes to the individuals

from generation to generation.

This reduction in the parameters goes against the common

rule of thumb. For example, Eiben and Smith [7] suggest a

crossover rate between 0.6 and 0.9. These suggestions are

usually taken without question. Arcuri and Fraser [2] showed

that the choice of parameter values can result in large

variances in performance of evolutionary algorithms.

For NSGA-II and SPEA2, reducing those parameters

didn’t help much, and we still obtained solutions that are

inconsistent with the feature model. This is due to the diversity

preservation measures in both algorithms which tend to

disallow the crowding of solutions close to the much desired

zero-violation point.

VII. CONCLUSION

It is tempting for researchers and industrial practitioners to

apply optimization tools using their off-the-shelf parameters

and study their results using standard performance measures

such as hypervolume and spread. While this approach may

sometimes work in domains with only 1 or 2 objectives, we

strongly discourage that practice for problems with a rich set

of objectives. In [12] we showed the superiority of IBEA in

searching complex structures with many objectives. In this

paper we tracked the development of the optimization

objectives over time, highlighting the importance of this

tracking to the business end-user. Furthermore, we

demonstrated an order-of-magnitude improvement in the

performance of IBEA via tuning down the rates of the genetic

operators. Such enhancement in performance followed from

the nature of the models, which required small changes across

generations for a better exploration of possible configurations.

ACKNOWLEDGMENT

This research work was funded by the Qatar National
Research Fund (QNRF) under the National Priorities Research
Program (NPRP) Grant No.: 09-1205-2-470.

Joseph Ingram’s work was supported by National Science
Foundation (NSF) Grant No.: CCF 1017330.

REFERENCES

[1] M. Acher, P. Collet, P. Lahire, and R. France, "Decomposing

Feature Models: Language, Environment, and Applications," in

Proc. ASE, Lawrence, KS, USA, 2011, pp. 600-603.

[2] A. Arcuri and G. Fraser, "Parameter tuning or default values?

An empirical investigation in search-based software

engineering," Empirical Software Engineering, February 2013.

[3] D. Benavides, A. Ruiz-Cortés, and P. Trinidad, "Automated

Reasoning on Feature Models," in Proc. CAISE, 2005, pp. 491-

503.

[4] B. Boehm, "Value-Based Software Engineering," Software

Engineering Notes, vol. 28, no. 2, pp. 1-12, March 2003.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and

elitist multiobjective genetic algorithm: NSGA-II," IEEE

Transactions on Evolutionary Computation, vol. 6, no. 2, pp.

182-197, 2002.

[6] J. J. Durillo and A. J. Nebro, "jMetal: A Java framework for

multi-objective optimization," Advances in Engineering

Software, vol. 42, pp. 760-771, 2011.

[7] A. E. Eiben and J. E. Smith, Introduction to Evolutionary

Computing.: Springer, 2003.

[8] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, "A genetic

algorithm for optimized feature selection with resource

constraints in software product lines," Journal of Systems and

Software, vol. 84, no. 12, pp. 2208–2221, December 2011.

[9] M. Harman, "Software Engineering Meets Evolutionary

Computation," IEEE Computer, vol. 44, no. 10, pp. 31-39,

October 2011.

[10] V. B. Kampenes, T. Dyba, J. E. Hannay, and D. I.K. Sjøberg, "A

systematic review of effect size in software engineering

experiments," Information and Software Technology, no. 49, pp.

1073–1086, 2007.

[11] M. Mendonca, M. Branco, and D. Cowan, "S.P.L.O.T. -

Software Product Lines Online Tools," in Proc. OOPSLA,

Orlando, USA, 2009.

[12] A. S. Sayyad, T. Menzies, and H. Ammar, "On the Value of

User Preferences in Search-Based Software Engineering: A Case

Study in Software Product Lines," in Proc. ICSE, San Francisco,

USA, 2013, p. To appear.

[13] S. Soltani, M. Asadi, H. Marek, D. Gasevic, and E. Bagheri,

"Automated Planning for Feature Model Configuration based on

Stakeholder's Business Concerns," in Proc. ASE, Lawrence, KS,

USA, 2011, pp. 536-539.

[14] T. Wagner, N. Beume, and B. Naujoks, "Pareto-, Aggregation-,

and Indicator-Based Methods in Many-Objective Optimization,"

in Proc. EMO, LNCS Volume 4403/2007, 2007, pp. 742-756.

[15] J. White, B. Dougherty, and D. C. Schmidt, "Selecting highly

optimal architectural feature sets with Filtered Cartesian

Flattening," Journal of Systems and Software, vol. 82, no. 8, pp.

1268–1284, August 2009.

[16] J. White, B. Dougherty, D. C. Schmidt, and D. Benavides,

"Automated reasoning for multi-step feature model

configuration problems," in Proc. SPLC, San Francisco, USA,

2009, pp. 11-20.

[17] G. Zhang, H. Ye, and Y. Lin, "Using Knowledge-Based Systems

to Manage Quality Attributes in Software Product Lines," in

Proc. SPLC, 2011.

[18] E. Zitzler and S. Kunzli, "Indicator-based selection in

multiobjective search," in Parallel Problem Solving from

Nature. Berlin, Germany: Springer-Verlag, 2004, pp. 832–842.

[19] E. Zitzler and Thiele L., "Multiobjective evolutionary

algorithms: a comparative case study and the strength pareto

approach," IEEE Transactions on Evolutionary Computation,

vol. 3, no. 4, pp. 257–271, 1999.

[20] E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving the

strength pareto evolutionary algorithm," in Evolutionary

Methods for Design, Optimization and Control with

Applications to Industrial Problems. Athens, Greece, 2001, pp.

95-100.

27

