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Abstract—In Search-Based Software Engineering, well-known 

metaheuristic search algorithms are utilized to find solutions to 

common software engineering problems. The algorithms are 

usually taken “off the shelf” and applied with trust, i.e. software 

engineers are not concerned with the inner workings of 

algorithms, only with the results. While this may be sufficient is 

some domains, we argue against this approach, particularly 

where the complexity of the models and the variety of user 

preferences pose greater challenges to the metaheuristic search 

algorithms. We build on our previous investigation which 

uncovered the power of Indicator-Based Evolutionary Algorithm 

(IBEA) over traditionally-used algorithms (such as NSGA-II), 

and in this work we scrutinize the time behavior of user 

objectives subject to optimization. This analysis brings out the 

business perspective, previously veiled under Pareto-collective 

gauges such as Hypervolume and Spread. In addition, we show 

how slowing down the rates of crossover and mutation can help 

IBEA converge faster, as opposed to following the higher rates 

used in many other studies as “rules of thumb”. 

Index Terms—Software Product Lines, Feature Models, 

Optimal Feature Selection, Multiobjective Optimization, 

Indicator-Based Evolutionary Algorithm, Search-Based Software 

Engineering. 

I. INTRODUCTION 

Software Engineering technologies are increasingly having 
a direct impact on business outcomes, so much so that software 
decisions must be value-driven early on, i.e. business concerns 
ought to play a central role in the selection of software tools, 
technologies and processes. Barry Boehm states that: “software 
has a major influence on most systems’ cost, schedule, and 
value; and value-neutral software decisions can seriously 
degrade project outcomes.”  [4] This comment is most relevant 
to the subject of this paper, in which we choose our 
evolutionary optimization algorithm to best exploit the user 
preferences in search for an optimal feature selection in a 
software product line. 

Many software engineering researchers who seek to apply 
metaheuristic search methods to their problems choose the 
algorithms based on popularity of the algorithm in the SE 
literature, or its wide usage in other fields. Mark Harman 
makes the following comment regarding the choice of 
evolutionary search algorithms over non-evolutionary ones: 
“We must be wary of the unquestioning adoption of 

evolutionary algorithms merely because they are popular and 
widely applicable or because, historically, other researchers 
have adopted them for SBSE problems; none of these are 
scientific motivations for adoption.” [9] We believe the same 
comment applies to choosing certain evolutionary algorithms 
over others. 

In our previous work, we commented on the value of user 
preferences in search-based software engineering problems 
[12], where we concluded that the choice of which 
evolutionary algorithm to apply should follow the degree of 
complexity of the problem. High complexity in the decision 
space and the objective space require an algorithm that takes 
full advantage of the user preferences and we found that 
Indicator-Based Evolutionary Algorithm (IBEA) fit that bill. 
Compared to six other algorithms, including NSGA-II and 
SPEA2, IBEA was the only one that delivered satisfactory 
results when challenged with a complex model and four or five 
optimization objectives. The defining factor behind this is the 
way IBEA exploits the user preferences in computing the 
fitness assignment of the candidate solutions, as opposed to 
other algorithms that prioritize diversity of solutions in the 
fitness ranking. This will be briefly explained in section III, 
subsection D. 

In this work, we build on the previous result in two 
important ways. First, we track the development of the user 
preferences over time to show the objectives as they get 
optimized by the metaheuristic algorithm. We present this as a 
way to demonstrate the benefit of the optimization method to 
the business user, as we show the way multiple objectives play 
trade-offs against one another while they get optimized 
together in the Pareto sense. Second, we show an order-of-
magnitude improvement of IBEA via tuning down the 
crossover and mutation rates. The “rule-of-thumb” rates often 
used with evolutionary algorithms (including our own previous 
work) amount to lengthening the duration of the search. This 
highlights the fine-grained structure of the feature models, 
where small changes in features have great effects on other 
features, and thus the search needs to proceed slowly for better 
exploration of the decision space. 

The rest of the paper is organized as follows: section II 
reviews related work in automated software product 
configuration. Section III provides background material on 
software product lines and MEOAs. Sections IV and V 
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describe the experimental setup and the results of the 
experiments. In sections VI, we discuss the findings and their 
implications. We present our conclusion in section VII. 

II. RELATED WORK 

Here we discuss related work in the area of automated 

product configuration and feature selection. 

The idea of extending (or augmenting) feature models with 

quality attributes was proposed by many, among them Zhang 

et al. [17]. The following papers used a similar approach and 

attached synthetic data to represent the attributes in SPLs for 

the sake of experimentation, as did we in this study and the 

previous one [12]. 

The following non-search-based methods were used in 

earlier studies: 

 Constraint Satisfaction Problem (CSP) solvers, used by 

Benavides et al. [3] and White et al. [16]. 

 Filtered Cartesian Flattening used by White et al. [15]. 

 Hierarchical Task Network planning used by Soltani et al. 

[13]. 

More recently, a Genetic Algorithm was used by Guo et al. 
to tackle this problem [8]. Although the problem is obviously 
multiobjective, the various objectives where aggregated into 
one and a simple GA was used. The result was a single 
“optimal” configuration, which is only optimal according to 
the weights chosen in the objective formula. Also, they used a 
repair operator to keep all candidate solutions in line with the 
feature model all throughout the evolutionary process. 

In our own previous study [12], we employed 
Multiobjective Evolutionary Optimization Algorithms 
(MEOAs) for the first time to address this problem, with a 
maximum of 5 objectives. We treated “correctness” as one of 
the optimization objectives, where the MEOAs were charged 
with minimizing rule violations. We compared performances of 
7 algorithms and showed that IBEA outperformed all others, 
including NSGA-II and SPEA2. 

In this study, we explore the behavior of various objectives 
throughout the evolution process, and we demonstrate faster 
convergence for IBEA when lower values are chosen for 
crossover and mutation rates. 

III. BACKGROUND 

A. Feature Models for Software Product Lines 

A feature is an end-user-visible behavior of a software 
product that is of interest to some stakeholder. A feature model 
represents the information of all possible products of a software 
product line in terms of features and relationships among them. 
A feature model encompasses a hierarchically arranged set of 
features composed by: 

1- Relationships between a parent feature and its child 

features (or subfeatures).  

2- Cross-tree constraints that are typically inclusion or 

exclusion statements in the form: if feature F is included, then 

features A and B must also be included (or excluded). 

  

 

Figure 1: Example feature model 

Figure 1, adopted from [1], depicts a simplified feature 
model. 

The full set of rules in a given feature model may include 
the following: 

 The root feature is mandatory. 

 Every child requires its parent. 

 If the child is mandatory, the parent requires the child. 

 Every group adds a rule about how many members can be 
chosen. 

 Every cross-tree constraint (CTC) is a rule. 

Thus it can be concluded that the feature model depicted in 
Figure 1 includes a total of 23 rules. 

In this experiment, the total number of rules is used as the 
“full correctness” score in this experiment, thus making 
“correctness” one of the optimization objectives. 

B. Multiobjective Optimization 

Many real-world problems involve simultaneous 

optimization of several incommensurable and often competing 

objectives. Often, there is no single optimal solution, but 

rather a set of alternative solutions. These solutions are 

optimal in the wider sense that no other solutions in the search 

space are superior to them when all objectives are considered 

[19].  

Formally, a vector                 is said to dominate a 

vector                 if and only if u is partially less than v, 

i.e. 

           ,                                  (1) 

The set of all points in the objective space that are not 

dominated by any other points is called the Pareto Front. 

C. Multiobjective Evolutionary Optimization Algorithms 

(MEOAs) 

The algorithms we used in this study are implemented in 

the jMetal framework [6]. They are: 

1- NSGA-II: Nondominated Sorting Genetic Algorithm, 

version 2 [5]. 

2- SPEA2: Strength Pareto Evolutionary Algorithm, version 

2 [20].  

3- IBEA: Indicator-Based Evolutionary Algorithm [18]. 
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D. Ranking Criteria in MEOAs 

All three MEOAs used in this study are based on Genetic 

Algorithms. They share some basic qualities, such as: single-

point crossover, bit-flip mutation, binary tournament for 

mating selection, and elitism. They also have differences, the 

most relevant to mention here being the ranking criterion (i.e. 

fitness assignment) used to determine which individuals have 

stronger chance to survive to the next generation. Those 

criteria are: 

1- NSGA-II: The sorting procedure in NSGA-II is depicted 

in Figure 2, taken from [5]. It shows how the combined 

primary and secondary population gets sorted according to 

domination, where F1 contains all nondominated solutions; F2 

contains all nondominated solutions after excluding F1 and so 

on. When the solutions within F3 need to be sorted for 

truncation, they are ranked according to crowding distance, a 

value calculated from distances to nearest neighbors in all 

objective values. Thus diversity preservation is the second 

criterion –after domination- to determine fitness for survival. 

 

 

Figure 2: NSGA-II sorting procedure 

 

2- SPEA2: The sorting procedure in SPEA2 is somewhat 

similar to that depicted in Figure 2, with two differences. First, 

domination sorting only takes place once, thus dividing the 

population into F1 and F2. Second, the ranking criterion for 

individuals in F2 is based on the strength of each solution, 

defined as the number of solutions that are dominated by it. 

The fitness value of a point is the sum of strengths of all 

solutions that dominate that point added to a density 

estimation that works to prioritize points with less proximity 

to nearest neighbors. 

3- IBEA: Equation 2 shows IBEA's fitness assignment. 

               (  )   ∑     (         )  

           

                       ( ) 

 Each solution is given a weight based on I(.), a dominance-

preserving quality indicator, thus factoring in more of the 

optimization objectives of the user. The authors of IBEA, 

Zitzler and Kunzli, designed the algorithm such that 

“preference information of the decision maker” can be 

“integrated into multiobjective search” [18]. It is noticed here 

that the ranking criteria in IBEA place no emphasis on 

diversity of solutions, thus diverging from the conventional 

trend set by NSGA-II and SPEA2, and followed by many 

others. 

This difference in ranking criteria causes IBEA to 

outperform NSGA-II and SPEA2 when the objective space 

increases in dimension. In [14], it is experimentally 

demonstrated with real-valued test functions that the 

performance of NSGA-II and SPEA2 rapidly deteriorates with 

increasing dimension, and that other algorithms like ε-MOEA, 

MSOPS, IBEA and SMS-EMOA cope very well with high-

dimensional objective spaces. It is argued that NSGA-II and 

SPEA2 tend to “increase the distance to the Pareto front in the 

first generations because the diversity-based selection criteria 

favor higher distances between solutions. Special emphasis is 

given to extremal solutions with values near zero in one or 

more objectives. These solutions remain non-dominated and 

the distance cannot be reduced thereafter.” 

E. Quality of Pareto Front 

We compare the performance of MEOAs using the 

following quality indicators: 

1- Hypervolume (HV): defined in [19], is a measure of the 

size of the space covered underneath the Pareto front. If the 

objectives are all to be maximized, then the preferred Pareto 

front is the one with the highest Hypervolume. In jMetal, all 

objectives are minimized, but the Pareto front is inverted 

before calculating hypervolume, thus the higher the 

hypervolume the closer to optimum the Pareto front is. 

2- Spread: defined in [5], measures the extent of spread in 

the obtained solutions. 

3- %correct: i.e. the percentage of fully-correct solutions, 

which is an indicator particular to this problem. Since 

correctness is an optimization objective that evolves over time, 

there maybe points in the final Pareto front that have rule 

violations. Such points are not likely to be useful to the user. 

We are interested in percentage of points within the Pareto 

front that have zero violations, and thus a full-correctness 

score. 

IV. SETUP 

A. Setting Up the E-Shop Feature Model 

The E-Shop feature model is the largest member of the 

feature model repository at SPLOT website [11]. It consists of 

290 features, 21 CTCs, and a total of 421 rules. 

We augmented the feature model with 3 attributes per 

feature: COST, USED_BEFORE, and DEFECTS. COST takes 

real values distributed normally between 5.0 and 15.0, 

USED_BEFORE takes Boolean values distributed uniformly, 

and DEFECTS takes integer values distributed normally 

between 0 and 10. The only dependency among these qualities 

is: 

   if (not USED_BEFORE) then DEFECTS = 0     (3) 
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B. Problem Encoding 

The feature models were represented as binary strings, 
where the number of bits is equal to the number of features. If 
the bit value is TRUE then the feature is selected, otherwise the 
feature is removed. 

C. Defining the Optimization Objectives 

In this work we optimize the following objectives: 

1- Correctness; i.e. compliance to the relationships and 
constraints defined in the feature model. Since jMetal treats all 
optimization objectives as minimization objectives, we seek to 
minimize rule violations. 

2- Richness of features; we seek to minimize the number of 
deselected features. 

3- Features that were used before; we seek to minimize the 
number of features that weren’t used before. 

4- Known defects; which we seek to minimize. 

5- Cost; which we seek to minimize. 

V. RESULTS 

The experiment is divided into three parts. In the first part, 
we run IBEA over the augmented E-Shop feature model using 
the same parameter values as in our previous work [12], and 
we plot the quality indicators and the normalized mean 
objective values over time. In the second part, we make the 
same two plots with reduced values for crossover rate and 
mutation rate. And in the third part, we explore the effect of 
reducing the crossover and mutation rates on the performance 
of all three MEOAs (IBEA, NSGA-II, and SPEA2). 

A. IBEA Performance Over Time 

In this part, we run IBEA with the same parameters that we 

used in our previous work [12]. This includes a crossover rate 

of 0.9 and a mutation rate of 0.05. The measurements are 

taken over 5 hours of evolution. 

First, we’re interested in the development of the quality 

indicators over time, which is plotted in Figure 3. We make 

the following observations: 
1- The %correct indicator does not show any fully-correct 
solutions until after 10 minutes of operation. After 5 hours, 
there are 42 solutions out of a 100 members of the Pareto front 
that are fully compatible with the feature model. 
2- The Hypervolume (HV) indicator continues growing as we 
edge closer to optimality, but the growth is rather slow. The 
HV value at 3 hours is 99% of that achieved at 5 hours. 
3- The Spread varies over the period of operation, and 
reaches its highest values while the solutions are suboptimal 
and highly inconsistent with the feature model. 

Next, in Figure 4, we plot the normalized mean values for 

each of the objectives over time. Since all the objectives are to 

be minimized, plotting the mean values is expected to show a 

trend towards minimum values. We observe the following: 

1- Four of the five objectives trend downward, until they 

reach their least values at the end of operation. The trend is 

interrupted with swings upward, as the objectives play trade-

offs against one another along the way. 

 
Figure 3: Quality indicators vs. time 

 

Figure 4: Normalized mean objective values vs. time 

2- The second objective –number of missing features- trends 

upward, until it reaches its highest value at the end of 

operation, despite being defined as a minimization objective. 

The observation here is: there is an expected correlation 

between having more features and higher cost, defects, and 

features not used before. Therefore, the multiobjective 

optimization process finds it best to push the missing features 

upward (total features downward) in order to achieve best 

overall Pareto optimality. 

B. Reducing the Rates of Crossover and Mutation 

We now tweak the genetic operator parameters downward; 

we use a crossover rate of 0.1 and a mutation rate of 0.01. We 

stop the operation after 1 hour since we see an early plateau in 

the indicators. 

The quality indicators are plotted in Figure 5, and the 

observations are: 

1- The %correct indicator begins showing 74% fully-correct 
solutions after 12 minutes of operation. After 1 hour, the 
percentage stands at 75%. 
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2- At 12 minutes, the HV indicator shows 99% of its final 
value at the end of the operation. This tells us that the 
continuing optimization after 12 minutes is a waste of CPU 
power in return for insignificant gain. In part A above, HV 
achieved its 99% after 3 hours. Thus the run time improvement 
achieved by reducing the parameters is 15 folds, i.e. a whole 
order of magnitude. 

3- The Spread indicator reaches high values early in the 
operation, when the solutions are suboptimal and inconsistent 
with the feature model. The Spread values achieved after 12 
minutes represent the nominal diversity measurements for 
solutions whose majority fully-conforms to the feature model. 

As for the normalized mean objective values, plotted in Figure 
6, we observe similar trends as those mentioned in part A; 
objective 2 trends upward as other objectives get minimized. 
The main reason for this trend is correctness; the more features 
included in configurations the more constraint violations there 
would be. The algorithm learns to include fewer features as it 
achieves full correctness. 

 
Figure 5: Quality indicators vs. time 

 

 Figure 6: Normalized mean objective values vs. time 

C. Comparing MEOAs with High and Low Rates of 

Crossover and Mutation 

In this part, we run a large experiment, in which we seek to 

compare the performance of the 3 MEOAs with varying 

parameters, according to Table 1. Each method is run 10 

times, each time for duration of 30 minutes. 

TABLE 1: OUTLINE OF EXPERIMENT IN PART C 

Method 
Crossover 

rate 

Mutation 

rate 
Duration Runs 

IBEA-h 0.9 0.05 30 min 10 
IBEA-l 0.1 0.01 30 min 10 

NSGA2-h 0.9 0.05 30 min 10 

NSGA2-l 0.1 0.01 30 min 10 
SPEA2-h 0.9 0.05 30 min 10 

SPEA2-l 0.1 0.01 30 min 10 

In Table 2, we show the resulting mean values and 

standard deviations of the quality indicators. The methods are 

sorted according to Hypervolume (HV). The “Effect size” 

column shows Hedge’s effect size which is computed for the 

HV of each method versus the method below it. The 

description of the effect as large follows the classification in 

Table 9 of Kampenes et al. [10]. 

TABLE 2: RESULTS OF EXPERIMENT IN PART C 

Method 
HV-

mean 

HV-

stdev 

Effect 

Size 

%correct 

mean 

Spread 

mean 

IBEA-l 0.293 0.0016 
7.66 

(large) 
66.8% 0.89 

IBEA-h 0.271 0.0033 
13.35 

(large) 
9.9% 0.88 

NSGA2-h 0.211 0.0047 
1.57 

(large) 
0.6% 0.78 

SPEA2-l 0.204 0.0032 
1.14 

(large) 
0.8% 0.63 

NSGA2-l 0.192 0.0130 
1.58 

(large) 
2.4% 0.95 

SPEA2-h 0.174 0.0066 -- 0.0% 0.56 

These results show the following: 

1- IBEA with low parameters performs remarkably better 

than all, both in terms of HV and %correct, followed by IBEA 

with high parameters which also beats all others by a large 

margin in both HV and %correct. 

2- The highest spread value was achieved by NSGA-II with 

low parameters, which indicates a better diversity of results. 

Nevertheless, since it falls short on optimality (measured with 

HV) and correctness, the solutions are useless. In fact, IBEA 

achieves very good spread values, both at high and low 

parameters. 

VI. DISCUSSION 

First, we would like to comment on the different 

viewpoints offered by quality indicators (Figures 3 & 5) and 

the normalized mean values (Figures 4 & 6). MEOAs are 

usually compared with the help of quality indicators, since 

they offer an aggregate evaluation of the entire Pareto front. 

This viewpoint is useful for researchers, but not so for 

business end-users. When the objectives are spelled out and 

plotted alongside one another in the form of normalized mean 

values, the user can realize the benefit of multiobjective 

optimization with IBEA. 
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Reducing the crossover rate and mutation rate has 

significantly improved the performance of IBEA. In fact, the 

run time savings in this paper over our previous work [12] is 

15 folds. This hints at the fine-grained structure of the feature 

models. Low rates of crossover and mutation promote moving 

slowly through the feature model to discover better solutions, 

whereas high rates promote vast changes to the individuals 

from generation to generation.  

This reduction in the parameters goes against the common 

rule of thumb. For example, Eiben and Smith [7] suggest a 

crossover rate between 0.6 and 0.9. These suggestions are 

usually taken without question. Arcuri and Fraser [2] showed 

that the choice of parameter values can result in large 

variances in performance of evolutionary algorithms. 

For NSGA-II and SPEA2, reducing those parameters 

didn’t help much, and we still obtained solutions that are 

inconsistent with the feature model. This is due to the diversity 

preservation measures in both algorithms which tend to 

disallow the crowding of solutions close to the much desired 

zero-violation point. 

VII. CONCLUSION 

It is tempting for researchers and industrial practitioners to 

apply optimization tools using their off-the-shelf parameters 

and study their results using standard performance measures 

such as hypervolume and spread. While this approach may 

sometimes work in domains with only 1 or 2 objectives, we 

strongly discourage that practice for problems with a rich set 

of objectives. In [12] we showed the superiority of IBEA in 

searching complex structures with many objectives. In this 

paper we tracked the development of the optimization 

objectives over time, highlighting the importance of this 

tracking to the business end-user. Furthermore, we 

demonstrated an order-of-magnitude improvement in the 

performance of IBEA via tuning down the rates of the genetic 

operators. Such enhancement in performance followed from 

the nature of the models, which required small changes across 

generations for a better exploration of possible configurations. 
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