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Abstract—We offer a case study illustrating three rules for
reporting research to industrial practitioners. Firstly, report
“relevant” results; e.g. this paper explores the effects of dis-
tributed development on software products.

Second: “recheck” old results if new results call them into
question. Many papers say distributed development can be
harmful to software quality. Previous work by Bird et al. allayed
that concern but a recent paper by Posnett et al. suggests that the
Bird result was biased by the kinds of files it explored. Hence,
this paper rechecks that result and finds significant differences
in Microsoft products (Office 2010) between software built by
distributed or collocated teams. At first glance, this recheck calls
into question the widespread practice of distributed development.

Our third rule is to “reflect” on results to avoid confusing
practitioners with an arcane mathematical analysis. For example,
on reflection, we found that the effect size of the differences seen
in the collocated and distributed software was so small that it
need not concern industrial practitioners.

Our conclusion is that at least for Microsoft products, dis-
tributed development is not considered harmful.

I. INTRODUCTION

How should the research community talk to industrial
practitioners? This papers offers three rules for such commu-
nication: relevance, recheck, and reflect.

Regarding relevance: From an industrial perspective, suc-
cessful research comments on important industrial practices.
One such important issue in the current software industry is
the quality implications of distributed software project (across
many sites or many countries). Early results warned that such
projects may suffer from lower quality due to geographical
dispersion [31] which raises issues of communication [12],
and problems building mutual confidence among distributed
teams [27]. However, in 2009, Bird et al. checked for those
effects in distributed Microsoft projects [4]. They found that
management can successful mitigate for these detrimental
effects (team members need to be organized along product
lines and not on their geographical location).

These relevant results need to be rechecked, if subsequent
results cast some doubt on prior results. This step may also be
required when the context of a result changes (e.g., this study
is performed on Microsoft Office instead of Windows). Also
the recheck step is optional, when reporting results that have
never been reported before. Such rechecking is an important
service that researchers can offer industry since industrial

practitioners may not have the time to attend all conferences
or read all the literature.

In this paper, we rechecked the Bird et al. result regarding
the impact of distributed development on software quality.
This recheck was necessitated due to the troubling results
in 2011 by Posnett et al. [25]. They divided some software
defect data into a tree that ranged from the most general to
the most specific (from system to sub-system to package to
file). They then checked where the best defect models were
learned: higher or lower in that tree of data. What they found
was that the best defect models learned higher in the tree may
not be best for subsets of that data, lower in the tree.

This new results cast some doubt on previous results since
Bird et al. had only looked at the big binaries generated
by a team but not the smaller source files that built those
binaries. Accordingly, this study is a file-level analysis of the
effects of collocated vs distributed development. We mined
commit and geographical location information of Microsoft
Office 2010 developers. We extracted the post-release bug
information associated with Office 2010 to comment on the
effects of geographical distribution, edit percentages and post-
release bug information (at the file level).

At first glance, our results suggested that the 2009 Bird
et al. study had indeed fallen into the trap documented by
Posnett et al. in 2011. We found that distributed software
(studied at the file level) was statistically significantly different
than software developed by collocated developers. Note that
this is a very alarming result since it calls into question the
widespread practice of distributed software development.

Our third rule for communicating research results to indus-
trial practitioners: reflect on the results. Research must not
confuse industrial practitioners with overly-complicated math-
ematical results; instead the analysis should help practitioners
reflect on the extent of an effect, i.e. whether the observed
effect requires an action. For example, while rechecking the
Bird et al. results, we compared software built by teams that
were either (a) distributed to geographically separate teams
or (b) collocated and working together. For this analysis,
we employed statistical tests that are standard in the field
and which have been accepted, without criticism, in dozens
of papers. However, such standard tests used either directly
by practitioners or by researchers for practitioner focused
analyses can be very misleading. When we reflected on our
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new results, we found that the real issue was not distributed vs
collocated development. Rather the real issue was to correctly
communicate effects to industry for the right interpretation:

• It is possible to be misled by the statistically significant
difference between collocated and distributed develop-
ment as indicated by the standard statistical tests.

• However, on reflection, the size of that effect, was negli-
gibly small. That is, at least for the software studied here,
distributed development is not considered harmful.

The rest of this paper is organized as follows. A summary
of related work will offer the standard conclusion; i.e. that dis-
tributed and collocated development produces different kinds
of software of different quality. We will summarize that work
as five hypotheses. These hypotheses will be expressed in
such a way that (according to the related work, as reported in
Section II), we expect them all to be rejected. However, our
experiments and analysis of effect size will accept them all:
i.e. we can find no major differences between software quality
and the kinds of software built by collocated and distributed
processes. This will be followed by a discussion on threats
to validity. Finally, our future work section poses a question
that deserves much attention: Just how many other research
“results” are just tiny effects that need not concern industrial
practitioners?

II. RELATED WORK

The two aspects explored by this paper are code ownership
and distributed development. This section presents our case
that these two factors are worthy of exploration.

A. Code Ownership

Human factors play a considerable role in software devel-
opment [5], [8], [24]. Hence, it is no surprise that there is a
considerable literature built around the investigation of code
ownership and its relation to software quality.

Rahman and Davenbu use a fine-grained level of analysis
on the level of fix-inducing code-fragments to investigate
effects of ownership properties on the quality of multiple
open-source projects [26]. Their study shows that developer
contribution is related to the implicated code in the sense
that a developer’s specialized experience in a target file is
more important than general experience. Bird et al. investigate
the ownership properties in two large commercial software
products [5] and report that the measures of ownership in both
products have a significant relationship with both pre-release
and post-release faults. Meneely and Williams investigate Red
Hat Enterprise Linux 4 kernel [19], where they empirically
investigate the relationship between security vulnerabilities
and the developer activities. Their study reports the finding
that files with edits from more than 9 developers are 16 times
more likely to be vulnerable to security related errors, which
is counter intuitive to the Linus’ law, which states that given
enough beta-tester and co-developer base all the problems can
easily be characterized [30].

Boh et al. investigate the data archives of the development
work of a telecommunication product for a large time frame of

14 years [6]. They report the interesting finding that special-
ized experience has the greatest impact on the productivity of
individual developers for the modification request completion
time. Mockus and Weiss also report a similar finding [21].
They show that changes made by developers, who are more
experienced with a software component are less likely to cause
failures. Other examples, where the previous development
activity of a developer is used as a proxy for ownership and
expertise are “Expertise Browser” tool introduced by Mockus
et al. [20] and “Expertise Recommender” tool by McDonald
et al. [18]. These tools use the number of times a developer
has changed a component to measure the amount of ownership
and expertise for that particular component.

While the above results are widely cited, they are not
universally accepted. There are several counter examples to
the relation between software quality and ownership. Weyuker
et al. examine the team size information for prediction model
performance [33] and report that the addition of ownership
related metrics (e.g. cumulative number of developers) only
provide a negligible performance improvement. A similar
finding is also reported by Graves et al. [11], who show that
the number of different developers who have worked on a file
does not improve the prediction performance.

B. Distributed Development

For large organizations distributed development is a strategic
decision issue related to skill-set availability; the cost of labor;
governmental restrictions [4]; various resource constraints [7],
[14] and so on. Besides being a good solution for such
issues, distributed development turns software development
into a more interactive process, where a number of remote
development teams have to collaborate in a complementary
manner. The collaboration of remote teams brings out a whole
set of new problems. There is a wealth of literature defining
and tackling the problems associated with distributed devel-
opment [3], [4], [12], [13], [17], [22], [28]. Some previously
studied aspects of distributed development:

• Communication and coordination issues [12], [28];
• Organizational structures of development [22];
• Effects of geographical dispersion [3], [31];
• Possible development strategies (e.g. agile) [29], [32].
• Effects on software quality [9], [27];
Ramasubbu et al. investigate the specific coordination

schemes for distributed development [28]. Their claim is that
the process frameworks adopted by distributed teams have
been developed for collocated contexts, whereas distributed
projects require schemes specific for distributed develop-
ment. Herbsleb et al. investigate the delays of collocated
and distributed work items [12] and show that distributed
work items take 1.5 to 2 times longer than collocated work
items. Bird investigates the organizational structure associated
with open source software [5] focusing on the coordination
and collaboration schemes between developers. Unlike the
prevailing belief, Bird reports that distributed open source col-
laboration patterns are not haphazard. Spinellis investigates the
effects of geographical dispersion in distributed development
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of FreeBSD [31]. He reports that geographical dispersion of
developers does not have a significant effect on the code qual-
ity or on the bug density. Nagappan et al. use a novel approach
to dispersion [22]. Instead of geographical, they investigate
the relationship of organizational structure to software quality.
Their results reveal that organizational metrics are significantly
related to post release failure-proneness.

Bird et al. investigate the effects of distributed development
on the binaries of Windows Vista [4]. Their findings are
aligned with that of Spinellis [31] although the investigated
products have different development strategies. Bird et al.
report that the geographical dispersion of the commits to
binaries has little to no effect on the post release failures.

III. FIVE HYPOTHESES

The prior work, as summarized in Section II, helps us
identify and check the implications of code ownership and
distributed development. Although there are counter exam-
ples [11], [33], the code ownership is reported to be strongly
associated with software quality [5], [6], [19], [21], [26]. Prior
results show that distributed development is affected by the
issues of communication and coordination [12], [28] as well
as geographical dispersion [3], [31], which may have impacts
on the produced software in terms of software quality [4], [27].

A standard way to test the above implications is to form the
associated null hypotheses, i.e. to check their opposite view-
point. Forming the null hypothesis and testing its significance
is one of the most widely used standard analysis techniques
in empirical software engineering [16]. The null hypothesis is
basically a statement, which is formed in a way so that it has
the possibility of being rejected. Note that the null hypothesis
cannot be proven, one can only “fail to reject” it. Because,
the set of collected data is only a sample, which can help
us reject a hypothesis, but which is not enough to prove it.
Once the null hypothesis is formed, it is checked with the
appropriate statistical test, which shows us whether we reject
or fail to reject it. If we ignore the minority reports of Weyuker
and Graves, then the implications of the related work on code
ownership and distributed development can be summarized as
follows: the following five hypotheses will be rejected.

It is possible that the existence of developers who are
experienced on a file is likely to have different impacts on
collocated and distributed files. Even if a distributed file has
a major developer (who is deemed to be experienced on this
particular file), there may still be edits to this file performed by
developers located in a remote geographical component. The
communication between experienced and inexperienced devel-
opers is possibly more difficult in such cases of distributed
files. Hence, it may be the case that collocated and distributed
files associated with major developers to have different bug
counts. This leads to the hypothesis:
H1: Collocated and distributed files associated with major
developers (MaDC>0) have similar post-release quality.
The variable MaDC is a measure that detects if there are a
small number of developers working on the code. MaDC is

the he number of developers, who commit more than 40% of
all the edits on a file.

In a similar manner, even if a collocated file has no major
developers (i.e. no experienced developer with a considerable
percentage of the edits) then if:

• The developers of collocated are still located within close
proximity of each other;

• They have better communication and coordination oppor-
tunities compared to the developers of a distributed file;

then the files of collocated teams without any major developers
(i.e. MaDC=0) may have less bugs compared to distributed
files with only minor developers. Hence, the hypothesis:

H2: Collocated and distributed files without any major
developers (i.e. MaDC=0) have similar post-release quality.

Prior studies have used binary level information to inves-
tigate the relation of distributed development to post-release
quality [3], [4]. Their findings show that there is negligible dif-
ference between collocated and distributed binaries in terms of
post release failures and code metrics. The related hypotheses
that will be tested in this research at the file level are:
H3:Collocated and distributed files are equally failure
prone.
H4:Collocated and distributed files have similar change
and size metrics.

Finally, the ownership properties are shown to be effective
information sources for software products [5], [19], [24],
[26]. Battin et al. names ownership of a component as one
of the critical strategies among the development tasks [2].
In this research we investigate ownership from a distributed
development point of view. We need to test if there is a
significant difference among different ownership metrics. This
leads to our last hypothesis:

H5: Collocated and distributed files have similar own-
ership metrics.

IV. METHODS USED IN THIS STUDY

This section describes the metrics, data collection, and
statistical analyzes used to test H1, H2, H3, H4, H5.

A. Definition of Metrics

This section explains the metrics used in our research. So as
to position our study accordingly, we used the goal question
metric approach as proposed by Basili [1]. We group the
metrics used in this research under 4 categories: Distribution,
ownership, change and size metrics.

Distribution Metrics: Geographical distribution of a file is
defined using 5 divisions: Building, City, State, Country and
World. A file can be owned by a group of people working in
the same building, same city, same state and so on:

• Owned By Building (OBB): If 75% or more of the edits
to a file come from a single building, then this variable is
1, indicating that this file is owned at the building level.
Otherwise, it is set to 0.

• Owned By City (OBCi): When none of the buildings can
claim ownership to a file, then we look at the city level. If
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75% or more of the edits to a file come from developers
located in the same city, then this variable is 1; else, 0.

• Owned By State (OBS): If 75% or more of the edits
come from the same state, then OBS is 1; otherwise 0.

• Owned By Country (OBCo): If 75% of the edits to a file
come from the same country, then 1; otherwise, 0.

• Owned By World (OBW): If no geographical component
can own up to 75% of the edits, then file OBW = 1.

The rationale for the above metrics is as follows. These
metrics indicate the smallest geographical entity, in which
the developers account for 75% of the edits to a file. Note
that distribution metrics are exclusive, a file can be owned at
only one geographical division. The geographical division at
which a file is owned influences how much a file is affected
by the issues of distributed development [4]. For example, if
a file is owned at the building level, then the developers are
walking distance apart from one another. On the other hand,
if it is owned at the country level, then the developers are
relatively more affected by communication issues inherent in
distributed development. These metrics enable us to define
different scenarios of distributed development (see Section
IV-C for 4 different scenarios). The reason of choosing a
threshold of 75% of the edits for the distribution metrics
is twofold. First reason is based on the prior research on
organizational [22] as well as geographical distribution [3],
[4], where the same threshold value has been utilized. Also, a
sensitivity analysis of threshold values from 65% to 85% with
increments of 5% yielded no dissimilar results.

Ownership Metrics:
Edit Frequency (EF): The total number of times a file is

edited. An edit can be defined as the activity of a developer
checking out a file, performing changes on this file and
committing it back. Note that since EF forms the basis for
multiple other ownership metrics, it is listed under ownership
metrics in this study. However, EF can also be used as a basis
for organizational metrics, .e.g. Nagappan et al. lists EF as an
organizational metric [22].

The purpose of EF is twofold. Firstly if a file is being edited
too many times, then it can be an indicator that the file is
unstable or that the file is likely to have issues of post-release
stability. Secondly, EF serves as a basis for the following
ownership and experience metrics.

Major Developer Count (MaDC): The number of develop-
ers who commit more than 40% of all the edits on a file.

The rationale for this metrics is that specialized component-
based experience is important [26] and developers with more
experience on a component are less likely to cause fail-
ures [21]. That is, major developers with higher edit percents
on a file are deemed to have expertise on that file.

Top Ownership Percentage (TOP): The percentage of edits
by the developer, who has done most of the edits.

Similar to the major developer count, the value of the
highest edit percentage on a file can inform us about the
expertise of the developers working on a particular file.

Total Developer Count (ToDC): The number of all the
developers editing a file.

The total number of developers working on a file is also
important for a component [19], [33]. We are interested to see
if collocated and distributed files are edited by a considerably
different number of developers.

Change Metrics:
• Total Added LOC (ALOC): Total LOC added to a file.
• Total Deleted LOC (DLOC): Total LOC file deletions.
• Total Edited LOC (CLOC): Total LOC edited in a file.

We use these change metrics since the total added, deleted and
edited lines of code in all edits to a file can convey information
that is useful to observe files that experience bigger amounts
of change, hence become more susceptible to post-release
problems.

Size Metrics:
• Number of Functions (NOF): Functions per file.
• Number of Classes (NOC): Classes per file.

We use these size metrics since the total number of functions
and classes in a file inform us about the functional properties
of a file. A file with a much higher number of functions and
classes may be more likely to have post-release issues. Hence,
we include these metrics into our analysis.

B. Data Collection

The data collected for this study enables us to investigate
post release quality of a distributed project at file level. The
collected data also enables us to test hypotheses regarding
the code ownership properties in collocated and distributed
files as well as their relation to post release quality. This
study examines Office 2010. Office 2010 is developed within
Microsoft by a total of 1500+ developers. It is composed
of tens of thousands of source code files. The development
history is traced from the release to manufacture (RTM) date
of Office 2007 until the RTM date of Office 2010.

For our research there was the need for various different
types of data, among which the most important was the
commit information. The software commit information of
Office 2010 (as well as other products) is stored in the software
repositories of Microsoft. The repository data contains infor-
mation regarding the name of the developer who performed
the change, the time-stamp of the change, which file and what
lines of this file were changed, what the intention of the change
was (e.g. development for a new feature, enhancement, fixing
a bug etc.), on which branch this change was performed and
so on. Note that there is a complex branch structure associated
with Office 2010. Some of the changes performed on files are
associated with the movement of development activity towards
the main branch (i.e. trunk). Such activities are not related to
development, hence they are ignored.

For our analysis, we collected the number of edits performed
by each developer on Office 2010 source files. We also
recorded the change metrics associated with each edit. Then
we mined the geographical information of each developer’s
location to map files to different geographical components.

To collect the post-release bug information, we traced the
bug correction activity of Office 2010 from RTM until the
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release date of service pack #1 (SP1). Each bug correction
activity is associated with a collection of file changes (so called
“change-list”). The file and bug information is mined from the
change-lists associated with post-release bugs. Bug and the
development activity information yields the final form of our
data, where for each file we have the distribution, ownership,
change and size metrics as well as the bug count information.

C. Scenarios and Discovering the Effects

For the first part of the analysis, we are interested in
discovering the effects between collocated and distributed files,
i.e. is there a statistically significant difference? Collocated
and distributed file definition can vary according to different
scenarios that we are interested in. With the 5 geographical
components (building, city, state, country and world), we have
4 scenarios of collocated and distributed files:

Scenario Collocated Distributed
BLD OBB files All except collocated files
CTY OBB and OBCi files All except collocated files
STT OBB, OBCi and OBS files All except collocated files
CNT OBB, OBCi, OBS and OBCo files Only the OBW files

The scenario names are the first three consonants of the
biggest geographical location of the collocated files. In the first
scenario the biggest geographical component of the collocated
files is building and the scenario is referred as “BLD”.
Table I shows the distribution of all files into collocated and
distributed file groups according to each different scenario.

TABLE I
THE PERCENTAGE DISTRIBUTION OF FILES IN EACH SCENARIO.

Scenario % Collocated % of Distributed
BLD 69.8% 30.2%
CTY 89.2% 10.8%
STT 93.6% 6.4%
CNT 96.9% 3.1%

D. Statistical Analysis

For the following analysis, we compared populations using
the non-parametric Wilcoxon rank-sum test (a.k.a. Mann-
Whitney U test) with 95% confidence for hypothesis testing.
The results are presented in terms of the standard p measure;
i.e. what is the probability that the conclusion is wrong? The
standard rule is to use p < 0.05 since this implies less than a
5% probability of a mistake in that conclusion.

Kampenes et al. note that the conclusions drawn merely
from statistical tests and the p values may be erroneous,
if statistical test is not complemented with an effect size
analysis [15]. They argue that the mere use of p-values is
insufficient for decision making. Considering the effect sizes
is beneficial not only to report meaningful outcomes of the
experiments, but also for comparison purposes [10], [15].

After an extensive literature review, Kampenes et al. endorse
the Hedge’s g effect size test. The formula of Hedges’ g is

g =
X̄1 − X̄2

sp
(1)

TABLE II
THE SIZE CATEGORIES FOR THE EFFECT SIZE OF SE STUDIES AND

CORRESPONDING EFFECT SIZE INTERVALS FOR HEDGES’ g. FROM [15].

Size Category g
Small 0.17

Medium 0.60
Large 1.40

Fig. 1. Given n cases, we have n-many g-values, which are sorted and
divided into 3 equal size bins. Medians of each bin (m1, m2, m3) indicate
the mid-points (as given in Table II) of small, medium and large effects.

where X̄1 and X̄2 are metric value sample means of collocated
and distributed files. sp is the pooled standard deviation based
on the standard deviations of two populations:

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

(n1 − 1) + (n2 − 1)
(2)

where n1, n2 are sample sizes and s1, s2 are standard
deviations of the first and the second population, respectively.

The g-value can be negative or positive depending on which
population is assigned to X1 and which one is assigned
to X2. For uniformity, we always subtracted collocated file
population metrics’ mean from that of the distributed file
population metrics. This way, for each metric we can see
greater or smaller than relationship (if positive, then metric’s
value for distributed development is larger) between collocated
and distributed files as well as the extent of the relationship
(small, medium or large).

Kampenes et al. review 92 manuscripts to derive standard-
ized effect sizes and divide the sorted effect size values into
equal size bins, which are used to derive the midpoints of
small, medium and large effect sizes. The g-value standard
conventions as given by Kampenes et al. for SE are presented
in Table II. Assuming that we have n cases (in Kampenes et
al.’s case n = 92) to calculate the effect sizes, then we would
have n-many g-values. These values are ordered in ascending
order and divided into 3 equal size bins, see Figure 1. The
median values m1, m2 and m3 of Figure 1 indicate the mid
points of small, medium and large effect sizes, respectively.

Kampenes et al. note the importance of contextual ef-
fect sizes and that a “ritualized interpretation” should be
avoided [15]. In the ideal case, when there are enough contex-
tual samples, one may choose to calculate the context specific
g-values. Since this study uses a single product, we will make
use of the effect size values from the close context of SE,
derived from 92 SE studies [15].

V. RESULTS

Recall from the above that related work suggests we should
reject the five hypotheses defined in this study. In summary,
that did not happen:
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• H1 and H2 were both failed to be rejected.
• Initially, our statistical hypothesis tests rejected

H3,H4,H5 but the Hedges test showed that the
size of these effects were negligible. Therefore we had
to accept these three hypothesis.

That is, for the software explored here, none of the following
results call into question the value of distributed development.

A. Hypothesis Testing Results

For completeness sake, we first present the hypothesis
testing results. Then, we show that the somewhat arcane math-
ematics of hypothesis testing actually confuse a very simple
result for practitioners: i.e. the size of the effect between
collocated and distributed software is negligibly small.

Hypothesis testing failed to reject H1: Collocated and dis-
tributed files associated with major developers (MaDC>0)
have similar post-release quality. Before the comparison of
files to test H1, we identified the collocated and distributed
files for which there is a major developer (i.e. MaDC > 0).
Then, in a similar fashion, we identified the ones without
a major developer (i.e. MaDC=0). Testing H1 requires the
comparison of the post release bug counts associated with
the collocated and distributed files for which MaDC > 0.
The p-values of this comparison for all 4 scenarios are given
in Table III. Note that all the p-values are greater than 0.05,
i.e. collocated and distributed files with a major developer do
not have statistically significantly different bug counts.

Also, hypothesis testing failed to reject H2: Collocated
and distributed files without any major developers
(i.e. MaDC=0) have similar post-release quality. To see
this, note that testing H2 requires the comparison of the bug
counts of files without a major developer, i.e. the collocated
and distributed files for which MaDC = 0. The p-values
of this comparison for 4 different scenarios are provided in
Table IV. In all the comparisons the p-values are much bigger
than 0.05.

Hypothesis testing rejected H3: Collocated & distributed
files are equally failure prone. To see this, for each of the
4 scenarios (defined in Section IV-C), we compared the bug
numbers of collocated and distributed files. The corresponding
p-values of the comparisons are given in Table V. Note that in
all of the scenarios the bug counts of collocated and distributed
files are significantly different.

The files without a bug (i.e. files with a bug count of zero)
are a big majority for Office 2010. Since such a distribution
might influence the result of the statistical test, we performed
the same statistical test on collocated and distributed files
(whose bug counts are greater than zero). The results were
the same: all p-values very close to zero. Our analysis showed
that for multiple scenarios, distributed and collocated files have
significantly different post release bug counts.

Similarly, hypothesis testing rejected H4: Distributed and
collocated files have similar change and size metrics. To see
this, we compared the change and size metrics of distributed
and collocated files for 4 different scenarios. The resulting

TABLE III
ABOUT H1: THE p-VALUES OF POST RELEASE BUG COUNT COMPARISON

BETWEEN COLLOCATED AND DISTRIBUTED FILES, FOR WHICH
MaDC > 0.

Scenario p-value
BLD 0.24
CTY 0.74
STT 0.47
CNT 0.41

TABLE IV
ABOUT H2: THE p-VALUES OF POST RELEASE BUG COUNT COMPARISON

BETWEEN COLLOCATED AND DISTRIBUTED FILES, FOR WHICH
MaDC = 0.

Scenario p-value
BLD 0.65
CTY 0.83
STT 0.64
CNT 0.38

TABLE V
ABOUT H3: THE COMPARISON OF COLLOCATED AND DISTRIBUTED FILE

BUG COUNTS.

Scenario p-value
BLD 0.00
CTY 0.00
STT 0.01
CNT 0.03

TABLE VI
ABOUT H4: THE p-VALUES OF COMPARING THE CHANGE AND SIZE

METRICS OF COLLOCATED AND DISTRIBUTED FILES.

Scenario ALOC DLOC ELOC NOF NOC
BLD 0.00 0.02 0.40 0.89 0.19
CTY 0.00 0.00 0.56 0.00 0.00
STT 0.00 0.00 0.00 0.00 0.00
CNT 0.00 0.00 0.00 0.00 0.00

TABLE VII
ABOUT H5: THE p-VALUES OF COMPARING THE OWNERSHIP METRICS OF

COLLOCATED AND DISTRIBUTED FILES.

Scenario EF TOP ToDC MaDC
BLD 0.00 0.00 0.00 0.00
CTY 0.00 0.04 0.00 0.01
STT 0.00 0.00 0.00 0.00
CNT 0.00 0.00 0.00 0.00

p-values for each scenario can be seen in Table VI. The p-
values of Table VI show that collocated and distributed files
are different to one another in terms of every size and change
metric, with the exception of the 4 bold-face cells. For most
of the our comparisons the collocated and distributed files do
not have similar change and size metrics.

Lastly, hypothesis testing rejected H5: Distributed and
collocated files have similar ownership characteristics. As
evidence for this, consider the p-values associated with the
comparison of collocated and distributed files in terms of
ownership metrics (in Table VII). For 4 different scenarios
and 4 metrics, there is no p-value that is greater than 0.05, i.e.
for all the comparisons, the collocated and distributed files
have significantly different metric values.
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TABLE VIII
THE EFFECT SIZES OF THE DIFFERENCE BETWEEN COLLOCATED AND DISTRIBUTED FILES IN TERMS OF HEDGES’ g AND THE CORRESPONDING SIZE

CATEGORY [15]. g IS CALCULATED FROM EQUATION 1 AND THE EFFECT SIZE IS CALCULATED FROM TABLE II.

BLD CTY STT CNT
Metric g effect size g effect size g effect size g effect size
Bug Count 0.05 small 0.05 small -0.01 small 0.00 small
ALOC -0.01 small -0.01 small 0.01 small 0.06 small
DLOC -0.01 small -0.01 small 0.01 small 0.05 small
ELOC -0.01 small 0.00 small 0.01 small 0.04 small
EF 0.07 small 0.11 small 0.19 small 0.02 small
ToDC 0.34 small 0.05 small 0.10 small -0.01 small
TOP -1.09 LARGE 0.05 small 0.08 small 0.15 small
MaDC>0 Bugs -0.01 small -0.02 small -0.02 small -0.01 small
MaDC=0 Bugs 0.02 small 0.26 small 0.29 small 0.20 small
NOC 0.02 small -0.03 small -0.03 small 0.01 small
NOF 0.09 small 0.03 small -0.07 small -0.05 small

A factor that may influence ownership metrics is the number
of developers working on files. For some files, it is possible
that all the edits to a file come from a single developer. That is
not necessarily a problem, after all one developer may be the
sole owner of a file; however, all such files would be owned
at the building level and never have the possibility of being
a distributed file. We repeated the ownership metrics analysis
on the files with at least 2 developers (i.e. any file could be
collocated or distributed). The results were the same: the p-
value tests showed that collocated and distributed files were
significantly different from one another in all cases.

B. Effect Size Results

The rejection of H3,H4,H5 is consistent with much of the
prior literature on code ownership, distributed development,
and code quality. However, a closer reflection over the data
shows that the that rejection was premature. Figure 2 shows
the bug counts of collocated and distributed files (in BLD
scenario) from 0th to 100th percentile, with increments of 1.
Note that the difference between the distributed and collocated
distributions, while statistically significant, is very slight.

Fig. 2. Bug counts of collocated and distributed files from 0th to 100th

percentile with increments of 1.

The Hedges test confirms our visual impression of Figure 2:
i.e the differences in the bug counts is very slight. The
first line of Table VIII reports the results of the Equation 1
calculation for the bug count. The other lines of that table
show a similar calculation for our source code measures. Note
that the standardized mean difference effect sizes are mostly
categorized as small. The only counter example is the TOP
metric comparison for BLD scenario, where the effect size is
categorized to be LARGE .

Therefore, even though statistical hypothesis testing rejected
three of our hypotheses, we must conclude that these effects
are small and negligible.

That is, for this sample of proprietary Microsoft software,
issues of code ownership and distributed development do not
impact:

• Code quality (measured in number of defects);
• The kinds of code developed (measured in terms of the

static code measures shown above).
In summary, we can find no difference that distributed

development is harmful in this code since there is practically
no difference between software developed by collocated and
distributed software teams working on Microsoft Office 2010.

VI. THREATS TO VALIDITY

The metrics used in this research are collected through
automated SE tools that are used in production. Hence, we
do not see considerable construct validity issues concerning
huge errors in measurement.

Internal validity assures that the variations in the dependent
variable can be attributed to the independent variables [23].
Wright et al. reports that confounding factors and selection
bias are among the fundamental threats to internal validity
of SE studies [34]. This is particularly true for analyses
performed on large software products. Because, all the con-
founding factors may not be known in advance and the
selection of metrics is biased by the availability of the metrics.
Our research is no exception. For example, the selection of
the metrics was limited by the availability of these metrics
for Office 2010 (e.g. no test coverage or dependency metrics).
Also, in this study we were interested in the raw EF values
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made to files and since we observed that distributed and
collocated files have similar class and function counts (NOF
and NOC respectively), we did not normalize the EF values
by the LOC of files. Given that file sizes differ considerably,
this can be a confounding factor.

One of the most obvious threats to the validity of the results
presented in this research is the external validity. External
validity means that the results of a study can be generalized
for different settings [23]. We have no reason to posit that
the results presented here would be similar to a replication
study. On the other hand, the proposed methodology can
be applicable to different projects regardless of the choice
of organization or particular metrics. Although this research
investigates a different product and different metrics at a
finer granularity level in comparison to previous distributed
development studies at Microsoft [3], [4], there are similarities
in terms of conclusions. Previous studies report that distributed
development has little to no effect on post release quality. Our
results indicate that although the differences are statistically
significant, the effect sizes are limited.

VII. DISCUSSION

Section V concluded that a supposed effect was so small
that it was negligible. A reader of this paper might look at
Figure 2 and exclaim “Of course! That was obvious!”. Yet
a practitioner or a researcher merely using hypothesis testing
could have been mislead by the statistics, if the size of the
effect was not properly reflected upon. Our concern is that they
would not be the only ones being mislead. In fact, we fear that
lack of effect size consideration is a widespread error that may
threaten the recommendations to industry. In their extensive
review of effect sizes in software engineering, Kampenes et
al. [15] report that less than 30% of 90+ research results they
studied reported effect size results. Questioning the size of
the observed effects is critical, because recommendations to
practitioners help them make decisions, such decisions should
be guided not only by existence of an effect (observed through
hypothesis tests) but also by the size of the that effect. Because,
an existing effect may be significant yet so small (as in the
case of ownership and distributed development metrics of this
study) that the practitioners need not be concerned to take
an action. Furthermore, the analysis patterns proposed by the
academia may be adopted by practitioners on a day to day
basis. We show that widely used hypothesis testing should
be complemented with effect size analysis and we propose a
recommended effect size analysis to practitioner audience.

It is possible that many “effects” reported in the SE literature
are actually small and ignorable. For future work, we strongly
advise a recheck and reflection on the past results and recom-
mendations to see just how many of those results disappear
as small effects. We also strongly advise reporting the effect
size in research results as they provide further interpretation
possibility for industry whether or not to be concerned about
the observed effect. As shown in Section IV-D, this effect size
test is quite simple to be applied.

Another issue that requires discussion is that our results are
different from the standard view as reported above in Section
II. In the standard view, distributed systems are expected to
be very different from those developed in collocated manner.
But in our results, they are not. Why?

The first comment to be made here is that our results are not
without precedent. Recall that Weyuker and Graves [11], [33]
reported that code ownership and number of developers did
not change the quality of the systems that they studied. Also,
working on different data to that studied here, reported that
distributed development does not necessarily damage software
quality.

The second comment to be made is that many of the other
prior studies were based on open source systems. Perhaps
software built by distributed teams at Microsoft fares well
enough that intra-organizational development can maintain the
standards required for quality development. This conjecture is
a small variant of the Bird et al. [4] conclusion and we plan
to explore this matter further in future work.

VIII. CONCLUSION

This paper offers three rules on how researchers should
communicate results to industry: relevancy, recheck and re-
flect. We studied if collocated and distributed teams produce
different kinds of software. Given the current globalization of
the software industry, this is a topic of great current relevancy.

Old relevant results need to be rechecked when new pa-
pers offer results that challenge prior results. Note that such
rechecks are important service that researchers can offer the
industrial community. Industrial practitioners are busy people
racing to meet their development schedules. Hence, these
practitioners may not have the time to read the journal papers
or attend the conferences. For example, it is unlikely that
many industrial developers have heard of the Posnett et al.
results that say conclusions that hold at one scale (e.g. for
code binaries) may not hold for another scale (e.g. the smaller
code files used to build the bigger binaries). Hence, the recheck
of this paper was to check if the optimism of Bird et al. (that
management actions can mitigate for some negative effects of
distributed development) were still valid at the file level.

Once results are generated, it is important to reflect on the
new results to observe the size of an effect besides its statistical
significance. For example, hypothesis testing reported that
there were significant differences between distributed and col-
located software, yet the size of the effect between collocated
and distributed development is small enough to be ignorable.
In this research we propose practitioners a recommended
method [15] to observe the size of the effects, which can
aid them better reflect on the observed effects. As a result
of this study, we saw that the distributed development is not
considered harmful since, at least for the software studied
here, we found no difference in the metrics we collected from
collocated and distributed software projects.
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