
Learning the Task Management Space of an Aircraft Approach Model

Joseph Krall and Tim Menzies
Lane Department of CS&EE

West Virginia University, WV, USA
(kralljoe,tim.menzies)@gmail.com

Misty Davies
Intelligent Systems Division

NASA Ames Research Center, CA, USA
misty.d.davies@nasa.gov

Abstract

Validating models of airspace operations is a particu-
lar challenge. These models are often aimed at finding
and exploring safety violations, and aim to be accurate
representations of real-world behavior. However, the
rules governing the behavior are quite complex: non-
linear physics, operational modes, human behavior, and
stochastic environmental concerns all determine the re-
sponses of the system. In order to quantify uncertainty
in the model (and by extension, risk in the real world),
one recently successful methodology has been to de-
velop a response surface replacement for the original
model, and to learn the behavior of the system from
the response surface. In this paper, we present a study
on aircraft runway approaches as modeled in Geor-
gia Tech’s Work Models that Compute (WMC) simu-
lation. We use a new learner, Genetic-Active Learning
for Search-Based Software Engineering (GALE) to dis-
cover the Pareto frontiers defined by cognitive struc-
tures. These cognitive structures organize the prioriti-
zation and assignment of tasks of each pilot during ap-
proaches. We discuss the benefits of our approach, and
also discuss future work necessary to enable uncertainty
quantification.

The Motivation—Complexity in Aerospace
Complexity that works is built of modules that work
perfectly, layered one over the other. –Kevin Kelly

The current complexity of the National Airspace System
(NAS) causes consternation. At one level within the NAS,
each airplane is an intricate piece of machinery with both
mechanical and electrical linkages between its many com-
ponents. Engineers and operators must constantly decide
which components and interactions within the airplane can
be neglected. As one example, the algorithms that control
the heading of aircraft are usually based on linearized ver-
sions of the actual (very nonlinear) dynamics of the aircraft
in its environment. (Blakelock 1991)

At another level within the NAS, each airplane must in-
teract with other airplanes and the environment. For in-
stance, weather can cause simple disruptions to the flow

Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the airspace, or be a contributing factor to major disas-
ters. (NTSB 2010) As a result, major research efforts are cur-
rently focused on models and software to mitigate weather-
based risks. (Le Ny and Balakrishnan 2010)

The glue for these interacting airspace systems consists
primarily of people. Pilots and air traffic controllers are the
final arbiters and the primary adaptive elements within the
overall system; they are expected to compensate for weather,
for mechanical failures, and for other operational mistakes.
They are also the scapegoats. Illustratively, examine the fail-
ure of a software system at the Los Angeles Air Route Traf-
fic Control Center on September 14, 2004. (Geppert 2004)
The software disallowed voice communications between the
controllers and all of the 400 aircraft flying above 13,000
feet over Southern California and adjacent states. During
the time that the software was malfunctioning, there were
five near-misses between aircraft, with collisions prevented
only by an on-board collision detection and resolution sys-
tem (TCAS). The FAA previously knew about the bug that
caused the malfunction, and was in the process of patch-
ing the systems. As often happens in software-intensive sys-
tems, the intermediate ‘fix’ was to work around the problem
in operations—the software system was supposed to be re-
booted every 30 days in order to prevent the occurrence of
the bug. For the failure in 2004, the human operators hadn’t
restarted the system, and they were blamed for the incident.

If the current state of airspace complexity causes palpita-
tions, experts considering what might happen in the planned
next generation (NextGen) airspace can be excused for full-
fledged anxiety attacks. By any measure, the future of the
NAS is more heterogeneity and more distribution of respon-
sibility. We are already seeing a switch to a best-equipped
best-served model, where airlines who can afford to buy and
operate the appropriate equipment can get different treat-
ment in the airspace. One such example is the advent of Re-
quired Navigation Performance (RNP) routes, in which air-
craft fly tightly-controlled four-dimensional trajectories by
utilizing GPS data. This allows an aircraft to be cleared to
land while still at altitude and to descend constantly all the
way to the runway in a Continuous Descent Arrival (CDA);
these approaches save the airlines fuel and allow them to
better-predict arrival times. However, at airports with these
approved routes, controllers must now work with mixed
traffic—airplanes flying CDA routes and airplanes who are



less well-equipped flying traditional approaches. In the fu-
ture, the airspace is likely to also include Unmanned Aerial
Systems (this will include both fully-autonomous systems
that must still be tracked and avoided, and also systems
in which a pilot flies perhaps multiple aircraft from the
ground), and a wider performance band for civil aircraft.

The overall increase of traffic is already leading to more
software-based decision support for all the humans respon-
sible for the system, and there is an active (and sometimes
heated) discussion about just how much authority and auton-
omy should remain with people versus being implemented
in software. In fact, decisions about where loci of control
should reside in the airspace is an example of a wicked de-
sign problem (Rittel 1984; Hooey and Foyle 2007) as evi-
denced by the following criterion:

• It cannot be easily defined such that all stakeholders agree
on the problem to solve.

• There are no clear termination rules.
• Has ‘better’ or ‘worse’ solutions, but not ‘right’ and

‘wrong’ solutions.
• There is no objective measure of success.
• The comparison of design solutions requires iteration.
• There is no given alternative solution; the alternatives

must be discovered.
• It requires complex judgements about the level of abstrac-

tion that is appropriate for defining the problem.
• It has strong moral, political, or professional dimensions

that cannot be easily formalized.

Studying How Pilots and Air Traffic
Controllers Land Planes: A Hybrid Model

Test Case
The last thing you want to do is panic, then all sorts
of things can happen. –Roy Murray: a flight instructor
who, on October 8, 2013, talked a passenger with no
flying experience through a Cessna 172 landing after
the pilot collapsed.

In this paper, we use the CDA scenario within the Geor-
gia Institute of Technology’s Work Models that Compute
(WMC) as our use case. WMC is being used to study con-
cepts of operation within the National Airspace System
(NAS), including the work that must be performed, the cog-
nitive models of the agents (both humans and computers)
that will perform the work, and the underlying nonlinear
dynamics of flight. (Kim 2011; Pritchett, Christmann, and
Bigelow 2011; Feigh, Dorneich, and Hayes 2012) WMC
and the NAS are hybrid systems, governed both by contin-
uous dynamics (the underlying physics that allows flight)
and also discrete events (the controllers’ choices and aircraft
modes). (Pritchett, Lee, and Goldsman 2001) Hybrid sys-
tems are notoriously difficult to analyze, for reasons we will
overview in the next section.

WMC’s cognitive models are multi-level and hierarchi-
cal, (Kim 2011) with:

• Mission Goals at the highest level, such as Fly and Land
Safely, that are broken into

• Priority and Values functions such as Managing Interac-
tion with the Air Traffic System. These functions can be
decomposed into

• Generalized Functions such as Managing the Trajectory,
that can still be broken down further into

• Temporal Functions such as Controlling Waypoints.
In this paper, we present some preliminary results in

which we have varied four parameters within WMC in or-
der to explore their effects on the simulation’s behavior. The
Scenario is a variable within the CDA simulation that can
be varied in four ways. In the nominal scenario, the aircraft
follows the ideal case of arrival and approach, exactly ac-
cording to printed charts, with no wind. In the late descent
scenario, the air traffic controller delays the initial descent,
forcing the pilots to more quickly descend in order to ‘catch
up’ to the ideal descent profile. In the third scenario, the un-
predicted rerouting scenario, the air traffic controller, during
the plane’s descent, directs the pilot to a waypoint that is
not on the arrival charts, and from there returns the pilot to
the expected route. In the final scenario, the simulation cre-
ates a tailwind that the pilot and the flight deck automation
must compensate for in order to maintain the correct trajec-
tory. The late descent, unpredicted rerouting, and tailwind
scenarios all have further variants, modifying the times at
which the descent is cleared, the waypoint that the plane is
routed to, and the strength of the tailwind, respectively.

Function Allocation is a variable that describes different
strategies for configuring the autoflight control mode, and
has four different possible settings. In the cockpit, a pilot
may have access to electrical devices that provide guidance
for the lateral parts (LNAV) and the vertical parts (VNAV) of
the plane’s approach path. Civil transport pilots are likely to
have access to a Flight Management System (FMS), a com-
puter that automates many aviation tasks. In the first Func-
tion Allocation setting, which is highly automated, the pilot
uses LNAV/VNAV, and the flight deck automation is respon-
sible for processing the air traffic instructions. In the sec-
ond, mostly automated, setting, the pilot uses LNAV/VNAV,
but the pilot is responsible for processing the air traffic in-
structions and for programming the autoflight system. In the
third setting, the pilot receives and processes the air traffic
instructions. The pilot updates the vertical autoflight targets;
the FMS commands the lateral autoflight targets. This set-
ting will be referred to as the mixed-automated function al-
location setting. In the final, mostly manual, setting, the pilot
receives and processes air traffic instructions, and programs
all of the autoflight targets.

The third parameter we are varying in this paper is the pi-
lots’ Cognitive Control Modes. There are three cognitive
control modes implemented within WMC: opportunistic,
tactical, and strategic. In the opportunistic cognitive control
mode, the pilot does only the most critical temporal func-
tions: the monitoring actions “monitor altitude” and “moni-
tor airspeed.” The values returned from the altitude and the
airspeed will create tasks (like deploying flaps) that the pilot
will then perform. In the tactical cognitive control mode, the
pilot cycles periodically through most of the available mon-
itoring tasks within WMC, including the confirmation of
some tasks assigned to the automation. Finally, in the strate-

2



gic mode, the pilot monitors all of the tasks available within
WMC and also tries to anticipate future states. This “antic-
ipation” is implemented as an increase in the frequency of
monitoring, and also a targeted calculation for future times
of interest.

Finally, the fourth variable we explore in this paper is
Maximum Human Taskload: the maximum number of
tasks that can be requested of a person at one time. In previ-
ous explorations using WMC (Kim 2011), the author chose
three different levels: tight, in which the maximum num-
ber of tasks that can be requested of a person at one time
is 3; moderate, in which that value is 7; and unlimited, in
which a person is assumed to be able to handle up to 50
requested tasks at one time. For the studies in this paper,
we assume that people can handle only somewhere between
1 and 7 tasks at maximum. (Miller 1956; Cowan 2000;
Tarnow 2010)

In this paper, our initial analysis seeks to explore the ef-
fects that each of the four variables above has on the follow-
ing five outputs: the number of forgotten tasks in the simula-
tion (NumForgotten Tasks), the number of delayed actions
(NumDelayedActions), the number of interrupted actions
(NumInterruptedActions), the total time of all of the delays
(DelayedTime), and the total time taken to deal with inter-
ruptions (InterruptedTime). For the results we will show, we
average each of these values across the pilot and the copilot.

In Kim’s dissertation (Kim 2011), she primarily studies
function allocation and its effect on eight different parame-
ters, including workload and mission performance. In this
sense, the WMC model by itself as Kim chose to use it
(much less the airspace it is meant to simulate) is ‘wicked’.
In particular, there is no single measure of success, and there
is no agreement as to which of the measures is more im-
portant. Kim analyzed all of the combinations of the above
four variables, and manually postprocessed the data in or-
der to reach significant conclusions about how the level-of-
automation affects each of her eight metrics.

An Overview of Uncertainty Quantification
Within Hybrid, Wicked Systems

Remember that all models are wrong; the practical
question is how wrong do they have to be to not be use-
ful. –George E.P. Box and Norman R. Draper

Validation is the process by which analysts answer “Did
we solve the right problem?” Uncertainty (and risk) quantifi-
cation is core to the validation of safety-critical systems, and
is particularly difficult for wicked design problems. WMC is
a tool that is aimed at validating concepts of operation in the
airspace. It abstracts some components within the airspace,
and approximates other components, and must itself be vali-
dated in order to understand its predictive strengths and lim-
itations. Validation efforts can take as a given that WMC’s
predictions are useful, and be focused on discovering the
risks in the concepts of operation (in which case the anal-
ysis is usually called risk quantification). Uncertainty quan-
tification within the model is usually focused on comparing
the predictions to those we get (or to those we expect to get)
in reality. The questions we are asking in each of these two

cases are different, but the underlying tools we use in order
to analyze them is often the same.

In the case of risk quantification, where we want to vali-
date the concept of operation, we explore the input and out-
put spaces of our models, looking for those that perform bet-
ter or worse among the many metrics we’ve chosen to exam-
ine. For simulations with long response times, or for which
we hope to learn about a broad class of behaviors using rela-
tively few trials, we build a secondary model that is easier to
evaluate than the original simulation. Whichever surface we
can evaluate, whether it is the original or a secondary model,
is called a response surface. In the case of uncertainty quan-
tification, where we want to validate our model, we again
build a response surface for our model and compare this
against the response surface built using real (or expected)
behaviors.

A common way of characterizing a response surface is by
building a Pareto Frontier. A Pareto Frontier occurs when a
system has competing goals and resources; it is the boundary
where it is impossible to improve on one metric without de-
creasing another. (Lotov, Bushenkov, and Kamenev 2004) A
Pareto Frontier is usually discovered using an optimization
methodology. In rare cases, it may be possible to analytically
discover the Pareto Frontier—this is unlikely in wicked de-
sign problems like those we are studying here. More often,
we use a learning technique to discover the Pareto Frontier
given concrete trials of the system.

Classical optimization techniques are often founded on
the idea that the response surface and its first derivative are
Lipschitz continuous everywhere (smooth). For smooth sur-
faces, it is possible to find a response surface that is arbitrar-
ily close to our desired function using polynomial approxi-
mations by the Weierstrass Approximation Theorem. (Bar-
tle 1976) For the hybrid, complex, non-linear problems we
are studying here, no such guarantee of smoothness exists.
Modal variables like the cognitive control modes in WMC
usually require combinatorial approaches in order to ex-
plore. For other WMC inputs, such as the maximum hu-
man taskload, a domain expert might reasonably suspect that
there is an underlying smooth behavior. For some WMC in-
puts we haven’t modeled yet, such as flight characteristics
of the aircraft or the magnitude of a tailwind, there is al-
most certainly a smooth relationship, but it may be nonlin-
ear. Classical techniques handle the mix of discrete and con-
tinuous inputs by solving a combinatorial number (in the dis-
crete inputs) of optimization problems over the continuous
inputs, and then comparing the results across the optimiza-
tions in a post-processing step. (Gill, Murray, and Wright
1986) This technique can be computationally very expen-
sive, especially when you consider that continuous optimiza-
tion techniques are sensitive to local minima (in our nonlin-
ear aerospace problems), and several different input trials
should be performed.

Statistical techniques such as Treed Gaussian Processes
and Classification Treed Gaussian Processes, can be used to
build statistical emulators as the response surfaces for sim-
ulators, and have the advantage that they can model dis-
continuities and locally smooth regions. (Gramacy 2007;
He 2012) As a disadvantage, they are limited by computa-

3



tional complexity to relatively few inputs (10s but not 100s).
More recent techniques, such as those based on particle fil-
ters, can handle significantly many more inputs. (He and
Davies 2013)

All of the above techniques have the limitation that they
optimize for one single best value. To optimize across sev-
eral criterion (such as the five we analyze for this paper or
the eight in Kim’s thesis) using the above techniques, the an-
alyst usually needs to build a penalty function, a formula that
is strictly monotonic in improvement across the desired met-
rics and weights each metric according to its relative value.
In this paper, we choose instead to explore the class of multi-
objective response surface methods, as detailed in the next
section.

GALE: Active Learning for Wicked Problems
Wicked problems have many features; the most important
being that no objective measure of success exists. Designing
solutions for wicked problems cannot aim to produce some
perfectly correct answer since no such definition of correct
exists. Hence, this approach to design tries to support effec-
tive debates by a community over a range of possible an-
swers. For example, different stakeholders might first elabo-
rate their own preferred version of the final product or what
is important about the current problem. These preferred ver-
sions are then explored and assessed.

The issue here is that there are very many preferred ver-
sions. For example, consider the models discussed in this pa-
per. Just using the current models, as implemented by Kim
et al. (Kim 2011), the input space can be divided 144 ways,
each of which requires a separate simulation. In our explo-
ration, we further subdivide the maximum human taskload
to evaluate 252 combinations. Worse yet, a detailed reading
of Kim’s thesis shows that her 144 input sets actually ex-
plore only one variant each for three of her inputs. Other
modes would need to be explored to handle:
• Unpredictable rerouting;
• Different tail wind conditions;
• Increasing levels of delay.
If we give three “what-if” values to the above three items
then, taken together, these 3*3*3*252 modes*inputs would
require nearly 7000 different simulations1. This is an is-
sue since, using standard multi-objective optimizers such as
NSGA-II (Deb et al. 2000), our models take seven hours
to reach stable minima. Hence, using standard technology,
these 7,000 runs would take 292 weeks to complete. In prin-
ciple, such long simulations can be executed on modern
CPU clusters. For example, using the NASA Ames multi-
core supercomputers, the authors once accessed 30 weeks of
CPU in a single week. Assuming access to the same hard-
ware, our 7,000 runs might be completed in under ten weeks.

The problem here is that hardware may not be available.
The example in the last paragraph (where 30 weeks of CPU

1To be accurate, there are many more than 7,000 possible sim-
ulations, especially if we start exploring fine-grained divisions of
continuous space. Regardless of whether or not we need 7,000 or
7,000,000 simulations, the general point of this section still holds;
i.e. wicked problems need some way to explore more options faster.

time was accessed in one week) was only possible since
there was a high priority issue in need of urgent resolution.
In the usual case at NASA, researchers can only access a
small fraction of that CPU. For example, if there has been
some incident on a manned space mission, then NASA en-
lists all available CPU time for “damage modeling” (which
is a large series of “what-if” queries that assess the poten-
tial impact of some event). At those times, researchers can
access zero CPU for any other purpose.

GALE, short for Geometric Active Learning Evolution,
combines spectral learning and response surface methods
to reduce the number of evaluations needed to assess a set
of candidate solutions. The algorithm is an active learner;
i.e. instead of evaluating all instances, it isolates and ex-
plores only the most informative ones. Hence, we recom-
mend GALE for simulations of wicked problems. The fol-
lowing notes are a brief overview on GALE. For full details,
see (Krall 2014; Krall and Menzies 2014).

Response surface methods (RSM) generate multiple small
approximations to different regions of the output space.
Multi-objective RSMs explore the Pareto frontier (the space
of all solutions dominated by no other). These approxima-
tions allow for an extrapolation between known members of
the population and can be used to generate approximations
to the objective scores of proposed solutions (so after, say,
100 evaluations it becomes possible to quickly approximate
the results of, say, 1000 more). Other multi-objective RSMs
make parametric assumptions about the nature of that sur-
face (e.g. Zuluaga et al. assume they can be represented as
Gaussian process models (Zuluaga et al. 2013)). GALE uses
non-parametric multi-objective RSMs so it can handle mod-
els with both discrete and continuous variables.

GALE builds its response surface from clusters on the
Pareto frontier. These are found via a recursive division of
individuals along the principal component found at each
level of the recursion2. Recursion on n individuals stops
when a division has less than

p
n members. At termination,

this procedure returns a set of leaf clusters that it calls best.
During recursion, GALE evaluates and measures objec-

tive scores for a small m number of individuals. These
scores are used to check for domination between two parti-
tions of individuals, divided at the some middle point (cho-
sen to minimize the expected variance over each partition)
of that level’s component. GALE then only recurses on the
non-dominated half. That is, the best individuals found by
GALE are clusters along the Pareto frontier.

GALE is an active learner. During its recursion, when ex-
ploring n randomly generated solutions, GALE only eval-
uates at most m log2(n) individuals. One surprising result
from our experiments is that GALE only needs to check for
domination on only the m = 2 most separated individu-
als along the principal component (which is consistent with

2The principle component of a set of vectors shows the general
direction of all the vectors (Pearson 1901). Spectral learners like
GALE base their reasoning on these eigenvectors since they simul-
taneously combine the influences of important dimensions while
reducing the influence of irrelevant or redundant or noisy dimen-
sions (Kamvar, Klein, and Manning 2003).

4



Pearson’s original claim that these principal components are
an informative method of analyzing data (Pearson 1901)).

For reasons of speed, GALE uses a Nyström technique
(called FASTMAP) to find the principal component (Falout-
sos and Lin 1995; Platt 2005). At each level of its recursion,
this technique finds in linear time the poles p, q (individuals
that are furthest apart) and the approximation to the principal
component is the line from p to q. GALE handles continuous
and discrete variables by adopting the distance function of
Aha et al., which can manage continuous and discrete vari-
ables (Aha, Kibler, and Albert 1991).

Ostrouchov and Samatova show that the poles found by
FASTMAP are approximations to the vertexes of the con-
vex hull around the individuals (Ostrouchov and Samatova
2005). Therefore, we can use FASTMAP as a response sur-
face method by extrapolating between the poles of the best
clusters. Given some initial set of individuals, GALE de-
fines the baseline to be the median value of all their ob-
jectives. (Note that this baseline and initial population are
generated only once, and then cached for reuse.) For each
cluster ci 2 best and for each pole (p, q) 2 ci, GALE sorts
the poles by their score (denoted s) where s is the sum of
the distance of each objective from the baseline (and better
scores are lower)3. The best individuals in leaf clusters are
mutated towards their better pole by an amount

8d 2 D, d = d+�

s(p)

s(q)

where q is the pole with better (and lowest) score, D are the
decisions within an individual, and 0  �  1 is a ran-
dom variable. GALE then grows new solutions using ranges
in the mutated population. Numbers are discretized into ten
ranges using (x�min)/((max�min)/10). The most frequent
range is then found for each feature and new individuals are
generated by selecting values at random from within those
ranges. GALE then recurses on the new individuals.

GALE’s performance has been compared to two stan-
dard MOEAs (NSGA-II and SPEA2 (Deb et al. 2000;
Zitzler, Laumanns, and Thiele 2001)) on (a) a software pro-
cess model of agile development (Lemon et al. 2009) as
well as (b) a sample of the standard optimization certifica-
tion problems (Krall 2014; Krall and Menzies 2014). In that
study, GALE terminated using 20 to 89 times fewer evalu-
ations. Further, its solutions were usually as good or better
than those of NSGA-II or SPEA2. The conclusion from that
study was that GALE’s RSM was a better guide for mutation
than the random search of NSGA-II or SPEA2.

Results
When we ran the CDA/WMC models, the standard opti-
mization algorithms such as NSGA-II and SPEA2 require
running the simulation around 3,000 times. GALE on the
other hand, typically only needed 30 to 50 evaluations. The
average runtime of GALE on the CDA model is 8 seconds,
which means that GALE can optimize the CDA model in 4

3To be precise, s is the “loss” measure discussed by (Krall and
Menzies 2014), as inspired by (Zitzler and Künzli 2004).

num s percentiles
eval f1 f2 f3 f4 f5 50th (75-25)th

GALE 33 0.8 0.0 0.0 0.0 0.0 82% 0%
NSGAII 4,000 1.2 0.0 0.0 0.0 0.0 84% 0%
SPEA2 3,200 1.0 0.0 0.0 0.0 0.0 84% 1%

Baseline - 8.2 0.1 0.1 0.2 0.1 100% 0%

Table 1: f1, f2, f3, f4, f5 = NumForgottenTasks, NumDe-
layedActions, NumInterruptedActions, DelayedTime, Inter-
ruptedTime, respectively. Lower values are better.

Figure 1: Visualizations of objective scores. Number of
evaluations are shown on the horizontal axis. Shown as
red,blue,green lines is the lowest seen objective score at that
particular value along the X-axis; lower values are better.

minutes versus the 7 hours needed by NSGA-II or SPEA2
(i.e. 60 times faster).

The results of employing GALE on CDA are shown in
Table 1 and Figure 1. Note that these results are from run-
ning each algorithm only once each. A more complete study
is in progress, but due to the recent government shutdown,
we were unable to complete our goal of 20 runs of NSGA-II
and SPEA2. However, in keeping with the main message of
this paper, we note that we could finish all the GALE runs
(these are not shown since it makes little sense to compare
solo runs with multiple runs).

These results show that GALE can achieve results of
equal or better quality than that of SPEA2 or NSGA-II in
much less time. Specifically:

• NumForgottenTasks (f1) can be shrunk from 8 to 1.
• NumDelayedActions (f2) can be nearly zeroed.
• NumInterruptedActions (f3) can be nearly zeroed.
• DelayedTime (f4) can be nearly zeroed.
• InterruptedTime (f5) can be nearly zeroed.

5



Conclusion
In this paper, we’ve shown that GALE can learn the ‘wicked’
response surface for an aerospace task management model
at similar accuracy and much faster than other similar
techniques. Optimization (GALE), explanation (visualiza-
tions and charts), and encapsulation (ruleset summarization)
are tools that together comprise the validation of models.
GALE’s fast learning allows us to more thoroughly explore
the envelope of behaviors, leading to overall improved vali-
dation.

Our immediate next steps involve the thorough data col-
lection of experiments described in this paper, since only the
results for N=1 runs of each of NSGA-II, SPEA2 and GALE
were detailed. Our further plans are then to improve GALE’s
reporting suite on the learned results; we’d like to generate
succinct rulesets on how best to build test cases with optimal
solutions. This will include both ruleset summarization and
also validity assertions through re-evaluating the model on
individuals generated via the ruleset. Such a ruleset can be
used to validate the CDA model itself. In the longer term, we
intend to expand the analysis to include more complex and
realistic scenarios including a larger number of input param-
eters evaluated against more output metrics.

Acknowledgements
The work was funded by NSF grant CCF:1017330 and the
Qatar/West Virginia University research grant NPRP 09-12-
5-2-470. This research was conducted at NASA Ames Re-
search Center. Reference herein to any specific commercial
product, process, or service by trade name, trademark, man-
ufacturer, or otherwise, does not constitute or imply its en-
dorsement by the United States Government.

References
Aha, D. W.; Kibler, D.; and Albert, M. K. 1991. Instance-based learning
algorithms. Mach. Learn. 6(1):37–66.
Bartle, R. 1976. The elements of real analysis. John Wiley & Sons, second
edition.
Blakelock, J. H. 1991. Automatic Control of Aircraft and Missiles. Wiley-
Interscience.
Cowan, N. 2000. The magical number 4 in short term memory: A re-
consideration of mental storage capacity. Behavioral and Brain Sciences
24:87–185.
Deb, K.; Pratap, A.; Agarwal, S.; and Meyarivan, T. 2000. A fast elitist
multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-
tionary Computation 6:182–197.
Faloutsos, C., and Lin, K.-I. 1995. FastMap: a fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets. In
Proceedings of the 1995 ACM SIGMOD international conference on Man-
agement of data, 163–174.
Feigh, K. M.; Dorneich, M. C.; and Hayes, C. C. 2012. Toward a char-
acterization of adaptive systems: A framework for researchers and system
designers. Human Factors: The Journal of the Human Factors and Er-
gonomics Society 54(6):1008–1024.
Geppert, L. 2004. Lost radio contact leaves pilots on their own. IEEE
Sepctrum 41(11):16–17.
Gill, P. E.; Murray, W.; and Wright, M. H. 1986. Practical Optimization.
Elsevier.
Gramacy, R. B. 2007. tgp: An R package for Bayesian nonstationary,
semiparametric nonlinear regression and design by treed gaussian pro-
cess models. Journal of Statistical Software 19(9):1–46. http://www.
jstatsoft.org/v19/i09/paper.

He, Y., and Davies, M. 2013. Validating an air traffic management concept
of operation using statistical modeling. In AIAA Modeling and Simulation
Technologies Conference.
He, Y. 2012. Variable-length Functional Output Prediction and Boundary
Detection for an Adaptive Flight Control Simulator. Ph.D. Dissertation.
Hooey, B. L., and Foyle, D. C. 2007. Requirements for a design rationale
capture tool to support NASA’s complex systems. In International Work-
shop on Managing Knowledge for Space Missions.
Kamvar, S.; Klein, D.; and Manning, C. 2003. Spectral learning. In IJ-
CAI’03, 561–566.
Kim, S. Y. 2011. Model-Based Metrics of Human-Automation Function
Allocation in Complex Work Environments. Ph.D. Dissertation, Georgia
Institute of Technology.
Krall, J., and Menzies, T. 2014. GALE: Genetic active learning for search-
based software engineering. IEEE TSE (under review).
Krall, J. 2014. JMOO: Multi-Objective Optimization Tools for Fast Learn-
ing. Ph.D. Dissertation.
Le Ny, J., and Balakrishnan, H. 2010. Feedback control of the National
Airspace System to mitigate weather disruptions. In Decision and Control
(CDC), 2010 49th IEEE Conference on, 2055 –2062.
Lemon, B.; Riesbeck, A.; Menzies, T.; Price, J.; D’Alessandro, J.; Carlsson,
R.; Prifiti, T.; Peters, F.; Lu, H.; and Port, D. 2009. Applications of sim-
ulation and AI search: Assessing the relative merits of agile vs traditional
software development. In IEEE ASE’09.
Lotov, A. V.; Bushenkov, V. A.; and Kamenev, G. K. 2004. Interactive De-
cision Maps: Approximation and Visualization of Pareto Frontier. Applied
Optimization. Kluwer Academic Publishers.
Miller, G. A. 1956. The magical number seven, plus or minus two: Some
thoughts on our capacity for processing information. Psychological Review
101(2):343–352.
NTSB. 2010. Weather-related aviation accident study 2003-2007. Techni-
cal report, National Transportation Safety Board.
Ostrouchov, G., and Samatova, N. F. 2005. On FastMap and the convex
hull of multivariate data: Toward fast and robust dimension reduction. IEEE
Trans. Pattern Anal. Mach. Intell. 27(8):1340–1343.
Pearson, K. 1901. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine 2(11):559..572.
Platt, J. C. 2005. FastMap, MetricMap, and Landmark MDS are all
Nyström algorithms. In In Proceedings of 10th International Workshop
on Artificial Intelligence and Statistics, 261–268.
Pritchett, A. R.; Christmann, H. C.; and Bigelow, M. S. 2011. A simulation
engine to predict multi-agent work in complex, dynamic, heterogeneous
systems. In IEEE International Multi-Disciplinary Conference on Cogni-
tive Methods in Situation Awareness and Decision Support.
Pritchett, A.; Lee, S.; and Goldsman, D. 2001. Hybrid-system simu-
lation for National Airspace System safety analysis. Journal of Aircraft
38(5):835–840.
Rittel, H. 1984. Second generation design methods. In Cross, N., ed.,
Development in Design Methodology. New York: John Wiley and Sons.
Tarnow, E. 2010. There is no capacity limited buffer in the Murdock (1962)
free recall data. Cognitive Neurodynamics 4:395–397.
Zitzler, E., and Künzli, S. 2004. Indicator-based selection in multiobjec-
tive search. In in Proc. 8th International Conference on Parallel Problem
Solving from Nature (PPSN VIII), 832–842. Springer.
Zitzler, E.; Laumanns, M.; and Thiele, L. 2001. SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization. In
Giannakoglou, K. C.; Tsahalis, D. T.; Périaux, J.; Papailiou, K. D.; and Fog-
arty, T., eds., Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems, 95–100. International Center for
Numerical Methods in Engineering.
Zuluaga, M.; Krause, A.; Sergent, G.; and Püschel, M. 2013. Active learn-
ing for multi-objective optimization. In International Conference on Ma-
chine Learning (ICML).

6


