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INTRODUCTION

In his seminal “knowledge-level” keynote address to

the 1980 American Association of Aritifical Intelligence,

Allen Newell asked the following question: “What is knowl-

edge?” [30]. Newell’s answer was to define a knowledge level

of goals, actions, and a principle of rationality: “If an agent has

knowledge that one it its actions will lead to one of its goals,

then the agent will select that action”. Newell took care to

separate his “knowledge-level” from an under-lying “symbol-

level” that may contain logic, frames, semantic nets, or even

procedural code. His challenge to the AI community at that

time was to raise their thinking above the symbol-level, to

look beyond the trivia of their lower-level tools, and to look

towards a higher-level of generality.

It is the contention of this paper that the SE data mining

community should find its own knowledge level; i.e that:

• All our current data mining tools are actually low-level

primitives in a higher-level process that I will call “idea

engineering”.

• That we need to look beyond and above those primitives

in order to support the kind of group think that is most

common in the mashed-up modern wired world.

The motivation for this paper is a sense of impatience with the

SE data mining community. Last century, it was not known

if software projects contained sufficient structure to support

data mining, though some preliminary results by Porter were

encouraging [35]. Now, we know better. Many different kinds

of artifacts from software projects contain a signal that can be

revealed via data mining (for a partial list of those artifacts, see

Figure 1). I assert that that it is now well-established that data

mining models can be built from software projects artifacts.

So it is now time to move on to “what’s next?”.

Stepney et al. [38] advise that an ideal research roadmap

“decomposes into identified intermediate research goals,

whose achievement brings scientific or economic benefit, even

if the project as a whole fails”. Hence I propose the following

progression that can refocus our exist tools and talent into this

new and novel area of ‘idea engineering”.
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According to my proposed progression, we are now leaving

the age of algorithm tuning and entering the age of landscape

mining. After that, we should move to the era of decision

systems and finally to discussion systems.
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As shown below, this progression can use the current skills of

the SE data mining community while still stepping us towards

some distant grand goal. That is, with a little refactoring, the

SE data mining community has the tools and talents that can

take it to the next level of research.

This rest of this paper introduces Idea Engineering and has

one section for algorithm tuning, landscape mining, decision

systems, and discussion systems.

ALGORITHM TUNING

It turns out that, at least is the field of SE data mining ,

building decision systems is somewhat of a radical idea. To

see why, we need a little history. While it is rarely stated, the

original premise of SE data mining was that predictions from

data mining should guide software management. That is, once

upon a time, the aim of predictions were decisions. Sadly, that

original aim seems to be forgotten. Too many researchers in

that field are stuck in a rut, just publishing algorithm tuning

papers about L learners applied to D data sets and evaluated

via some M ∗N cross-validation study.

• Apps store data [15];
• Process data which can predict overall project effort [20];
• Process models showing effective project changes [27], [37];
• Operating system logs that predict software power consump-

tion [17];
• Natural language requirements documents which can be text-

mined to find connections between program components [16];
• XML descriptions of design patterns that can be used to

recommend particular designs [33];
• Email lists that show human networks inside software

teams [2];
• Execution traces that show normal interface usage pat-

terns [12];
• Bug databases that can generate defect predictors to guide

inspection teams to where the code is most likely to fail [23],
[26], [32], [35].

Fig. 1. Data mining can find signals in many SE project artifacts.



Figure 2.a: all data

in 2 dimensions found by FASTMAP.
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Fig. 2. Each dot is a 18-dimensional instance from an effort estimation data set from the PROMISE repository. The dots are placed onto into two dimensions
using the FASTMAP heuristic. Each dot has distance a from the origin and b from the most remote point. The median point on the x and y axis are x̂ and ŷ,
respectively. IDEA recurses on each quadrant to generate grids. Leaf pruning then combines the smaller clusters into the colored regions shown in Figure 2.d.
Dark green clusters might contain software projects with lowest effort while a dark red cluster holds projects with worst defects.

Trying every learner on every data set is not very insightful.

Many SE data sets are a shallow well whose information

can be thoroughly extracted by relatively simple methods. My

students have found SE defect data sets with 1100 examples

that can be reduced to 40 without damaging the model learned

from that data [18]. For such data, it may be a waste of time

to try the latest and greatest most complex learner. Hall et

al. [13] and Dejaeger [9] report that for effort estimation and

defect prediction, simpler data miners do just as well, or better

than more elaborate ones.

D∗L∗M∗N results from algorithm tuning are problematic

since they are highly unstable. No learner is best for all data

sets [4] since data can change over time, making prior results

outdated [39]. Hence, many researchers now explore “local

learners” that eschew single global conclusions in favor of

more context-dependent conclusions [1], [22], [36].

Lastly, another issue with D ∗ L ∗M ∗N -style algorithm

tuning research is that it is often driven by the data available

to particular researchers, rather than an over-arching vision

of the field. Such research is “driven by opportunities, not

issues” (a phrase taken from the seminar outcome slides of the

2010 Dagstuhl seminar on New Frontiers for Empirical SE).

Surely, as a research community, we should explore issues that

are general to more than just the next data set we happen to

stumble across.

LANDSCAPE MINING

One way to characterize algorithm tuning is “leap before

you look”; i.e. before considering the data, throw it at a data

miner then reflect on what models are generated by the learner.

An opposite approach would be to “look before your leap”; i.e.

before running (say) a classifier, try to understand the space

of possible models.

Landscape mining is a method of looking before leaping

in with data miners and is illustrated in Figure 2. Here,

the N-dimensions of some data are clustered into a lower

dimensional space. Each cluster is then colored red to green

indicating “feared” to “envied”; i.e. a dark green cluster might

contain software projects with lowest effort while a dark red

cluster holds projects with worst defects.

Our IDEA algorithm [5], [21], [22] generates a dendogram

(a tree of clusters) using the the FASTMAP heuristic [11].

Given N instances, we find a dimension of great variability

by drawing a line drawn between the two distant points found

as follows: first select any instance Z at random; then find

the instance X that is furthest away from Z; and finally find

the instance Y that is furthest away from X . The line XY
is an approximation to the first component found by PCA

(but is found in linear time). As shown in Figure 2.a, an

orthogonal dimension to XY can be found by declaring that

the line XY is of length c and runs from point (0, 0) to (0, c).
Each instance now has a distance a to the origin (instance X)

and distance b to the most remote point (instance Y ). From

the Pythagoras and cosine rule, each instance is at the point

x = (a2+ c2− b2)/(2c) and y =
√
a2 − x2. Figure 2.a shows

four quadrants defined by the median values of each dimension

(x̂, ŷ): NorthWest, NorthEast, SouthWest, SouthEast. IDEA re-

curses on each quadrant. Theoretically, this is a O(N.log(N))
process since finding the median requires sorting all values.

However, in practice, the algorithm’s runtime is usually linear

on the number of instances.

Once the data is mapped in this way, then the goals of

learning can easily be visialised. Consider the three clusters

labeled C,C ′, C ′′ in Figure 2.d. Suppose a manager of a

project in the orange cluster C is considering how to decrease

the development effort of that project (of all the neighbors of

that cluster, the green cluster C ′ has the lowest development

effort). Accordingly, that manager would learn rules over the

C ′ data to find treatments that convert projects of type C to

C ′ (note that such a strategy is not available to the manager

of projects in the dark green cluster C ′′: no neighbor of C ′′

has a shorter development effort so there we would advise to

maintain the status quo).



W [6] uses a standard predictive data mining technique (k-th
nearest neighbor classification) but does so in such a way to
generate decisions (alternate names for W are“Dub-ya” or the
“the decider”) W reports what needs to be changed to most
improve a project:

• One way to make project estimates is to reflect on the k-
th nearest neighbors to a current example. W sorts those
k neighbors into l examples that is most “loves” and h
examples it most “hates” (so k = l + h).

• For example, the “loved” examples might have least effort
while the “hate” examples are most defects. W discretizes
all values then counts how often value ranges occur in
“loved” or “hate”.

• Ranges are then sorted to find which ones are common in
“loved” and rare in “hate”.

• W runs what-if queries using the first i items in that sort. It
returns a rule containing the first i items that most change
to the current project in order to (say) push towards projects
that are built faster and away from projects that have most
defects.

Fig. 3. Simple constrast learning with W .

Landscape mining is silent on the nature of the learners

applied to each cluster. Like Newell’s knowledge level, the

actual learner is a low-level detail. We prefer the IDEA

algorithm shown above (since it runs in linear time) followed

by some case-based reasoning tool such as the W tool (see

Figure 3). Other teams have generated clusters like Figure 2.d

using recursive regression methods [1]. Regardless of how the

landscape is generated, the general principle is the same:

• Look before you leap.

• Cluster before running a (say) classifier in order to focus

the learning of specialized regions within the data.

DECISION SYSTEMS

At a recent panel on software analytics [28] at ICSE’2012,

industrial practitioners reviewed the state of the art in data

mining. Panelists commented “prediction is all well and good,

but what about decision making?”. Predictive models are

useful- they focus an inquiry on particular issue. But predictive

models are sub-routines in a higher level decision process.

Generating decisions is the task of a decision system. In

Idea Engineering, decisions systems run as a post-processor to

landscape mining. Contrast set learners are applied to neigh-

boring clusters in order to learn the difference between each

cluster. For an example of a simple contrast learner, see the W
learner of Figure 3. For details on a more elaborate contrast

learner, see Milton and Menzies’ WHICH system [26].

Contrast sets support a range of decisions discussed in

the literature. Consider a standard definition of a management

support system [7], [29]. Such systems try to offer a sense

of “comfort” to managers that all problems are known and

managed. This “comfort” has having three components:

1) Finding a problem = detection + diagnosis;

2) Solving a problem =

find alternatives + evaluation + judgment;

3) Resolution = monitoring the effect of the solution.

• Detection is just:

– Find what cluster contains the current project then
– Predict the properties of that project from the other

examples in this cluster.

• As to Diagnosing a problem, this requires recognizing two
clusters:

– B4 = before; i.e. a previous cluster where a manager
was content with a project’s status;

– Now = a current cluster where a manager is now
worried about that status

In this case, the diagnosis of what has gone wrong is just
the contrast set of

Diagnosis = B4−Now (1)

• To find alternative solutions to a problem, we seek the
contrast set between Now and nearby clusters with better
properties; e.g. lower detects, faster development times, etc.
In this case, the set of possible solutions S is any contrast
set:

(Ci > Now) ∧ (Si = Now − Ci) (2)

• As to evaluation and judgment, that could be implemented
many ways including some user session to browse and
debate the Si solutions found above.

• Finally, to monitor a resolution, we need to find the list
of all things that might go wrong. Given the current cluster
Now, we need to check all the neighbor clusters with worse
performance than the current. The list of monitors M is then
all the contrast sets that might drive us into those undesired
clusters:

(Ci < Now) ∧ (Mi = Now − Ci) (3)

Note that this last expression is very similar that of Equa-
tion 2, with the sole difference of the selection criteria for
Ci (here, we only look at clusters with a worse performance
score).

Fig. 4. Decision systems via clusters+contrasts: implementing management
support systems.

Landscape mining and contrast set learning can support all

these activities, see Figure 4.

For another example of different inds of desicison dis-

cussed in the literature, we may turn to the ICSE’12 survey of

Buse and Zimmermann who surveyed 100+ managers and pro-

grammers at Microsoft [8]. They report that that community

has various information needs concerning

• The past: what trends exist over time? what relationships

hold in the historical data?;

• The present: what alerts are raised by the current data?

how does our data compare to known benchmarks? and

• The future: What forecasts might we generate? What is

the space of the possible what-ifs in this area? How does

our data compare to the end goals of this project?.

Buse and Zimmermann expand three information needs into

the following nine tasks:

Past Present Future

Exploration (find) Trends Alerts Forecasts
Analysis (explain) Summarize Overlays Goals

Experiment (what-if) Model Benchmarks Simulate



• Overlays are predictions associated with each cluster; e.g. the
mean and standard deviation of known class values in each
cluster;

• Goals compare system performance with respect to some
desired values. This is just the overlay values minus the
goal values. If displayed over a diagram like Figure 2.d, he
managers can quickly see how well (or how badly) different
projects are performing with respect to current goals.

• Benchmarks compare system performance with respect to
established baselines. Like goals, this is just the overlay values
minus the goal values.

• If we tracked how project changes resulted in a project
migrating around Figure 2.d then:

– Past trends would be the track seen in historical data;
– Forward trends would be an extrapolation of the past

trend.

• Forecasts would be just be predictions resulting from mapping
a project into a cluster then predicting the properties of that
project from the other examples in this cluster. Future forecasts
could be implemented by applying the forecast method to the
clusters seen in the forward trend.

• Simulations could be implemented in two ways:

– For simulation via lookup, just generate something like
Figure 2.d then read off the predictions for class values
seen in each cluster. In this approach, the clustering
process is like a what-if query that groups the data into
sets of related possibilities.

– For simulation via execution, some domain model could
be executed using inputs drawn from the clusters of
Figure 2.d. In this approach, the clustering process divides
the input space of the executable, after which we can
sample different modes of the sample by sampling for
different clusters.

• Alerts could raised if new data does not fit into the old clusters.
To implement such alerts, we use the dendogram that generated
Figure 2.d:

1) For each leaf cluster, randomly select pairs of instances
(say, 100 times). Record the distribution of distances
found in that sample.

2) Take new data and walk it down the dendogram to find
the leaf cluster. The new data is alien if it is an outlier
on the distribution generated by step 1.

Note that if the results of step 1 are pre-computed and cached,
then step 2 could report anomalies in time O(logN) ; i.e. just
the time required to map new data down the dendogram to a
leaf cluster,

Fig. 5. Decision systems via clusters+contrasts: implementing the nine tasks
of Buse and Zimmermann.

Figure 5 discusses the use of clustering+contrast set learn-

ing for implementing the nine tasks of Buse and Zimmermann.

DISCUSSION SYSTEMS

Pablo Picasso once said “computers are stupid- they only

give you answers”. Social reasoners are not stupid- they know

that while predictions and decisions are important, so to are

the questions and insights generated on the way to those

conclusions. Within a society of carbon and/or silicon-based

agents, discussion systems allow those agents to share, reflect,

and try to improve each other’s insights. In my view:

• Discussion systems are the next great challenge for the

predictive modeling community. In the digital world of

the 21st century, such social reasoners are essential tools.

Without them, humans will be unable to navigate and

exploit the ever-increasing quantity of readily-accessible

digital information.

• Discussion systems can be built from decision systems

(which, in turn, can be built from landscape miners).

My thesis is that social reasoners can be built by refac-

toring of predictive technologies. For example, the following

example extends W to social reasoning:

• Consider two different cost estimates E1 and E2 from

different contractors competing to build some software.

• Using the COCOMO effort prediction model [3], an

analyst might identify different assumptions A1 and A2

made by each contractor.

• If we apply W ’s contrast set learners to those assump-

tions, we could then isolate the factors that separate the

two estimates.

• Then, we might report “the core issue here is the dif-

ference between A1 and A2; here is my analysis of the

probability of that difference; what do you think?”.

Note the key features of this example: the outcome is not

a prediction or a decision on what to change, but questions

that focused on key issues in the domain (specifically, which

assumptions were most believable).

As shown in Figure 6, the idea of improving inference by

connecting human and computer and computer agents dates

back to at least 1939. The new idea of this paper is that, as

shown in Figure 7, social reasonong can be implemented

as a refactoring of our current predictive technologies.

Note how, in Figure 7, the underlying tools are predictive and

decision systems. Apart from that, rest of a social reasoner

is concerned with the discussion around those models. For

example:

• A social reasoner must be able to succinctly say what

is in the data. It is axiomatic that you cannot interact

and critique and extend the ideas of another agent unless

you can understand that agent. That is, social reasoning

systems need a shared discussion language that is used

and understood by all parties in that society. Hence, social

reasoning should avoids learners that rely on arcane in-

ternal representation such as SVM, random forests, naive

Bayes, neural nets, or PCA. On the other hand, social

reasoning systems could use feature/instance selection

tools to discard spurious details; then contrast set learners

to find the deltas between the remaining data.

• Another task is to reflect on a model to learn how models

can and should change over the space of the data.

• Social reasoners need also share the data and rules

which means transferring the essence of the data between

agents (and ensuring the shared data does not violate

confidentiality [34]).

• Finally, to accommodate large societies, all the above

must happen very quickly so this can scale to large data



• Alan Turing believed that systems of logic could execute inside
silicon or carbon [10]. In his 1939 Ph.D. thesis, he discussed the
value of the interactions within a society of such systems: “The well-

known theorem of Gödel (1931) shows that every system of logic

is in a certain sense incomplete, but at the same time it indicates

means whereby from a system L of logic a more complete system

L′ may be obtained. By repeating the process we get a sequence L,

L1 = L′, L2 = L
′

1
, . . . each more complete than the proceeding.

A logic Lω may then be constructed in which the provable theorems

are the totality of theorems provable with the help of logics L, L1,

L2...” [40].
• In the 1950s, Kelly proposed personnel construct theory as a

methodology for using modeling to reveal previously hidden domain
assumptions [19].

• In the 1970s and 1980s, the knowledge acquisition community
propose rapid (?rabid) construction of executable knowledge bases
to reveal previously unrecognized interactions between chunks of
expert knowledge [24].

• At a 2003 keynote to the ProSim process simulation conference,
Walt Scacchi reported on his experience where software process
models are rarely executed. Rather, their value (according to Scac-
chi) was as tools to help explicit domain details [41].

• Since 2009, Tao Xie has been exploring “cooperative testing
schemes” where humans and algorithms interact to propose informa-
tive test cases. His framework infers likely test intentions to reduce
the manual effort in specification of test intentions [42].

• In a 2010 keynote to the PROMISE conference on predictive
models, Mark Harman said that modeling systems should offer more
than just conclusions- rather they should also “yield insight into the
trade offs inherent in the modeling choices available” [14].

• In 2012, Egyed et al. used the differences between incorrect and
incomplete reasoning. They demonstrated that it is even possible to
eliminate incorrect reasoning in the presence of inconsistencies at
the expense of marginally less complete reasoning [31]

Fig. 6. Some related work.

what tasks uses

0 do predict, decide regression, classifica-
tion, nearest neighbor
reasoning,...

1 say summarize, plan, describe instance section, fea-
ture selection, contrast
sets

2 reflect trade-offs, envelopes, diagnosis,
monitoring

clustering,
multi-objective
optimization, anomaly
detectors

3 share privacy, data compression, inte-
gration old & new rules, recog-
nize and debate deltas between
competing models

contrast set learning,
transfer learning

4 scale do all the above, very quickly ?

Fig. 7. Four layers of social reasoning.

sets. One reason that I focus on data mining for social

reasoning is that data mining methods can scale to very

large tasks. The same cannot be said for other methods.

Previously, I found that a purely logical method for uni-

fying different reasoning tasks suffered from exponential

runtimes [25].

In some sense, a social reasoner is the opposite of the world

wide web. The web was designed for information transport and

access. The web’s primary goal was the rapid sharing of new

information. If the web was a social reasoning system, it would

be possible to (i) instantly query each web page to find other

pages with similar, or disputing, beliefs; (ii) find the contrast

set between then agreeing and disputing pages; (ii) then run

queries that helped the reader assess the plausibility of each

item in that contrast set. In the social reasoning web, most of

the authoring would relate to critiquing and updating content,

rather than just creating new content. Note that much of the

current predictive modeling research would not qualify as a

social reasoner since, in the usual case, most of that literature

is still struggling with methods to create one model, let alone

updating a model as time progresses.

As a final note, one fascinating open issue is how to

assess social reasoners. In social reasoning, the goal of a

model is to find its own flaws and to replace itself with

something better- which brings to mind a quote from Susan

Sontag: “the only good answers are the ones that destroy the

questions”. That is, we should not assess such models by

accuracy, recall, precision etc. Rather, the assessment should

be on the audience engagement they engender. For example-

the audience involvement seen in the “we are here” pattern on

page 2, but perhaps with more ways to assess the coverage of

the options space.
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