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Context:  More  than  half  the literature  on software  effort  estimation  (SEE)  focuses  on  model  comparisons.
Each  of those  requires  a sampling  method  (SM)  to generate  the  train  and  test  sets.  Different  authors  use
different  SMs  such  as leave-one-out  (LOO),  3Way  and  10Way  cross-validation.  While  LOO  is  a  determinis-
tic  algorithm,  the  N-way  methods  use  random  selection  to build  their  train  and test  sets.  This  introduces
the  problem  of  conclusion  instability  where  different  authors  rank effort  estimators  in different  ways.
Objective:  To reduce  conclusion  instability  by  removing  the  effects  of a sampling  method’s  random  test
case generation.
Method:  Calculate  bias  and  variance  (B&V)  values  following  the  assumption  that  a learner  trained  on  the
whole  dataset  is  taken  as  the  true  model;  then  demonstrate  that  the B&V  and  runtime  values  for  LOO
are  similar  to N-way  by  running  90 different  algorithms  on  20 different  SEE  datasets.  For  each  algorithm,
collect  runtimes,  B&V  values  under  LOO,  3Way  and  10Way.

Results:  We  observed  that: (1)  the  majority  of  the  algorithms  have  statistically  indistinguishable  B&V
values  under  different  SMs  and  (2)  different  SMs  have  similar  run  times.
Conclusion:  In  terms  of  their  generated  B&V  values  and runtimes,  there  is no  reason  to  prefer  N-way  over
LOO. In  terms  of  reproducibility,  LOO removes  one  cause  of conclusion  instability  (the  random  selection
of  train  and test  sets).  Therefore,  we  depreciate  N-way  and  endorse  LOO validation  for  assessing  effort
models.

© 2013 Elsevier Inc. All rights reserved.
. Introduction

The largest research topic in software effort estimation (here-
fter, SEE) is the introduction and evaluation of new, and empirical
omparison of, prediction methods. In a comprehensive system-
tic review Jørgensen and Shepperd report more than 60% of the
eviewed SEE papers deal with this topic (Jørgensen and Shepperd,
007).

Assessing new prediction methods is complicated by small sam-
le sizes of the training data. Valerdi (2011) and Hihn (Menzies
t al., 2006) offer the rule of thumb that there should be five to ten
ows of training data per attribute. Most effort estimation data sets
re smaller than that: for example, five recent effort estimation
ublications (Mendes et al., 2003; Auer et al., 2006; Baker, 2007;
ocaguneli et al., 2012; Li et al., 2009) use data sets with dozens of

ttributes but only a handful of rows (median values of the number
f rows are 13, 15, 31, 33, 52, respectively).

∗ Corresponding author.
E-mail addresses: kocaguneli@gmail.com (E. Kocaguneli), tim@menzies.us

T. Menzies).

164-1212/$ – see front matter ©  2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2013.02.053
As a result, prediction models tend to be over fitted to the par-
ticulars of the training data used in particular studies. This leads
to the problem of conclusion instability;  i.e. different studies make
different conclusions regarding what is the “best” effort estimator.
Myrtveit et al. (2005) and Shepperd and Kadoda (2001) studied a
large number of synthetic data sets (generated from distributions
found in a real-world data set). They found that, as they changed the
conditions of their experiments, no method was  consistently best
across every condition. Specifically, the performance of a method
depends on:

1. The dataset;
2. The evaluation method used to assess model accuracy;
3. The generation method used to build training and test sets.

Elsewhere, we have addressed points #1 and #2 (Keung et al., 2012;
Kocaguneli et al., 2011): If Ri is the rank of method Mj within a set
of M methods, then we  use ır to denote the maximum rank change
of that method as we  alter the evaluation method and the data

set. Our own  experiments confirmed Shepperd’s previous work;
i.e. that ır /= 0. Hence, we  cannot say for certain that a method
ranked at Ri is always better than another ranked at Ri+1. However,
we have found that if we  analyzed enough methods using enough

dx.doi.org/10.1016/j.jss.2013.02.053
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:kocaguneli@gmail.com
mailto:tim@menzies.us
dx.doi.org/10.1016/j.jss.2013.02.053


1880 E. Kocaguneli, T. Menzies / The Journal of Syste

e
t
9
t
(
2
t

e
h
d
I
h

•
•

S
(
e
i
l
t
o
t
N
o
d
d
a

a
i
L

•

•

W
i

•

Fig. 1. SEE papers that use different SEE methods.

valuation methods, then the ranking variability is much smaller
han the number of methods; i.e. for large M,  ır � |M|. That is, given
0 methods, we can say that (a) the top 30 are better than the bot-
om 30; (b) the value of the methods ranked 31–59 is unknown; so
c) we should focus on those methods in the top third (Keung et al.,
012). Other experiments have confirmed the superiority of those
op ranked methods (Kocaguneli et al., 2011).

This paper focuses on the third point listed above; i.e. the gen-
ration method used to build training and test sets. SEE research uses
istorical data to estimate future performance. The induced pre-
ictor is tested on data that is not used in generating the predictor.

n practice, this means using some sampling method (SM) to divide
istorical data into:

Training data that the prediction system can learn from
Unseen or test validation data that is used to assess predictive
accuracy.

EE validation studies adopt different SMs  such as leave-one-out
LOO), 3Way and 10Way (Demsar, 2006; Alpaydin, 2004; Lessmann
t al., 2008; Seni and Elder, 2010) (the details of these SMs are given
n Section 2.3). As shown in Fig. 1, there is no consensus in the SEE
iterature as to which SM should be used to evaluate new predic-
ors. Note that, in that figure, many researchers use some variant
f N-way. We  argue that the use of N-way contributes significantly
o the conclusion instability problem. The randomization step of
-way makes the results virtually unrepeatable since a sequence
f random numbers are usually very different when generated by
ifferent algorithms implemented in different languages running
ifferent toolkits on different platforms. This means that an N-way
nalysis incurs the problem of point #3, discussed above.

On the other hand, a LOO analysis is deterministic and repeat-
ble since, given access to the same data, it is possible to generate
dentical train and test sets. However, there are two problems with
OO: the high variance and long runtimes:

High variance: In theory, as discussed below, the results of a LOO
analysis will have a higher variance and lower bias compared to
an N-way study. This introduces a complication into the analysis;
e.g. using LOO it will be harder to distinguish the performance of
different methods since the performance of those methods will
exhibit a wider variability.
Long runtimes: A 3-way analysis of 1000 examples will require
the construction of three effort models. On the other hand, a LOO
analysis of the sample examples will require the construction
of 1000 effort models. If the effort model is slow to generate
(e.g. some genetic algorithm exploring all subsets of possible
attributes Li et al., 2009) then 1000 repeats is impractically slow.

e show in this paper that neither of these problems are necessar-
ly an issue:
For 20 data sets from the PROMISE repository, we show that the
bias and variance (B&V) of results generated by LOO is statistically
indistinguishable from 10-way and 3-way. That is, while in the-
ory LOO and N-way studies generate different results, in practice,
those differences are insignificant.
ms and Software 86 (2013) 1879– 1890

• LOO conducts many repeated calculations over the same data
sets. If those calculations are cached and re-used later in the LOO,
then the runtimes for LOO become close to those of N-way.

A likely objection to these results would be: Why  should one
of the three SMs, in particular LOO, be preferred over the oth-
ers if they are indistinguishable in terms of bias, variance and
run times? That is a very valid objection. If the experimental con-
ditions require researchers to use randomization in their use of
SMs  (e.g. N-way), then they should do so. On  the other hand,
if the experimental conditions allow researchers to pick up any
SM;  then, unlike N-Way SMs, LOO would let another research
team to exactly replicate a prior work. Furthermore, the results
of LOO would allow us to see per instance estimation perfor-
mance. In other words, if one research team shares their estimates
for each and every instance of a data set, the other research
team can not only compare aggregate performance measures
(such as MMRE, MdMRE  and Pred(25)), but also can compare
how good their estimate is for each instance. This type of a
replication process would help immensely in addressing the con-
clusion instability. A recent special issue in Empirical Software
Engineering Journal targeted the issue of conclusion instabil-
ity (Menzies and Shepperd, 2012). All the papers submitted to that
special issue unanimously accepted that conclusion instability is
a pressing issue and needs to be handled. In this research, we
target one aspect of the instability problem and provide empir-
ical evidence as to why  LOO should be preferred over N-Way
SMs.

The rest of this paper is structured as follows. First, we present
some background notes on effort estimation and the definitions of
bias and variance (note that B&V will be used as an acronym for
“bias and variance” from now on). Second, we describe an experi-
ment comparing bias and variance. Third, we  explore the runtimes
associated with LOO vs. N-way. Our conclusion will be that there
is no reason from the effort estimation community to suffer with
N-way studies:

• The deterministic nature of LOO studies makes them more
repeatable.

• They are not necessarily slower than N-way.
• Nor do they generate different biases and variances.

2. Background

2.1. Effort estimation

Effort estimation is the activity of predicting the amount of
effort required to complete a software development project (Keung,
2008). Estimation activities are carried out through:

• algorithmic methods
• non-algorithmic methods

Algorithmic methods learn a model from historical data and pass
new projects through that model to generate their estimates. The
number of proposed algorithmic methods and associated variants
easily exceed tens of thousands. Fig. 3 of Keung et al. (2012) shows
that for analogy-based effort estimation (which is just one branch
of algorithmic methods), likely combinations are more than 6000.
Some other examples to algorithmic methods are: various kinds of

regression (simple, partial least square, stepwise, regression trees),
neural networks and instance-based algorithms, just to name a few.
In Appendix A we  provide the algorithmic methods used in this
study.



f Syste

r
e
a
2
e
t
v
w
m
e
e
g
s
n
t
n
k
a
a
e
s
H
f

2

i
c
p
v
v

Y
s
v
u
e
x
a
m

y

w

•

•

m
o
m
d
w
p
w
a
�
w
a
w
S

E. Kocaguneli, T. Menzies / The Journal o

Non-algorithmic methods utilize the best knowledge of expe-
ienced human experts. Such non-algorithmic methods, a.k.a.
xpert-based estimation, is defined to be a human intensive
pproach that is most commonly adopted in practice (Jørgensen,
004). In expert-based variants, estimates are produced by domain
xperts based on their very own personal experience. On one hand,
hese methods are flexible and intuitive as they can be applied in a
ariety of circumstances where other estimating techniques do not
ork. For example, when there is no historical data or the require-
ents of a project are unavailable at the initial stages, a rough

stimate in a very short period of time can be provided by expert
stimates. On the other hand – regardless of the efforts to establish
uidelines for expert-based methods (Jørgensen, 2004) – there are
till many ad hoc methods used in practice. Shepperd et al. (1996) do
ot consider expert based estimation as an empirical method, since
he means of deriving an estimate are not explicit and therefore
ot repeatable, nor easily transferable to other staff. In addition,
nowledge relevancy is also a problem, as an expert may  not be
ble to justify estimates for a new application domain. Lastly, from
n experimental point of view SMs  do not make sense for expert
stimates, because expert estimates are based on the expert’s per-
onal experience rather than different divisions of train/test sets.
ence, the rest of this paper excludes non-algorithmic methods

rom the discussion of bias and variance.

.2. Defining bias and variance

A typical SEE dataset consists of a matrix X and a vector Y. The
nput variables (a.k.a. features) are stored in X, where each row
orresponds to an observation and each column corresponds to a
articular variable. Similarly, the dependent variable is stored in a
ector Y, where for each observation in X there exists a response
alue.

The variable we try to predict (effort value) is stored in vector
, and the independent variables that define software projects are
tored in the columns of the matrix X (i.e. each column of X is a
ector corresponding to the values of an independent variable). Let
s assume that an element of the vector Y, y0 ∈ R, is the depend-
nt variable value corresponding to an instance vector (row) of X,
0 ∈ R

n, where n is the number of independent features. Also let us
ssume that these two are related to one another in the following
anner (Hastie et al., 2008):

0 = f (x0) + � (1)

here;

f(x0) is the true model that we cannot know, but try to model
using an estimation method, e.g. linear regression;
and � is assumed to be a normally distributed error term with
zero mean and a variance of Var(�) = �2

� , i.e. �∼N(0,  �2
� )

Although we cannot know the true model f(x0), it is possible to
odel it using an estimation method like linear regression trained

n the training data (which is generated by an SM). The estimated
odel is represented with f̂  (x0) and it is learned using the training

ata. Note that the � parameter is used as the noise term. In other
ords, if we had infinite data to learn the true model, we  would
erfectly model the true model, i.e. f (x0) = f̂ (x0); in this case, there
ould be no bias or variance. However, there would still be noise

ssociated with the actual data itself, which is represented with
 and there would be a so-called “irreducible error” due to noise,

hich would be the Var(�) = �2

� . So as to measure the error between
n actual value, y0, and the corresponding prediction given by f̂ (x0),
e can make use of an error function represented by L(y0, f̂  (x0)).

ome examples of error functions are squared loss and absolute
ms and Software 86 (2013) 1879– 1890 1881

loss. Following the previous literature (Hastie et al., 2008; Seni and
Elder, 2010; Molinaro et al., 2005), we will make use of the squared
error loss function, which is provided in Eq. (2).

L(y0, f̂  (x0)) = (y0 − f̂ (x0))2 (2)

If we model f(x0) using f̂ (x0) that is trained on the training data,
the error is defined as:

Error(x0) = E
[(

y0 − f̂ (x0)
)2|x0

]

= �2
� +

(
E[f̂ (x0) − f (x0)]

)2 + E
[
f̂ (x0) − E[f̂ (x0)]

]

= �2
� + Bias2(f̂ (x0)) + Var(f̂ (x0))

where,

• The 1stTerm, �2
� , is the irreducible error;

• The 2ndTerm, Bias2(f̂ (x0)), is the square of bias;
• The 3rdTerm, Var(f̂ (x0)), is the variance.

The explanations of these terms are as follows:

• The 1stTerm is the so-called “irreducible error”,  i.e. the variance of
the actual model around its true mean. Since we  cannot possibly
know the variation of the actual data, recall that we used the
�∼N(0,  �2

� ) assumption. This variance is inevitable regardless of
how well we model f(x0).

• The 2ndTerm is the square of the bias. Bias is defined to be the
measure of how different the model estimates are from the true
mean of the underlying model, i.e. (E[f̂ (x0) − f (x0)]). Hence, the
second term of the derivation turns out to be the square of the
bias.

• The 3rdTerm is the variance of the estimated model. It is the
expectation of the squared deviation of the estimated model from
its own mean.

Seni and Elder warns about the calculation of bias that it can-
not be computed but can be used as a helpful theoretical concept
(see p. 23 of Seni and Elder, 2010). The biggest handicap towards
calculation of bias comes from the fact that we can never know
the true model (Seni and Elder, 2010; Molinaro et al., 2005), unless
it was designed as a mathematical model in the first place. Then
we cannot derive the bias (see the true model, f(x0), in the deriva-
tion). That is a critical problem that needs to be handled, if we  are to
make empirical investigations on the B&V trade-off in SEE. Without
concrete definitions of “bias”; hence the “true model”, B&V discuss-
ions regarding sampling methods in SEE will be nothing more than
expert opinions.

To handle that problem, we need to make assumptions
regarding the true model. A successful application of such an
assumption is provided by Molinaro et al.: A learner trained on
the whole dataset is taken as the true model (Molinaro et al., 2005).
This approach is quite useful as it replaces the unknown true model
with a known,  mathematically definable model; thereby, enabling
the bias derivation. In our experimentation we used the option
provided by Molinaro et al. (2005).

2.3. In theory, SMs  affect results

We can group the SMs  used in SEE literature into two  main

groups: Leave-one-out (LOO) and N-Way. The difference between
these SMs  is as follows:

LOO:
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Take one instance at a time as the test set
Build the learner on the remaining N − 1 instances (training set)
Use the model to estimate for the test set.

N-Way:
Randomize order of rows in data
Divide dataset into  ̌ bins of size close or equal to N/ˇ, where N is
the number of instances in a data set and  ̌ is the number of bins,
e.g. in 3Way,  ̌ = 3
Use each subset as the test set and the remaining subsets as the
training set
Repeat this procedure multiple times: Hall and Holmes (2003)
recommend ten repeats of a 10-way study.

n important question associated with SMs  is how B&V relate to
ifferent choices of the training size (K). To answer this question,
e make two observations. Given a data set D of fixed size, and test

nd training data sets D = train ∪ test, then:

The training set grows progressively smaller from LOO to 10way
to 3way.
The test set grows progressively larger from LOO to 10way to
3way.

he first observation effects the bias and the second observation
ffects the variance. To see that, recall that any induction algo-
ithms seeks for a target concept in some training data. As a training
et gets smaller, it becomes less likely to contain examples that
escribe the target. Hence, the induction algorithm will “miss” the
arget and the resulting model will be biased (its predictions will
eviate away from true model values, i.e. f(x0)). That is, in theory,
ias will increase from LOO to 10way to 3way. In the seminal work
f Kitchenham et al., the effects of SMs  on B&V is also discussed and
hey foresee the importance of experimental investigation of B&V
alues on SEE data sets, which is followed in our research.

On the other hand, as the training set shrinks, the test set grows.
o understand the effect of test set size N on the variance, recall that
ariance is the difference between each prediction and the mean
f all the predictions (�); i.e.

ar(f̂ (x0)) = E
[
f̂ (x0) − E[f̂ (x0)]

]
=

∑N
i (Xi − �)

N
.

ote that lim
N→0

Var(f̂ (x0)) = ∞;  i.e. smaller tests sets can have larger

ariance. Hence, in theory, variance will increase from 3way to
0way to LOO.
In summary, according to the above discussion, we  would
xpect:

LOO: High variance, low bias (see upper left of Fig. 2)
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ig. 2. A simple simulation for the “expected” case of B&V relation to testing
trategies.
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• 3Way: Low variance, high bias (see lower right of Fig. 2)
• 10Way: Values between LOO and 3Way (see center of Fig. 2)

The results of this paper can be expressed with respect to Fig. 2:
the empirical results (reported below) cannot distinguish between
the B&V of LOO, 3Way, and 10Way.

3. Experiment1: comparing bias and variance

This section describes an experiment to compare B&V for LOO
and N-way.

3.1. Algorithms: pre-processors and learners

This study uses 10 different pre-processors × 9 learners = 90 algo-
rithms.  The selection is based on two  criteria:

• Learners and pre-processors must come from SEE literature; (e.g.
Lum et al., 2008; Mendes et al., 2003; Jørgensen and Shepperd,
2007; Shepperd et al., 1996; Kultur et al., 2008; Shepperd and
Schofield, 1997; Chang, 1974; Venkatachalam, 1993; Boehm
et al., 2000).

• Learners must make different assumptions about the data.

This second criteria is based on data-mining theory that different
learners are built on different assumptions, hence they have dif-
ferent biases (Kittler et al., 1998; Alpaydin, 1998; Dietterich, 2000;
Ghosh, 2002).

We  hence used 10 pre-processors:

• Three simple preprocessors: none, norm, and log;
• One feature synthesis method: PCA;
• Two  feature selection methods: SFS and SWreg;
• Four discretization methods: Based on equal frequency/width.

and 9 learners:

• Two  iterative dichotomizers:  CART(yes), CART(no);
• A neural net: NNet;
• Four regression methods: LReg, PCR, PLSR, SWReg.
• Two  instance-based learners: ABE0-1NN, ABE0-5NN;

Note that “ABE” is short for analogy-based effort estimation.
ABE0-kNN is a standard analogy-based estimator with execution
steps of:

• Normalization of data to zero-one interval;
• A Euclidean distance measure;
• Estimates generated using the k nearest neighbors.

For detailed descriptions of all these learners, see Appendix A.

3.2. Experiments

3.2.1. Generate true model f(x)
Each algorithm is trained on each entire dataset and the esti-

mates are stored as the values of f(x). The values of f(x) will be used
for B&V calculations.

3.2.2. Get estimates
Let Ai (i ∈ {1, 2, . . .,  90}) be one of the 90 algorithms and let Dj

(j ∈ {1, 2, . . .,  20}) be one of the 20 datasets. Also let SMk (k ∈ {1, 2, 3})

be one of the 3 SMs. In this step every Ai is run on every Dj subject
to every SMk. In other words every Ai × Dj × SMk combination is
exhausted, and related predictions are stored to be used for B&V
calculations.
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.2.3. Calculate B&V values
The f(x) values and predictions coming from Ai × Dj × SMk runs

re used to calculate the B&V. At the end of this step, we have sep-
rate B&V values for every Ai × Dj × SMk. Another interpretation is
hat for every algorithm-dataset combination (Ai × Dj) we  have 3
alues of B&V (1 for each SMi).

.2.4. Statistical check on B&V values
In this step we check if the B&V values for every Ai × Dj combina-

ion are statistically different from one another (checks are based
n Mann–Whitney at 95% confidence interval). This way  we can
ee if the run of an algorithm on a single dataset subject to differ-
nt SMs  generate significantly different B&V values. Since we have

 different SMs, for every Ai × Dj there are 3 different tuples to look
t: LOO vs. 3Way; LOO vs. 10Way; 3Way vs. 10Way. For each tuple
e ask Mann–Whitney if the B&V values coming from Ai × Dj are
ifferent under the SM’s of that tuple. We  note down whether they
re not statistically different (i.e. they “tie”) or not. After processing
ll the SM tuples for all Ai × Dj, we can see what percent of the 90
lgorithms generated statistically same B&V values for different SM
uples and for different datasets. The pseudo-code for this process
s given in Fig. 3.

.3. Datasets

There is at least one study in SEE using one or more of the 20
atasets used in our study (see Fig. 4). Therefore, the results pre-
ented here are based on a large corpus and concern a number of
reviously published SEE studies. The description of 20 datasets
sed in this study are provided in Fig. 5. These datasets are available
t https://code.google.com/p/promisedata/.

In terms of geography, our datasets are very diverse.
hree of these data sets (nasa93 center 1, nasa93 center 2,
asa93 center 5) come from different development centers around
he United States. Other data sets come from around the world:

The desharnais dataset includes Canadian software projects,
cocomo81 and nasa93 include projects developed in the United
States,
sdr, contains projects of various software companies in

Turkey (Bakir et al., 2009).

Some other data sets (cocomo81e, cocomo81o, cocomo81s)
epresent different kinds of projects (embedded, organic and

ig. 3. Comparing B&V values coming from different Ai × Dj combinations under different
&V  values.
Fig. 4. A sample of effort estimation papers that use the data sets explored in this
paper.

semi-detached respectively) developed by different team sizes and
under different constraints (Boehm, 1981). Sdr contains data from
recent projects of various software companies in Turkey. Sdr is
collected by Softlab, the Bogazici University Software Engineer-
ing Research Laboratory (Bakir et al., 2009). The albrecht data set
consists of projects completed in IBM in the 1970s (Albrecht and
Gaffney, 1983). The finnish data set contains 40 projects from
different companies and was  collected by a single person in the
90s (Kitchenham and Känsälä, 1993). The two projects with miss-
ing values are omitted here; hence we  use 38 instances. Kemerer is
a rather small dataset with 15 instances, whose details can be found
in Kemerer (1987). Maxwell is another relatively new data set
(projects from late 90s early 00s) that comes from finance domain
and is composed of Finnish banking software projects. Details are
given in Maxwell (2002). Miyazaki contains projects developed in
COBOL (Miyazaki et al., 1994). Telecom contains projects which are
enhancements to a U.K. telecommunication product (Shepperd and
Schofield, 1997).
Note also in Fig. 5, the skewness of the effort values (up to 6.06):
The datasets are extremely heterogeneous with as much as 60-fold
variation. There is also some divergence in the features used to
describe the datasets:

 SM tuples. This comparison helps us see what percentage of 90 methods “tie” w.r.t.

https://code.google.com/p/promisedata/
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of Fig. 7. Fig. 7 shows every dataset in a separate row, which is then
divided into 3 sub-rows. Sub-rows correspond to 3 different SMs
and they show the related B&V quartile charts separately. In every
quartile chart, the median (represented with a dot), 25th quartile
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Fig. 5. The 1198 projects used in this study come from 20 data sets. Inden

While data sets have some effort values in common (measured in
terms of man-months or man-hours), no other feature is shared
by all data sets.
The COCOMO and NASA data sets (i.e. cocomo81,
cocomo81e, cocomo81o, cocomo81s, nasa93, nasa93 center 1,
nasa93 center 2, nasa93 center 5) use the features defined
by Boehm (1981); e.g. analyst capability, required software
reliability, memory constraints, and use of software tools.
The other data sets use a wide variety of features including,
number of entities in the data model, number of basic logical
transactions, query count and number of distinct business units
serviced.

Also note that SEE data sets come from specific contexts and
rganizations, which are influential on the characteristics of the
ata sets. As can be seen in Fig. 5, the data sets used in this study
ome from a variety of different contexts and organizations operat-
ng in different countries. One aspect of the data sets coming from
ifferent contexts is that we are able to observe the behavior of
&V related to different SM’s on very different data sets. Another
spect is that it is difficult to make a statement about the quality of
ach data set. Although these data sets have been used extensively
n SEE community, investigation of data quality issues is an impor-
ant future direction to this study. Furthermore, replication of this
tudy on proprietary data sets may  provide further evidence.

Meta-analysis methods like the investigation of the effect size as
 complementary step on the statistical tests is a promising direc-
ion. For example, the literature review of Kampenes et al. (2007)
resent a good framework on the application of meta-analysis
echniques and shows how to identify the effect sizes in software
ngineering studies. Meta analysis of the results coming from SEE
ata sets may  be beneficial for practitioner audiences, since – as
lso pointed out by Kampenes et al. (2007) – statistically signifi-
ant differences in comparison of two populations may  have a very
imited effect. Such a meta-analysis deserves a study on its own
ight and may  be followed as a future work to this research.

.4. Results
After calculating the B&V values for 90 algorithms on all the
atasets, we were unable to observe the behavior of Fig. 2, i.e. we did
ot observe three clusters at predicted B&V zones. On the contrary,
 in column one denotes that indented dataset is a subset of another one.

we observed that B&V values associated with different SMs  were
very close to one another.

For example, see in Fig. 6 the mean B&V values of 90 algorithms
for china data set. Note that different SMs  are represented with dif-
ferent symbols and for every SM there are 90 symbol occurrences
corresponding to 90 algorithms. The B&V values associated with
each SM overlap, instead of forming separate clusters. Also, the
expected relative low and high B&V values of SMs  (see Fig. 2 for
expected low and high) were not visible too. Unlike the expected
behavior, the actual B&V values were both high, regardless of the
utilized SM.

We  have conducted these experiments on all the datasets and
generated Fig. 6 for every dataset. However, the results are the
same:

1. The expected behavior was  not found LOO, 3-Way and 10Way;
2. The different SMs  did not form distinct clusters (as witnessed by

the overlapping B&V values of LOO, 3-Way and 10Way in Fig. 6).

There is insufficient space to repeat Fig. 6 for every dataset.
Hence, we summarized these B&V values in terms of quartile charts
Bias Values

Fig. 6. B&V values for china data set (shown values are the natural logarithm of the
actual values).



E. Kocaguneli, T. Menzies / The Journal of Systems and Software 86 (2013) 1879– 1890 1885

Fig. 7. B&V values in quartiles for all datasets. Black dots denote median values. Horizontal lines denote the inter-quartile range (25–75 percentile band). In many results,
t he pu
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he  inter-quartile range is so small that it disappears behind the median dots. For t
ow),  0–100 (ditto with variance). The key observation from this result is that with

the left horizontal line-end) and the 75th quartile (the right hor-
zontal line-end) are shown. Note that all of Fig. 6 appears as the
ast 3 rows of Fig. 7.

Fig. 8 shows what percent of 90 algorithms “tied” w.r.t. to
ann–Whitney; i.e. difference in their B&V values were statistically

ndifferent. See Fig. 3 for the pseudo-code of the comparison of B&V
alues w.r.t. Mann–Whitney. Every cell of Fig. 8 reports the per-
entage of methods (out of 90) that “tied” for particular SM tuples
LOO vs. 3Way, LOO vs. 10Way, 3Way vs. 10Way) under different
atasets.

The distributions of Fig. 8 are summarized in Fig. 9: note the
igh number of ties. That is, measured in the number of ties as
itnessed by Mann–Whitney, these results were the same more
ften than not.
In order to better explore the deltas between our treatments, we

pplied a 1-way ANOVA analysis. 1-way ANOVA test takes a vector
f output values (bias and variance one at a time) and a factor, which
rposes of display, all the bias values were normalized min  to max  (of each dataset
 group of SMs, the B&V are very similar.

in our case is the sampling method. The p-value yielded by this 1-
way ANOVA tests the null hypothesis that all samples are drawn
from populations with the same mean. If a p-value is near zero,
then this casts doubt on the null hypothesis, i.e. at least one of the
sample means is significantly different than the others. The p-value
for bias values is: 0.107, which is a border value for a significance
level of 99%. Similarly, p-value for the variance values is: 0.348 for
a significance level of 99%.

Due to: (1) the border p-value of ANOVA and (2) the fact that
ANOVA assumes sample distributions are Gaussian, which is hardly
the case for the observed B&V values. To see the non-Gaussian
behavior of B&V values, refer to figures provided in the following
link: http://goo.gl/TLNbg, where B&V values are plotted in the form

of 10-bin equal-width histograms for each SM and dataset. We  also
performed a Friedman test (which is a rank-based non-parametric
test) followed by a multiple comparison test. Friedman’s test is
appropriate when the assumptions of a parametric test do not hold

http://goo.gl/TLNbg
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Fig. 8. Percentage of algorithms for which B&V values coming from different SMs  are
the  same (according to Mann–Whitney at 95). Note the very high percentage values,
meaning that for the majority of the algorithms different SMs  generate values that
are not statistically different.

Fig. 9. Percentiles of number of ties from Fig. 8.

Fig. 10. Friedman test followed by multiple-comparison test. The x-axis shows the avera
and  3 is for 10Way. Two means are statistically different from one another if their compa
ms and Software 86 (2013) 1879– 1890

and when we  are interested in the effects of treatments (repre-
sented by columns) under study (Hollander and Wolfe, 1999). In
our study columns represent the B&V values (separately) coming
from 3 different SM’s. The Friedman test compares the means of
multiple groups to test the hypothesis that “they are all the same”,  vs.
they are not all the same. When this differentiation is too general,
i.e. when we want to see further information regarding which pairs
of means are different and which are not, we follow the Friedman
test with a rank-based multiple comparison procedure (Hochberg
and Tamhane, 1987). The confidence level used for the multiple
comparison test is 99%. Based on the selected confidence interval,
multiple comparison test calculates the span of confidence inter-
val in terms of ranks around the mean rank value of each SM.
The expectation is that for two sample means to be statistically
different, their span of confidence interval around the mean rank
should form disjoint sets. For actual B&V values see the csv file at
http://goo.gl/ZGMBk. In this link you will also find a “readme” file
explaining the contents. The code to generate Fig. 10 is given in
this link too. For further implementation details regarding fried-
man and multcompare functions of MATLAB, refer to Hochberg and
Tamhane (1987) and Hollander and Wolfe (1999) as well as related
Mathworks tutorials.

Fig. 10 shows the results of the multiple comparison test. The
x-axis of this figure shows the average ranks (according to bias and
variance values, separately) corresponding to different sampling
methods. The y-axis shows the ID’s of the sampling methods (1
is for LOO, 2 is for 3Way and 3 is for 10Way). The mean ranks of
each sampling method is represented with a symbol and an interval
around the symbol. The interval – so-called comparison interval –
shows the span of the confidence interval for each SM (the selected
confidence interval here is 99%). Two means are statistically differ-
ent from one another if their comparison intervals are disjoint. As
can be seen in Fig. 10, none of the SM’s has a disjoint comparison
interval, i.e. none of the SM’s is significantly different.

4. Experiment2: reducing the run-times for LOO

The total execution time of the experimentation is associated
with a particular implementation method, i.e. different imple-
mentations of the same algorithm will have different run times.
Therefore, we used standard MATLAB functions in this study: All
methods except ABE0-1NN and ABE0-5NN, and all pre-processors
except discretizers are found in MATLAB libraries.

The run times are also expected to be greatly affected by par-
ticular SMs. Each SM dictates a different number of times a learner

is trained. The training-time of a learner is much greater than the
testing-time since, once a learner is trained, the prediction for a
particular test instance can be very quick. Below are the number of
training times required for each SM on a single dataset:

ge ranks, whereas the y-axis shows the ID’s of the SM’s: 1 is for LOO, 2 is for 3Way
rison intervals are disjoint. None of the SM’s has a disjoint comparison interval.

http://goo.gl/ZGMBk
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ig. 11. The run times in seconds. The expected order of SMs  from fastest to lowest
3Way, LOO, 10Way) holds, however the difference is in the order of minutes.

LOO: N trains where N is the dataset size.
3Way: 10repeats × 3bins = 30trains
10Way: 10repeats × 10bins = 100trains

or 20 datasets in this study (a total of 1198 instances), we expect
he following training times:

LOO: 1198 trains.
3Way: 30 trains/dataset ×20 datasets = 600 trains
10Way: 100 trains/dataset ×20 datasets = 2000 trains

rom above number of training times, we expect 3Way to be the
astest SM,  followed by LOO and 10Way.

In Fig. 11 we see run times for 20 datasets. Our expectation that
Way would be the fastest SM followed by LOO, then 10Way holds.
owever, the difference is much smaller than expected. Although

here are orders of magnitude differences between SMs  in terms of
rain-times, the run time difference is limited to a couple of min-
tes. Therefore, run time is not a critical factor in the choice of
Ms.

One word of caution is that ABE0-kNN variants are the slowest
ethods in our experiments and if such slow methods are to be

mployed with LOO, then they need to be implemented carefully.
nitially we coded ABE0 − 1NN and ABE0 − 5NN without regard to
ptimization: i.e. for every test instance, its distance to all the train-
ng instances were calculated from scratch. This way of brute-force
mplementation skyrockets the run times associated with LOO. The
olution is to calculate the distance matrix of a dataset only once
nd cache that for future uses in LOO. The run time of the cached
mplementation for LOO – as given in Fig. 11 – is 9,960 s, whereas
he brute-force implementation is 25,920 s. So the caching strategy
ecreases the run time of LOO by orders of magnitude.

. Discussion

The research presented in this study is an empirical investi-
ation of the SMs  that are widely employed in SEE studies. An
xperimental investigation of the SMs  with regard to their trade-
ff between multiple factors such as B&V, run-times and ease of
eplication is an imminent issue for SEE. For example, a recent spe-
ial issue in Empirical Software Engineering Journal discusses the
roblem of conclusion instability in software engineering (Menzies
nd Shepperd, 2012). The issues related to data sampling and
ow various SMs  are used to sample data are listed as one of the

ikely culprits of the conclusion instability problem. Another crit-
cal note to make is that the manuscripts submitted by industry
nd academia researchers unanimously mention that the instabil-
ty of the proposed results in software engineering is a fundamental
roblem to tackle.

In this paper, we investigated different aspects of SMs  on
EE data sets such as B&V, run-times and ease of replication. A
ractitioner investigating the SEE literature is likely to find a daunt-

ngly large space of studies, conducted on different data sets and

mploying different SMs  and sometimes with contradictory rec-
mmendations. In other words, SEE also suffers from the instability
roblem observed in software engineering (Menzies and Shepperd,
012). We  believe investigating the reasons behind the instability
ms and Software 86 (2013) 1879– 1890 1887

problem is required, particularly when the practitioner audiences
are concerned. For example, for companies willing to optimize
their SEE methodologies, experimentation turns out to be a critical
factor. Currently, to the best of our knowledge, there is no experi-
mental evaluation of the effects of different SMs  on SEE data sets.
This study serves providing this experimental evaluation.

Prior to experimental evaluation, our intuition was that LOO suf-
fers from over fitting the training data. Because, LOO uses the largest
training set in comparison to other SMs, which makes it susceptible
to the noise within the training data. As a result, we expected to see
the reflection of the over fitting on the error rate, hence on the B&V
values (recall that B&V are associated with the squared error).

Although, we did not observe the expected behavior of different
SMs  on a large corpus of public data sets, the practitioners should be
cautious about the importance of locality in software engineering
data sets (Menzies et al., 2011; Bettenburg et al., 2012). Locality,
i.e. that the properties of locally related projects differ from that
of the global space is also an important property of SEE data sets.
Therefore, the observed behavior of B&V values may  change for the
local proprietary space of a particular organization. Particularly the
fact that LOO may  result in over fitting for certain data sets should be
kept in mind. A practitioner making use of the information provided
in this manuscript may  think that her/his local domain changes
considerably, in comparison to the organizations from which the
data sets of Fig. 5 are collected. In such a case, she/he should use
the proposed experimentation in this study so as to re-evaluate the
trade-offs between sampling methods.

6. Conclusions

To the best of our knowledge, in the field of SEE, this is the first
empirical investigation on B&V and runtime trade-off inherent in
different SMs.

Our experimentation investigates a large space of 90 algorithms
and 20 datasets. The results present the surprising finding that B&V
values in SEE domain behave quite different than the expected:

• Measured in terms of B&V, different SMs are not statistically dif-
ferent.

• Similarity of SMs  also persists in terms of the run times. See in
Fig. 11 that the biggest run time difference is between 3Way and
10Way, which is 780 s (13 min) or only a 7% difference in run-
times between the methods. However, note that some coding
techniques(e.g. caching distance results in ABE0 − kNN variants)
can significantly lower LOO run times.

Thus we  see the contributions of this paper as:

• The first systematic investigation of B&V trade-off in SEE domain
• An extensive experimentation of 20 datasets and 90 algorithms
• Showing that B&V trade-off and run times of SMs  are not the main

concerns for SEE
• Recommendation based on experimental concerns:

- For reproducibility, we  prefer LOO since this avoids non-
deterministic selection of train and test sets.

Of course our results are not devoid of validity threats.  To be
able to calculate the bias values an assumption regarding the true
model is required to be made (since we cannot know the true
model). Following Molinaro et al. we used the assumption that
a learner trained on the whole dataset may  be taken as the true

model (Molinaro et al., 2005). Another threat is the implementation
of the algorithms. Although we used standard functions from MAT-
LAB libraries, there is still considerable amount of code into which
standard functions were embedded. Therefore, run-times will be
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ifferent in other implementations. However, since all SMs  are run
n the same code-base, the relative position of SMs in terms of run-
imes would remain the same. Another validity threat concerning
he run-times is the particular machine on which the experiments
re run. Similar to implementation, different machines will yield
ifferent run-times, but the relative position of SMs  will remain
he same.

The choice of SMs  in this work depends on the literature using
ne or more of datasets used here. On the other hand, different
hoices of SMs  may  also have an effect on the results. While we
cknowledge this issue, we note that this study, based on 90 algo-
ithms and 20 datasets is far more extensive than the majority of
he SEE studies.

We finish this study with recommendations based on our empir-
cal findings:

Different SMs  only introduce a negligible B&V difference,
SMs  have similar run times,
The main factor to consider when opting for an SM is the repro-
duction of experiments.

Way and 10Way (and any otherN-Way method) use stochastic
election for train and test sets. This can result in conclusion insta-
ility when one researcher tries to reproduce the results of another.
ence, we recommend LOO over 3Way and 10Way for SEE studies.

The clear future direction of this work is to explain the curious
bservation that bias and variance are very similar in different SM
ethods. It is as though some factor other than the selected SM is a

orcing function generating a ceiling effect where all the B&V values
re very high. Our suspicion is that our data sets are so small, and
heir internal variability is so high, that the topology of their separa-
ion is a factor more important than the SM.  Recently, we  have had

uch success in mapping and exploiting that topology (Kocaguneli
t al., 2011).

ppendix A. Prediction methods

This study uses 90 algorithms, which are product of 10 pre-
rocessors combined with 9 learners. The details of the learners
s well as the pre-processors are provided below.

.1. Ten pre-processors

In this study, we investigate:

Three simple preprocessors:  none, norm, and log;
One feature synthesis methods called PCA;
Two feature selection methods: SFS (sequential forward selection)
and SWreg;
Four discretization methods: divided on equal frequency/width.

one is the simplest preprocessor – all values are unchanged.
With the norm preprocessor, numeric values are normalized to

 0–1 interval using Eq. 3. Normalization means that no variable
as a greater influence than any other.

ormalizedValue = actualValue − min(allValues)
max(allValues) − min(allValues)

(3)

With the log preprocessor, all numerics are replaced with their
atural logarithm value. This logging procedure minimizes the
ffects of the occasional very large numeric values.

Principal component analysis (Alpaydin, 2004), or PCA, is a fea-

ure synthesis preprocessor that converts a number of possibly
orrelated variables into a smaller number of uncorrelated vari-
bles called components. The first component accounts for as much
f the variability in the data as possible, and each succeeding
ms and Software 86 (2013) 1879– 1890

component accounts for as much of the remaining variability as
possible.

Some of the preprocessors aim at finding a subset of all fea-
tures according to certain criteria such as SFS (sequential forward
selection) and SWR  (stepwise regression). SFS adds features into
an initially empty set until no improvement is possible with the
addition of another feature. Whenever the selected feature set is
enlarged, some oracle is called to assess the value of that set of fea-
tures. In this study, we used the MATLAB, objective function (which
reports the the mean-squared-error of a simple linear regression
on the training set). One caution to be made here is that exhaustive
search algorithms over all features can be very time consuming (2n

combinations in an n-feature dataset), therefore SFS works only in
forward direction (no backtracking).

SWR  adds and removes features from a multi-linear model.
Addition and removal is controlled by the p-value in an F-Statistic.
At each step, the F-statistics for two models (models with/out one
feature) are calculated.

Discretizers are pre-processors that maps every numeric value
in a column of data into a small number of discrete values:

• width3bin: This procedure clumps the data features into 3 bins,
depending on equal width of all bins see Eq. (4).

binWidth = ceiling
(

max(allValues) − min(allValues)
n

)
(4)

• width5bin: Same as width3bin except we use 5 bins.
• freq3bin: Generates 3 bins of equal population size;
• freq5bin: Same as freq3bin, only this time we  have 5 bins.

A.2. Nine learners

Based on our reading of the effort estimation literature, we  iden-
tified nine commonly used learners that divide into

• Two  instance-based learners: ABE0-1NN, ABE0-5NN;
• Two  iterative dichotomizers:  CART(yes),CART(no);
• A neural net: NNet;
• Four regression methods: LReg, PCR, PLSR, SWReg.

Instance-based learning can be used for analogy-based estimation
(ABE). Since it is not practical to experiment with the all ABE vari-
ants, we focus on two  standard variants. ABE0 is our name for a
very basic type of ABE that we derived from various ABE stud-
ies (Mendes et al., 2003; Li et al., 2009; Kadoda et al., 2000). In
ABE0-kNN, features are firstly normalized to 0–1 interval, then the
distance between test and train instances is measured according to
Euclidean distance function, k nearest neighbors are chosen from
the training set and finally for finding estimated value (a.k.a adap-
tation procedure) the median of k nearest neighbors is calculated.
We explored two different k:

• ABE0-1NN: Only the closest analogy is used. Since the median of
a single value is itself, the estimated value in ABE0-1NN is the
actual effort value of the closest analogy.

• ABE0-5NN: The 5 closest analogies are used for adaptation.

Iterative Dichotomizers seek the best attribute value splitter that
most simplifies the data that fall into the different splits. Each such
splitter becomes a root of a tree. Sub-trees are generated by call-
ing iterative dichotomization recursively on each of the splits. The

CART iterative dichotomizer (Breiman et al., 1984) is defined for
continuous target concepts and its splitters strive to reduce the GINI
index of the data that falls into each split. In this study, we  use two
variants:
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CART (yes): This version prunes the generated tree using cross-
validation. For each cross-validation, an internal node is made
into a leaf (thus pruning its sub-nodes). The sub-tree that resulted
in the lowest error rate is returned.
CART (no): Uses the full tree (no pruning).

In Neural Nets, or NNet, an input layer of project details is con-
ected to zero or more “hidden” layers which then connect to an
utput node (the effort prediction). The connections are weighted.
f the signal arriving to a node sums to more than some threshold,
he node “fires” and a weight is propagated across the network.
earning in a neural net compares the output value to the expected
alue, then applies some correction method to improve the edge
eights (e.g. back propagation). Our NNet uses three layers.

This study also uses four regression methods. LReg is a simple
inear regression algorithm. Given the dependent variables, this
earner calculates the coefficient estimates of the independent vari-
bles. SWreg is the stepwise regression. As a pre-processor SWreg
s used to select features for other learners, here we use SWreg
s a learner (that is, the predicted value is a regression result
sing the features selected by the last step of SWreg). Partial Least
quares Regression (PLSR) as well as Principal Components Regres-
ion (PCR) are algorithms that are used to model a dependent
ariable. While modeling an independent variable, they both con-
truct new independent variables as linear combinations of original
ndependent variables. However, the ways they construct the new
ndependent variables are different. PCR generates new indepen-
ent variables to explain the observed variability in the actual ones.
hile generating new variables the dependent variable is not con-

idered at all. In that respect, PCR is similar to selection of n-many
omponents via PCA (the default value of components to select is 2
n MATLAB implementation, so we used it that way) and applying
inear regression. PLSR, on the other hand, considers the indepen-
ent variable and picks up the n-many of the new components
again with a default value of 2) that yield lowest error rate. Due to
his particular property of PLSR, it usually results in a better fitting.
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