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Abstract—How can we find data for quality prediction? Early
in the life cycle, projects may lack the data needed to build such
predictors. Prior work assumed that relevant training data was
found nearest to the local project. But is this the best approach?

This paper introduces the Peters filter which is based on the
following conjecture: When local data is scarce, more information
exists in other projects. Accordingly, this filter selects training data
via the structure of other projects.

To assess the performance of the Peters filter, we compare
it with two other approaches for quality prediction. Within-
company learning and cross-company learning with the Burak
filter (the state-of-the-art relevancy filter). This paper finds that:
1) within-company predictors are weak for small data-sets; 2) the
Peters filter+cross-company builds better predictors than both
within-company and the Burak filter+cross-company; and 3) the
Peters filter builds 64% more useful predictors than both within-
company and the Burak filter+cross-company approaches. Hence,
we recommend the Peters filter for cross-company learning.

Index Terms—Cross company; defect prediction; data mining

I. INTRODUCTION

Defect prediction is a method for predicting the number of
defects in software. It is valuable for organizing a project’s
test resources [1]. For example, given limited resources for
software inspection, defect predictors can focus test engineers
on the modules most likely to be defective [2].

Zimmermann et al. [3] warn that defect prediction works
well within projects as long as there is a sufficient data to train
models. That is, to build defect predictors, we need access to
historical data. If the data is missing, what can we do?

Cross Company Defect Prediction (CCDP) is the art of
using data from other companies to build defect predictors.
CCDP lets software companies with small unlabeled data-
sets use data from other companies to build their quality
predictors. Multiple recent studies have certified the utility of
this approach for defect prediction [2], [4]–[6] (as well as
effort estimation [7]). For example given the right relevancy
filtering (described below and illustrated in Figure 1), Tosun
et al. [8] used data from NASA systems to predict for defects
in software for Turkish domestic appliances (and vice versa)1.

A major issue in CCDP is how to find the right training data
in a software repository. There is much data, freely available,
on Software Engineering (SE) projects (e.g. this study uses
56 defect data sets from the PROMISE repository [10]). Ro-
driguez et al. document 18 repositories, including PROMISE,

1Elsewhere we have explained this surprising result by a consideration of
clusters built from eigenvectors of the data [9].

Fig. 1: Aggregate the data from the repository into a TDS. Using a
filter with the Test instances find FilteredTDS ⊂ TDS.

that offer software project data [11]. However much of this
data is irrelevant to specific projects. Turhan et al. showed
that if we use all the data from a Training Data Set (TDS)
- an aggregate of multiple data-sets, then the resulting defect
predictor will have excessive false alarms [2]. A more recent
study by Peters et al. [12] demonstrated that if we used all the
data from a TDS, then false alarms and recall would be low.

When reasoning about new problems, it is wise to carefully
reflect about the old data. Before we can find defects in local
data, we must filter the TDS to select the most useful Filtered
TDS. One such filtering method, shown in Figure 1, is the
Burak filter [2] that returns the nearest TDS instance for each
test instance. The core idea of the this filter is to use Test
instances to guide the selection of the Filtered TDS.

The Burak filter must be repeated each time new test data
arrives. But is that the right way to do the filtering? Is there
any advantage to learning and caching some strutures in the
training data before reflecting over the test data? The following
speculation argues that such an advantage might exist in the
form of the Peters filter:

• When one company wants to use data from many other
companies, the expected case is that the Test data (from
this company) is much less than the the TDS (the training
data set) from all the other companies;

• When Test is smaller than TDS then there should be more
information about defects in the TDS than in Test.

• Hence, when selecting relevant data, it might be better to
guide that search using the structure of the TDS training
data rather than the Test data.
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The rest of this paper checks the above speculation. We
propose the Peters filter that selects data by focusing more on
the structure of TDS than of Test:

• The Burak filter uses the Test instances to finds its Filtered
TDS (10 instances for each Test instance).

• The Peters filter lets the instances in the TDS find their
nearest Test instance, and the ones nearest to their Test
instances are selected for the final Filtered TDS.

The difference with the Peters filter is that not all Test instances
will have a nearest TDS instance (we show an example of that,
later in this paper, in Figure 2). To assess the Peters filter, this
paper explores the following research questions.

• RQ1: Is there a need for cross-company learning?
• RQ2: Can the Peters filter produce better defect predictors

than the Burak filter?
• RQ3: Does the Peters filter generate practical (or useful)

defect predictors?
The contributions of this work are:

• A new method, called the Peters filter, for CCDP.
• A certification experiment that shows the Peters filter out-

performing prior work on the Burak filter.
• A demonstration that CCDP can be applied very early in

a project’s lifecycle. In one extreme case, we demonstrate
success with a test set as small as just six classes.

The rest of this paper is structured as follows: In Section II
we summarize related work. In Section III, we expand on the
experimental procedures followed in this work, the data-sets,
the filters, the prediction models, and performance measures.
Next, the experiments and results are discussed in Section IV
and Section V respectively. Lastly, we conclude the paper with
threats to validity and some notes on future work in Section VI,
and the conclusion in Section VII.

II. RELATED WORK

A. Defect Prediction Economics

Many researchers have documented the economical value
of early defect detection [13]–[15]. Once we accept that it
is economically effective to find bugs earlier, then the next
question becomes “how do we find the bugs earlier?”. Defect
prediction learned from static code measures allows software
companies to take advantage of early defect detection [16].
Models made for defect prediction are usually built with local
or within-company data-sets using common machine learners.
The data-sets are comprised of independent variables such
as the code metrics used in this work and one dependent
variable or prediction target with values (labels) to indicate if
defects are present. However, this local data may not always
be available for defect prediction. In this situation, rather
than waiting until enough local data is collected for within-
company defect prediction (WCDP), we propose the use of
CCDP for earlier bug or defect detection.

B. CCDP = Cross Company Defect Prediction

When data can be shared between organizations, defect
predictors from one organization can generalize to another.

However, initial experiments with cross-company learning
were either very negative [3] or inconclusive [17]. Zimmer-
mann et. al. [3] observed, defect prediction via local data is
not always available to many software companies as

• The companies may be too small.
• The product might be in its first release and so there is

no past data.
Kitchenham et al. [17] also saw problems with relying on

within-company data-sets. They noted that the time required
to collect enough data on past projects from a single company
may be prohibitive. Additionally, collecting within-company
data may take so long that technologies used by the company
would have changed and therefore older projects may no
longer represent current practices.

Recently, we have had more success using better selection
tools for training data [2], [18] but this success was only
possible if the learner had unrestricted access to all the data.
For example, defect predictors developed at NASA [16] have
also been used in software development companies outside
the US (in Turkey). When the inspection teams focused on
the modules that triggered the defect predictors, they found
up to 70% of the defects using just 40% of their QA effort
(measured in staff hours) [19]. Work by Rahman et al. [6], also
show the success of CCDP. Their focus was on cost sensitive
prediction where only the top n% of reported defect prone
lines or files were used in CCDP and WCDP experiments.

The particular focus of this paper is CCDP in the situation
where the test set is much smaller than the examples available
in other data sets (the TDS). Two recent research results lead
us to this focus.

Firstly, in their systematic literature review, “Cross versus
Within-Company Cost Estimation Studies”, Kitchenham et al.
[17] stated that the main aim of their work was to assist soft-
ware companies with small data-sets in deciding whether or
not to use an estimation model obtained from a benchmarking
data-set. Although their work is based in effort estimation, we
maintain that this distinction holds for defect prediction based
on the cross company learning performed in their work.

Secondly, in order to motivate their work, the authors of
Zimmermann et al. [3] comment on data sets from Firefox
and Internet Explorer (IE). These web browsers were used in
their CCDP experiments and the results showed that although
Firefox data could predict for IE defects very well, IE data
could not do the same for Firefox. To explain this curious
asymmetry, Zimmermann et al. noted that their Firefox data
had more files than IE and that “building a model from a small
population to predict a larger one is likely more difficult than
the reverse direction”.

C. Measuring the Feasibility of CCDP

Beyond the use of small test sets for CCDP, we contend that
the feasibility of CCDP should not depend on its comparison
to WCDP. Instead, since recent studies have shown that the
success of CCDP depends on selecting or creating the right
Filtered TDS, the feasibility of CCDP should depend on the
number of test sets able to access a Filtered TDS + predictor
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combination that will build a defect model whose performance
meet user criteria [3], [4].

More recent work in CCDP, have avoided the within com-
pany comparison for judging the success of CCDP. Instead
CCDP success is based on perceived user criteria and con-
clusions are made based on these results. For instance, Zim-
mermann et al. [3] built 622 cross-company predictions and
found that only 3.4% met the criteria they used to determine if
a project was a strong predictor for another project (accuracy,
precision and recall were above 75%). From these results,
they concluded that CCDP remained a challenge. However,
they also studied the factors which influence the the success
of CCDP and used these factors to derive decision trees that
provided estimates for precision, recall, and accuracy before
a prediction was attempted. In others words careful selection
of training data can determine the success of CCDP.

Similar to the work done by Zimmermann et al. [3], He
et al. [4] checked when cross defect predictions that were
successful. In their work, defect predictors were considered
strong if recall was above 70% and precision above 50%.
Although their criteria was different and less stringent than
the Zimmermann et al. study [3], their results were similar,
ranging from 0.32% to 4.67% of cross-company predictions
that met their criteria over 5 different learners. However, the
authors did not use this result as a measure of the success
of CCDP, instead they based their measure on the results of
selecting the best train data for a test set. On average there
results met their criteria. Out of 34 test sets 18 were considered
as strong defect predictors. From those results, they concluded
that CCDP was feasible as long as it involved the careful
selection of training data.

D. Transfer Learning

In the studies mentioned so far, work on selecting the best
data-sets for CCDP has focused on decision trees [3], [4].
Besides this, filtering training data has also been used in the
Burak filter [2] with some success. In their work each instance
of the test set finds 10 of it’s nearest neighbors from a TDS.
This results in a Filtered TDS more similar to the test set.

Another method of improving CCDP through use of the
test set, is Transfer Learning. Ma et al. [5] expressed concerns
with the possible information loss associated with the filtering
method used in the Burak filter. They transfered estimates
of the distribution of the test set to the train data by using
the information to weight the train instances. It is these
weighted instances that are used as the train data. The work
is benchmarked against the Burak filter [2]. Note that the
improvements reported by Ma et al. are very small while the
improvements shown below from the Peters filter are very
large. Hence, in terms of experimental comparisons, we will
compare the Peters filter to the Burak filter.

To summarize, we can find in the literature a clear justi-
fication for our experimental design (testing on small data-
sets using data filtered from a larger TDS of aggregated of
data-sets from a repository). It is important to note that the
above argues that the success of CCDP should not be based

on comparisons with within-company prediction or the ratio
of success of multiple cross predictions. Instead it should be
based on the ability to find or create for each test set, the best
train data that produces results that meet user defined criteria.
In this work we benchmark against Burak et al. [2] and show
better CCDP results. Also we measure the success of CCDP
in terms of the number of test sets that meet the criteria used
in this work.

III. METHODOLOGY

A. The Filters

Figure 2 illustrates the steps involved in the Burak and
Peters filters. The white circles are the test instances and the
color-bordered black circles are the instances that make up
the TDS. For the Burak filter, using k-nearest neighbor where
k=3, each test instance will select three nearest TDS instances.
This is made clear by the direction of the arrows of the Burak
filter illustration of Figure 2. Also, note the lone TDS instance
labeled L not selected by any of the test instances.

As discussed below, the Peters filter labels each TDS in-
stance with its nearest test instance (in Figure 2c) Note that
it is possible for a test instance (in this case, L) to not be
selected by any of the TDS instances. To build the Filtered
TDS, each test instance X reports it’s nearest TDS instance
with label X . This is shown in Figure 2d where labels 1 and
2 indicate the test instances and the respective TDS instances
chosen for the final Filtered TDS.

In the end, Figure 2 shows that the Filtered TDS for the
Burak filter contains five instances, while the Peters filter
selects two instances for its Filtered TDS.

(a) TDS+Test Instances (b) Burak Filter

(c) Peters Filter 1 (d) Peters Filter 2

Fig. 2: Illustration of the Burak and Peters filters. The white circles
are the test instances and the black circles bordered by green, blue or
red are the train instances from different projects. See text for details.
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1) The Burak Filter: This filter selects instances from TDS
to create a Filtered TDS similar to the test set. The Burak
filter simply used k-nearest neighbor to measure the similarity
(with Euclidean distance) between test and TDS instances. In
their experiment k=10 and so each test instance contributed
10 of its nearest TDS instances to the new Filtered TDS. Prior
to using the Burak filter, in their first analysis, Turhan et al.
[2] found that like the Zimmermann study, using TDS lead to
poor results (i.e. high false alarm rates). After applying the
filter to TDS, they found that these cross-company predictors
were equivalent to those learned from within-company data.

2) The Peters Filter: The Burak filter assumes that the
test data should drive the selection process. The Peters filter
is different- it assumes that the TDS’s content-rich database
contains more information about defects than the smaller test
set. Therefore, instead of each instance in the test set finding
10 nearest instances from the TDS, for each TDS instance
we find it’s nearest test instance. In other words, the Peters
filter is like a popularity contest where each test instance is
surrounded by its supporters from the TDS. In the end the test
instance chooses its greatest fan (the one closest to it) as a
candidate for the Filtered TDS while rejecting all the others.
In this scenario, it is possible for a test instance to have no fans
at all and so it does not contribute a candidate to the Filtered
TDS. We conjecture that this particular point helps to produce
a Filtered TDS based on the most influential test instances
(those with at least one fan), and those with no influence at
all will produce inferior defect models and therefore weak
prediction results.

On a side note, if a test instance’s closest fan is a duplicate
of itself, it is rejected and the next greatest fan is selected for
the Filtered TDS. Implementation note: the Peters filter used
in this paper first clusters the TDS with the test set using k-
means [20]. Next clusters containing at least one test instance
are kept and others are rejected. Finally the Peters filtering
process described above is applied to each remaining cluster.
For example, with a TDS+Test totaling n=10,000 instances, we
use k=1,000 for k-means, i.e. one cluster per r=10 TDS+Test
instances. We use this value for r since Turhan et al. [2] used
10-nearest neighbors for each test instance. In future work we
will explore other values of r.

B. Data

A total of 56 static code defect data-sets from the PROMISE
data repository [10] are used in this study. These data-sets were
collected by Jureczko and Madeyski [21], and Jureczko and
Spinellis [22]. Each instance in a data-set represents a class
and consists of two parts: 20 independent static code attributes
and the dependent attribute labeled “defects” indicating the
number of defects in the class. For our work, we refer to each
class as an instance. Additionally, instances with no defects are
labeled as 0, and instances with one or more defects are labeled
as 1. Table I shows the names and details of our test data sets,
the number of instances in each data-set, and the number and
percent of defects. The bottom part of that table also shows the
data-sets used in the TDS. The last row indicating that there

TABLE I: Characteristics of Defect Data-sets. Tests data shown at
the top, data-sets that make up the TDS shown below. All rows are
sorted by the number of instances (in these data-sets, each instance
is one class). The last 2 rows of this table show the total number
of instances in the TDS along with the number and percent of total
defects before and after removing duplicate instances from the TDS.

Tests
Defect Data Symbol # Instances # Defects % Defects
forrest-0.6 for06 6 1 16.7
ckjm ckjm 10 5 50.0
wspomaganiepi wsp 18 12 66.7
sklebagd skleb 20 12 60.0
szybkafucha szy 25 14 56.0
pbeans1 pb1 26 6 23.1
intercafe inter 27 4 14.8
kalkulator kal 27 6 22.2
nieruchomosci nier 27 10 37.0
forrest-0.7 for07 29 5 17.2
zuzel zuzel 29 13 44.8
forrest-0.8 for08 32 2 6.3
workflow work 39 20 51.3
termoproject termo 42 13 31.0
berek berek 43 16 37.2
serapion sera 45 9 20.0
skarbonka skar 45 9 20.0
pbeans2 pb2 51 10 19.6
pdftranslator pdf 53 15 28.3
e-learning elearn 64 5 7.8
systemdata sys 65 9 13.8

Data for the TDS
Defect Data Symbol # Instances # Defects % Defects
log4j-1.1 log11 109 32 29.4
ivy-1.1 ivy11 111 63 56.8
ant-1.3 ant13 125 20 16.0
log4j-1.0 log10 135 34 25.2
synapse-1.0 syn10 157 16 10.2
xerces-init xer 162 77 47.5
ant-1.4 ant14 178 40 22.5
lucene-2.0 luc20 195 91 46.7
velocity-1.4 vel14 196 49 25.0
velocity-1.5 vel15 214 72 33.6
synapse-1.1 syn11 222 60 27.0
velocity-1.6 vel16 229 78 34.1
poi-1.5 poi15 237 141 59.5
ivy-1.4 ivy14 241 16 6.6
lucene-2.2 luc22 247 144 58.3
synapse-1.2 syn12 256 86 33.6
jedit-3.2 jedit32 272 90 33.1
ant-1.5 ant15 293 32 10.9
jedit-4.0 jedit40 306 75 24.5
jedit-4.1 jedit41 312 79 25.3
poi-2.0 poi20 314 37 11.8
camel-1.0 cam10 339 13 3.8
ant-1.6 ant16 351 92 26.2
jedit-4.2 jedit42 367 48 13.1
poi-2.5 poi25 385 248 64.4
xerces-1.2 xer12 440 71 16.1
poi-3.0 poi30 442 281 63.6
xerces-1.3 xer13 453 69 15.2
xerces-1.4 xer14 588 437 74.3
camel-1.2 cam12 608 216 35.5
prop-6 prop6 660 66 10.0
xalan-2.4 xal24 723 110 15.2
xalan-2.5 xal25 803 387 48.2
camel-1.4 cam14 872 145 16.6
xalan-2.6 xal26 885 411 46.4

TOTAL 12427 3926 31.6
TOTAL UNIQUE 9552 3710 38.8
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are a total of 9552 unique instances of which 3710 contain at
least one defect. In addition, Table II describes the attributes
of these data-sets.

The selection criteria for the Test and TDS data-sets are as
follows:

• The data-sets used are publicly available for reproducibil-
ity purposes and each are chosen arbitrarily.

• Each data-set has the same static code attributes (see
Menzies et al. [16] for information on the value of static
code attributes as defect predictors).

• Each test set is small, i.e. much smaller than the combined
data sets in the TDS. For the sample we had available,
this meant using data with less that 100 instances.

• None of the data-sets that make up the TDS are used as
test sets in this work.

C. Prediction Models
For our work we chose four prediction models which

represent a wide range of research in defect prediction [23].
First, Random Forest (RF) is used based on the results of
a benchmarking study done by Lessmann et al. [23] which
showed RF to be significantly better than 21 other predictors.
Second, it is reported by Menzies et al [16] and Lessmann
et al. [23] that Naive Bayes (NB) performs well compared to
more complex predictors. Third, Logistic Regression (LR) is
favored by Zimmermann, and Weyuker et al. [3], [24]. Last,
the simplistic K = 1NN learner is used to find a lower bound
on predictor performance.

We do not implement these ourselves, instead we use their
Weka [25] implementations with the default values. Note,
when using LR, the default threshold value is 0.5. This treats
the false negatives and false positives equally. More details for
the prediction models are provided below.

1) Random Forest, RF: Breiman [26] describes RF as a
combination of tree predictors such that each tree depends
on the values of a random vector sampled independently and
with the same distribution for all trees in the forest. In other
words, RF is a collection of trees, where each tree is grown
from a bootstrap sample (randomly sampling the data with
replacement). Additionally, the attributes used to find the best
split at each node is a randomly chosen subset of the total
number of attributes. Each tree in the collection is used to
classify a new instance. The forest then selects a classification
by choosing the majority result.

2) Naive Bayes, NB: A statistical learning scheme that
assumes that attributes are equally important and statistically
independent. Lewis [27] describes NB as a classifier based on
Baye’s rule shown below:

P (ck|x) = P (ck)× P (x|ck)

P (x)

where ck is a member of the set of values for the dependent
attribute. In our case ck could be 0 or 1. Also, x represents
a test instance or unknown instance. So, to classify a test
instance, NB finds the conditional probability of that instance
being labeled ck. The ck with the highest probability is chosen
as the label for x.

3) Logistic Regression, LR: Afzal [28] recommend LR
when the dependent variable is dichotomous (e.g. either fault-
prone or non-fault-prone). The method avoids the Gaussian
assumption used in standard Naive Bayes. The form of the
logistic regression model is:

log(
p

1− p
) = β0 + β1X1 + β2X2 + ...+ βkXk

where p is the probability that the fault was found in the
module and X1, X2, ..., Xk are the independent variables.
β0, β1, ..., βk are the regression coefficients estimated using
maximum likelihood.

4) K-Nearest Neighbor, KNN: Cover and Hart [29] de-
scribes KNN as a simple non-parametric decision procedure
which classifies x, an unknown instance in the category of its
nearest neighbor. KNN is one of the simplest defect predictors
that can be used. It is therefore used as a baseline for the more
complicated methods described above.

D. Performance Measures

The performance measures used for the defect predictors
described above are shown in Table III and summarized below.

• Accuracy measures the percentage of correctly classified
instances of both the defective and non-defective classes.

• Recall or pd is equal to how much of the target (defective
instances) are found. The higher the pd, the fewer the
false negative results.

• Probability of false alarm or pf measures how many
of the instances that triggered the detector actually did
not contained the target (defects) concept. Like pd, the
highest pf is 100% however its optimal result is 0%.

• Precision measures how many predicted as defects are
actually defects.

• f-measure is a dual assessment of both recall and preci-
sion. It has the property that if either precision or recall
is low, then the f-measure is decreased. We refrain from
reporting f-measures in this work based on the the study
done by Menzies et al. [30] which shows that when data-
sets contain a low percentage of defects, precision can be
unstable. If we look at our test sets at the top of Table I,
we see that defects are rare in most cases.

• g-measure (harmonic mean of pd and 1-pf): Instead of
the f-measure, we report on the g-measure. The 1-pf
represents Specificity (not predicting instances without
defects as defective. Specificity (1-pf) is used together
with pd to form the G-mean2 measure seen in Jiang et
al. [31]. It is the geometric mean of the pd’s for both the
majority and the minority class. In our case, we use these
to form the g-measure which is the harmonic mean of pd
and 1-pf.

In this work, for the CCDP experiments we report only
on g-measures. However, for the reader of this work who
wishes to use different performance measures, we include the
true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) for these results. However for the WCDP
results in Table IV, since results show the median of a 3-way
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TABLE II: The C-K metrics of the data-sets used in this work (see Table I). The last row is the dependent variable. Jureczko et al. [21]
provide more information on these metrics.

Attributes Symbols Description
average method complexity amc e.g., number of JAVA byte codes
average McCabe avg cc average McCabe’s cyclomatic complexity seen in class
afferent couplings ca how many other classes use the specific class
cohesion amongst classes cam summation of number of different types of method parameters in every method divided by a multiplication of

number of different method parameter types in whole class and number of methods
coupling between methods cbm total number of new/redefined methods to which all the inherited methods are coupled
coupling between objects cbo increased when the methods of one class access services of another
efferent couplings ce how many other classes is used by the specific class
data access dam ratio of the number of private (protected) attributes to the total number of attributes
depth of inheritance tree dit provides the position of the class in the inheritance tree
inheritance coupling ic number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)
lack of cohesion in methods lcom number of pairs of methods that do not share a reference to an instance variable
another lack of cohesion measure locm3 if m, a are the number of methods, attributes in a class number and µ(a) is the number of methods accessing

an attribute, then lcom3 = (( 1
a

∑a
j µ(aj)) −m)/(1 −m)

lines of code loc measures the volume of code
maximum McCabe max cc maximum McCabe’s cyclomatic complexity seen in class
functional abstraction mfa number of methods inherited by a class plus number of methods accessible by member methods of the class
aggregation moa count of the number of data declarations (class fields) whose types are user defined classes
number of children noc measures the number of immediate descendants of the class.
number of public methods npm counts all the methods in a class that are declared as public. The metric is known also as Class Interface Size

(CIS)
response for a class rfc number of methods invoked in response to a message to the object
weighted methods per class wmc the number of methods in the class (assuming unity weights for all methods).

defects defects number of defects per class, seen in post-release bug-tracking systems

TABLE III: Some popular measures used in software defect predic-
tion work.

Actual
yes no

Predicted yes TP FP
no FN TN

Accuracy TP+TN
TP+TN+FP+FN

Recall (pd) TP
TP+FN

pf FP
FP+TN

Precision (prec) TP
TP+FP

f-measure 2∗pd∗prec
pd+prec

g-measure 2*pd*(100-pf)
pd+(100-pf)

experiment, we report five performance measures (accuracy,
pd, precision, pf, and g-measure).

IV. EXPERIMENTATION

All our experiments are designed around the three research
questions from Section I. However, before we elaborate on
these it is important to explain how the data-sets are selected
and used in our experiments. From the PROMISE repository,
we arbitrarily choose 56 defect data-sets for our experiments.
We then group these data-sets into two categories: tests and
data. Data-sets qualify for the former category if they contain
less than 100 instances (small data-sets) and data-sets qualify
for the latter category if they don’t fall into the first category.

It is important to note however that data-sets of any size can
be a part of data. As a result of these criteria, there are 21
data-sets in tests and 35 data-sets in data. These are shown in
Figure 3 and in more detail in Table I.

To check if there is a need for cross-company learning
(RQ1), we conduct a WCDP experiment, i.e. a cross-validation
experiment. This is a standard evaluation approach in Machine
Learning where an experiment is repeated n times on m
random subsamples of data. In other words, n-times, mall-mi

is treated as the training set and mall - training set is the test
set. We use a 3-way cross-validation for each test set where n
and m are both 3. We used a 3-way since the data-sets are too
small to support the standard 10-way cross-validation. This
experiment was repeated once for each learner.

To find out if the Peters filter can produce better defect
predictors than the Burak filter (RQ2), we used the Filtered
TDS, to create defect predictors with RF, NB, LR and KNN
(see Section III-C for explanation of the filters). Figure 3
shows the experiment for the Peters filter, however the same
procedure is followed for the Burak filter. To begin, we first
bind the data-sets in data together to form what we call a
TDS. We then make sure that the TDS only contains unique
instances using the ExtractUnique function. Next, the inner
for-loop iterates through each data-set (test) in tests and the
filter is used to create a cross-company Filtered TDS. This
Filtered TDS is used to build a defect predictor which is then
evaluated on test to return performance measures of TP, TN,
FP, and FN. Finally, the outer for-loop indicates that the above
occurs for each of the four learners used in this work.

We compared the performance of our defect predictors for
each filter using g-measures described in Section III-D. From
the difference in the g-measures between these treatments, we
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data = [log11, ivy11, ant13, log10, syn10, ant14,
luc20, vel14, vel15, syn11, vel16, poi15,
ivy14,luc22, syn12, jedit32, ant15, jedit40,
jedit41, poi20, cam10, ant16, jedit42, poi25,xer,
xer12, poi30, xer13, xer14, cam12, prop6, xal24,
xal25,cam14, xal26]

tests = [for06, ckjm, wsp, skleb, szy, pb1, inter, kal,
nier, for07, zuzel, for08, work, termo, berek,
sera, skar, pb2, pdf, elearn, sys]

filter = [Peters]
learners = [NB, RF, LR, NN] // defect predictors

// Create training data
TDS = ExtractUnique(BindRows(data))

FOR EACH learner in learners
// Apply filter to TDS for each test.
FOR EACH test in tests

// Get filtered cross company training data.
Filtered TDS = filter(TDS, test)
// Apply learner to each Filtered TDS
// to create defect predictors.
predictor = learner(Filtered TDS)
// Evaluate predictor on test
[TP, TN, FP, FN] = predictor(test)

END FOR
END FOR

Fig. 3: Pseudo code for experimental design. Here only the Peters
filter is shown, however the same procedure is followed for the Burak
filter.

find the ∆g between the performance of the Burak and the
Peters filter on the same test data:

• If ∆g is negative, then Burak performed better than the
Peters filter;

• Otherwise, the Peters filter was as good, or better, than
the Burak filter.

Finally, to determine if the Peters filter could generate
practical (or useful) defect predictors (RQ3), we counted
the number of test-sets which had defect predictors with g-
measures above 75% and 60%. We chose 75% based on the
work of Zimmermann et al. [3] which indicated that a strong
predictor was one where precision, recall, and accuracy were
each greater than 75%. We add 60% because it is the lower
bound surpassed by all test sets using the Peters filter.

V. RESULTS

We organize our results around the three research questions.

RQ1: Is there a need for cross-company learning? Table IV
shows the within-company defect prediction (WCDP) 3-way
cross-validation results from the test data. For each learner,
the data is sorted top-to-bottom from largest to smallest g-
measure. Observe how small data sets can generate weak
defect predictors. While the median result for some learners
seems adequate (e.g. the 63% for Naive Bayes), if we look
beyond the median results, we see a large number g=0
results for all learners (even for Random Forests, which
Lessmann et al. [23] declares to be the current state-of-the-
art defect predictor).

From these results, we conclude that cross-company learn-
ing is required when organizations need to make predictions
about small data sets. For such data sets, it is not enough to
apply standard learners to build defect predictors. Data sets

this small need to be augmented with training data taken from
some repository. Our other results, shown below, illustrate
what are the best methods for selecting that data.

RQ2: Can the Peters filter produce better defect predictors
than the Burak filter? Table V shows the results for Peters
filter executing with the 4 defect predictors used in this work
for 21 test sets. For each learner, the results are sorted on
the ∆g measures; i.e. by the difference performance measure
seen using the Burak filter and the Peters filter (due to page
constraints, we omitted the table of results for the Burak filter).

For all learners, the median ∆g results were always positive;
i.e. the Peters filter selects much better Filtered TDS than the
Burak filter. Note, that in the minority of cases, the Burak filter
outperforms the Peters filter (e.g. skar, inter, for08 and sys for
Random Forests in Table V). In future work we will investigate
these projects further. Also, the better the learner, the greater
the improvement. Note how the median ∆g for Random Forest
was very large (40%). In addition, Naive Bayes performs
relatively better than our baseline Nearest Neighbor with a
median ∆g of 20% while Logistic Regression is comparable
with a ∆g of 14%.

RQ3: Does the Peters filter generate practical (or useful)
defect predictors? Figure 4, summarizes the actual number of
test sets that meet the 60% and 75% criteria for all learners.
For example, pb2 has a g-measure of 46% with NB and
45% for both LR and KNN, however for RF its g-measure is
66%. We therefore count this as a strong defect predictor for
pb2 when the criteria is g>60% and not when it is g>75%.
For each labeled g>60, and g>75, the Peters filter produces
strong predictors for approximately twice the number of test
sets than the Burak filter.

We have included the 3×3 WCDP results in Figure 4. These
results are not directly comparable to the Burak and Peters
results since they come from a cross-validation experiment.
However, informally, we say that these results support the
conclusions of Turhan et al. [2] that CCDP+Burak filter
performs just as well as WCDP. Also, they highlight the
dramatic result of CCDP+Peters filter.

VI. DISCUSSION

A. External Validity

Measured in terms of external validity, these results are
stronger than many other papers in this area of research. The
size of our study is 56 data-sets which is around 5 to 10 times
larger than most papers in this field. That said, there is a clear
bias in our sample: open-source Java systems. As more data
becomes available, we plan to repeat this study.

Additionally, another source of bias in this study are the
learners used for the defect prediction studies. Data mining is
a large and active field and any single study can only use a
small subset of the known data mining algorithms. In this
work, results for Naive Bayes, Random Forests, Logistical
Regression, and K-nearest Neighbor are published.
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TABLE IV: Results for a 3×3 within cross-validation experiment for WCDP. Tables show results for Naive Bayes, Random Forest, Logistic
Regression and K-nearest neighbor. Each row shows the medians of 5 performance measures (accuracy, pd, precision, pf, and g-measure).

WCDP Naive Bayes Random Forest Logistic Regression K-Nearest Neighbor
Data acc pd prec pf g Data acc pd prec pf g Data acc pd prec pf g Data acc pd prec pf g
berek 87 83 100 0 88 berek 93 83 80 9 89 berek 93 83 86 9 87 berek 86 80 75 11 83
sera 80 67 50 9 76 pdf 82 80 100 0 80 pdf 73 80 75 25 73 pdf 73 60 75 20 70
zuzel 78 75 86 14 75 nier 78 75 75 0 73 pb1 78 86 86 50 63 term 71 67 60 18 69
pdf 73 60 71 22 70 work 69 60 71 33 69 sera 73 50 50 18 62 kal 78 50 67 13 67
sys 86 60 29 5 69 zuzel 70 67 75 20 69 kal 67 50 33 25 60 pb1 75 86 86 50 63
nier 78 50 67 14 67 kal 78 50 50 13 63 nier 67 67 67 17 60 wsp 75 75 75 50 60
szy 67 67 75 20 67 pb1 78 86 86 50 63 wsp 67 75 75 50 60 zuzel 70 63 67 25 60
wsp 83 100 80 50 67 szy 63 67 67 40 63 zuzel 60 63 67 29 60 work 62 67 63 50 56
term 79 57 67 10 63 term 79 50 75 9 60 work 62 67 71 38 59 szy 50 67 60 50 50
kal 67 50 33 29 63 wsp 67 75 75 33 60 szy 63 57 67 25 53 pb2 76 33 33 15 48
pb1 67 75 83 50 63 skleb 57 80 71 67 46 elearn 90 33 25 5 50 sys 81 33 25 6 48
skleb 57 50 75 50 50 sera 80 25 50 0 40 term 71 33 50 14 49 nier 67 50 50 20 44
skar 73 33 33 17 48 pb2 76 20 20 8 33 for07 70 33 25 20 48 skleb 57 80 75 67 44
work 62 44 75 13 47 ckjm 50 50 50 33 0 skar 67 33 25 25 46 sera 73 25 33 8 40
pb2 76 20 50 8 33 elearn 86 0 0 0 0 skleb 57 80 60 67 40 ckjm 33 33 25 100 0
ckjm 33 50 33 67 0 for06 100 0 0 0 0 sys 76 20 20 17 33 elearn 86 0 0 0 0
elearn 86 0 0 10 0 for07 70 0 0 0 0 pb2 71 20 33 19 31 for06 50 0 0 0 0
for06 100 0 0 0 0 for08 91 0 0 0 0 ckjm 33 50 50 67 0 for07 60 0 0 0 0
for07 80 0 0 0 0 inter 78 0 0 0 0 for06 50 0 0 0 0 for08 90 0 0 0 0
for08 100 0 0 0 0 skar 73 0 0 8 0 for08 82 0 0 10 0 inter 78 0 0 0 0
inter 67 0 0 0 0 sys 77 0 0 0 0 inter 78 0 0 13 0 skar 73 0 0 15 0

MEDIAN 63 46 50 48

Fig. 4: Measuring the success of CCDP by the percent of test sets
whose defects were predicted and met the criteria for g-measures
greater than 60% and greater than 75%. For all criteria except g > 60,
the Peters filter builds twice as many successful prediction models
than WCDP, and the Burak filter. When the criteria is g > 60 the
Peters filter has successful prediction models for all test sets.

Questions of validity also arise in terms of how the projects
(data-sets) are chosen for our experiments. All 56 data-sets are
chosen arbitrarily with the only stipulation that they all have
the same attributes for ease in experimentation. Other data-sets
which met this stipulation were not used in order to keep our
experiment manageable. Therefore it is not clear if our results
would generalize to those unused data-sets.

Finally, all the data used in this work are from open source
projects. Although our results seem stable across different
learners, we are not sure of how well they would generalize
to closed source projects.

B. Future Work

Clearly, the experiments of this paper should be repeated
on more data and we hope our results encourages more cross-
company experiments (and more work on building SE models
that are general to large classes of systems).

An open issue with our approach is the cost of the nearest
neighbor methods used by the Peters filter. In this work we
use k-means [20] to optimize the processing of each instance
finding its nearest test instance. For future work we would
explore other methods such as canopy clustering [32] or mini-
batch k-means [33].

Also, for a minority of projects, the Burak filter has
relatively better g-measures than the Peters filter. We will
investigate these projects in future work.

Another open issue is our use of clusters of size ten. We
used that size since prior work on the Burak filter showed that
this was a useful division of the data. However, once we have
faster clustering methods, it would be practical and insightful
to explore a much wider range of cluster sizes.

VII. CONCLUSION

A decade ago, it was not known if cross-company data
mining was possible. Preliminary results were either incon-
clusive [17] or negative [3].

In 2009, the Burak filter was the first clear demonstration
that data miners could take defect data from one project and
successfully apply them to another. One of the accomplish-
ments of that work was to show why prior results were so
inconclusive or negative. Not all data from other companies is
relevant to the local company. Some relevancy filter must be
applied to select the right training data.

Subsequent work on the Burak filter offered modest im-
provements [4], [5]. But until this work, the core premise of
the Burak filter remained unchallenged (that test data was the
best guide for selecting training data). In this work, we show
that if we guide data selection via the TDS data, then major
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TABLE V: Results for the Peters algorithm. Tables show results for Naive Bayes, Random Forest, Logistic Regression and K-nearest neighbor.
The ∆g column represents the deltas between the g of the Burak result and the Peters result. The positive numbers for ∆g indicate how
many times the Peters result was better than the Burak result.

Peters Naive Bayes Random Forest
Data tp tn fp fn g ∆g Data tp tn fp fn g ∆g
inter 2 22 1 2 66 -20 skar 1 33 3 8 20 -29
elearn 2 56 3 3 56 -16 inter 1 22 1 3 40 -23
sera 5 35 1 4 71 -1 for08 1 30 0 1 67 -18
pb2 3 39 2 7 46 0 sys 3 52 4 6 49 -17
sys 4 53 3 5 60 1 for07 0 24 0 5 0 0
for08 1 28 2 1 65 6 elearn 1 59 0 4 33 0
for07 3 18 6 2 67 12 pb2 5 40 1 5 66 15
ckjm 3 4 1 2 69 15 sera 5 35 1 4 71 22
skar 5 27 9 4 64 17 skleb 7 8 0 5 74 24
work 7 18 1 13 51 18 berek 13 27 0 3 90 24
pdf 9 15 3 6 70 20 ckjm 5 4 1 0 89 36
skleb 7 7 1 5 70 20 nier 10 13 4 0 87 43
nier 8 14 3 2 81 24 pdf 13 17 1 2 90 43
kal 3 12 9 3 53 25 term 8 29 0 5 76 50
szy 10 10 1 4 80 30 work 12 16 3 8 70 52
term 7 27 2 6 68 31 zuzel 9 16 0 4 82 56
berek 13 26 1 3 88 34 kal 5 19 2 1 87 59
pb1 10 6 0 10 67 41 pb1 19 5 1 1 89 63
wsp 10 5 1 2 83 55 szy 13 9 2 1 87 74
zuzel 10 16 0 3 87 61 wsp 12 5 1 0 91 76
for06 1 5 0 0 100 100 for06 1 5 0 0 100 100

MEDIAN 68 20 76 40

Peters Logistic Regression Nearest Neighbor
Data tp tn fp fn g ∆g Data tp tn fp fn g ∆g
term 7 21 8 6 62 -24 for08 0 29 1 2 0 -89
berek 13 26 1 3 88 -10 inter 1 22 1 3 40 -39
inter 1 20 3 3 39 -1 kal 0 18 3 6 0 -26
elearn 1 56 3 4 33 0 pb2 3 36 5 7 45 -26
for06 1 4 1 0 89 0 sys 3 50 6 6 49 -24
skar 3 29 7 6 47 0 pdf 7 11 7 8 53 -12
work 8 13 6 12 50 1 skar 4 32 4 5 59 0
pb2 3 37 4 7 45 1 for07 3 17 7 2 65 0
wsp 5 5 1 7 56 6 work 8 17 2 12 55 2
skleb 8 5 3 4 65 9 sera 2 34 2 7 36 3
sera 6 31 5 3 75 14 ckjm 3 5 0 2 75 15
kal 3 19 2 3 64 15 elearn 3 52 7 2 71 17
nier 9 8 9 1 62 16 wsp 12 3 3 0 67 19
sys 5 54 2 4 70 21 skleb 8 7 1 4 76 22
for07 1 15 9 4 30 30 berek 11 27 0 5 81 25
pdf 10 12 6 5 67 33 nier 6 11 6 4 62 30
szy 5 9 2 9 50 36 term 8 24 5 5 71 34
ckjm 5 5 0 0 100 47 pb1 18 5 1 2 87 40
pb1 19 4 2 1 78 52 szy 11 9 2 3 80 45
zuzel 7 14 2 6 67 67 zuzel 11 14 2 2 86 63
for08 2 25 5 0 91 91 for06 1 4 1 0 89 89

MEDIAN 64 14 65 16

improvements in performance can be expected. The difference
between the Peters and Burak filter seems very small- just
some details on what controls the first pass selection of train
data. However, that seemingly small difference can lead to
major performance improvement (recall the +40% difference
in the g-measures with the Peters filter and Random Forests).

Our conclusions from this work are two-fold. Firstly, this
work has strengthened the business case for cross-company
learning in software engineering. As reported by Rodriguez et
al. [11], there are now numerous repositories where projects
can gather on-line data about prior SE projects. When pro-
gramming teams need to assess the quality of their projects,
if they lack local data for that task, then it is possible to use
data from those on-line repositories.

Our second conclusion is more theoretical and speculative.
Our results suggest that large TDSs created from repositories,
contain useful structures that can help us guide and control
new projects (we know this since the only difference between
the Peters and Burak filters is in the former, the TDS has more
controls over the selection of the nearest neighbors). These
structures cannot be summarized as some simple single trite
theory (e.g. the infamous v(g) > 10 defect predictor). Rather,
it might be that when we look at a large enough sample (such
as the 9552 unique instances studied in this work) then there
appears hundreds of tiny micro-theories, each of which offers
different, but powerful, guidance for quality improvement.

If so, then the challenge for the future is to understand
this large space of multi-micro-theories. Note that our results

417



suggest that there are many of these micro-theories, but not an
infinite number. If we could somehow visualize and navigate
and exploit this large ensemble of micro-theories, then we
might be able to better define the root causes of quality (or
lack of quality) in software projects.
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