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Abstract—There are more than twenty distinct software engi-
neering tasks addressed with text retrieval (TR) techniques, such
as, traceability link recovery, feature location, refactoring, reuse,
etc. A common issue with all TR applications is that the results
of the retrieval depend largely on the quality of the query. When
a query performs poorly, it has to be reformulated and this is a
difficult task for someone who had trouble writing a good query
in the first place.

We propose a recommender (called Refoqus) based on machine
learning, which is trained with a sample of queries and relevant
results. Then, for a given query, it automatically recommends
a reformulation strategy that should improve its performance,
based on the properties of the query. We evaluated Refoqus
empirically against four baseline approaches that are used in
natural language document retrieval. The data used for the
evaluation corresponds to changes from five open source systems
in Java and C++ and it is used in the context of TR-based concept
location in source code. Refoqus outperformed the baselines and
its recommendations lead to query performance improvement or
preservation in 84% of the cases (in average).

Index Terms—Text Retrieval, Query Reformulation.

I. INTRODUCTION

Text Retrieval (TR) is one of the most popular technolo-
gies used in Software Engineering (SE), where it has been
successfully applied to address more than twenty tasks [1],
including: concept/feature/concern location, impact analysis,
code retrieval and reuse, traceability link recovery, bug triage,
requirements analysis, refactoring and restructuring, reverse
engineering, defect prediction, coupling and cohesion mea-
surement, etc. Many of these SE tasks are reformulated as
TR tasks and involve the formulation of a text query (by
the developer or automatically). For example, during feature
location, a developer formulates a query which describes the
feature to be located in the code. The query is then run by
the TR technique and a list of ranked software artifacts (e.g.,
classes or methods) is retrieved.

For all such TR applications in SE, the performance of
the retrieval depends greatly on the textual query and its
relationship to the text contained in the software artifacts.
Determining what is a good query is a nontrivial problem
and it requires intimate knowledge of the vocabulary of the
software artifacts to be searched. Ironically, developers could
benefit from TR tools especially when such knowledge is
missing. The obvious solution for determining if a query is
good is for the developer to investigate the retrieved results

and decide whether they are relevant or not. When the results
are not relevant, the query is usually reformulated (i.e., words
are added and deleted).

Rewriting a query in order to improve its performance
(i.e., by better performance we mean retrieving the relevant
documents closer to the top of the list of results) is often as
difficult as writing the query in the first place. This problem
has been recognized by SE researchers and two types of
approaches have been proposed to assist developers with the
query reformulation. The first category of approaches is based
on user relevance feedback and it has been employed in the
context of traceability link recovery [2] and concept location
[3]. These reformulation techniques are interactive and rely on
the developer analyzing the list of results and marking the top
documents as relevant or not relevant. The documents marked
by the user are then used to reformulate the query. A second
class of approaches is based on automatically adding to the
query new terms that are similar to its terms (e.g., synonyms)
[4], [5], [6]. The main shortcoming of these approaches is that
they ignore the properties of the queries and the reformulation
strategy is the same for every query.

The performance of a query depends on many factors
and we conjecture that queries with different properties need
different reformulation strategies. For example, a query that
has a single term will likely need an expansion strategy (i.e.,
adding terms) to improve its performance, whereas a verbose
query may need a reduction strategy (i.e., removing terms).

In this paper, we propose and evaluate an automated recom-
mender that, for a given query, it recommends a reformulation
strategy that should improve its performance. We call the
recommender Refoqus (REForumulation Of QUerieS). Refo-
qus is based on machine learning and requires a training set
comprised of queries and their relevant results. For each query,
a set of measures are computed (see Section II for details),
which capture properties of the query, such as, specificity,
coherency, similarity, term relatedness, robustness, and score
distribution. These measures have been shown to correlate
with the performance of queries in the field of natural language
document retrieval [7] and in SE applications [8]. We selected
four reformulation strategies proposed in the field of natural
language document retrieval (see Section II for details), which
perform best in that field and have never been used in SE, yet
they are appropriate for SE data. Refoqus automatically applies
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each reformulation strategy for the queries in the training
set and learns which reformulation strategy works best for
which type of query (based on the relevant properties). For an
incoming query, Refoqus measures its properties and automat-
ically recommends the appropriate reformulation strategy. The
underlying algorithms of Refoqus are generic, so the measures
and recommendation strategies can be replaced, if needed.

The Refoqus recommender is a premiere in SE, as well as
in natural language document retrieval. Within SE, it is to date
the only automatic query reformulation approach that employs
multiple strategies and selects the best one for each query, as
opposed to applying a single strategy to all queries.

We performed an empirical evaluation of Refoqus, in the
context of TR-based concept location in source code. We col-
lected 282 queries corresponding to changes in response to 94
bug reports from five open source systems, written in Java and
C++. We compared the results of Refoqus with the baseline
results provided by the four reformulation strategies on their
own, respectively. We found that Refoqus outperformed the
baselines and its recommendation lead to query performance
improvement or preservation in 84% of the cases (in average).
In addition, we investigated two ways to perform the training
(i.e., within a single project vs. cross projects) and found
that the within training is superior. The results support our
conjecture that the best reformulation strategies are project
and query specific. Refoqus also proves to be robust with
respect to its training data, as we observed little differences
between its performances on different systems. More than that,
a relatively modest number of training data (i.e., 57 queries
corresponding to 19 bugs per system, in average) is sufficient
for good results.

II. QUERY PROPERTIES AND REFORMULATION
STRATEGIES USED BY REFOQUS

We introduce terminology and definitions necessary to un-
derstand the measures and reformulation strategies used by
Refoqus. Most of these measures and strategies come from
the field of natural language document retrieval (a.k.a., text
retrieval), whereas some are used in SE applications only.

A. Query Reformulation Techniques

The goal of query reformulation is to define a new query,
starting from the initial one, which is able to lead to improved
retrieval results. What exactly “good search results” means
can differ according to context in which the search is used,
but it usually refers to the relevant documents being as close
as possible to the top of the search results list. This is the
interpretation of quality performance we adopt in this work.

Over time, researchers in the field of TR have proposed and
investigated a large variety of approaches for producing candi-
date reformulations for an initial query. These approaches fall
in two categories [9]: query expansion approaches and query
reduction approaches. We introduce briefly each category with
emphasis on the reformulation strategies used in our proposed
approach.

1) Query Expansion: Query expansion is meant to offer a
solution to the problem known as “the vocabulary problem”
[10], where the terms in the query do not match the vocabulary
of the relevant documents in the corpus. A variety of query
expansion approaches have been proposed in the field of TR
[11]. We found, however, that not all these were applicable
to our circumstances (i.e., source code based corpora). We
selected three existing approaches in the following way. We
did not consider approaches that relied on linguistic features
or on sources of information external to the corpus, like the
web, ontologies, Wikipedia, or Wordnet. Such approaches are
designed to work for natural language documents as they rely
on word relationships that exist in natural language. Since we
target source code-based corpora and previous studies [12]
have shown that words do not share the same relationships
in source code as they do in natural language, we decided to
ignore such strategies (in this work at least). Some approaches
are based on algorithms with high computational complexity
to produce reformulations for a query. Since our end goal is
to produce a recommender which can be used by developers
during their daily tasks, we did not consider such approaches
practical and thus, we did not select them. Finally, from all
other available strategies we selected seven strategies that are
reported to perform best in the TR literature. We performed
a study on SE data1and selected the best three to be used by
Refoqus. Note that Refoqus is built in such a way that any
strategy can be replaced or additional ones can be added. We
decided to use fewer strategies because the classification with
more strategies would require larger training data sets, which
impacts the usability of Refoqus.

All three selected strategies are based on some form of
pseudo-relevance feedback, in that they consider the top K
documents from the list of results as relevant documents to the
query. Then they use different techniques to order the terms
in these K documents and select the top N ones to use for the
query expansion.

The first strategy is similarity-based and orders the terms
in the top K documents based on their Dice similarity (see
below) with the individual query terms.

Dice =
2dfu∧v
dfu + dfv

where u is a term from the query, v is a term from the top K
documents, and df denotes the number of documents in the
corpus containing u, v, or both u and v, respectively.

The idea behind Dice similarity is that two terms are related
if they appear in the same documents in the corpus, a common
assumption in all TR engines.

The other two techniques do not rely on similarities with
the terms in the query. The idea is to use the first K documents
retrieved in response to the original query as a more detailed
description of the underlying query topic. Therefore, descrip-
tive terms for this topic can be used for expansion, and can
be determined by identifying the most representative terms for
the set of top retrieved documents.

1http://www.cs.wayne.edu/∼severe/ICSE2013
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One of the approaches is based on Rocchio’s method for
relevance feedback [13] and assigns a score to each term in
the top K documents based on the sum of the Tf-Idf scores
of the term in each of the K documents. Tf-Idf is a score
often used in the field of TR to determine the importance of a
term for a particular document relative to the corpus. The first
component of the measure is the Term Frequency (Tf ), which
is the number of times the term appears in a document and it
is an indicator of the importance of the term in the document
compared to the rest of the terms in that document. The Inverse
Document Frequency (Idf ), on the other hand, is the inverse
of the number of documents in the corpus containing that
term and indicates the specificity of that term for a document
containing it.

Rocchio =
∑
d∈R

TfIdf(t, d)

where R is the set of top K relevant documents in the list
of retrieved results, d is a document in R, and t is a term in
d.

The last approach uses the Robertson Selection Value
(RSV), described below, as an ordering function for the terms
in the top K documents.

RSV =
∑
d∈R

TfIdf(t, d)[p(t|R)− p(t|C)]

where C denotes the collection of documents in the corpus, R
is the set of top K relevant documents in the list of retrieved
results, d is a document in R, and t is a term in d. Also,
p(t|R) = freq(t in R) / number of terms in R
p(t|c) = freq(t in C) / number of terms in C where freq (t in

R) is the number of times t appears in the top K documents in
the list of results (R) and freq(t in C) is the number of times
t appears in the whole document collection.

RSV also uses Tf-Idf as part of its formula, but considers
in addition the probability of a term occurring in a relevant
document in order to determine its importance for the query
topic (i.e., for the top K documents).

2) Query Reduction: Query reduction is based on the idea
that the query contains both important information as well as
noise, i.e., words that do not contribute to the main intent of
the query and may hinder the retrieval of relevant documents.
Therefore, query reduction should help improve the results of
a query. In the absence of user feedback and information about
the semantics of the query, automated query reduction needs
to be done with care, as intrusive reduction strategies may
actually harm the results [9].

We adopt a conservative reduction strategy, previously used
in SE, in the context of user-provided relevance feedback [3].
More specifically, Refoqus eliminates the terms that appear in
more than 25% of the documents in the corpus, as they are
considered non-discriminating [3].

B. Query Properties

Measures of query properties have been used in the field
of TR for assessing the query performance [7] and have been

shown to correlate with the mean average precision of a query.
These properties focus on linguistic and statistical properties
of the terms in the query and of the documents returned in
the result list. The properties fall in two main categories,
depending if they are computed based on information available
before or after the retrieval of the results takes place. The
two categories and the specific measures we use from each
category in our approach are presented in the following
subsections.

1) Pre-Retrieval Properties and Measures: Pre-retrieval
measures are computed before the query is run, and mea-
sure linguistic and statistical properties of the query (e.g.,
coherence) and its relationship with the document collection
(e.g., the similarity between the query and the entire document
collection). They are considered lightweight, as they do not re-
quire the list of results to be computed. Pre-retrieval measures
assess different properties of a query: specificity, similarity,
coherency, and term relatedness [7].

Specificity refers to the ability of the query to represent the
current information need and discriminate it from others. A
query composed of non-specific terms, i.e., commonly used
in the collection of documents, is considered having low
specificity, as it is hard to differentiate the relevant documents
from non-relevant ones based on its terms. For example, when
searching source code, the query “initialize members” could
have low specificity if a comment containing this text would
be found in most class constructors in a system.

The similarity between the query and the entire document
collection is another property that reflects an aspect of query
quality. The argument behind this type of measure is that it is
easier to retrieve relevant documents for a query that is similar
to the collection since high similarity potentially indicates the
existence of many relevant documents to retrieve from.

Another property for queries is their coherency, which
measures how focused a query is on a particular topic. The
coherency of a query is usually measured as the level of inter-
similarity between the documents in the collection containing
the query terms. The more similar the documents are, the more
coherent the query is.

Finally, term relatedness measures make use of term co-
occurrence statistics in order to assess the performance of a
query. The terms in a query are assumed to be related to the
same topic and are, thus, expected to occur together frequently
in the document collection.

Refoqus uses 21 measures that capture the four pre-retrieval
quality properties mentioned above: Average Inverse Doc-
ument Frequency, Maximum Inverse Document Frequency,
Standard Deviation of the Inverse Document Frequency, Av-
erage Inverse Collection Term Frequency, Maximum Inverse
Collection Term Frequency, Standard Deviation of the Inverse
Collection Term Frequency, Average Entropy, Median Entropy,
Maximum Entropy, Standard Deviation of the Entropy, Query
Scope, Simplified Clarity Score, Average Variance of Query
Term Weights, Maximum Variance of Query Term Weights
Sum of the Variance of Query Term Weights, Coherence Score,
Average Similarity Collection-Query Term, Maximum Simi-
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TABLE I
POST-RETRIEVAL MEASURES USED BY Refoqus

Name Description
Subquery Overlap Captures the extent of the overlap between the result set retrieved by the entire query and the result sets retrieved by individual query terms.

Robustness Score The terms’ weights in the top relevant documents are slightly perturbed and the resulting documents are re-ranked.
The correlation between the initial rank and that after modification is considered.

First Rank Change Captures the probability of a document found on the first
position in the list of results to still remain on the first position after a perturbation is applied to it.

Clustering Tendency Measures the cohesion of the top retrieved documents as the textual similarity between them.

Spatial Autocorrelation Changes the retrieval-scores of each top relevant document as the average of the scores of its most similar documents.
Then, the linear correlation of the new scores with original ones is used.

Weighted Information Gain Measures the divergence between the mean retrieval score of top-ranked documents and that of the entire corpus.

Normalized Query Commitment Measures the standard deviation of retrieval scores in the list of top relevant documents, normalized by the score of the whole collection.

larity Collection-Query Term, Sum of Similarity Collection-
Query Term, Average Pointwise Mutual Information, and
MaxPMI. We have previously introduced the usage of these
measures in SE and have successfully applied them for predict-
ing the quality of queries in the context of concept location in
source code [14], [8]. Four of these measures were introduced
specifically in SE context [14], [8], whereas the others come
from TR [7]. More details about what each of the measures
captures and the formulas used to compute them can be found
in [7], [8], [14].

2) Post-Retrieval Properties and Measures: Pre-retrieval
measures miss some aspects of the query, which are reflected
in the results that it returns. For example, the coherence of the
search results, i.e., how focused they are on aspects related to
the query, is not captured by the query text and is hard to
assess it without an analysis of the results list.

Post-retrieval measures rely on the analysis of the search
results, that is, the list of documents ranked highest in response
to the query. These measures are categorized into three main
paradigms [7].

Robustness-based methods evaluate how robust the results
are to perturbations in the query and the documents in the
result list. The measures based on query perturbation assess
the robustness of the result list to small modifications of
the query. When small changes in the query result in large
changes in the search results, the confidence in the capacity
of the query to capture the essential information diminishes.
Document perturbation measures, on the other hand, rely on
injecting the top documents in the result list with noise and
re-ranking them, measuring the difference in their ranks before
and after the perturbation. In the case of a high performing
queries, small perturbations of the documents in the result list
should not result in significant changes in their ranking.

Score distribution-based methods analyze the similarity
between the query and the results, which are used to rank the
results of the retrieval. For example, the highest retrieval score
(i.e., similarity) and the mean of top scores indicate query
performance since, in general, low scores of the top-ranked
documents indicate some difficulty in retrieval.

Clarity-based methods directly measure the “focus” of the
search results with respect to the corpus. While we experi-
mented with clarity-based quality measures, we did not use

them in our approach due to their extended execution times,
which would make them unpractical in a realistic setting.

Refoqus uses seven post-retrieval measures of robustness
and score distribution: Subquery Overlap, Robustness Score,
First Rank Change, Clustering Tendency, Spatial Autocorre-
lation, Weighted Information Gain, and Normalized Query
Commitment. They are defined in TR [7] and their use in
SE context is a premiere. A brief explanation of each of
these measures can be found in Table I. Details about their
implementation can be found in [7].

Refoqus uses these 28 measures (21 pre- and 7 post-
retrieval) to classify the queries. Obviously, some of these
measures are related and correlate to some degree. The classi-
fier used by Refoqus (see the next Section for details) employs
implicitly a feature selection mechanism that eliminates the
properties that are not relevant.

III. REFOQUS - A RECOMMENDER FOR AUTOMATIC
QUERY REFORMULATION

Refoqus consists of two main steps: (1) training the clas-
sifier; and (2) using the classifier to recommend the best
reformulation technique for incoming queries. The following
subsections detail each step.

A. Training the Classifier

Refoqus needs a training data set for its classifier. The
training data consists of queries and their associated relevant
documents. How queries are collected depends on the SE
task addressed. Ideally (as the evaluation shows in the next
Section), the data should come from the system where Refoqus
is being used. For example, if the task at hand is traceability
link recovery between documentation and source code, the
training data would consist of existing validated traceability
links, where parts of the documentation are the queries and
the relevant documents are the parts of the code they link to.

Refoqus communicates with the TR engine used by the
developer. In the current implementation (which we used in the
empirical evaluation from the next Section), we used Lucene2,
a popular implementation of the Vector Space Model. Future
versions will allow Refoqus to work with other TR engines.

2http://lucene.apache.org
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Refoqus executes the following steps in order to train its
classifier:

• Refoqus uses the TR engine to rank all the relevant
documents for each query in the training data set.

• The values of the 28 query property measures are com-
puted for each of the queries in the training data.

• The four reformulation techniques are applied, one at a
time, to each query in the training set and the resulting
reformulated queries are run by the TR engine.

• The results obtained by the four reformulation variants
are compared and the best performing reformulation is
determined for each query.

• If there are queries that led to no relevant document being
retrieved by the TR engine after they were run in their
original form and in any of the reformulated forms, then
these queries are removed from the training set. This is
a necessary step, as for such queries Refoqus will not be
able to make any recommendation, given that it cannot
decide which is the best reformulation strategy.

• The classifier is trained using the collected training data.
One data point in the final training data used by the
classifier corresponds to a query. Each data point has
29 attributes, 28 attributes corresponding to the query
property measures and one corresponding to the best
reformulation strategy. We discuss bellow the details of
the classifier employed by Refoqus.

In Refoqus we use classification trees [15]. Our choice has
several advantages. First, the rules produced by classification
trees are easy to understand by humans, which is not the
case for other, more complex models. Hence, a developer
could interpret easily the recommendation made by Refoqus,
before allowing it to automatically reformulate the query, if
she chooses to do so. Second, classification trees perform
implicitly feature selection. This is a very important property,
as it allows Refoqus to be less sensitive to the choice of query
property measures. In the current form, it allows us to give
as input all 28 measures of a query, as our classification tree
will determine automatically the properties relevant for the
classification, with little overhead.

Classification trees are suitable to solve problems where the
goal is to determine the values of a categorical variable based
on one or more continuous and/or categorical variables. In our
approach, the categorical dependent variable is represented by
the best query reformulation technique for a particular query,
while the independent variables are the 28 query property
measures described in Section II. The classifier uses the
training data to automatically select the independent variables
and their interactions that are most important in determining
the dependent variable to be explained.

There are two possible approaches to train the classifier,
namely within-project and cross-project training. In the former
approach, the classifier is trained independently for each
software system, thus using only the training data from one
single system. Our evaluation from Section IV indicates that
the within training is superior to the cross training, yet cross

if (MaxPMI >= 3.21)
TRUE FALSE

apply query reduction
if (WIG >= 2.629)

TRUE FALSE

apply rocchio expansionif (ClusteringTendency < 186.9)
TRUE FALSE

apply RSV expansionapply Dice expansion

Fig. 1. An example of classification tree.

training is useful when training data may not be obtained from
the current system.

The output of the training stage is the classification tree,
represented by a set of yes/no questions that splits the training
sample into gradually smaller partitions that group together
cohesive sets of data, i.e., those having the same value for the
dependent variable. An example of classification tree built in
our study is reported in Figure 1.

B. Using the Classifier for New Queries

Once the classification tree is built, it can be used to
recommend the best reformulation technique for a given query.
When a new query is issued (manually or automatically) to the
TR engine, which returns the results, Refoqus computes the
28 measures for the new query. Based on the classification
tree and these 28 measures, Refoqus determines automatically
which reformulation strategy should be applied to the new
query and it recommends it to the developer. The recom-
mended reformulation technique is then automatically applied
to add and/or remove terms from the query in order to improve
its performance.

IV. EVALUATION

We conducted an empirical study to investigate the perfor-
mance of Refoqus in the context of TR-based concept location.
The replication package, containing also the dataset used in
the study is available online3.

A. Context

According to a recent survey on feature/concept location
[16], most techniques make use of TR. We decided to evaluate
Refoqus in a manner akin to the evaluation of concept loca-
tion techniques. In addition, a prior user-based reformulation
technique was also evaluated in the same context [3].

TR-based concept location [5], [16] is mostly used during
software change. During concept location, the developer gets
a change request and based on it formulates a query to find
a place in the code that she will need to change. If the query
does not retrieve a relevant code document (e.g., a method or a
class), then the query needs to be reformulated. Once the place
of change is located, the developer engages in impact analysis
to determine other parts of the code that need to change.

B. Definition

There are several aspects of Refoqus that we want to
evaluate. First, we want to establish which training strategy
(i.e., within- or cross-project) works better. Second, we want to

3http://www.cs.wayne.edu/˜severe/ICSE2013
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TABLE II
CHARACTERISTICS OF THE FIVE OBJECT SYSTEMS.

System Version Language KLOC #Methods #Queries #Bugs
Adempiere 3.1.0 Java 330 28,355 51 17
ATunes 1.10.0 Java 80 3,481 51 17
FileZilla 3.0.0 C++ 410 8,012 72 24
JEdit 4.2 Java 250 5,532 54 18
WinMerge 2.12.2 C++ 410 8,012 54 18
Total - - 1,310 48,620 282 94

establish whether the reformulations recommended by Refoqus
improve the queries and if so by how much. Our conjecture is
that the strength of Refoqus comes from the fact that it selects
the best reformulation strategy for each query. Hence, third,
we compare Refoqus with baseline approaches, based on the
individual reformulation strategies used by Refoqus. In order
to address these issues, we formulated three research questions
and conducted three experiments to answer them:
RQ1: Which training approach works better for Refoqus?
RQ2: Does Refoqus improve the performance of the queries?
RQ3: Does Refoqus perform better than the baseline reformu-
lation techniques?

Answering RQ1 allows us to determine and inform future
users what is the best way to construct the training data. A
positive answer for RQ2 implies that Refoqus can be used to
improve TR-based concept location approaches (and hopefully
TR approaches for other SE tasks). A positive answer for RQ3

confirms our conjecture that selecting the best reformulation
strategy for each query is better than applying the same
strategy to all queries.

We implemented Refoqus to interact with Lucene, to use
a classification tree4, to compute the 28 query property
measures, and to apply the four reformulation strategies (as
described in the previous section).

C. Data set

Our choice of empirical evaluation is based on reenacting
concept location based on past changes. This is a very common
evaluation technique used in feature/concept location research
[16]. Past changes in software provide us with a change request
(or bug description in this case) and the actual changes in the
code done in response to the request, named the change set.
During concept location a user or a tool starts with the change
request and finds a place in the code where a change should
be made. To verify that this location is correct, the complete
change should be implemented and tested. Reenactment based
on historical data allows us to assess the correctness of
concept location without complete implementation and testing.
If concept location results in a place in the code that is in the
original change set, then we can conclude that concept location
succeeded. If the result of the concept location leads to a place
that is not in the change set, then we consider that concept
location failed. Changes to software can be made in a variety
of ways, so there may be some cases when concept location
leads to a place that is not in the original change set, yet could
still lead to a complete and correct change. Our assumptions

4We used the implementation of classification trees provided in the statis-
tical platform R.

will cause to miss these cases. It is a trade-off we are willing to
take given the gains in terms of time and number of changes.
This trade-off is commonly undertaken in the field [16].

Reenactment also allows us to automatically formulate
queries for TR-based concept location. The bug reports contain
both the title of the bugs (a.k.a. the short description) and
their (long) description. In this study we automatically created
queries considering two different options: (i) the title of the
bug; (ii) the description of the bug. In addition, to have a better
simulation of an usage scenario of the proposed approach,
we also asked a Ph.D. student to manually formulate a query
after analyzing only the bug report content. In the end, we
obtained three queries for each bug report. For each query
formulated for a bug report, the set of relevant documents to
be retrieved is defined by the change set. The same data set is
used when answering each research question. We collected an
initial set of 309 queries, corresponding to 103 bugs randomly
extracted from the bug tracking systems of five open source
systems implemented in Java and C++: Adempiere5, ATunes6,
FileZilla7, JEdit8, and WinMerge9.

We removed the queries for which no target method was
retrieved when running the original query and all of its four
reformulated forms (see Section III for details). The data set
was reduced to 94 bugs and their corresponding 282 queries.
From this point on, we will refer only to these remaining 282
queries. The number of queries extracted from each project
are reported, together with some size attributes of the object
systems, in Table II. Note that when using other TR engines
(e.g., LSI) this filtering set may not be necessary, as some
engines rank all the documents from the search space.

D. Planning and Execution

In order to generate term suggestions for query expansion,
we used the top five documents in the ranked list of results.
Also, when expanding the query, we considered the first
10 term suggestions. These decisions were made based on
recommendations found in the domain literature [11]. After
the collection of the data, we performed the following steps:

1. Document corpus creation. We built the source code
corpus by considering each method in the system as a separate
document. For each method, we extracted the terms found in
its source code identifiers and comments. We then normalized
the text using identifier splitting (we also kept the original
identifiers), stop words removal (i.e., we removed common
English words and programming keywords), and stemming
(we used the Porter stemmer).

2. Query execution and performance measurement. We
performed the same text normalization process adopted for
the methods on all the 282 queries and their reformulations.
Then, we executed each query on their respective document
corpus by using Lucene and measured the query performance

5http://www.adempiere.org
6http://www.atunes.org
7http://www.filezilla-project.org
8http://www.jedit.org
9http://www.winmerge.org
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by identifying the position of the first relevant document (i.e.,
changed method) in the ranked list of search results. The
higher the method appears in the result list (i.e., the lower
its rank - 1 is best), the better the query performance. This
is a common measure used to assess the results of concept
location, called effectiveness. It represents an approximation of
the effort it takes to locate a concept,assuming each document
takes a unit of effort to investigate. Effectiveness is one of
the most common measures used in empirical studies on
comparing concept and feature location techniques [16].

3. Answering RQ1. Refoqus was trained using the within-
and cross-project strategy, respectively. For the within-project
case, the classification model is trained on each system
individually and a 4-fold cross-validation was performed:
(i) randomly divide the set of queries for a system into 4
approximately equal subsets, (ii) set aside one query subset as
a test set, and build the classification model with the queries
in the remaining subsets (i.e., the training set), (iii) use the
classification model built on the training set to identify the
best reformulation technique for the queries in the evaluation
set, (iv) repeat this process, setting aside each query subset
in turn. The key element here is that each query is used only
once in the test set.

As for the cross-project training, the queries from four of
the five projects are used for training and the queries from the
fifth project is used for evaluation. This is repeated such that
the queries in each project are tested.

The 282 queries were reformulated and the performance
(i.e., the best rank among the methods in the change set) of the
reformulated queries was recorded for each type of training.
The two sets of performances were then compared.

4. Answering RQ2. The performance of the reformulated
queries based on the Refoqus’ recommendation were compared
with the performance of the original queries.

5. Answering RQ3. We defined four baselines using the re-
formulation strategies employed by Refoqus: query reduction,
rocchio expansion, RSV expansion, and Dice expansion. Each
baseline approach applies a single reformulation strategy to all
282 queries, respectively. For example, the reduction baseline
applies query reduction to all queries.

In order to analyze the comparisons, when comparing
Refoqus with any of the baselines (or when comparing the
two training strategies), we report the number of times the
query reformulated by Refoqus and by the compared baseline
has a better performance (i.e., lower rank of the top changed
method) than the original query, the number of times the
performances are the same, and the number of times the
original query achieves better query performance. We also
report the minimum, maximum, median, mean, and the 25%
and 75% percentiles values of the differences in performance
(i.e., difference in ranking of the top changes method). See
Tables III, V, and IV for details.

The sets of results were also analyzed through statistical
analysis using the Mann-Whitney test [17]. We chose this
test as we cannot assume normality of data and the test does
not make normality assumptions. The results are interpreted

as statistically significant at α < 0.05. However, since we
performed multiple tests, we adjusted our p-values using the
Holm’s correction procedure [18]. This procedure sorts the p-
values resulting from n tests in ascending order, multiplying
the smallest by n, the next by n− 1, and so on.

V. RESULTS AND DISCUSSION

We present and discuss the results that we used to answer
each research question.

A. Research Question 1

Tables III and IV report the results achieved by Refoqus
when building the classifier using the within-project training
strategy and the cross-project training strategy, respectively.
The within-project strategy achieves a mean query perfor-
mance improvement of 262 positions (for 146 queries) and
a maximum of 5,285, compared to the mean of 229 (for
113 queries) and the maximum of 5,197 obtained by the
cross-project training strategy. However, the within-project
approach also worsens the results of 6 more queries compared
to the cross-project strategy, whereas the number of queries for
which the results do not change is significantly higher for the
cross-project approach, i.e., 128 compared to 89.

Since the results were mixed, we performed statistical
analysis in order to determine if the difference between the
results obtained by the two approaches is significant. The
Mann-Whitney Test reports statistically significant differences
between the performance values of the reformulated queries
using the two approaches, in favor of the within-project
training (p-value=0.002, mean=-40). A mean value of -40
indicates the within-project training returns the first relevant
method 40 positions on average higher in the results list than
the cross-project training.

RQ1 answer. We conclude that the within-project training
is superior to the cross-project training. Nonetheless, cross-
system training for Refoqus still manages to improve the
performance of 40% of the original queries, and to preserve the
results of other 45%. This indicates that cross-project training
could be still used, when within-project data is not available.

We use the within-project training strategy to answer the
subsequent research questions.

B. Research Question 2

When compared to the performance obtained by original
queries (see Table III), Refoqus using within-project training
is able to improve the performance of 52% of the queries and
to preserve the results obtained for other 32%, for a total of
235 out of 282 (84%) queries for which the performance is
preserved or improved. This improvement is in several cases
by hundreds or thousands of positions. When analyzing the
results, it is important to focus on the performance in the
worse cases, as these are the situations where Refoqus is most
useful (i.e., when the original query is really bad). When the
original query is already good (say, the best ranked method is
in top 10), reformulations strategies in general lead to small
improvements or no improvement. The rather large difference
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TABLE III
RESULTS ACHIEVED BY Refoqus IN THE WITHIN-PROJECT VALIDATION

System #Queries #Improved Improvement #Worsened Worsening #PreservedMean Q1 Q2 Q3 Min. Max. Mean Q1 Q2 Q3 Min. Max.
Adempiere 51 30 418 3 12 97 1 5,286 10 261 18 26 381 3 970 11
ATunes 51 29 85 5 9 86 1 667 10 54 5 40 100 1 324 12
FileZilla 72 42 383 7 163 611 1 1,409 7 90 10 21 106 1 371 23
JEdit 54 19 64 5 29 56 1 434 9 25 2 12 52 1 83 26
WinMerge 54 26 230 4 18 36 2 4,909 11 43 6 11 53 2 151 17
Total 282 146 262 4 23 166 1 5,286 47 100 5 19 86 1 970 89

TABLE IV
RESULTS ACHIEVED BY Refoqus IN THE CROSS-PROJECT VALIDATION

System used #Queries #Improved Improvement #Worsened Worsening #Preservedas evaluation Mean Q1 Q2 Q3 Min. Max. Mean Q1 Q2 Q3 Min. Max.
Adempiere 51 15 585 7 11 109 1 5,197 3 71 25 49 107 1 165 33
ATunes 51 25 62 3 9 51 1 413 6 107 41 51 148 4 319 20
FileZilla 72 32 275 11 157 425 1 1,403 12 105 22 27 158 2 437 28
JEdit 54 18 68 7 29 61 1 434 10 112 8 52 71 1 781 26
WinMerge 54 23 242 2 8 46 1 4,603 10 34 2 5 16 1 164 21
Total 282 113 229 4 15 157 1 5,197 41 87 5 28 96 1 781 128

between the median and mean improvements indicates that
many ”bad” queries had large performance improvements.

We also performed a Mann-Whitney statistical test, which
revealed that the difference between the effectiveness measure
as returned by Refoqus and that returned by the original query
is statistically significant (p-value<0.0001, mean = -119). In
other words, on average, across all queries, Refoqus is able to
obtain an improvement (i.e., a lower effectiveness measure) of
119 positions in the list of ranked results and this improvement
is statistically significant.

RQ2 answer. We conclude that the query reformulation
recommendations formulated by Refoqus lead to the improve-
ment or preservation of the query performances in most cases
(52% of the queries improved their performance and 32%
preserved it). We discuss some examples and observations
from the detailed analysis of the data. An example of large
improvement in query performance was observed on a query
in the FileZilla system. The original query was automatically
extracted from the title of the bug report: set use medium large
icon. Using this query the first target document retrieved was
the method LoadPage from the COptionsPageThemes
class, on position 175. Refoqus suggested to apply the Rocchio
expansion, and was reformulated as: set use medium large
icon theme panel scroll preview wx ptheme. In other words,
the terms theme, panel, scroll, preview, wx, ptheme were
added to the query. The reformulated query retrieved the same
target method (i.e., COptionsPageThemes.LoadPage)
on position 6 of the ranked list. When analyzing the content
of this method we observed that all the terms added by the
Rocchio expansion were present in the body of the method:
wx (25 occurrences), theme (24), panel (12), ptheme (9), scroll
(6), and preview (2); which explains the improvement.

Further analysis of the queries that preserved their per-
formance after reformulation revealed that, for all of them,
Refocus recommended query reduction. One observation is
that, when applying this technique the query is not always
modified (only if it contains “non-discriminatory” terms). We
also noticed that 20 of the queries achieving stable perfor-
mances (22%) were not improvable, that is, they already
retrieved the first relevant method on the first position. The

fact that Refoqus does not decrease the performances of these
queries is certainly a good result. Another 22 original queries
(25%) retrieved the relevant method in the top ten positions
of the ranked list.

There were 47 (17%) cases when the performances of the
reformulated queries using Refoqus decreased. The decrease
was, on average, of 100 positions in the ranked list, which
is, less than half of the average improvement obtained by
Refoqus on the improved queries. In other words, the potential
negative effect of the reformulations are outweighed by the
significant improvements. It is also worth noting that we did
not observe significant differences between the percentage of
manually formulated queries that were improved by Refoqus
(51%) and automatically extracted queries that were improved
(52%). We also did not observe significant differences between
the C++ and the Java systems, which indicates that Refoqus
is robust with respect to this aspect (clearly more analysis is
needed as this issue is not the main focus in this paper).

C. Research Question 3

Table V compares Refoqus and the four baseline reformula-
tion techniques. The obvious observations are: the number of
queries improved by Refoqus is matched by RSV Expansion
(i.e., 146), the mean improvement is slightly better for the Dice
Expansion (i.e., 266 vs. 262), and the number of queries with
reduced performance after reformulation is better for Query
Reduction (i.e., 13 vs. 47).

We can see that the number of queries with preserved results
when applying the Query Reduction is very large (86%). As
explained before, these can be explained by the fact that this
technique is rather conservative and it only eliminates words
from the query in few cases, keeping the query unchanged in
many cases. In addition, most individual expansion strategies
result in higher decrease in performance in the case of the
negative results than Refoqus. We conclude that there is a
higher risk to use them over Refoqus. In further support of
that conclusion, Table VI reports the results of the Mann-
Whitney Test performed between the results of Refoqus and
each baseline, respectively. The tests indicate that Refoqus
achieves statistically significant better results compared to each

849



TABLE V
COMPARISON BETWEEN Refoqus AND THE BASELINE REFORMULATION TECHNIQUES

Technique #Queries #Improved Improvement #Worsened Worsening #PreservedMean Q1 Q2 Q3 Min. Max. Mean Q1 Q2 Q3 Min. Max.
Query Reduction 282 47 78 4 15 33 1 530 13 15 2 4 20 1 59 242
Rocchio Expansion 282 124 166 3 14 148 1 5,286 130 100 6 28 127 1 1,280 28
RSV Expansion 282 146 233 4 21 178 1 4,843 114 148 5 29 103 1 4,529 22
Dice Expansion 282 127 266 4 32 237 1 5,197 137 314 5 52 204 1 12,829 18
Refoqus 282 146 262 4 23 166 1 5,286 47 100 5 19 86 1 970 89

TABLE VI
MANN-WHITNEY RESULT (P-VALUE) AND MEAN OF THE DIFFERENCES

Test p-value mean
Refoqus vs Reduction <0.0001 -112
Refoqus vs Rocchio Expansion <0.0001 -92
Refoqus vs RSV Expansion <0.0001 -58
Refoqus vs Dice Expansion <0.0001 -152

baseline. Indeed, the mean of differences is negative, showing
that Refoqus achieves, on average, lower (and thus better)
effectiveness measures for the queries. RQ3 answer. Refoqus
outperforms all the baseline reformulation approaches.

VI. THREATS TO VALIDITY

This section discusses the threats to validity that could affect
this study, namely construct, internal, conclusion, and external
validity threats.

Threats to construct validity concern the relationship be-
tween theory and observation. We evaluated Refoqus using
a query performance measure (i.e., effectiveness), which is
widely used in concept/feature location studies since it pro-
vides a quite good estimation of the effort that a developer
needs to spend in a feature location task.

Threats to internal validity concern co-factors that could
influence our results. In our study we automatically extracted
a set of queries from the online bug tracking system of the
object systems. Such queries are approximations of actual user
queries. However, developers are often faced with unfamiliar
systems, in which cases they must rely on outside sources of
information (as bug reports) to formulate queries during TR-
based concept location. Thus, we believe that the approach
used in our experimentation resembles real usage scenarios.
Nevertheless, in order to mitigate such a threat we also asked
a Ph.D. student to manually formulate queries as well.

This is the first work that makes use of the 28 measures
that capture different properties of a query and the four
reformulation techniques. We do not know at this stage how
would the results be affected if we use other measures or
reformulation strategies. The same is true for the number
of documents in the result list used to suggest expansion
terms and the number of terms included in the query during
expansion. We used the values of 5 and 10, respectively, but
we do not know at this stage how using different values would
impact the results. We also do not know how the results would
change if we increased the size of the training data sets.

Threats to conclusion validity concern the relationship be-
tween treatment and outcome. Where appropriate, we used
non-parametric statistical tests (Mann-Whitney) to show sta-
tistical significance for the obtained results.

Threats to external validity concern generalization of the
obtained results. In order to mitigate this threat, we selected

five software systems from diverse domains, implemented in
two programming languages, i.e., Java and C++. A larger set
of queries and more systems would strengthen the results from
this perspective. Also, we only used a single TR engine (i.e.,
Lucene). The results may differ when using other TR engines.

The last threat to external validity is related to the fact
that we only evaluated the proposed approach for the task
of TR-based concept location. Thus, we cannot (and do not)
generalize the results to other SE tasks.

VII. RELATED WORK

In the field of TR, query reformulation has long been
established as a way to improve the results returned by an
TR engine [13]. Various approaches have been proposed over
time, which fall in two main categories: query reduction [19],
[20] and query expansion [11] approaches.

In SE, a few works have also taken advantage of query
reformulation strategies in order to improve SE tasks supported
by TR. Each of these works fall in one of two categories.
The first category includes approaches which rely on the
involvement of the user to reformulate the query, while the
second includes automatic techniques.

A few studies have investigated the manual reformulation
of queries by developers. Query reformulation using ontology
fragments has been investigated in the context of concept
location by Petrenko et al. [21]. In this work, developers
build and update ontology fragments which capture their
knowledge of the system and then reformulate queries based
on these fragments, leading to improved results. Starke et al.
[22] have studied how developers search source code when
performing corrective tasks on an unfamiliar system. Their
findings indicate that even after several reformulations some
developers are unable to locate the information they need.
These studies provide motivation for our work as they support
the need for automatic techniques for query reformulation.

A semi-automated (i.e., interactive) approach for refor-
mulating the queries, which requires the intervention of a
developer, is based on using user relevance feedback. In this
approach, the developer needs to analyze the list of results
returned by the TR engine and provide feedback about the
relevance of the top returned documents. The query is then
automatically reformulated, usually by including terms from
the relevant documents and excluding terms from irrelevant
ones (as marked by the user). The goal of this approach is
to get the meaning of the query closer to that of relevant
documents [13]. Papers that make use of this approach in SE
include [2] and [23], where user relevance feedback is used to
improve TR-based traceability link recovery between various
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types of software artifacts, and [3], which uses the approach in
the context of concept location in code. The results suggest that
user relevance feedback generally benefits SE tasks. However,
they also underline that it is not always the solution.

A few papers have investigated automated query reformu-
lations, as we do in this paper. These approaches are usually
based on reformulating the query using words that are either
similar or related in some way to the query terms. Some of
these approaches determine word relations based solely on
their usage in source code. For example, Marcus et al. [5] have
used Latent Semantic Indexing in order to determine the most
similar terms to the query from the source code and include
them in the query. Yang et al. [6] use the context in which
query words are found in the source code to extract synonyms,
antonyms, abbreviations and related words to include them in
the reformulated query. Hill et al. [24] also use word context
in order to extract possible query expansion terms from the
code. Shepherd et al. [25] build a code search tool that expands
search queries with alternative words learned from verb-direct
object pairs. Other approaches make use of external sources
of information in order to determine the related words that
should be included in the query [4].

A common feature of these automated techniques is that
they utilize the same reformulation strategy, regardless of
the query or system used. In contrast, Refoqus chooses and
recommends the best reformulation strategy for each given
query and system.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced in premiere an approach (Refoqus) based
on machine learning that automatically recommends the best
reformulation strategy for a textual query used in TR applica-
tions in SE. We evaluated Refoqus in the context of TR-based
concept location in source code. Refoqus outperformed a set of
baselines and its recommendations lead to query performance
improvement or preservation in 84% of the cases. We also
found that training Refoqus with data from the project where
the new queries are to be issued is better than using cross-
project data for training. Relatively small data sets used for
training lead to very good results. The results are even more
impressive when considering that Refoqus does not use any
user feedback and does not consider any external knowledge
sources. We expect that better recommenders can be built using
Refoqus and user feedback. We also believe that Refoqus can
be used equally well for other TR-based applications in SE,
using other type of data. Future work will address this issue.
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