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In thIs specIal issue of IEEE Soft-
ware, we invited submissions that re-
flected the benefits (and drawbacks) of 
software analytics. The response was 
overwhelming. Software analytics is 
an area of explosive growth, and we 
had so many excellent submissions 
that we had to split this special issue 
into two volumes—you’ll see even 
more content in the September/Octo-
ber issue. We divided the articles on 
conceptual grounds, so both volumes 
will feature equally excellent work.

To better frame these articles, we of-
fer some definitions and historical per-
spectives on software analytics. Specifi-
cally, we describe where the field was, where 
it is, and where it might be going.

What Is software analytics?
Thanks to the Internet and open source, there’s 
now so much data about software projects that it’s 
impossible to manually browse through it all:

• As of late 2012, our Web searches show that Mozilla 
Firefox had 800,000 bug reports, and platforms such as 
Sourceforge.net and GitHub hosted 324,000 and 11.2 mil-
lion projects, respectively.
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• The PROMISE repository of soft-
ware engineering data has grown 
to more than 100 projects and is 
just one of more than a dozen open 
source repositories that are readily 
available to industrial practitioners 
and researchers; see Table 1 for 
more. 

To handle this data, many practi-
tioners and researchers have turned 
to analytics—that is, the use of analy-
sis, data, and systematic reasoning for 
making decisions.1 We can define soft-
ware analytics as follows: “Software 
analytics is analytics on software data 
for managers and software engineers 
with the aim of empowering software 
development individuals and teams to 
gain and share insight from their data 
to make better decisions.”2

Such insights include, but might not 
be limited to, actionable advice on how 
to improve software projects. Due to 
the volume of data, finding these in-
sights typically requires some degree of 

automation, usually combined with hu-
man involvement. As the “Applications 
of Software Analytics” sidebar shows, 
augmenting analytics with automation 
has led to impressive results in a wide 
range of application areas. 

analytics Must Be Real 
time and actionable
An important part of software analyt-
ics is that they include actionable ad-
vice. For example, if the manager is 
driving toward a cliff, we don’t want 
to distract her with analytics telling her 
about the clouds in the sky or the flow-
ers on the side of the road. Instead, we 
want our smart analytics to shout in 
her ear, “There’s a cliff up ahead! Turn 
left immediately!”

What happens next is up to the 
manager (who might elect to ignore this 
advice and make some decision based 
on his or her own gut instincts; http://
newsroom.accenture.com/art icle_ 
display.cfm?article_id=4777). But we 
know from our own experience that if 

we don’t deliver relevant advice, then 
there’s little hope that a manager will 
use any of our analytics advice. 

In practice, actionable analytics 
means that those analytics must be 
available in real time—faster than the 
rate of change of effects within a proj-
ect. Decisions should be based on re-
cent, not outdated, data. This is an 
important point to make because tradi-
tional data collection and analysis tech-
niques might be too slow. For example, 
at an International Conference on Soft-
ware Engineering, Forrest Shull, the ed-
itor in chief of this magazine, told his 
audience in a tutorial that the current 
pace of manual methods in empirical 
software engineering might not keep up 
with the fast pace of modern agile soft-
ware practices.3 

As to what constitutes real time, 
that’s a domain-dependent issue. For 
example, for stock trading, real time 
might mean microseconds, whereas for 
process change in an organization, it 
might mean before the December merit 
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 1 Repositories of software engineering data.

Repository URL

Bug Prediction Dataset http://bug.inf.usi.ch 

Eclipse Bug Data www.st.cs.uni-saarland.de/softevo/bug-data/eclipse 

FLOSSMetrics http://flossmetrics.org 

FLOSSMole http://flossmole.org 

International Software Benchmarking Standards Group (IBSBSG) www.isbsg.org 

ohloh www.ohloh.net 

PROMISE http://promisedata.googlecode.com 

Qualitas Corpus http://qualitascorpus.com 

Software Artifact Repository http://sir.unl.edu 

SourceForge Research Data http://zerlot.cse.nd.edu 

Sourcerer Project http://sourcerer.ics.uci.edu 

Tukutuku www.metriq.biz/tukutuku 

Ultimate Debian Database http://udd.debian.org



 July/August 2013  | IEEE softwArE  33

applIcatIons of softWaRe analytIcs
We offer here a partial list of software project artifacts that have 
been studied within software analytics. For more examples, see 
the rest of this special issue as well as recent conference proceed-
ings of the PROMISE conference, the Mining Software Repositories 
(MSR) conference, and any other conference or journal on soft-
ware engineering:

• combining software product information with apps store 
data1,2; 

• using process data to predict overall project effort3;
• using software process models to learn effective project 

changes4; 
• using operating system logs that predict software power 

consumption5;  
• exploring product line models to configure new applications6;
• mining natural language requirements to find links between 

components7;
• mining performance data8,9;
• using XML descriptions of design patterns to recommend 

particular designs10; 
• using email lists to understand the human networks inside 

software teams11; 
• linking emails to source code artifacts and classifying their 

content12;
• using execution traces to learn normal interface usage 

patterns13; 
• using bug databases to learn defect predictors that guide 

inspection teams to where the code is most likely to fail14–16 
and to classify changes as clean or buggy17; 

• using security data to identify indicators for software 
vulnerabilities18;

• using visualization to support program comprehension19;
• using software ontologies to enable natural language que-

ries20; and
• mining code clones to assess the implications of cloning and 

copy/paste in software.21,22 
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awards. For more details on this real-
time approach to analytics, see “Lever-
aging the Crowd: How 48,000 Users 
Helped Improve Lync Performance” by 
Robert Musson and his colleagues in 
this special issue. 

analytics Means— 
sharing Information
To a large extent, analytics is about what 
software projects can learn from them-
selves and each other. Looking back at 
decades of research in this area, we see 
claims that software analytics let us 
share different things between projects:

• sharing models (one of the early 
models was proposed by Fumio Aki-
yama and says that we should expect 
more than a dozen bugs per KLOC; 
see the sidebar “Early ‘Global’ Mod-
els and Software Analytics”),

• sharing insights (for example, 
Christian Bird and his colleagues 
found that in the case of Windows 
Vista, it’s possible to build high-
quality software using distributed 
teams, just as long as the manage-
ment is structured around code 
functionality—who works on 

what—and not merely on geogra-
phy—who sits where4),

• sharing data (as in Table 1’s list of 
repositories), and

• sharing methods (the techniques 
by which we can convert data into 
models to find local models).

The ordering of the items in this list 
is very significant. We’ve seen a ma-
jor change in the nature of software 
analytics. In the past, most research 
focused on the start of this list and 
searched for general models; today, it 
focuses on the end of this list (sharing 
general methods) to enable the discov-
ery of local lessons.

Forty years ago, the goal was to find 
and share “the” model of software de-
velopment, which assumed a single 
model existed that was global to all 
software projects. But more recently, 
the goal of analytics has changed—the 
research community has accepted that 
lessons learned from one project can’t 
always be applied verbatim to another. 
For example, as one of us (Zimmer-
mann) reported at the 2009 Interna-
tional Symposium on the Foundations 
of Software Engineering, a model that 

predicts defects in Internet Explorer may 
not be able to predict defects in Firefox. 

Rather than searching for global 
models, the focus is now on local 
methods. This shift was caused by two 
developments. In the late 20th century, 
a whole new generation of data mining 
algorithms became available, along 
with large amounts of data from 
open source projects. Consequently, 
more researchers applied more mining 
algorithms to more data.5 A side effect 
of all that work was the growing 
realization that one global model 
wouldn’t cover all software projects. 

The ability to quickly reason about 
large amounts of data from a particular 
site has become of vital importance—
we used to expect that we could share 
models, but if project models are proj-
ect-specific, and if we reuse your model 
on our project, it could lead to inappro-
priate and costly management decisions. 
It has become more important today to 
discuss and document the methods by 
which a data scientist might turn local 
data into relevant and useful local mod-
els (a catalog of such methods appears 
at http://research.microsoft.com/en-us/
events/dapse2013).

eaRly “GloBal” Models  
and softWaRe analytIcs 
As soon as people started programming, it became apparent 
that programming was an inherently buggy process. As recalled 
by Maurice Wilkes,1 speaking of his programming experiences 
from the early 1950s: “It was on one of my journeys between the 
EDSAC room and the punching equipment that ‘hesitating at the 
angles of stairs’ the realization came over me with full force that a 
good part of the remainder of my life was going to be spent in find-
ing errors in my own programs.” 

It took several decades to gather the experience required to 
quantify the size/defect relationship. In 1971, Fumio Akiyama2 de-
scribed the first known “size” law, saying the number of defects 
D was a function of the number of LOC; specifically, D = 4.86 + 
0.018 * i. In 1976, Thomas McCabe argued that the number of LOC 
was less important than the complexity of that code.3 He argued 

that code is more likely to be defective when his “cyclomatic com-
plexity” measure was over 10. 

Not only is programming an inherently buggy process, it’s also 
inherently difficult. Based on data from 63 projects, Barry Boehm4 
proposed in 1981 an estimator for development effort that was ex-
ponential on program size: effort = a * KLOCb * EffortMultipliers, 
where 2.4 ≤ a ≤ 3 and 1.05 ≤ b ≤ 1.2.
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General principles for 
analytics and the need  
for skilled people
Any field needs some general principles 
to guide

• novices in their journey from be-
ginner to expert,

• managers when they assess poten-
tial hires,

• academics when they design sub-
jects or degrees,

• professional bodies when they de-
sign accreditation programs,

• the identification of gaps in current 
techniques, and

• the design and implementation of 
new and better techniques.

The sidebar “Principles for Soft-
ware Analytics” offers some tips 
on how to do this. Note that they’re 
more concerned with usage patterns 
and interactions with the consumer 
of data insights than with particular 
algorithms.

In the era of Google-style inference 
and cloud computing, it’s a common 
belief that a company can analyze large 
amounts of data merely by building 
(or renting) a CPU farm, then running 
some distributed algorithms, perhaps 

using Hadoop (http://hadoop.apache.
org) or some other distributed inference 
mechanism. 

This isn’t the case. In our experience, 
while having many CPUs is (sometimes) 
useful, the factors that select success-
ful software analytics rarely include 
the hardware. More important than the 
hardware is how that hardware is used 
by skilled data scientists. 

Another misconception we often see 
relates to the role of software. Some 
managers think that if they acquire the 
right software tools—Weka, Matlab, 
and so on—then all their analytical 
problems will be instantly solved. 

pRIncIples foR softWaRe analytIcs 
Recently, in the Inductive Engineering Manifesto, we made some 
notes on what characterizes the difference between academic 
and industrial data mining.1 We systematized the results of that 
analysis into the following seven principles:

 1. Users before algorithms. Data mining algorithms are only use-
ful in industry if users fund their use in real-world applica-
tions. The user perspective is vital to inductive engineering. 
The space of models that can be generated from any dataset 
is very large. If we understand and apply user goals, then 
we can quickly focus an inductive engineering project on the 
small set of most crucial issues.

 2. Plan for scale. In any industrial application, the data min-
ing method is repeated multiples time to answer an extra 
user question, make some enhancement and/or bug fix to 
the method, or to deploy it to a different set of users. That 
is, for serious studies, to ensure repeatability, the entire 
analysis should be automated using some high-level scripting 
language. 

 3. Early feedback. Continuous and early feedback from users 
allows needed changes to be made as soon as possible and 
without wasting heavy up-front investment. Prior to conduct-
ing very elaborate studies, tray applying very simple tools to 
gain rapid early feedback.

 4. Be open-minded. It’s unwise to enter into an inductive study 
with fixed hypotheses or approaches, particularly for data that 
hasn’t been mined before. Don’t resist exploring additional 
avenues when a particular idea doesn’t work out. We advise 
this because data likes to surprise: initial results often change 

the goals of a study when business plans are based on issues 
irrelevant to local data.

 5. Do smart learning. Important outcomes are riding on your con-
clusions. Make sure that you check and validate them. There 
are many such validation methods such as repeat the analysis 
N times on, say, 90 percent of the available data—then check 
how well your conclusions hold across all those samples.

 6. Live with the data you have. You go mining with the data you 
have, not the data you might want or wish to have at a later 
time. Because we may not have control over how data is 
collected, it’s wise to cleanse the data prior to learning. For 
example, before learning from a dataset, conduct instance 
or feature selection studies to see what spurious data can be 
removed.2

 7. Broad skill set, big toolkit. Successful inductive engineers 
routinely try multiple inductive technologies. To handle the 
wide range of possible goals of different goals, an inductive 
engineer should be ready to deploy a wide range of tools. Note 
that the set of useful inductive technologies is large and con-
stantly changing. So use tools supported by a large ecosys-
tem of developers who are constantly building new learners 
and fixing old ones.

References
 1. T. Menzies et al., “The Inductive Software Engineering Manifesto: Principles 

for Industrial Data Mining,” Proc. Int’l Workshop Machine Learning Technolo-
gies in Software Eng. (MALETS), 2011; http://menzies.us/pdf/11manifesto.
pdf.

 2. M. Shepperd et al., “Data Quality: Some Comments on the NASA Software 
Defect Data Sets,” to be published in IEEE Trans. Software Eng., 2013.



36 IEEE softwArE  | www.computEr.org/softwArE

FOCUS: Guest editors’ introduction

Nothing could be further from the 
truth. All the standard data analysis 
toolkits come with built-in assump-
tions that might be suitable for par-
ticular domains. Hence, a premature 
commitment to particular automatic 
analysis tools can be counterproduc-
tive. When it isn’t clear what the im-
portant factors in a domain are, a data 
scientist must make many ad hoc que-
ries, to clarify the issues in that do-
main. Subsequently, once the analysis 
method stabilizes, it becomes possible 
to build tools to automate the routine 
and repeated analysis tasks. 

In practice, most analytics projects 
mature by moving up along the curve 
in Figure 1. Initially, we might start in 
the blue and then move into the orange 
region. This diagram leads to one of 
our favorite mantras for software ana-
lytics: for new or infrequent problems, 
deploy the data scientists before de-
ploying tools. 

different and distinct 
Kinds of analytics
Expert data scientists know that they 
must choose their methods to best 

match the distinctive features of their 
particular kind of analytics. As this 
field matures, we’ll see more and more 
recognition of distinct subtypes of ana-
lytics, each requiring different tools and 
techniques. Here are the distinctions we 
can see within current work on software 
analytics—it’s hardly a complete set, 
and it will certainly change over time. 
However, we make this list to make the 
point that “analytics” is a broad area 
with many exciting and challenging is-
sues and room for development.

The first important distinction is 
between internal and external analyt-
ics, both of which have significant im-
plications. In this context, one issue is 
live versus stale data: while the internal 
team can access current data, there are 
many practical challenges associated 
with shipping a copy of the data outside 
the organization’s firewalls to an exter-
nal team. A second issue is privacy. If 
an external team wants to access the 
data, it might have to perform some an-
onymization of the information. This 
can be a problem because altering data 
even to ensure privacy can damage the 
signal in that data. Recently, we’ve had 

some success with an instance-based 
privacy algorithm that clears the space 
around each example, then jumps the 
remaining data some small distance 
into that cleared space. The resulting 
data contains none of the original in-
dividuals, but preserves the hyperspace 
boundaries between conclusions.6

Another important distinction is 
between quantitative and qualitative 
methods. Quantitative methods in-
clude the traditional automatable tasks 
performed by statistical packages and 
data mining tools,7,8 whereas qualita-
tive methods are typically more manual 
and require extensive user interaction. 
A common myth with qualitative meth-
ods is that they’re less-than-rigorous 
and somehow less useful than quantita-
tive methods, but we haven’t found this 
to be the case. See “Developer Dash-
boards: The Need for Qualitative An-
alytics” by Olga Baysal, Reid Holmes, 
and Michael Godfrey in this issue for 
an excellent example.

Yet another important distinction is 
between data mining tools and interac-
tive tools. Data mining tools are typi-
cally automatic and run to produce one 
conclusion, whereas visualization tools 
give users more control over the out-
put and the ability to generate ad hoc 
on-the-fly reports on any aspect of the 
data. Much current software analytics 
work is focused on data mining, but 
this issue features some exceptions to 
this rule, which can be found in both 
the roundtable discussion and “Look-
ing under the Lamppost for Useful 
Software Analytics” by Philip Johnson.

It’s also important to distinguish the 
audience for analytics results, which 
could include developers, testers, devel-
opment leads, test leads, managers, and 
researchers, all of whom have different 
analysis and data needs.9

Finally, we wish to distinguish ex-
ploratory versus deployment analytics. 
In an exploratory analytical study, it’s 
often unclear how to add value to the 
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Build tools for
frequent questions

Use data scientists for
infrequent questions

FiGure 1. The frequency of analytics questions. A small number of questions are very 

frequent and therefore should be supported by tools (orange region), whereas the long tail 

of questions that are more unique and asked less frequently should be addressed by data 

scientists (blue). As the analytics domain matures, we expect the orange area to grow because 

tools will become more powerful and cheaper to develop.
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business using analytics. Hence, in this 
stage, a data scientist’s work is often 
preliminary and perhaps includes many 
dead ends. If the exploratory results 
are successful, there might be a busi-
ness case for moving to deployment an-
alytics. In this second phase, the goals 
are better understood, and the team 
(which might be much larger than the 
preliminary analytics team) works to 
integrate the analysis method into the 
organization’s information systems. If 
the preliminary analysis takes weeks 
to months, deployment analytics can 
take months to years. For an example 
of the cost and benefits of deployment 
analytics, see “CODEMINE: Building 
a Software Development Data Analyt-
ics Platform at Microsoft” by Jacek  
Czerwonka and his colleagues in this 
special issue.

t his is an exciting time for 
those of us involved in data 
science and software analytics. 

Looking into the very near future, we 
can only predict more use of analytics. 
By 2020, we would predict

• more and different data,
• more algorithms,
• faster decision making with the 

availability of more data and faster 
release cycles,

• more people involved in analytics 
as it becomes more routine to mine 
data,

• more education as more people 
analyze and work with data,

• more roles for data scientists and 
developers as this field matures 
with specialized subareas,

• more real-time analytics to address 
the challenges of quickly finding 
patterns in big data,

• more analytics for software systems 
such as mobile apps and games, and

• more impact of social tools in 
analytics. 

As an example of this last point, 
check out “Human Boosting” by Harsh 
Pareek and Pradeep Ravikumar, which 
discusses how to boost human learning 
with the help of data miners.10 In the 
very near future, this kind of human(s)-
in-the-loop analytics will become much 
more prevalent.
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