
FOCUS: Guest editors’ introductionFOCUS: Guest editors’ introduction

In thIs specIal issue of IEEE Soft-
ware, we invited submissions that re-
flected the benefits (and drawbacks) of
software analytics. The response was
overwhelming. Software analytics is
an area of explosive growth, and we
had so many excellent submissions
that we had to split this special issue
into two volumes—you’ll see even
more content in the September/Octo-
ber issue. We divided the articles on
conceptual grounds, so both volumes
will feature equally excellent work.

To better frame these articles, we of-
fer some definitions and historical per-
spectives on software analytics. Specifi-
cally, we describe where the field was, where
it is, and where it might be going.

What Is software analytics?
Thanks to the Internet and open source, there’s
now so much data about software projects that it’s
impossible to manually browse through it all:

• As of late 2012, our Web searches show that Mozilla
Firefox had 800,000 bug reports, and platforms such as
Sourceforge.net and GitHub hosted 324,000 and 11.2 mil-
lion projects, respectively.

Software Analytics:

So What?
Tim Menzies, West Virginia University

Thomas Zimmermann, Microsoft Research

074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E July/August 2013 | IEEE softwArE 31

32 IEEE softwArE | www.computEr.org/softwArE

FOCUS: Guest editors’ introduction

• The PROMISE repository of soft-
ware engineering data has grown
to more than 100 projects and is
just one of more than a dozen open
source repositories that are readily
available to industrial practitioners
and researchers; see Table 1 for
more.

To handle this data, many practi-
tioners and researchers have turned
to analytics—that is, the use of analy-
sis, data, and systematic reasoning for
making decisions.1 We can define soft-
ware analytics as follows: “Software
analytics is analytics on software data
for managers and software engineers
with the aim of empowering software
development individuals and teams to
gain and share insight from their data
to make better decisions.”2

Such insights include, but might not
be limited to, actionable advice on how
to improve software projects. Due to
the volume of data, finding these in-
sights typically requires some degree of

automation, usually combined with hu-
man involvement. As the “Applications
of Software Analytics” sidebar shows,
augmenting analytics with automation
has led to impressive results in a wide
range of application areas.

analytics Must Be Real
time and actionable
An important part of software analyt-
ics is that they include actionable ad-
vice. For example, if the manager is
driving toward a cliff, we don’t want
to distract her with analytics telling her
about the clouds in the sky or the flow-
ers on the side of the road. Instead, we
want our smart analytics to shout in
her ear, “There’s a cliff up ahead! Turn
left immediately!”

What happens next is up to the
manager (who might elect to ignore this
advice and make some decision based
on his or her own gut instincts; http://
newsroom.accenture.com/art icle_
display.cfm?article_id=4777). But we
know from our own experience that if

we don’t deliver relevant advice, then
there’s little hope that a manager will
use any of our analytics advice.

In practice, actionable analytics
means that those analytics must be
available in real time—faster than the
rate of change of effects within a proj-
ect. Decisions should be based on re-
cent, not outdated, data. This is an
important point to make because tradi-
tional data collection and analysis tech-
niques might be too slow. For example,
at an International Conference on Soft-
ware Engineering, Forrest Shull, the ed-
itor in chief of this magazine, told his
audience in a tutorial that the current
pace of manual methods in empirical
software engineering might not keep up
with the fast pace of modern agile soft-
ware practices.3

As to what constitutes real time,
that’s a domain-dependent issue. For
example, for stock trading, real time
might mean microseconds, whereas for
process change in an organization, it
might mean before the December merit

ta
b

l
e

 1 Repositories of software engineering data.

Repository URL

Bug Prediction Dataset http://bug.inf.usi.ch

Eclipse Bug Data www.st.cs.uni-saarland.de/softevo/bug-data/eclipse

FLOSSMetrics http://flossmetrics.org

FLOSSMole http://flossmole.org

International Software Benchmarking Standards Group (IBSBSG) www.isbsg.org

ohloh www.ohloh.net

PROMISE http://promisedata.googlecode.com

Qualitas Corpus http://qualitascorpus.com

Software Artifact Repository http://sir.unl.edu

SourceForge Research Data http://zerlot.cse.nd.edu

Sourcerer Project http://sourcerer.ics.uci.edu

Tukutuku www.metriq.biz/tukutuku

Ultimate Debian Database http://udd.debian.org

 July/August 2013 | IEEE softwArE 33

applIcatIons of softWaRe analytIcs
We offer here a partial list of software project artifacts that have
been studied within software analytics. For more examples, see
the rest of this special issue as well as recent conference proceed-
ings of the PROMISE conference, the Mining Software Repositories
(MSR) conference, and any other conference or journal on soft-
ware engineering:

• combining software product information with apps store
data1,2;

• using process data to predict overall project effort3;
• using software process models to learn effective project

changes4;
• using operating system logs that predict software power

consumption5;
• exploring product line models to configure new applications6;
• mining natural language requirements to find links between

components7;
• mining performance data8,9;
• using XML descriptions of design patterns to recommend

particular designs10;
• using email lists to understand the human networks inside

software teams11;
• linking emails to source code artifacts and classifying their

content12;
• using execution traces to learn normal interface usage

patterns13;
• using bug databases to learn defect predictors that guide

inspection teams to where the code is most likely to fail14–16
and to classify changes as clean or buggy17;

• using security data to identify indicators for software
vulnerabilities18;

• using visualization to support program comprehension19;
• using software ontologies to enable natural language que-

ries20; and
• mining code clones to assess the implications of cloning and

copy/paste in software.21,22

References
 1. M. Harman, Y. Jia, and Y. Zhang, “App Store Mining and Analysis: MSR for

App Stores,” Proc. Mining Software Repositories, IEEE, 2012, pp. 108–111.
 2. I.J.M. Ruiz et al., “Understanding Reuse in the Android Market,” Proc. 20th

IEEE Int’l Conf. Program Comprehension (ICPC), IEEE, 2012, pp. 113–122.
 3. E. Kocaguneli, T. Menzies, and J. Keung, “On the Value of Ensemble Effort

Estimation,” to be published in IEEE Trans. Software Eng.; http://menzies.us/
pdf/11comba.pdf.

 4. D. Rodríguez et al., “Multiobjective Simulation Optimisation in Software
Project Management,” Proc. Genetic and Evolutionary Computation Conf.,
ACM, 2011, pp. 1883–1890.

 5. A. Hindle, “Green Mining: A Methodology of Relating Software Change to
Power Consumption,” Proc. Mining Software Repositories, IEEE, 2012, pp.
78–87.

 6. A. Salam Sayyad, T. Menzies, and H. Ammar, “On the Value of User
Preferences in Search-Based Software Engineering: A Case Study in
Software Product Lines,” to be published in Proc. Int’l Conf. Software
Eng., IEEE CS, 2013.

 7. J. Huffman Hayes et al., “Advancing Candidate Link Generation for Require-
ments Tracing: The Study of Methods,” IEEE Trans. Software Eng., vol. 32,
no. 1, 2006, pp. 4–19.

 8. Z. Ming Jiang et al., “Automated Performance Analysis of Load Tests,” Proc.
Intl. Conf. Software Maintenance, IEEE, 2009, pp. 125–134.

 9. S. Han et al., “Performance Debugging in the Large via Mining Millions of
Stack Traces,” Proc. Int’l Conf. Software Eng., IEEE CS, 2012, pp. 145–155.

 10. F. Palma, H. Farzin, and Y.-G. Gueheneuc, “Recommendation System for
Design Patterns in Software Development: A DPR Overview,” Proc. 3rd Int’l
Workshop Recommendation Systems for Software Eng., IEEE, 2012, pp.
1–5.

 11. C. Bird et al., “Mining Email Social Networks,” Proc. Mining Software
Repositories, ACM, 2006, pp. 137–143.

 12. A. Bacchelli et al., “Content Classification of Development Emails,” Proc.
Int’l Conf. Software Eng., IEEE CS, 2012, pp. 375–385.

 13. N. Gruska, A. Wasylkowski, and A. Zeller, “Learning from 6,000 Projects:
Lightweight Cross-Project Anomaly Detection,” Proc. 19th Int’l Symp.
Software Testing and Analysis (ISSTA), ACM, 2010, pp. 119–130.

 14. T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static Code
Attributes to Learn Defect Predictors,” IEEE Trans. Software Eng., Jan.
2007; http://menzies.us/pdf/06learnPredict.pdf.

 15. T.J. Ostrand, E.J. Weyuker, and R.M. Bell, “Where the Bugs Are,” Proc.
2004 ACM SIGSOFT Int’l Symp. Software Testing and Analysis, ACM, 2004,
pp. 86–96.

 16. S. Kim et al., “Predicting Faults from Cached History,” Proc. Int’l Conf.
Software Eng., IEEE CS, 2007, pp. 489-498.

 17. S. Kim, E.J. Whitehead Jr., and Y. Zhang, “Classifying Software Changes:
Clean or Buggy?,” IEEE Trans. Software Eng., vol. 34, no. 2, 2008, pp.
181–196.

 18. Y. Shin et al., “Evaluating Complexity, Code Churn, and Developer Activity
Metrics as Indicators of Software Vulnerabilities,” IEEE Trans. Software
Eng., vol. 37, no. 6, 2011, pp. 772–787.

 19. R. Wettel, M. Lanza, and R. Robbes, “Software Systems as Cities: A
Controlled Experiment,” Proc. Int’l Conf. Software Eng., IEEE CS, 2011, pp.
551–560.

 20. M. Würsch et al., “Supporting Developers with Natural Language Queries,”
Proc. Int’l Conf. Software Eng., IEEE CS, 2010, pp. 165–174.

 21. M. Kim et al., “An Empirical Study of Code Clone Genealogies,” Proc.
European Software Eng. Conf., ACM, 2005, pp. 187–196.

 22. C. Kapser and M.W. Godfrey, “Cloning Considered Harmful,” Proc. Working
Conf. Reverse Eng., IEEE, 2006, pp. 19–28.

34 IEEE softwArE | www.computEr.org/softwArE

FOCUS: Guest editors’ introduction

awards. For more details on this real-
time approach to analytics, see “Lever-
aging the Crowd: How 48,000 Users
Helped Improve Lync Performance” by
Robert Musson and his colleagues in
this special issue.

analytics Means—
sharing Information
To a large extent, analytics is about what
software projects can learn from them-
selves and each other. Looking back at
decades of research in this area, we see
claims that software analytics let us
share different things between projects:

• sharing models (one of the early
models was proposed by Fumio Aki-
yama and says that we should expect
more than a dozen bugs per KLOC;
see the sidebar “Early ‘Global’ Mod-
els and Software Analytics”),

• sharing insights (for example,
Christian Bird and his colleagues
found that in the case of Windows
Vista, it’s possible to build high-
quality software using distributed
teams, just as long as the manage-
ment is structured around code
functionality—who works on

what—and not merely on geogra-
phy—who sits where4),

• sharing data (as in Table 1’s list of
repositories), and

• sharing methods (the techniques
by which we can convert data into
models to find local models).

The ordering of the items in this list
is very significant. We’ve seen a ma-
jor change in the nature of software
analytics. In the past, most research
focused on the start of this list and
searched for general models; today, it
focuses on the end of this list (sharing
general methods) to enable the discov-
ery of local lessons.

Forty years ago, the goal was to find
and share “the” model of software de-
velopment, which assumed a single
model existed that was global to all
software projects. But more recently,
the goal of analytics has changed—the
research community has accepted that
lessons learned from one project can’t
always be applied verbatim to another.
For example, as one of us (Zimmer-
mann) reported at the 2009 Interna-
tional Symposium on the Foundations
of Software Engineering, a model that

predicts defects in Internet Explorer may
not be able to predict defects in Firefox.

Rather than searching for global
models, the focus is now on local
methods. This shift was caused by two
developments. In the late 20th century,
a whole new generation of data mining
algorithms became available, along
with large amounts of data from
open source projects. Consequently,
more researchers applied more mining
algorithms to more data.5 A side effect
of all that work was the growing
realization that one global model
wouldn’t cover all software projects.

The ability to quickly reason about
large amounts of data from a particular
site has become of vital importance—
we used to expect that we could share
models, but if project models are proj-
ect-specific, and if we reuse your model
on our project, it could lead to inappro-
priate and costly management decisions.
It has become more important today to
discuss and document the methods by
which a data scientist might turn local
data into relevant and useful local mod-
els (a catalog of such methods appears
at http://research.microsoft.com/en-us/
events/dapse2013).

eaRly “GloBal” Models
and softWaRe analytIcs
As soon as people started programming, it became apparent
that programming was an inherently buggy process. As recalled
by Maurice Wilkes,1 speaking of his programming experiences
from the early 1950s: “It was on one of my journeys between the
EDSAC room and the punching equipment that ‘hesitating at the
angles of stairs’ the realization came over me with full force that a
good part of the remainder of my life was going to be spent in find-
ing errors in my own programs.”

It took several decades to gather the experience required to
quantify the size/defect relationship. In 1971, Fumio Akiyama2 de-
scribed the first known “size” law, saying the number of defects
D was a function of the number of LOC; specifically, D = 4.86 +
0.018 * i. In 1976, Thomas McCabe argued that the number of LOC
was less important than the complexity of that code.3 He argued

that code is more likely to be defective when his “cyclomatic com-
plexity” measure was over 10.

Not only is programming an inherently buggy process, it’s also
inherently difficult. Based on data from 63 projects, Barry Boehm4
proposed in 1981 an estimator for development effort that was ex-
ponential on program size: effort = a * KLOCb * EffortMultipliers,
where 2.4 ≤ a ≤ 3 and 1.05 ≤ b ≤ 1.2.

References
 1. M. Wilkes, Memoirs of a Computer Pioneer, MIT Press, 1985.
 2. F. Akiyama, “An Example of Software System Debugging,” Information

Processing, vol. 71, 1971, pp. 353–359.
 3. T. McCabe, “A Complexity Measure,” IEEE Trans. Software Eng., vol. 2,

no. 4, 1976, pp. 308–320.
 4. B. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

 July/August 2013 | IEEE softwArE 35

General principles for
analytics and the need
for skilled people
Any field needs some general principles
to guide

• novices in their journey from be-
ginner to expert,

• managers when they assess poten-
tial hires,

• academics when they design sub-
jects or degrees,

• professional bodies when they de-
sign accreditation programs,

• the identification of gaps in current
techniques, and

• the design and implementation of
new and better techniques.

The sidebar “Principles for Soft-
ware Analytics” offers some tips
on how to do this. Note that they’re
more concerned with usage patterns
and interactions with the consumer
of data insights than with particular
algorithms.

In the era of Google-style inference
and cloud computing, it’s a common
belief that a company can analyze large
amounts of data merely by building
(or renting) a CPU farm, then running
some distributed algorithms, perhaps

using Hadoop (http://hadoop.apache.
org) or some other distributed inference
mechanism.

This isn’t the case. In our experience,
while having many CPUs is (sometimes)
useful, the factors that select success-
ful software analytics rarely include
the hardware. More important than the
hardware is how that hardware is used
by skilled data scientists.

Another misconception we often see
relates to the role of software. Some
managers think that if they acquire the
right software tools—Weka, Matlab,
and so on—then all their analytical
problems will be instantly solved.

pRIncIples foR softWaRe analytIcs
Recently, in the Inductive Engineering Manifesto, we made some
notes on what characterizes the difference between academic
and industrial data mining.1 We systematized the results of that
analysis into the following seven principles:

 1. Users before algorithms. Data mining algorithms are only use-
ful in industry if users fund their use in real-world applica-
tions. The user perspective is vital to inductive engineering.
The space of models that can be generated from any dataset
is very large. If we understand and apply user goals, then
we can quickly focus an inductive engineering project on the
small set of most crucial issues.

 2. Plan for scale. In any industrial application, the data min-
ing method is repeated multiples time to answer an extra
user question, make some enhancement and/or bug fix to
the method, or to deploy it to a different set of users. That
is, for serious studies, to ensure repeatability, the entire
analysis should be automated using some high-level scripting
language.

 3. Early feedback. Continuous and early feedback from users
allows needed changes to be made as soon as possible and
without wasting heavy up-front investment. Prior to conduct-
ing very elaborate studies, tray applying very simple tools to
gain rapid early feedback.

 4. Be open-minded. It’s unwise to enter into an inductive study
with fixed hypotheses or approaches, particularly for data that
hasn’t been mined before. Don’t resist exploring additional
avenues when a particular idea doesn’t work out. We advise
this because data likes to surprise: initial results often change

the goals of a study when business plans are based on issues
irrelevant to local data.

 5. Do smart learning. Important outcomes are riding on your con-
clusions. Make sure that you check and validate them. There
are many such validation methods such as repeat the analysis
N times on, say, 90 percent of the available data—then check
how well your conclusions hold across all those samples.

 6. Live with the data you have. You go mining with the data you
have, not the data you might want or wish to have at a later
time. Because we may not have control over how data is
collected, it’s wise to cleanse the data prior to learning. For
example, before learning from a dataset, conduct instance
or feature selection studies to see what spurious data can be
removed.2

 7. Broad skill set, big toolkit. Successful inductive engineers
routinely try multiple inductive technologies. To handle the
wide range of possible goals of different goals, an inductive
engineer should be ready to deploy a wide range of tools. Note
that the set of useful inductive technologies is large and con-
stantly changing. So use tools supported by a large ecosys-
tem of developers who are constantly building new learners
and fixing old ones.

References
 1. T. Menzies et al., “The Inductive Software Engineering Manifesto: Principles

for Industrial Data Mining,” Proc. Int’l Workshop Machine Learning Technolo-
gies in Software Eng. (MALETS), 2011; http://menzies.us/pdf/11manifesto.
pdf.

 2. M. Shepperd et al., “Data Quality: Some Comments on the NASA Software
Defect Data Sets,” to be published in IEEE Trans. Software Eng., 2013.

36 IEEE softwArE | www.computEr.org/softwArE

FOCUS: Guest editors’ introduction

Nothing could be further from the
truth. All the standard data analysis
toolkits come with built-in assump-
tions that might be suitable for par-
ticular domains. Hence, a premature
commitment to particular automatic
analysis tools can be counterproduc-
tive. When it isn’t clear what the im-
portant factors in a domain are, a data
scientist must make many ad hoc que-
ries, to clarify the issues in that do-
main. Subsequently, once the analysis
method stabilizes, it becomes possible
to build tools to automate the routine
and repeated analysis tasks.

In practice, most analytics projects
mature by moving up along the curve
in Figure 1. Initially, we might start in
the blue and then move into the orange
region. This diagram leads to one of
our favorite mantras for software ana-
lytics: for new or infrequent problems,
deploy the data scientists before de-
ploying tools.

different and distinct
Kinds of analytics
Expert data scientists know that they
must choose their methods to best

match the distinctive features of their
particular kind of analytics. As this
field matures, we’ll see more and more
recognition of distinct subtypes of ana-
lytics, each requiring different tools and
techniques. Here are the distinctions we
can see within current work on software
analytics—it’s hardly a complete set,
and it will certainly change over time.
However, we make this list to make the
point that “analytics” is a broad area
with many exciting and challenging is-
sues and room for development.

The first important distinction is
between internal and external analyt-
ics, both of which have significant im-
plications. In this context, one issue is
live versus stale data: while the internal
team can access current data, there are
many practical challenges associated
with shipping a copy of the data outside
the organization’s firewalls to an exter-
nal team. A second issue is privacy. If
an external team wants to access the
data, it might have to perform some an-
onymization of the information. This
can be a problem because altering data
even to ensure privacy can damage the
signal in that data. Recently, we’ve had

some success with an instance-based
privacy algorithm that clears the space
around each example, then jumps the
remaining data some small distance
into that cleared space. The resulting
data contains none of the original in-
dividuals, but preserves the hyperspace
boundaries between conclusions.6

Another important distinction is
between quantitative and qualitative
methods. Quantitative methods in-
clude the traditional automatable tasks
performed by statistical packages and
data mining tools,7,8 whereas qualita-
tive methods are typically more manual
and require extensive user interaction.
A common myth with qualitative meth-
ods is that they’re less-than-rigorous
and somehow less useful than quantita-
tive methods, but we haven’t found this
to be the case. See “Developer Dash-
boards: The Need for Qualitative An-
alytics” by Olga Baysal, Reid Holmes,
and Michael Godfrey in this issue for
an excellent example.

Yet another important distinction is
between data mining tools and interac-
tive tools. Data mining tools are typi-
cally automatic and run to produce one
conclusion, whereas visualization tools
give users more control over the out-
put and the ability to generate ad hoc
on-the-fly reports on any aspect of the
data. Much current software analytics
work is focused on data mining, but
this issue features some exceptions to
this rule, which can be found in both
the roundtable discussion and “Look-
ing under the Lamppost for Useful
Software Analytics” by Philip Johnson.

It’s also important to distinguish the
audience for analytics results, which
could include developers, testers, devel-
opment leads, test leads, managers, and
researchers, all of whom have different
analysis and data needs.9

Finally, we wish to distinguish ex-
ploratory versus deployment analytics.
In an exploratory analytical study, it’s
often unclear how to add value to the

Questions

Fr
eq

ue
nc

y

Build tools for
frequent questions

Use data scientists for
infrequent questions

FiGure 1. The frequency of analytics questions. A small number of questions are very

frequent and therefore should be supported by tools (orange region), whereas the long tail

of questions that are more unique and asked less frequently should be addressed by data

scientists (blue). As the analytics domain matures, we expect the orange area to grow because

tools will become more powerful and cheaper to develop.

 July/August 2013 | IEEE softwArE 37

business using analytics. Hence, in this
stage, a data scientist’s work is often
preliminary and perhaps includes many
dead ends. If the exploratory results
are successful, there might be a busi-
ness case for moving to deployment an-
alytics. In this second phase, the goals
are better understood, and the team
(which might be much larger than the
preliminary analytics team) works to
integrate the analysis method into the
organization’s information systems. If
the preliminary analysis takes weeks
to months, deployment analytics can
take months to years. For an example
of the cost and benefits of deployment
analytics, see “CODEMINE: Building
a Software Development Data Analyt-
ics Platform at Microsoft” by Jacek
Czerwonka and his colleagues in this
special issue.

t his is an exciting time for
those of us involved in data
science and software analytics.

Looking into the very near future, we
can only predict more use of analytics.
By 2020, we would predict

• more and different data,
• more algorithms,
• faster decision making with the

availability of more data and faster
release cycles,

• more people involved in analytics
as it becomes more routine to mine
data,

• more education as more people
analyze and work with data,

• more roles for data scientists and
developers as this field matures
with specialized subareas,

• more real-time analytics to address
the challenges of quickly finding
patterns in big data,

• more analytics for software systems
such as mobile apps and games, and

• more impact of social tools in
analytics.

As an example of this last point,
check out “Human Boosting” by Harsh
Pareek and Pradeep Ravikumar, which
discusses how to boost human learning
with the help of data miners.10 In the
very near future, this kind of human(s)-
in-the-loop analytics will become much
more prevalent.

acknowledgements
The work of such a special issue falls mostly
on the authors and reviewers, and we’re very
appreciative of all those who took the time
to write and comment on these articles. The
work of the reviewers was particularly chal-
lenging because their feedback was required
in a very condensed timetable. Accordingly,
we offer them our heartfelt thanks. We’re
also grateful to the IEEE Software produc-
tion team for their hard work in assembling
and editing all these articles.

References
 1. T.H. Davenport, J.G. Harris, and R. Morison,

Analytics at Work: Smarter Decisions, Better
Results, Harvard Business Review Press, 2010.

 2. R. Buse and T. Zimmermann, “Information
Needs for Software Development Analytics,”
Proc. Int’l Conf. Software Eng. (ICSE), IEEE
CS, 2012; http://thomas-zimmermann.com/
publications/details/buse-icse-2012.

 3. T. Menzies and F. Shull, “Empirical Software
Engineering,” tech. briefing, Proc. Int’l Conf.
Software Eng., IEEE CS, 2011, http://2011.
icse-conferences.org/technical-briefings/#381.

 4. C. Bird et al., “Does Distributed Development
Affect Software Quality? An Empirical Case
Study of Windows Vista,” Proc. 31st Int’l
Conf. Software Eng., IEEE CS, 2009,
pp. 518–528.

 5. A. Porter and R. Selby, “Empirically Guided
Software Development Using Metric-Based
Classification Trees,” IEEE Software, vol. 7,
no. 2, 1990, pp. 46–54.

 6. F. Peters et al., “Balancing Privacy and Utility
in Cross-Company Defect Prediction,” to
be published in IEEE Trans. Software Eng.,
2013.

 7. I. Witten, E. Frank, and M. Hall, Data Min-
ing: Practical Machine Learning Tools and
Techniques, Morgan Kaufmann, 2011.

 8. R. Duda, P. Hart and D. Stork, Pattern Recog-
nition, 2nd ed., Wiley-Interscience, 2000.

 9. E. Kocaganeli et al., “Distributed Develop-
ment Considered Harmful?,” to be published
in Proc. Int’l Conf. Software Eng. (ICSE),
IEEE CS, 2013.

 10. H. Pareek and P. Ravikumar, “Human Boost-
ing,” to be published in Proc. Int’l Conf.
Machine Learning, 2013; http://jmlr.csail.mit.
edu/proceedings/papers/v28/pareek13.pdf.

tIM MenzIes is a full professor in computer science at West Virginia
University. His research focuses on combining carbon and silicon
intelligence to produce smarter communities. He’s an associate editor
of IEEE Transactions on Software Engineering, the Automated Software
Engineering Journal, and the Empirical Software Engineering Journal.
Menzies received a PhD in artificial intelligence from the University
of New South Wales. Contact him at tim@menzies.us or via http://
menzies.us.

thoMas zIMMeRMann is a researcher in the Empirical Software
Engineering Group at Microsoft Research, adjunct assistant profes-
sor at the University of Calgary, and affiliate faculty at the University
of Washington. His research interests include empirical software
engineering, mining software repositories, development tools, social
networking, and games analytics. He’s an associate editor of IEEE
Software and the Empirical Software Engineering Journal. Zimmermann
received a PhD from Saarland University. Contact him at tzimmer@
microsoft.com or via http://thomas-zimmermann.com.

a
b

o
u

t
 t

h
e

 a
u

t
h

o
r

s

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

