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Abstract—Software product lines are hard to configure. 

Techniques that work for medium sized product lines 

fail for much larger product lines such as the Linux kernel with 

6000+ features. This paper presents simple heuristics that help 

the Indicator-Based Evolutionary Algorithm (IBEA) in finding 

sound and optimum configurations of very large variability 

models in the presence of competing objectives. We employ a 

combination of static and evolutionary learning of model 

structure, in addition to utilizing a pre-computed solution used as 

a “seed” in the midst of a randomly-generated initial population. 

The seed solution works like a single straw that is enough to 

break the camel’s back –given that it is a feature-rich seed. We 

show promising results where we can find 30 sound solutions for 

configuring upward of 6000 features within 30 minutes. 

Index Terms—Variability models, automated configuration, 

multiobjective optimization, evolutionary algorithms, SMT 

solvers. 

I. INTRODUCTION 

A. Motivation 

Scalability of Search-Based Software Engineering (SBSE) 

methods is of high importance because it can mean the 

difference between theoretical obscurity and industrial 

adoption. The larger and more complex the application 

examples are, the closer they resemble practical applications, 

and the more believable the result will be. Yet the lack of 

scalability of results is one of the biggest problems facing 

software engineers, according to Harman et al. [12]. They state 

that: “Many approaches that are attractive and elegant in the 

laboratory turn out to be inapplicable in the field, because they 

lack scalability.” 

A case in point is the subject of this paper: the many-

objective optimum feature selection in software product lines. 

Many results in the automated analysis of software product 

lines were validated using feature models published in online 

feature model repositories such as SPLOT [17]. Examples are: 

Pohl et al. [20], Lopez-Herrejon and Egyed [16], Johansen et 

al. [14], Mendonca et al. [19] and our own previous work [23] 

[22]. Most of the feature models in SPLOT were produced for 

academic purposes without representing actual systems. One 

such model is “Electronic Shopping,” designed by Lau [15], 

the largest in SPLOT with 290 features. While it might be a 

“best effort” in emulating a real system, it does not represent an 

actual project. Berger et al. [5] explain in detail the differences 

in properties between SPLOT feature models and the large 

feature models that they developed by reverse-engineering real 

systems, and published in the LVAT (Linux Variability 

Analysis Tools) repository
1
. In short, SPLOT models had 

significantly smaller and less constrained models with lower 

branching factors, but they also had higher ratios of feature 

groups and deeper leaves than LVAT models. This shows an 

underlying gap between academic assumptions and actual 

properties of software product lines. 

The only two studies we know that experimented with the 

LVAT feature models were done by Johansen et al. [14] who 

generated test covering arrays for feature models, and Henard 

et al. [13] who worked on prioritizing t-wise test suites. Both 

experimented with three very large models from the LVAT 

repository (Linux, eCos, and FreeBSD), in addition to models 

from SPLOT and other sources. Our work is the first to attempt 

the many objective optimization of product line configuration. 

Other researchers attempted to prove scalability of their 

methods using randomly-generated feature models that 

followed a set of assumed characteristics. Examples are: White 

et al. [30] [29] [28] [31], Shi et al. [25], Guo et al. [10], and 

Mendonca et al. [19]. While those randomly-generated models 

can be larger in size than published models, they still suffer 

from the same assumptions that diverge from the properties of 

real systems. 

In this work, we seek to show the scalability of 5-objective 

optimization of software product lines using the Indicator-

Based Evolutionary Algorithm (IBEA) compared with the 

Nondominated Sorting Genetic Algorithm-II (NSGA-II). 

Previously [23], we applied IBEA and NSGA-II –among other 

algorithms– to feature models from SPLOT, with sizes ranging 

from 43 to 290 features. With IBEA, we were able to achieve 

5-objective optimization with a significant amount of fully-

correct configurations. Other algorithms, including NSGA-II, 

failed to learn the model constraints, and produced few usable 

solutions. In this paper, we apply both IBEA and NSGA-II to 7 

large models from LVAT. In 6 out of 7 models, we 

successfully show the superiority of IBEA over NSGA-II in 

producing significant amounts of fully correct and highly 

optimal configurations. Towards that end, IBEA is assisted by 
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a static scan to detect features that must have fixed values, and 

those features are excluded from the evolutionary process. 

For the largest model in this experiment, i.e. Linux kernel, 

the above combination of static and evolutionary learning did 

not succeed in producing any correct configurations during the 

first 30 minutes. To address this problem, we resorted to a 

novel approach, in which we pre-computed one correct 

configuration and planted it in the initial population (of 300 

candidate solutions) for the 5-objective optimization. The result 

was 30 correct configurations in the first 30 minutes of the 5-

objective optimization. When we planted 30 correct seeds, the 

30-minute result was the same, i.e. about 30 valid solutions. 

Therefore the effect of one carefully selected seed was enough 

to influence a randomly-generated population into finding a 

range of solutions that can be suggested to the user in the initial 

stage of interactive configuration. The seeding approach is 

depicted in Fig. 1. 

 

 
Fig. 1. Depiction of the seeding approach 

 

One caveat is that the magic “seed” has to be feature-rich, 

i.e. it must be a solution in which a sufficiently large number of 

features are enabled. The result we obtain points us to the 

following guideline: 

“The proper selection of (a) seed(s) in the initial population 

is a key to scalability of product line configuration.” 

B. Contributions of this Paper 

This paper makes the following contributions: 

1- A proof of scale-up of previous results [23] [22] that 

showed superiority of IBEA over other MEOAs (e.g. 

NSGA-II) that used absolute dominance criteria 

coupled with diversification measures in the fitness 

assignment. IBEA uses a continuous dominance metric 

that makes better use of the user preferences. 

2- First-time attempt to automate the configuration of the 

very large variability models available from LVAT 

feature model repository which resulted from the 

works of Berger et al. [5] [24] [4] [3]. We are not 

aware of any previous work that used those models for 

automated configuration. Johansen et al. [14] 

experimented with generating test covering arrays for 

three models (Linux, eCos, and FreeBSD), but their 

tools were not able to handle the large sizes of these 

models for most of the purposes of their experiment. 

Henard et al. [13] presented a search-based technique 

for prioritizing t-wise test suites, and applied it to eCos, 

FreeBSD, and Linux with good results. 

3- A novel approach that relies on IBEA’s ability to 

exploit user preference knowledge in reaching 

optimum results, but also enlists the help of a pre-

computed correct solution (a seed) and a static analysis 

of the model structure to aid IBEA in converging faster 

to a large number of correct configurations. The 

seeding approach was used by Fraser and Arcuri [9] in 

the context of search-based software testing. 

4- A breakthrough scalability result. Using the novel 

approach in 3 (above), we now show that it is possible 

to configure product lines as large as 6000+ features. 

Note that this is a significant improvement in 

the state of the art in this area since prior work was 

shown to configure up to 290 features only. 

C. Organization of this Paper 

Section II discusses related work in the automated analysis 

of feature models. Section III introduces background material 

on feature modeling, MEOAs and the Z3 SMT solver. Section 

IV explains the experimental setup, and section V presents the 

results. We discuss the findings and their impact in section VI. 

In section VII we discuss potential threats to validity, and then 

in section VIII we offer our conclusions and directions for 

future work. 

II. RELATED WORK 

First, we discuss related work in the area of automated 

product configuration and feature selection. 

The idea of extending (or augmenting) feature models with 

quality attributes was proposed by many, among them Zhang 

et al. [32]. The following papers used a similar approach and 

synthetic data to experiment with optimizing feature selection 

in SPLs. 

Soltani et al. [26] employed Hierarchical Task Network 

(HTN) planning, a popular planning technique to 

automatically select suitable features that satisfy the 

stakeholders’ business concerns and resource limitations. A 

performance evaluation was provided with three feature 

models containing 25, 45, and 65 features. The worst case run 

time was reported to be 89 seconds, which is significant for 

these small-size feature models. 

Benavides et al. [1] provided automated reasoning on 

extended feature models. They assigned extra-functionality 

such as price range or time range to features. They modeled 

the problem as a Constraint Satisfaction Problem, and solved it 

using CSP solvers to return a set of features which satisfy the 

stakeholders’ criteria. 

White et al. [28] mapped the feature selection problem to a 

multidimensional multi-choice knapsack problem (MMKP). 

They apply Filtered Cartesian Flattening to provide partially 

optimal feature configuration. 

Also White et al. [29] introduced the MUSCLE tool which 

provided a formal model for multistep configuration and 

mapped it to constraint satisfaction problems (CSPs). Hence, 

CSP solvers were used to determine the path from the start of 

the configuration to the desired final configuration. Non-

functional requirements were considered such as cost 

constraints between two configurations. A sequence of 

minimal feature adaptations is calculated to reach from the 

initial to the desired feature model configurations. 

Seeder Grower 

Pre-computes one 
valid configuration 

Finds 30 valid solutions that are 
Pareto-optimum in 5 objectives 



The limitations of these methods are obvious, given the 
small models that they experimented with. As SPLs become 
larger the problem grows more intractable. More recently, a 
Genetic Algorithm was used to tackle this problem [10]. 
Although the problem is obviously multiobjective, the various 
objectives where aggregated into one and a simple GA was 
used. The result is to provide the product manager with only 
one “optimal” configuration, which is only optimal according 
to the weights chosen in the objective formula. Also, they used 
a repair operator to keep all candidate solutions in line with the 
feature model all throughout the evolutionary process. 

Next, we discuss other related work in the general area of 

automated analysis of feature models. 
In [20], a large experiment was performed to measure the 

efficiency of available BDD, SAT and CSP solvers to perform 
four analysis operations on 90 feature models from the SPLOT 
repository. They reported long run times for certain operations, 
and they cancelled certain runs with the larger feature models 
when the run time exceeded three hours. An exponential 
runtime increase with the number of features for non-BDD 
solvers on the “valid” operation was also reported. 

In [16], a basic search method (Breadth-First Search) is 
used to find feature model inconsistencies and suggest fixing 
sets. The method was run with 60 feature models from the 
SPLOT website, the largest being 94 features. They report that 
computation time increases steadily as the number of features 
increases (with 94 features it took 1600 sec. approx.). 

In [19], efficient ordering heuristics are proposed for BDDs 
that represent feature models. Such ordering can dramatically 
reduce the size of BDDs, thus allowing fast processing for 
interactive configuration algorithms. The proposed heuristics 
were tested with five realistic feature models, in addition to 
randomly-generated feature models with larger sizes. It was 
shown that the heuristics produce high quality variable orders 
that enable the compilation of large feature models with up to 
2,000 features. 

In [18], it is shown that the task of satisfiability (SAT) 

solving of realistic models is easy. In particular, the 

phenomenon of phase transition is not observed for realistic 

feature models. The explanation for this is that many real 

world problems are either over-constrained (in terms of 

variability: they have no realizable products) or under-

constrained (they have many easily identifiable realizations). 

For instance, consistency checks on randomly-generated 

models with up to 10,000 features and a large number of 

cross-tree constraints took about 0.4 seconds. In addition, 

computing valid domains was completed in about 22 seconds 

for models with 5,000 features and a fairly large number of 

cross-tree constraints. 
In all the works mentioned above, the testing was done with 

relatively small feature models published in academic 
repositories like SPLOT, or with large feature model that were 
randomly-generated based on the same characteristics as 
SPLOT models. Large feature models that represent actual 
code (such as those published in LVAT) have not yet been used 
to test out automated analysis and configuration methods. 

 

Fig. 2. Feature model for mobile phone product line [2] 

 

 

 

 

 

 

 

 

Fig. 3. Mobile phone feature model as a Boolean expression 

III. BACKGROUND 

A. Feature Models 

A feature is an end-user-visible behavior of a software 
product that is of interest to some stakeholder. A feature model 
represents the information of all possible products of a software 
product line in terms of features and relationships among them. 
Feature models are a special type of information model widely 
used in software product line engineering. A feature model is 
represented as a hierarchically arranged set of features 
composed by: 

1- Relationships between a parent feature and its child 

features (or subfeatures).  

2- Cross-tree constraints that are typically inclusion or 

exclusion statements in the form: if feature F is 

included, then features A and B must also be included 

(or excluded).  

Figure 2, adapted from [2], depicts a simplified feature 
model inspired by the mobile phone industry. 

The full set of rules in a feature model can be captured in a 
Boolean expression, such as the one in Fig. 3, which shows the 
expression for the mobile phone feature model. From it we can 
conclude that the total number of rules in this feature model is 
16, including the following: 

 The root feature is mandatory. 

 Every child requires its own parent. 

 If the child is mandatory, the parent requires the child. 

 Every group adds a rule about how many members can be 
chosen. 

 Every cross-tree constraint (CTC) is a rule. 

FM =  (Mobile Phone ↔ Calls) 
 ˄ (Mobile Phone ↔ Screen) 
 ˄ (GPS → Mobile Phone) 
 ˄ (Media → Mobile Phone) 
 ˄ (Screen ↔ XOR (Basic, Color, High resolution)) 
 ˄ (Media ↔ Camera ˅ MP3) 
 ˄ (Camera → High resolution) 

˄ ¬(GPS ˄ Basic) 



The feature models used in this study were obtained from 

the Linux Variability Analysis Tools (LVAT) feature model 

repository, which resulted from the works of Berger et al. [5] 

[24] [4] [3]. The models were reverse-engineered from open-

source code, comments, and documentation of such projects as 

the Linux kernel, eCos and FreeBSD operating systems, and 

other large projects. The resulting feature models had distinctly 

different properties than models published by academic 

researchers, such as those in SPLOT [17]. The LVAT models 

are significantly larger in size, more constrained, and have 

higher branching factors than academic models, but they also 

had lower ratios of feature groups and, in general, shallower 

leaves. The LVAT models provide an opportunity for testing 

the scalability of many results in feature modeling for software 

product lines. 

The models downloaded from LVAT website had the 

DIMACS format, which expresses each model as a formula in 

the Conjunctive Normal Form (CNF). 

B. Multiobjective Optimization 

Many real-world problems involve simultaneous 

optimization of several incommensurable and often competing 

objectives. Often, there is no single optimal solution, but rather 

a set of alternative solutions. These solutions are optimal in the 

wider sense that no other solutions in the search space are 

superior to them when all objectives are considered [34].  

Formally, a vector                 is said to be 

dominated by a vector                 if and only if u is 

partially less than v, i.e. 

           ,                                  (1) 

The set of all points in the objective space that are not 

dominated by any other points is called the Pareto Front. 

C. Multiobjective Evolutionary Optimization Algorithms 

(MEOAs) 

Many algorithms have been suggested over the past two 

decades for multiobjective optimization based on evolutionary 

algorithms that were designed primarily for single-objective 

optimization, most notably Genetic Algorithms. 

We have previously experimented [23] with MEOAs that 

are implemented in the jMetal framework [8] as applied to 

SPLOT feature models. We found a remarkable advantage in 

performance for the Indicator-Based Evolutionary Algorithm 

(IBEA) [33], as compared to Pareto-based algorithms, of which 

the Nondominated Sorting Genetic Algorithm, version 2 

(NSGA-II) [7] is the best known. 

The fundamental difference between these two types of 

algorithms is in the ranking criterion (i.e. fitness assignment) 

used to determine which individuals have stronger chance to 

survive to the next generation. Thus we focus on the ranking 

criteria in both algorithms. 

1) Nondominated Sorting Genetic Algorithm, version 2 

(NSGA-II):  

The sorting procedure in NSGA-II is depicted in Fig. 4, 

taken from [7]. It shows how the combined primary and 

secondary population gets sorted according to domination, 

where F1 contains all nondominated solutions; F2 contains all 

nondominated solutions after excluding F1 and so on. When 

the solutions within F3 need to be sorted for truncation, they 

are ranked according to crowding distance, a value calculated 

from distances to nearest neighbors in all objective values. 

Thus diversity preservation is the second criterion –after 

domination– to determine fitness for survival. 

2) Indicator-Based Evolutionary Algorithm (IBEA): 

Figure 5 provides an outline of the IBEA algorithm. The 

details can be found in [33]. 

 

 

Fig. 4. NSGA-II sorting procedure [7] 

 

 
 

 
 

 

 
 

 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

 

 
 

 
 

 

 
 

 

Fig. 5. Outline of IBEA [33] 
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Input:  α (population size) 

N (maximum number of generations) 
κ (fitness scaling factor) 

Output:  A (Pareto set approximation) 
 
Step 1: Initialization: Generate an initial population P of size 
α; and an initial mating pool P’ of size α; append P’ to P; set 
the generation counter m to 0. 
Step 2: Fitness assignment: Calculate fitness values of 

individuals in P, i.e., for all x1 ∈ P set  

Where I(.) is a dominance-preserving binary indicator.  
Step 3: Environmental selection: Iterate the following three 
steps until the size of population P does not exceed α: 

1. Choose an individual x∗ ∈ P with the smallest fitness 

value, i.e., F(x∗) ≤ F(x) for all x ∈ P. 

2. Remove x∗ from the population. 

3. Update the fitness values of the remaining individuals, i.e. 

F(x) = F(x) +    (         )   for all x ∈ P. 

Step 4: Termination: If m ≥ N or another stopping criterion is 

satisfied then set A to the set of decision vectors represented 
by the nondominated individuals in P. Stop. 
Step 5: Mating selection: Perform binary tournament 
selection with replacement on P in order to fill the temporary 
mating pool P’. 
Step 6: Variation: Apply recombination and mutation 
operators to the mating pool P’ and add the resulting 
offspring to P. Increment the generation counter (m = m + 1) 

and go to Step 2. 



Equation 2 in Fig. 5 shows IBEA's fitness assignment. 

Each solution is given a weight based on I(.), a dominance-

preserving quality indicator, thus factoring in more of the 

optimization objectives of the user. The authors of IBEA, 

Zitzler and Kunzli, designed the algorithm such that 

“preference information of the decision maker” can be 

“integrated into multiobjective search” [33]. It is noticed here 

that the ranking criteria in IBEA place no emphasis on 

diversity of solutions, thus diverging from the conventional 

trend set by NSGA-II, and followed by many others. 

This difference in ranking criteria causes IBEA to 

outperform NSGA-II when the objective space increases in 

dimension. In [27], it is experimentally demonstrated with real-

valued test functions that the performance of NSGA-II and 

SPEA2 rapidly deteriorates with increasing dimension, and that 

other algorithms (such as IBEA) cope very well with high-

dimensional objective spaces. It is argued that NSGA-II tends 

to “increase the distance to the Pareto front in the first 

generations because the diversity-based selection criteria favor 

higher distances between solutions. Special emphasis is given 

to extremal solutions with values near zero in one or more 

objectives. These solutions remain non-dominated and the 

distance cannot be reduced thereafter.” 

D. Z3 SMT Solver 

We will use the Z3 SMT solver as one way to generate a 

known correct configuration for the large feature models. This 

method is fast and straightforward since the models are already 

expressed in DIMACS format, which is a direct representation 

of the model’s Boolean formula, such as the one in Fig. 3. 

Satisfiability modulo theories (SMT) generalizes Boolean 

satisfiability (SAT) by adding equality reasoning, arithmetic, 

fixed-size bit-vectors, arrays, quantifiers, and other useful first-

order theories. An SMT solver is a tool for deciding the 

satisfiability (i.e. validity) of formulas in these theories. Z3 is 

an efficient SMT Solver freely available from Microsoft 

Research. It is used in various software verification and 

analysis applications. [6] 

Although the configuration generated by Z3 was not useful 

in this experiment compared to the one generated using IBEA, 

we still plan to use Z3 in future work to efficiently find a set of 

correct configurations that would help IBEA in converging 

faster to a larger set of sound and optimal solutions. 

IV. SETUP 

A. Feature Models Used in this Study 

The LVAT formula repository includes 15 models (as of 

May 2013), each represented in two formats: Boolean and 

DIMACS. Table I lists the 7 models for which the results in 

this study are reported. 

B. Feature Attributes 

Our research explores alternate methods to explore complex 

decision spaces.  In our recent literature review [21], we found 

that most MEOA research in software engineering explores a 

very simplistic two-valued objective space.   

TABLE I.  MODELS USED IN THIS STUDY 

Model Version Features Ref. 

ToyBox 0.1.0 544 [5] 

axTLS 1.2.7 684 [5] 

eCos 3.0 1244 [24], [4] 

FreeBSD 8.0.0 1396 [24], [3] 

Fiasco 2011081207 1638 [5] 

uClinux 20100825 1850 [5] 

Linux X86 2.6.28 6888 [24], [3] 

 

In our work with users, we find that merely exploring two 

objectives is insufficient to capture the breadth of their 

concerns. Therefore, when we certify different optimizers, we 

take care to explore problems with up to half a dozen 

objectives. To make such rich objective spaces, we augment 

simpler models with a rich set of objectives. Specifically, we 

augmented the feature models with 3 attributes for each 

feature: COST, USED_BEFORE, and DEFECTS. The values 

were selected stochastically according to distributions that 

emulate software projects. COST takes real values distributed 

normally between 5.0 and 15.0, USED_BEFORE takes 

Boolean values distributed uniformly, and DEFECTS takes 

integer values distributed normally between 0 and 10. 

The only dependency among these qualities is: 

   if (not USED_BEFORE) then DEFECTS = 0          (3) 

C. Problem Representation 

The feature models were represented as binary strings, 

where the number of bits is equal to the number of features. If 

the bit value is TRUE then the feature is selected, otherwise 

the feature is removed (i.e. deselected). 

D. Problem Formulation; Defining the Optimization 

Objectives 

In this work we optimize the following objectives: 

1- Correctness; i.e. compliance to the relationships and 

constraints defined in the feature model. Since jMetal 

treats all optimization objectives as minimization 

objectives, we seek to minimize rule violations. 

2- Richness of features; we seek to minimize the number 

of deselected features. 

3- Features that were used before; we seek to minimize 

the number of features that weren’t used before. 

4- Known defects; which we seek to minimize. 

5- Cost; which we seek to minimize. 

The second objective (i.e. richness of features) counteracts 

the effects of the other objectives by increasing the number of 

selected features while minimizing violations, defects, and cost. 

Without it, the final Pareto front would crowd in the area with 

minimum features and thus would provide a narrow set of 

options to the end user. 

E. MEOA Parameters 

The following parameter values were used after 

rudimentary runs for parameter tuning. It is noted that low 

values for crossover and mutation rates perform better with 

feature models, as we found in previous work [22]. 



TABLE II.  PARAMETER VALUES 

Parameter Value 

Population size 300 

Crossover rate 0.05 

Mutation rate 0.001 

Run time 30 minutes 

Independent runs 10 

F. Run Time as Stopping Criterion 

In [23], we compared MEOAs by allowing each to perform 

a fixed number of fitness function evaluations, which is a 

commonly used approach.  The number of evaluations is 

proportional to the total run time and the required CPU power. 

Yet, the total run time is affected by many other algorithm-

dependent operations, including the fitness ranking of 

individuals in each generation. This leads to varying runtimes 

with the same number of evaluations. For instance, we noticed 

that IBEA took five times longer than NSGA-II to perform the 

same number of evaluations, which meant that IBEA spent far 

more time in fitness ranking than NSGA-II. This is expected 

from our study of fitness ranking criterion in subsection III.C. 

The question here is: which criterion shall we fix in order to 

have a fair comparison among algorithms? We have come to 

the opinion that each algorithm should be given a fixed amount 

of time to calculate its best approximation of the Pareto front. 

A better algorithm should score better on the quality indicators 

(HV, %correct) within that duration of time. Going back to the 

comparison between IBEA and NSGA-II, if both are given the 

same duration of time, then NSGA-II would perform far more 

evaluations than IBEA, and thus would be given a better 

chance to improve its results. As we will see in the coming 

section, providing NSGA-II with the chance to evolve more 

generations did not help it to overcome IBEA at producing 

more correct solutions or better HV. 

In addition, the user should be more concerned with the 

amount of time it takes to optimize, than with the number of 

evaluations. CPU power is often available at the user’s 

disposal, and the algorithms should utilize that CPU power to 

produce the best results in the least amount of time, regardless 

of number of evaluations or number of evolved generations.  

Therefore, in the this paper’s experiments we make our 

comparisons of the results after limiting the amount of time 

given to each algorithm to 30 minutes, regardless of number of 

evaluations each algorithm were able to perform. 

G. Quality of Pareto Front 

We compare the performance of MEOAs using the 

following quality indicators: 

1- Hypervolume (HV): defined in [34], is a measure of 

the size of the space covered underneath the Pareto 

front. If the objectives are all to be maximized, then the 

preferred Pareto front is the one with the highest 

Hypervolume. In jMetal, all objectives are minimized, 

but the Pareto front is inverted before calculating 

hypervolume, thus the higher the hypervolume the 

closer to optimum the Pareto front is. 

2- %Correct: i.e. the percentage of fully-correct solutions, 

which is an indicator particular to this problem. Since 

correctness is an optimization objective that evolves 

over time, there maybe points in the final Pareto front 

that have rule violations. Such points are not likely to 

be useful to the user. We are interested in percentage of 

points within the Pareto front that have zero violations, 

and thus a full-correctness score. 

3- TT50%: i.e. Time to achieve 50% correct solutions is 

another problem-specific indicator that we added as a 

measure of the speed of convergence to a large amount 

of valid solutions. This is a useful comparison figure 

when the final %Correct value is the same, since it 

shows who arrived faster at the 50% milestone. 

V. RESULTS 

In the following, we run the 5-objective optimization 

problem that we described in III.D. We first try NSGA-II and 

IBEA without adding any knowledge of model constraints, and 

then we add the “feature fixing” technique, which we find to 

help IBEA in optimizing the configuration of 6 large models 

from LVAT within the allocated 30 minutes. As for the 7
th
 and 

largest model, i.e. Linux kernel, IBEA requires further domain-

knowledge assistance, which we offer in the form of a seed 

planted in the initial population. This technique results in 

finding 30 correct configurations in 30 minutes. 

A. Static Analysis to Detect Fixed Features 

Our original approach to the configuration of feature 

models [23] was to start from a population of randomly 

generated configurations, and let the evolutionary process 

promote those configurations that conform to the feature 

model. That approach worked well for the small feature models 

in SPLOT, although with extended run times, but it was clear 

that we needed to guide the evolutionary algorithms to closely 

respect the structure of feature models. 

In the DIMACS formulas representing our feature models, 

certain disjunctions (rules) only include one feature, which 

means that the feature is either mandatory (a commonality) 

which must always be selected, or a dead feature which must 

always be deselected. Also, we looked for disjunctions (rules) 

that included two features but one of them was fixed in the first 

round, and thus the second one was fixed as well. 

Once a feature is detected as fixed, we fix it in the initial 

population, while all other features are subject to random 

configuration, and we restrict the bit mutation operator to only 

flipping features that are not fixed. 

Table III shows the amount of fixed features detected in 

each model. It also shows the amount of “skipped rules”, i.e. 

the rules that we stop checking in our fitness evaluation since 

they only include fixed features. We observe that eCos, 

FreeBSD, and the Linux X86 models have few fixed features. 

Table IV shows the results comparing IBEA and NSGA-II 

with and without feature fixing. Each algorithm is run 10 times 

for 30 minutes in each case. The median values are reported. 

We also performed Mann-Whitney tests to assess the statistical 

significance of the %Correct indicator. We highlight 

the %Correct in bold if the confidence level exceeds 95% 

when comparing each method to the one to its left. 



TABLE III.  FIXED FEATURES AND SKIPPED RULES 

Model 
Total 

Features 

Fixed 

Features 

Total 

Rules 

Skipped 

Rules 

ToyBox 544 363 1020 394 

axTLS 684 384 2155 259 

eCos 1244 19 3146 11 

FreeBSD 1396 3 62183 20 

Fiasco 1638 995 5228 553 

uClinux 1850 1244 2468 1850 

Linux X86 6888 94 343944 699 

 

We make the following observations: 

1- The feature fixing approach is still not enough for the 

largest model, the Linux kernel. There were no valid 

solutions after 30 minutes for all cases. 

2- IBEA outperforms NSGA-II in terms of the %Correct 

indicator. Feature fixing helps NSGA-II achieve 

better %Correct and HV, but the majority of solutions 

remain useless due to violations of the model 

constraints. This confirms previous findings by the 

authors [23] regarding the superiority of a continuous 

measure of domination (as in IBEA) over absolute 

dominance used in NSGA-II (see subsection III.C). 

3- IBEA with feature fixing achieves remarkable results 

for six models (the numbers highlighted in bold). For 

two of these six models (ToyBox and uClinux), the 

percentage of correct solutions is 25% and 31% 

respectively. When considering that the final Pareto 

front is composed of 300 individuals, 25% corresponds 

to 75 fully-correct solutions, and 31% means 93 valid 

solutions. This is remarkable as well compared to 

NSGA-II or IBEA without feature fixing. 

4- IBEA without feature fixing achieved high %Correct 

with two models (eCos and FreeBSD). When feature 

fixing was used, the TT50% indicator showed a faster 

growth of correct configurations, while the HV 

indicator showed an improvement in the overall 

optimality of solutions. 

5- Some cases show a lower HV value when 

the %Correct value is improved. This means that, when 

the number of violations is high, the other 4 objectives 

take closer to optimum values, which would not be 

useful because of the rule violations. 

B. Using a Pre-Computed Correct Solution as Seed to IBEA 

The results in the previous part are encouraging, but it’s 

clear that IBEA needs more assistance to achieve acceptable 

configurations for the Linux model within reasonable time. 

Our next innovative technique was to pre-compute a correct 

configuration and plant it like a seed in the initial population of 

the evolutionary algorithms. The intuition behind this was that 

the randomly-generated members of the initial population are 

highly likely to violate thousands of feature model rules and be 

punished for that in the fitness assignments. When an 

individual in the initial population stands out as a fully-correct 

solution, then it should be promoted more often than others for 

crossover with other individuals, and would survive through 

successive generations due to elitism. Thus the “seed” acts as a 

role model to the “chaotic” members of the population. This 

technique proved to be useful as we will see next. 

First, we present two different ways of pre-computing a 

correct solution: 

1- Using the Z3 SMT solver. Z3 takes the DIMACS 

formula as input, and outputs the first correct solutions 

that it finds. This technique is fast, but it tends to 

produce correct solutions with a low number of 1’s; i.e. 

a low number of selected features. 

2- Using 2-objective optimization with IBEA, where one 

objective is to minimize rule violations, while the other 

objective is to maximize the number of selected 

features. This technique can be time-consuming for 

very large feature models, but it produces more 

selected features. 

Table V shows the time it took each of these two techniques 

to generate a correct solution, and the number of selected 

features within that solution. 

Notice that the eCos model accepts the “zero-feature” 

solution, which definitely is a bug in that formula. 

To show the benefit of the “seeding” technique, we apply 

IBEA, with feature fixing, and seeding to the Linux X86 

feature model, with the full 5 optimization objectives. Three 

different kinds of seeds are tried separately: 

1- One “feature-rich” seed generated using 2-objective 

IBEA, along with 299 random solutions. 

2- Thirty different fully-correct seeds, generated in a 

previous run of 5-objective IBEA, along with 270 

random solutions. 

3- One “low-feature” seed generated using Z3 SMT 

solver, along with 299 random solutions. 

TABLE IV.  RESULTS FOR IBEA AND NSGA-II WITH AND WITHOUT FEATURE FIXING, 5 OPTIMIZATION OBJECTIVES 

Model 
NSGA-II without feature fixing NSGA-II with feature fixing IBEA without feature fixing IBEA with feature fixing 

%Correct TT50% HV %Correct TT50% HV %Correct TT50% HV %Correct TT50% HV 

Toybox 0.67% N/A 0.14 12.5% N/A 0.21 2.8% N/A 0.25 25% N/A 0.22 

axTLS 0.67% N/A 0.10 3.3% N/A 0.21 4.7% N/A 0.25 100% 157 0.21 

eCos 1.33% N/A 0.074 2% N/A 0.082 100% 183 0.32 100% 113 0.33 

FreeBSD 0.17% N/A 0.001 0.5% N/A 0.024 91% 688 0.32 98% 502 0.34 

Fiasco 0.67% N/A 0.084 2% N/A 0.18 2.7% N/A 0.23 100% 585 0.20 

uClinux 0.67% N/A 0 3.3% N/A 0.16 1.5% N/A 0 31% N/A 0.30 

Linux 0% N/A 0 0% N/A 0 0% N/A 0 0% N/A 0.021 
a %Correct: Percentage of correct solutions. TT50%: time to achieve 50% correctness (in seconds). HV: Hypervolume. 
b Each cell reports the median value for 10 independent runs, each run for 30 minutes. 



TABLE V.  GENERATING A CORRECT SOLUTION USING 2 METHODS 

Model 
Total 

Features 

Using Z3 Using 2-obj IBEA 

Time (sec) 
Selected 

Features 
Time (sec) 

Selected 

Features 

ToyBox 544 0.06 34 10.5 145 

axTLS 684 0.06 81 16.5 245 

eCos 1244 0.06 0 56 967 

FreeBSD 1396 0.28 5 205 946 

Fiasco 1638 0.07 248 42 575 

uClinux 1850 0.01 7 23 455 

Linux 

X86 
6888 1.22 130 

11,000 

(~3 hours) 
5704 

 

 
Fig. 6. Number of valid configurations over time, IBEA, 5-objectives with 

seeding, Linux X86 feature model 

 

Figure 6 shows the growth of the number of correct 

solutions over time for all three types of seeds. The results for 

the one “feature-rich” show that 30 correct solutions are 

available after 30 minutes, and 36 such solutions are found 

after 1 hour. Compare this to the result in Table IV, which 

shows zero correct solutions for all 10 runs of 30 minutes each. 

For the 30 seeds planted along with 270 random solutions, 

the population had 49 fully-correct configurations at 10 

seconds, but the number dropped as the 5-objective 

optimization continued, down to 29 valid solutions at 30 

minutes, and then back up to 38 after 1 hour. This shows that 

the outcome of 1 carefully-selected feature-rich seed is 

compatible with that of 30 seeds. The quality, not quantity, of 

seeds had the most influence in the ability to scale up IBEA’s 

optimization ability to the 6888-feature Linux model. 

For the “low-feature” seed obtained with Z3 SMT solver, 

the result was disappointing; no correct solutions were found 

for the first hour. We attribute this failure to the scarcity of 

selected features in the Z3 solution (130 features only). A 

solution with so small number of 1’s would easily be “overrun” 

by other incorrect individuals in the population through the 

crossover process. In addition, this correct individual is 

assigned a low fitness value due to the low number of features, 

which decreases its likelihood of survival. The “feature-rich” 

seed obtained with 2-objective IBEA had 5704 selected 

features and thus was able to influence other individuals and 

stay ahead in the fitness evaluation. 

VI. DISCUSSION 

A. Method Innovation is Key to Scalability 

A traditional view about the scalability of evolutionary 

algorithms is that the technology (i.e. CPU power, RAM) needs 

to catch up with the algorithms, since the population-based 

evolutionary methods require large amounts of RAM to store 

the primary population and the archive resulting from crossover 

and mutation, and CPU power would help finish the 

computations within reasonable time. Multicore CPUs would 

allow for the parallelization of execution, which is an important 

property of population-based methods. [11] 

Our experience, as reported in this paper, was that large 

memory and fast CPUs were not enough to handle the size and 

complexity of the very large Linux model (6888 features). It 

took hours for the 5-objective optimization process to find any 

valid configurations, and more hours to find a significant set of 

valid solutions that are closer to optimality. 

The innovation in method –the “seeding” technique– was 

our key to scalability. One feature-rich valid seed in the midst 

of a 300-member initial population was enough to generate 30 

valid configurations within 30 minutes. A larger set of seeds 

did not help in improving the result, which hinted that the 

careful selection of seeds was more effective than increasing 

their quantity. One effective seed acted like the proverbial 

“straw that broke the camel’s back”. 

B. Impact of the Scale-Up Result on Interactive Configuration 

Configuration of a software package is an interactive 

process during which the users would make initial choices and 

then seek advice from the optimizer, and then make more 

choices, and so forth. The user’s choices can be in the decision 

space (e.g. select an optional feature, select an option from a 

group), or they can be in the objective space (e.g. specifying 

range for cost, maximum acceptable risk). The more choices 

the user makes, the less complex the search space becomes, 

and the faster the optimizer can respond. The advantage of 

Pareto-optimal solutions is that they offer a range of options, 

rather than a unique optimal solution. Thus the user would be 

more informed and enabled in the configuration process. 

The breakthrough that we achieved in this paper, via the 

seeding technique, enables jump-starting the configuration of 

6000+ features by offering 10 valid options within the first 

minute (see the triangles in Fig. 6). Those 10 options are not 

just valid, but they “dominate” a host of other candidates in the 

Pareto sense, although they don’t represent the absolute 

optimal Pareto front. The user can choose to begin making 

configuration decisions that early in the process. The optimizer 

takes the user’s input, which narrows down the search space, 

and builds on the candidates achieved so far, and turns around 

with more good candidates that cater to the user’s preferences. 

The seed, which is pre-computed offline, serves as an 

accelerator to the interactive configuration process. 

C. Evolutionary Learning Still Rules 

Without the remarkable result we presented in this paper, 

the slow convergence toward correct solutions may tempt us to 

abandon MEOAs and go directly to theorem provers, find all 
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possible product variants and evaluate them all. Such approach 

may be feasible with small and simple SPLs, but would not be 

scalable to large and complex ones, such as the Linux feature 

model, and the run times become prohibitive. Evolutionary 

methods (and especially IBEA) are still the best way to 

optimize with many objectives and vast decision spaces. 

Navigating the decision space with the aid of heuristics and 

simultaneously evaluating a population of candidates has 

proven to outperform exhaustive search over many years of 

research. This trend should continue to scale up with the help 

of innovative techniques that inhibit the randomness of 

exploration and nudge the optimizer towards respecting domain 

constraints. The seeding trick is one such helper. 

D. Be Careful with Problem Formulation 

Many-objective optimization is a paradigm shift that forces 

researchers to reformulate traditional problems in order to bring 

out the various objectives and map out a Pareto front. The same 

problem can have different formulations according to which 

parameters the researcher chooses to bring out as independent 

dimensions. In a recent survey [21], we found that most 

researchers only examined two-objective formulations of their 

problems. But we also found several examples of the same 

researchers addressing different formulations of the same 

problems by varying the number of objectives.  

The most interesting problem formulation would have a 

maximum number of objectives among which there are 

minimal correlations. Such formulation would challenge the 

multiobjective optimizer to find the set of best trade-offs 

among competing objectives. On the other hand, if the 

formulation separates two objectives among which there’s a 

high correlation, then the optimization takes a monolithic 

direction, with the solutions crowding in the same area that 

tends to optimize both objectives at the same time. 

A case in point is our 5-objective formulation of the 

software configuration problem. We seek to 1) minimize 

violations, 2) maximize features, 3) minimize newly-developed 

features (not used before), 4) minimize known defects, and 5) 

minimize cost. Some have looked at the second objective and 

questioned its merit; does the user really seek to maximize the 

number of features in a product? Our answer takes a holistic 

look at the goal of our optimization: to provide the user with a 

wide range of Pareto-optimal solutions that explore as many 

feature configuration choices as possible, and then let the user 

make their own decisions. If the “feature-richness” objective is 

removed, the other four objectives would push the solutions 

toward minimizing the number of features, since that area of 

the decision space tends to decrease violations, new features, 

known defects, and cost. Such formulation would defeat the 

overall purpose of offering a diverse set of valid configurations.  

E. Confirming IBEA’s Advantage in Many-Objective Problems 

The results of this experiment confirm the findings of 

earlier work by the authors [23] [22] and by Wagner et al. [27] 

regarding the superiority of IBEA over other Pareto-based 

algorithms (such as NSGA-II) in high-dimensional objective 

spaces. This is attributed to IBEA’s fitness assignment strategy 

which heavily factors in the user preferences, whereas Pareto-

based methods rely on absolute dominance as primary fitness 

criterion and diversity as secondary criterion, which tend to 

ignore differences in quality that IBEA is able to capture. 

F. Building on the Seeding Approach 

In light of the limited success of the seeding technique, we 

suggest the use of a pre-computed set of seeds (a set of correct 

solutions), given that it is diverse in the amount of selected 

features. The more selected features the better chance there will 

be of promoting correct solutions in the many-objective 

optimization problem. Furthermore, since the Z3 SMT solver 

can arrive at valid solutions much faster than the 2-objective 

IBEA, we will try to create the desired set of seeds using Z3. 

VII. THREATS TO VALIDITY 

In the first part of the results, i.e. the feature fixing 

technique, we repeated each algorithm run 10 times for each of 

the 7 models. We performed the Mann-Whitney test and found 

significant improvements in the %Correct indicator for 6 out of 

7 models. This should be sufficient to eliminate a potential 

threat to conclusion validity. 

As for the second part of the results, i.e. the seeding 

technique, we didn’t validate the findings with the same level 

of repeats and statistical testing. We plan to do so in future 

work as we explore the proper characterization of the effective 

seeds and reduce the time needed to generate them. 

A potential threat to construct validity is the use of 

synthetic data as attributes of features, i.e. COST, DEFECTS, 

and USED_BEFORE. The use of synthetic data is common in 

software engineering literature. The difficulty of obtaining real 

data comes from the fact that such data are usually associated 

with software components, not features. When available, such 

data is often proprietary and not published. Nevertheless, the 

results we obtained have such a large margin of superiority 

achieved by IBEA with feature fixing over other methods 

which couldn’t possibly be biased by the synthetic data. 

VIII. CONCLUSION AND FUTURE WORK 

This experiment explored the scalability of optimum 5-

objective product configuration using IBEA for very large 

feature models. For models with less than 2000 features, IBEA 

was able to achieve the goal within reasonable time only with 

the help of feature fixing. As for the Linux kernel, a 6888-

feature model, we were able to achieve 30 valid configurations 

within 30 minutes with the help of an innovative population-

seeding technique. One pre-computed feature-rich solution was 

enough to influence the rest of the population into learning 

valid solutions faster. 

Future work will focus on characterizing the quality and 

quantity of the best seed which would be most influential in 

helping IBEA to converge faster to large amounts of valid 

solutions. In addition, the Z3 SMT solver will be utilized to 

generate the desired set of seeds in shorter times than possible 

using evolutionary methods. 
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