
Scalable Product Line Configuration: A Straw to

Break the Camel’s Back

Abdel Salam Sayyad Joseph Ingram Tim Menzies Hany Ammar

Lane Department of Computer Science and Electrical Engineering

West Virginia University

Morgantown, WV, USA

{asayyad, jingram3}@mix.wvu.edu tim@menzies.us hany.ammar@mail.wvu.edu

Abstract—Software product lines are hard to configure.

Techniques that work for medium sized product lines

fail for much larger product lines such as the Linux kernel with

6000+ features. This paper presents simple heuristics that help

the Indicator-Based Evolutionary Algorithm (IBEA) in finding

sound and optimum configurations of very large variability

models in the presence of competing objectives. We employ a

combination of static and evolutionary learning of model

structure, in addition to utilizing a pre-computed solution used as

a “seed” in the midst of a randomly-generated initial population.

The seed solution works like a single straw that is enough to

break the camel’s back –given that it is a feature-rich seed. We

show promising results where we can find 30 sound solutions for

configuring upward of 6000 features within 30 minutes.

Index Terms—Variability models, automated configuration,

multiobjective optimization, evolutionary algorithms, SMT

solvers.

I. INTRODUCTION

A. Motivation

Scalability of Search-Based Software Engineering (SBSE)

methods is of high importance because it can mean the

difference between theoretical obscurity and industrial

adoption. The larger and more complex the application

examples are, the closer they resemble practical applications,

and the more believable the result will be. Yet the lack of

scalability of results is one of the biggest problems facing

software engineers, according to Harman et al. [12]. They state

that: “Many approaches that are attractive and elegant in the

laboratory turn out to be inapplicable in the field, because they

lack scalability.”

A case in point is the subject of this paper: the many-

objective optimum feature selection in software product lines.

Many results in the automated analysis of software product

lines were validated using feature models published in online

feature model repositories such as SPLOT [17]. Examples are:

Pohl et al. [20], Lopez-Herrejon and Egyed [16], Johansen et

al. [14], Mendonca et al. [19] and our own previous work [23]

[22]. Most of the feature models in SPLOT were produced for

academic purposes without representing actual systems. One

such model is “Electronic Shopping,” designed by Lau [15],

the largest in SPLOT with 290 features. While it might be a

“best effort” in emulating a real system, it does not represent an

actual project. Berger et al. [5] explain in detail the differences

in properties between SPLOT feature models and the large

feature models that they developed by reverse-engineering real

systems, and published in the LVAT (Linux Variability

Analysis Tools) repository
1
. In short, SPLOT models had

significantly smaller and less constrained models with lower

branching factors, but they also had higher ratios of feature

groups and deeper leaves than LVAT models. This shows an

underlying gap between academic assumptions and actual

properties of software product lines.

The only two studies we know that experimented with the

LVAT feature models were done by Johansen et al. [14] who

generated test covering arrays for feature models, and Henard

et al. [13] who worked on prioritizing t-wise test suites. Both

experimented with three very large models from the LVAT

repository (Linux, eCos, and FreeBSD), in addition to models

from SPLOT and other sources. Our work is the first to attempt

the many objective optimization of product line configuration.

Other researchers attempted to prove scalability of their

methods using randomly-generated feature models that

followed a set of assumed characteristics. Examples are: White

et al. [30] [29] [28] [31], Shi et al. [25], Guo et al. [10], and

Mendonca et al. [19]. While those randomly-generated models

can be larger in size than published models, they still suffer

from the same assumptions that diverge from the properties of

real systems.

In this work, we seek to show the scalability of 5-objective

optimization of software product lines using the Indicator-

Based Evolutionary Algorithm (IBEA) compared with the

Nondominated Sorting Genetic Algorithm-II (NSGA-II).

Previously [23], we applied IBEA and NSGA-II –among other

algorithms– to feature models from SPLOT, with sizes ranging

from 43 to 290 features. With IBEA, we were able to achieve

5-objective optimization with a significant amount of fully-

correct configurations. Other algorithms, including NSGA-II,

failed to learn the model constraints, and produced few usable

solutions. In this paper, we apply both IBEA and NSGA-II to 7

large models from LVAT. In 6 out of 7 models, we

successfully show the superiority of IBEA over NSGA-II in

producing significant amounts of fully correct and highly

optimal configurations. Towards that end, IBEA is assisted by

1
 https://code.google.com/p/linux-variability-analysis-

tools/source/browse/?repo=formulas

https://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas
https://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas

a static scan to detect features that must have fixed values, and

those features are excluded from the evolutionary process.

For the largest model in this experiment, i.e. Linux kernel,

the above combination of static and evolutionary learning did

not succeed in producing any correct configurations during the

first 30 minutes. To address this problem, we resorted to a

novel approach, in which we pre-computed one correct

configuration and planted it in the initial population (of 300

candidate solutions) for the 5-objective optimization. The result

was 30 correct configurations in the first 30 minutes of the 5-

objective optimization. When we planted 30 correct seeds, the

30-minute result was the same, i.e. about 30 valid solutions.

Therefore the effect of one carefully selected seed was enough

to influence a randomly-generated population into finding a

range of solutions that can be suggested to the user in the initial

stage of interactive configuration. The seeding approach is

depicted in Fig. 1.

Fig. 1. Depiction of the seeding approach

One caveat is that the magic “seed” has to be feature-rich,

i.e. it must be a solution in which a sufficiently large number of

features are enabled. The result we obtain points us to the

following guideline:

“The proper selection of (a) seed(s) in the initial population

is a key to scalability of product line configuration.”

B. Contributions of this Paper

This paper makes the following contributions:

1- A proof of scale-up of previous results [23] [22] that

showed superiority of IBEA over other MEOAs (e.g.

NSGA-II) that used absolute dominance criteria

coupled with diversification measures in the fitness

assignment. IBEA uses a continuous dominance metric

that makes better use of the user preferences.

2- First-time attempt to automate the configuration of the

very large variability models available from LVAT

feature model repository which resulted from the

works of Berger et al. [5] [24] [4] [3]. We are not

aware of any previous work that used those models for

automated configuration. Johansen et al. [14]

experimented with generating test covering arrays for

three models (Linux, eCos, and FreeBSD), but their

tools were not able to handle the large sizes of these

models for most of the purposes of their experiment.

Henard et al. [13] presented a search-based technique

for prioritizing t-wise test suites, and applied it to eCos,

FreeBSD, and Linux with good results.

3- A novel approach that relies on IBEA’s ability to

exploit user preference knowledge in reaching

optimum results, but also enlists the help of a pre-

computed correct solution (a seed) and a static analysis

of the model structure to aid IBEA in converging faster

to a large number of correct configurations. The

seeding approach was used by Fraser and Arcuri [9] in

the context of search-based software testing.

4- A breakthrough scalability result. Using the novel

approach in 3 (above), we now show that it is possible

to configure product lines as large as 6000+ features.

Note that this is a significant improvement in

the state of the art in this area since prior work was

shown to configure up to 290 features only.

C. Organization of this Paper

Section II discusses related work in the automated analysis

of feature models. Section III introduces background material

on feature modeling, MEOAs and the Z3 SMT solver. Section

IV explains the experimental setup, and section V presents the

results. We discuss the findings and their impact in section VI.

In section VII we discuss potential threats to validity, and then

in section VIII we offer our conclusions and directions for

future work.

II. RELATED WORK

First, we discuss related work in the area of automated

product configuration and feature selection.

The idea of extending (or augmenting) feature models with

quality attributes was proposed by many, among them Zhang

et al. [32]. The following papers used a similar approach and

synthetic data to experiment with optimizing feature selection

in SPLs.

Soltani et al. [26] employed Hierarchical Task Network

(HTN) planning, a popular planning technique to

automatically select suitable features that satisfy the

stakeholders’ business concerns and resource limitations. A

performance evaluation was provided with three feature

models containing 25, 45, and 65 features. The worst case run

time was reported to be 89 seconds, which is significant for

these small-size feature models.

Benavides et al. [1] provided automated reasoning on

extended feature models. They assigned extra-functionality

such as price range or time range to features. They modeled

the problem as a Constraint Satisfaction Problem, and solved it

using CSP solvers to return a set of features which satisfy the

stakeholders’ criteria.

White et al. [28] mapped the feature selection problem to a

multidimensional multi-choice knapsack problem (MMKP).

They apply Filtered Cartesian Flattening to provide partially

optimal feature configuration.

Also White et al. [29] introduced the MUSCLE tool which

provided a formal model for multistep configuration and

mapped it to constraint satisfaction problems (CSPs). Hence,

CSP solvers were used to determine the path from the start of

the configuration to the desired final configuration. Non-

functional requirements were considered such as cost

constraints between two configurations. A sequence of

minimal feature adaptations is calculated to reach from the

initial to the desired feature model configurations.

Seeder Grower

Pre-computes one
valid configuration

Finds 30 valid solutions that are
Pareto-optimum in 5 objectives

The limitations of these methods are obvious, given the
small models that they experimented with. As SPLs become
larger the problem grows more intractable. More recently, a
Genetic Algorithm was used to tackle this problem [10].
Although the problem is obviously multiobjective, the various
objectives where aggregated into one and a simple GA was
used. The result is to provide the product manager with only
one “optimal” configuration, which is only optimal according
to the weights chosen in the objective formula. Also, they used
a repair operator to keep all candidate solutions in line with the
feature model all throughout the evolutionary process.

Next, we discuss other related work in the general area of

automated analysis of feature models.
In [20], a large experiment was performed to measure the

efficiency of available BDD, SAT and CSP solvers to perform
four analysis operations on 90 feature models from the SPLOT
repository. They reported long run times for certain operations,
and they cancelled certain runs with the larger feature models
when the run time exceeded three hours. An exponential
runtime increase with the number of features for non-BDD
solvers on the “valid” operation was also reported.

In [16], a basic search method (Breadth-First Search) is
used to find feature model inconsistencies and suggest fixing
sets. The method was run with 60 feature models from the
SPLOT website, the largest being 94 features. They report that
computation time increases steadily as the number of features
increases (with 94 features it took 1600 sec. approx.).

In [19], efficient ordering heuristics are proposed for BDDs
that represent feature models. Such ordering can dramatically
reduce the size of BDDs, thus allowing fast processing for
interactive configuration algorithms. The proposed heuristics
were tested with five realistic feature models, in addition to
randomly-generated feature models with larger sizes. It was
shown that the heuristics produce high quality variable orders
that enable the compilation of large feature models with up to
2,000 features.

In [18], it is shown that the task of satisfiability (SAT)

solving of realistic models is easy. In particular, the

phenomenon of phase transition is not observed for realistic

feature models. The explanation for this is that many real

world problems are either over-constrained (in terms of

variability: they have no realizable products) or under-

constrained (they have many easily identifiable realizations).

For instance, consistency checks on randomly-generated

models with up to 10,000 features and a large number of

cross-tree constraints took about 0.4 seconds. In addition,

computing valid domains was completed in about 22 seconds

for models with 5,000 features and a fairly large number of

cross-tree constraints.
In all the works mentioned above, the testing was done with

relatively small feature models published in academic
repositories like SPLOT, or with large feature model that were
randomly-generated based on the same characteristics as
SPLOT models. Large feature models that represent actual
code (such as those published in LVAT) have not yet been used
to test out automated analysis and configuration methods.

Fig. 2. Feature model for mobile phone product line [2]

Fig. 3. Mobile phone feature model as a Boolean expression

III. BACKGROUND

A. Feature Models

A feature is an end-user-visible behavior of a software
product that is of interest to some stakeholder. A feature model
represents the information of all possible products of a software
product line in terms of features and relationships among them.
Feature models are a special type of information model widely
used in software product line engineering. A feature model is
represented as a hierarchically arranged set of features
composed by:

1- Relationships between a parent feature and its child

features (or subfeatures).

2- Cross-tree constraints that are typically inclusion or

exclusion statements in the form: if feature F is

included, then features A and B must also be included

(or excluded).

Figure 2, adapted from [2], depicts a simplified feature
model inspired by the mobile phone industry.

The full set of rules in a feature model can be captured in a
Boolean expression, such as the one in Fig. 3, which shows the
expression for the mobile phone feature model. From it we can
conclude that the total number of rules in this feature model is
16, including the following:

 The root feature is mandatory.

 Every child requires its own parent.

 If the child is mandatory, the parent requires the child.

 Every group adds a rule about how many members can be
chosen.

 Every cross-tree constraint (CTC) is a rule.

FM = (Mobile Phone ↔ Calls)
 ˄ (Mobile Phone ↔ Screen)
 ˄ (GPS → Mobile Phone)
 ˄ (Media → Mobile Phone)
 ˄ (Screen ↔ XOR (Basic, Color, High resolution))
 ˄ (Media ↔ Camera ˅ MP3)
 ˄ (Camera → High resolution)

˄ ¬(GPS ˄ Basic)

The feature models used in this study were obtained from

the Linux Variability Analysis Tools (LVAT) feature model

repository, which resulted from the works of Berger et al. [5]

[24] [4] [3]. The models were reverse-engineered from open-

source code, comments, and documentation of such projects as

the Linux kernel, eCos and FreeBSD operating systems, and

other large projects. The resulting feature models had distinctly

different properties than models published by academic

researchers, such as those in SPLOT [17]. The LVAT models

are significantly larger in size, more constrained, and have

higher branching factors than academic models, but they also

had lower ratios of feature groups and, in general, shallower

leaves. The LVAT models provide an opportunity for testing

the scalability of many results in feature modeling for software

product lines.

The models downloaded from LVAT website had the

DIMACS format, which expresses each model as a formula in

the Conjunctive Normal Form (CNF).

B. Multiobjective Optimization

Many real-world problems involve simultaneous

optimization of several incommensurable and often competing

objectives. Often, there is no single optimal solution, but rather

a set of alternative solutions. These solutions are optimal in the

wider sense that no other solutions in the search space are

superior to them when all objectives are considered [34].

Formally, a vector is said to be

dominated by a vector if and only if u is

partially less than v, i.e.

 , (1)

The set of all points in the objective space that are not

dominated by any other points is called the Pareto Front.

C. Multiobjective Evolutionary Optimization Algorithms

(MEOAs)

Many algorithms have been suggested over the past two

decades for multiobjective optimization based on evolutionary

algorithms that were designed primarily for single-objective

optimization, most notably Genetic Algorithms.

We have previously experimented [23] with MEOAs that

are implemented in the jMetal framework [8] as applied to

SPLOT feature models. We found a remarkable advantage in

performance for the Indicator-Based Evolutionary Algorithm

(IBEA) [33], as compared to Pareto-based algorithms, of which

the Nondominated Sorting Genetic Algorithm, version 2

(NSGA-II) [7] is the best known.

The fundamental difference between these two types of

algorithms is in the ranking criterion (i.e. fitness assignment)

used to determine which individuals have stronger chance to

survive to the next generation. Thus we focus on the ranking

criteria in both algorithms.

1) Nondominated Sorting Genetic Algorithm, version 2

(NSGA-II):

The sorting procedure in NSGA-II is depicted in Fig. 4,

taken from [7]. It shows how the combined primary and

secondary population gets sorted according to domination,

where F1 contains all nondominated solutions; F2 contains all

nondominated solutions after excluding F1 and so on. When

the solutions within F3 need to be sorted for truncation, they

are ranked according to crowding distance, a value calculated

from distances to nearest neighbors in all objective values.

Thus diversity preservation is the second criterion –after

domination– to determine fitness for survival.

2) Indicator-Based Evolutionary Algorithm (IBEA):

Figure 5 provides an outline of the IBEA algorithm. The

details can be found in [33].

Fig. 4. NSGA-II sorting procedure [7]

Fig. 5. Outline of IBEA [33]

 () ∑ ()

 ()

Input: α (population size)

N (maximum number of generations)
κ (fitness scaling factor)

Output: A (Pareto set approximation)

Step 1: Initialization: Generate an initial population P of size
α; and an initial mating pool P’ of size α; append P’ to P; set
the generation counter m to 0.
Step 2: Fitness assignment: Calculate fitness values of

individuals in P, i.e., for all x1 ∈ P set

Where I(.) is a dominance-preserving binary indicator.
Step 3: Environmental selection: Iterate the following three
steps until the size of population P does not exceed α:

1. Choose an individual x∗ ∈ P with the smallest fitness

value, i.e., F(x∗) ≤ F(x) for all x ∈ P.

2. Remove x∗ from the population.

3. Update the fitness values of the remaining individuals, i.e.

F(x) = F(x) + () for all x ∈ P.

Step 4: Termination: If m ≥ N or another stopping criterion is

satisfied then set A to the set of decision vectors represented
by the nondominated individuals in P. Stop.
Step 5: Mating selection: Perform binary tournament
selection with replacement on P in order to fill the temporary
mating pool P’.
Step 6: Variation: Apply recombination and mutation
operators to the mating pool P’ and add the resulting
offspring to P. Increment the generation counter (m = m + 1)

and go to Step 2.

Equation 2 in Fig. 5 shows IBEA's fitness assignment.

Each solution is given a weight based on I(.), a dominance-

preserving quality indicator, thus factoring in more of the

optimization objectives of the user. The authors of IBEA,

Zitzler and Kunzli, designed the algorithm such that

“preference information of the decision maker” can be

“integrated into multiobjective search” [33]. It is noticed here

that the ranking criteria in IBEA place no emphasis on

diversity of solutions, thus diverging from the conventional

trend set by NSGA-II, and followed by many others.

This difference in ranking criteria causes IBEA to

outperform NSGA-II when the objective space increases in

dimension. In [27], it is experimentally demonstrated with real-

valued test functions that the performance of NSGA-II and

SPEA2 rapidly deteriorates with increasing dimension, and that

other algorithms (such as IBEA) cope very well with high-

dimensional objective spaces. It is argued that NSGA-II tends

to “increase the distance to the Pareto front in the first

generations because the diversity-based selection criteria favor

higher distances between solutions. Special emphasis is given

to extremal solutions with values near zero in one or more

objectives. These solutions remain non-dominated and the

distance cannot be reduced thereafter.”

D. Z3 SMT Solver

We will use the Z3 SMT solver as one way to generate a

known correct configuration for the large feature models. This

method is fast and straightforward since the models are already

expressed in DIMACS format, which is a direct representation

of the model’s Boolean formula, such as the one in Fig. 3.

Satisfiability modulo theories (SMT) generalizes Boolean

satisfiability (SAT) by adding equality reasoning, arithmetic,

fixed-size bit-vectors, arrays, quantifiers, and other useful first-

order theories. An SMT solver is a tool for deciding the

satisfiability (i.e. validity) of formulas in these theories. Z3 is

an efficient SMT Solver freely available from Microsoft

Research. It is used in various software verification and

analysis applications. [6]

Although the configuration generated by Z3 was not useful

in this experiment compared to the one generated using IBEA,

we still plan to use Z3 in future work to efficiently find a set of

correct configurations that would help IBEA in converging

faster to a larger set of sound and optimal solutions.

IV. SETUP

A. Feature Models Used in this Study

The LVAT formula repository includes 15 models (as of

May 2013), each represented in two formats: Boolean and

DIMACS. Table I lists the 7 models for which the results in

this study are reported.

B. Feature Attributes

Our research explores alternate methods to explore complex

decision spaces. In our recent literature review [21], we found

that most MEOA research in software engineering explores a

very simplistic two-valued objective space.

TABLE I. MODELS USED IN THIS STUDY

Model Version Features Ref.

ToyBox 0.1.0 544 [5]

axTLS 1.2.7 684 [5]

eCos 3.0 1244 [24], [4]

FreeBSD 8.0.0 1396 [24], [3]

Fiasco 2011081207 1638 [5]

uClinux 20100825 1850 [5]

Linux X86 2.6.28 6888 [24], [3]

In our work with users, we find that merely exploring two

objectives is insufficient to capture the breadth of their

concerns. Therefore, when we certify different optimizers, we

take care to explore problems with up to half a dozen

objectives. To make such rich objective spaces, we augment

simpler models with a rich set of objectives. Specifically, we

augmented the feature models with 3 attributes for each

feature: COST, USED_BEFORE, and DEFECTS. The values

were selected stochastically according to distributions that

emulate software projects. COST takes real values distributed

normally between 5.0 and 15.0, USED_BEFORE takes

Boolean values distributed uniformly, and DEFECTS takes

integer values distributed normally between 0 and 10.

The only dependency among these qualities is:

 if (not USED_BEFORE) then DEFECTS = 0 (3)

C. Problem Representation

The feature models were represented as binary strings,

where the number of bits is equal to the number of features. If

the bit value is TRUE then the feature is selected, otherwise

the feature is removed (i.e. deselected).

D. Problem Formulation; Defining the Optimization

Objectives

In this work we optimize the following objectives:

1- Correctness; i.e. compliance to the relationships and

constraints defined in the feature model. Since jMetal

treats all optimization objectives as minimization

objectives, we seek to minimize rule violations.

2- Richness of features; we seek to minimize the number

of deselected features.

3- Features that were used before; we seek to minimize

the number of features that weren’t used before.

4- Known defects; which we seek to minimize.

5- Cost; which we seek to minimize.

The second objective (i.e. richness of features) counteracts

the effects of the other objectives by increasing the number of

selected features while minimizing violations, defects, and cost.

Without it, the final Pareto front would crowd in the area with

minimum features and thus would provide a narrow set of

options to the end user.

E. MEOA Parameters

The following parameter values were used after

rudimentary runs for parameter tuning. It is noted that low

values for crossover and mutation rates perform better with

feature models, as we found in previous work [22].

TABLE II. PARAMETER VALUES

Parameter Value

Population size 300

Crossover rate 0.05

Mutation rate 0.001

Run time 30 minutes

Independent runs 10

F. Run Time as Stopping Criterion

In [23], we compared MEOAs by allowing each to perform

a fixed number of fitness function evaluations, which is a

commonly used approach. The number of evaluations is

proportional to the total run time and the required CPU power.

Yet, the total run time is affected by many other algorithm-

dependent operations, including the fitness ranking of

individuals in each generation. This leads to varying runtimes

with the same number of evaluations. For instance, we noticed

that IBEA took five times longer than NSGA-II to perform the

same number of evaluations, which meant that IBEA spent far

more time in fitness ranking than NSGA-II. This is expected

from our study of fitness ranking criterion in subsection III.C.

The question here is: which criterion shall we fix in order to

have a fair comparison among algorithms? We have come to

the opinion that each algorithm should be given a fixed amount

of time to calculate its best approximation of the Pareto front.

A better algorithm should score better on the quality indicators

(HV, %correct) within that duration of time. Going back to the

comparison between IBEA and NSGA-II, if both are given the

same duration of time, then NSGA-II would perform far more

evaluations than IBEA, and thus would be given a better

chance to improve its results. As we will see in the coming

section, providing NSGA-II with the chance to evolve more

generations did not help it to overcome IBEA at producing

more correct solutions or better HV.

In addition, the user should be more concerned with the

amount of time it takes to optimize, than with the number of

evaluations. CPU power is often available at the user’s

disposal, and the algorithms should utilize that CPU power to

produce the best results in the least amount of time, regardless

of number of evaluations or number of evolved generations.

Therefore, in the this paper’s experiments we make our

comparisons of the results after limiting the amount of time

given to each algorithm to 30 minutes, regardless of number of

evaluations each algorithm were able to perform.

G. Quality of Pareto Front

We compare the performance of MEOAs using the

following quality indicators:

1- Hypervolume (HV): defined in [34], is a measure of

the size of the space covered underneath the Pareto

front. If the objectives are all to be maximized, then the

preferred Pareto front is the one with the highest

Hypervolume. In jMetal, all objectives are minimized,

but the Pareto front is inverted before calculating

hypervolume, thus the higher the hypervolume the

closer to optimum the Pareto front is.

2- %Correct: i.e. the percentage of fully-correct solutions,

which is an indicator particular to this problem. Since

correctness is an optimization objective that evolves

over time, there maybe points in the final Pareto front

that have rule violations. Such points are not likely to

be useful to the user. We are interested in percentage of

points within the Pareto front that have zero violations,

and thus a full-correctness score.

3- TT50%: i.e. Time to achieve 50% correct solutions is

another problem-specific indicator that we added as a

measure of the speed of convergence to a large amount

of valid solutions. This is a useful comparison figure

when the final %Correct value is the same, since it

shows who arrived faster at the 50% milestone.

V. RESULTS

In the following, we run the 5-objective optimization

problem that we described in III.D. We first try NSGA-II and

IBEA without adding any knowledge of model constraints, and

then we add the “feature fixing” technique, which we find to

help IBEA in optimizing the configuration of 6 large models

from LVAT within the allocated 30 minutes. As for the 7
th
 and

largest model, i.e. Linux kernel, IBEA requires further domain-

knowledge assistance, which we offer in the form of a seed

planted in the initial population. This technique results in

finding 30 correct configurations in 30 minutes.

A. Static Analysis to Detect Fixed Features

Our original approach to the configuration of feature

models [23] was to start from a population of randomly

generated configurations, and let the evolutionary process

promote those configurations that conform to the feature

model. That approach worked well for the small feature models

in SPLOT, although with extended run times, but it was clear

that we needed to guide the evolutionary algorithms to closely

respect the structure of feature models.

In the DIMACS formulas representing our feature models,

certain disjunctions (rules) only include one feature, which

means that the feature is either mandatory (a commonality)

which must always be selected, or a dead feature which must

always be deselected. Also, we looked for disjunctions (rules)

that included two features but one of them was fixed in the first

round, and thus the second one was fixed as well.

Once a feature is detected as fixed, we fix it in the initial

population, while all other features are subject to random

configuration, and we restrict the bit mutation operator to only

flipping features that are not fixed.

Table III shows the amount of fixed features detected in

each model. It also shows the amount of “skipped rules”, i.e.

the rules that we stop checking in our fitness evaluation since

they only include fixed features. We observe that eCos,

FreeBSD, and the Linux X86 models have few fixed features.

Table IV shows the results comparing IBEA and NSGA-II

with and without feature fixing. Each algorithm is run 10 times

for 30 minutes in each case. The median values are reported.

We also performed Mann-Whitney tests to assess the statistical

significance of the %Correct indicator. We highlight

the %Correct in bold if the confidence level exceeds 95%

when comparing each method to the one to its left.

TABLE III. FIXED FEATURES AND SKIPPED RULES

Model
Total

Features

Fixed

Features

Total

Rules

Skipped

Rules

ToyBox 544 363 1020 394

axTLS 684 384 2155 259

eCos 1244 19 3146 11

FreeBSD 1396 3 62183 20

Fiasco 1638 995 5228 553

uClinux 1850 1244 2468 1850

Linux X86 6888 94 343944 699

We make the following observations:

1- The feature fixing approach is still not enough for the

largest model, the Linux kernel. There were no valid

solutions after 30 minutes for all cases.

2- IBEA outperforms NSGA-II in terms of the %Correct

indicator. Feature fixing helps NSGA-II achieve

better %Correct and HV, but the majority of solutions

remain useless due to violations of the model

constraints. This confirms previous findings by the

authors [23] regarding the superiority of a continuous

measure of domination (as in IBEA) over absolute

dominance used in NSGA-II (see subsection III.C).

3- IBEA with feature fixing achieves remarkable results

for six models (the numbers highlighted in bold). For

two of these six models (ToyBox and uClinux), the

percentage of correct solutions is 25% and 31%

respectively. When considering that the final Pareto

front is composed of 300 individuals, 25% corresponds

to 75 fully-correct solutions, and 31% means 93 valid

solutions. This is remarkable as well compared to

NSGA-II or IBEA without feature fixing.

4- IBEA without feature fixing achieved high %Correct

with two models (eCos and FreeBSD). When feature

fixing was used, the TT50% indicator showed a faster

growth of correct configurations, while the HV

indicator showed an improvement in the overall

optimality of solutions.

5- Some cases show a lower HV value when

the %Correct value is improved. This means that, when

the number of violations is high, the other 4 objectives

take closer to optimum values, which would not be

useful because of the rule violations.

B. Using a Pre-Computed Correct Solution as Seed to IBEA

The results in the previous part are encouraging, but it’s

clear that IBEA needs more assistance to achieve acceptable

configurations for the Linux model within reasonable time.

Our next innovative technique was to pre-compute a correct

configuration and plant it like a seed in the initial population of

the evolutionary algorithms. The intuition behind this was that

the randomly-generated members of the initial population are

highly likely to violate thousands of feature model rules and be

punished for that in the fitness assignments. When an

individual in the initial population stands out as a fully-correct

solution, then it should be promoted more often than others for

crossover with other individuals, and would survive through

successive generations due to elitism. Thus the “seed” acts as a

role model to the “chaotic” members of the population. This

technique proved to be useful as we will see next.

First, we present two different ways of pre-computing a

correct solution:

1- Using the Z3 SMT solver. Z3 takes the DIMACS

formula as input, and outputs the first correct solutions

that it finds. This technique is fast, but it tends to

produce correct solutions with a low number of 1’s; i.e.

a low number of selected features.

2- Using 2-objective optimization with IBEA, where one

objective is to minimize rule violations, while the other

objective is to maximize the number of selected

features. This technique can be time-consuming for

very large feature models, but it produces more

selected features.

Table V shows the time it took each of these two techniques

to generate a correct solution, and the number of selected

features within that solution.

Notice that the eCos model accepts the “zero-feature”

solution, which definitely is a bug in that formula.

To show the benefit of the “seeding” technique, we apply

IBEA, with feature fixing, and seeding to the Linux X86

feature model, with the full 5 optimization objectives. Three

different kinds of seeds are tried separately:

1- One “feature-rich” seed generated using 2-objective

IBEA, along with 299 random solutions.

2- Thirty different fully-correct seeds, generated in a

previous run of 5-objective IBEA, along with 270

random solutions.

3- One “low-feature” seed generated using Z3 SMT

solver, along with 299 random solutions.

TABLE IV. RESULTS FOR IBEA AND NSGA-II WITH AND WITHOUT FEATURE FIXING, 5 OPTIMIZATION OBJECTIVES

Model
NSGA-II without feature fixing NSGA-II with feature fixing IBEA without feature fixing IBEA with feature fixing

%Correct TT50% HV %Correct TT50% HV %Correct TT50% HV %Correct TT50% HV

Toybox 0.67% N/A 0.14 12.5% N/A 0.21 2.8% N/A 0.25 25% N/A 0.22

axTLS 0.67% N/A 0.10 3.3% N/A 0.21 4.7% N/A 0.25 100% 157 0.21

eCos 1.33% N/A 0.074 2% N/A 0.082 100% 183 0.32 100% 113 0.33

FreeBSD 0.17% N/A 0.001 0.5% N/A 0.024 91% 688 0.32 98% 502 0.34

Fiasco 0.67% N/A 0.084 2% N/A 0.18 2.7% N/A 0.23 100% 585 0.20

uClinux 0.67% N/A 0 3.3% N/A 0.16 1.5% N/A 0 31% N/A 0.30

Linux 0% N/A 0 0% N/A 0 0% N/A 0 0% N/A 0.021
a %Correct: Percentage of correct solutions. TT50%: time to achieve 50% correctness (in seconds). HV: Hypervolume.
b Each cell reports the median value for 10 independent runs, each run for 30 minutes.

TABLE V. GENERATING A CORRECT SOLUTION USING 2 METHODS

Model
Total

Features

Using Z3 Using 2-obj IBEA

Time (sec)
Selected

Features
Time (sec)

Selected

Features

ToyBox 544 0.06 34 10.5 145

axTLS 684 0.06 81 16.5 245

eCos 1244 0.06 0 56 967

FreeBSD 1396 0.28 5 205 946

Fiasco 1638 0.07 248 42 575

uClinux 1850 0.01 7 23 455

Linux

X86
6888 1.22 130

11,000

(~3 hours)
5704

Fig. 6. Number of valid configurations over time, IBEA, 5-objectives with

seeding, Linux X86 feature model

Figure 6 shows the growth of the number of correct

solutions over time for all three types of seeds. The results for

the one “feature-rich” show that 30 correct solutions are

available after 30 minutes, and 36 such solutions are found

after 1 hour. Compare this to the result in Table IV, which

shows zero correct solutions for all 10 runs of 30 minutes each.

For the 30 seeds planted along with 270 random solutions,

the population had 49 fully-correct configurations at 10

seconds, but the number dropped as the 5-objective

optimization continued, down to 29 valid solutions at 30

minutes, and then back up to 38 after 1 hour. This shows that

the outcome of 1 carefully-selected feature-rich seed is

compatible with that of 30 seeds. The quality, not quantity, of

seeds had the most influence in the ability to scale up IBEA’s

optimization ability to the 6888-feature Linux model.

For the “low-feature” seed obtained with Z3 SMT solver,

the result was disappointing; no correct solutions were found

for the first hour. We attribute this failure to the scarcity of

selected features in the Z3 solution (130 features only). A

solution with so small number of 1’s would easily be “overrun”

by other incorrect individuals in the population through the

crossover process. In addition, this correct individual is

assigned a low fitness value due to the low number of features,

which decreases its likelihood of survival. The “feature-rich”

seed obtained with 2-objective IBEA had 5704 selected

features and thus was able to influence other individuals and

stay ahead in the fitness evaluation.

VI. DISCUSSION

A. Method Innovation is Key to Scalability

A traditional view about the scalability of evolutionary

algorithms is that the technology (i.e. CPU power, RAM) needs

to catch up with the algorithms, since the population-based

evolutionary methods require large amounts of RAM to store

the primary population and the archive resulting from crossover

and mutation, and CPU power would help finish the

computations within reasonable time. Multicore CPUs would

allow for the parallelization of execution, which is an important

property of population-based methods. [11]

Our experience, as reported in this paper, was that large

memory and fast CPUs were not enough to handle the size and

complexity of the very large Linux model (6888 features). It

took hours for the 5-objective optimization process to find any

valid configurations, and more hours to find a significant set of

valid solutions that are closer to optimality.

The innovation in method –the “seeding” technique– was

our key to scalability. One feature-rich valid seed in the midst

of a 300-member initial population was enough to generate 30

valid configurations within 30 minutes. A larger set of seeds

did not help in improving the result, which hinted that the

careful selection of seeds was more effective than increasing

their quantity. One effective seed acted like the proverbial

“straw that broke the camel’s back”.

B. Impact of the Scale-Up Result on Interactive Configuration

Configuration of a software package is an interactive

process during which the users would make initial choices and

then seek advice from the optimizer, and then make more

choices, and so forth. The user’s choices can be in the decision

space (e.g. select an optional feature, select an option from a

group), or they can be in the objective space (e.g. specifying

range for cost, maximum acceptable risk). The more choices

the user makes, the less complex the search space becomes,

and the faster the optimizer can respond. The advantage of

Pareto-optimal solutions is that they offer a range of options,

rather than a unique optimal solution. Thus the user would be

more informed and enabled in the configuration process.

The breakthrough that we achieved in this paper, via the

seeding technique, enables jump-starting the configuration of

6000+ features by offering 10 valid options within the first

minute (see the triangles in Fig. 6). Those 10 options are not

just valid, but they “dominate” a host of other candidates in the

Pareto sense, although they don’t represent the absolute

optimal Pareto front. The user can choose to begin making

configuration decisions that early in the process. The optimizer

takes the user’s input, which narrows down the search space,

and builds on the candidates achieved so far, and turns around

with more good candidates that cater to the user’s preferences.

The seed, which is pre-computed offline, serves as an

accelerator to the interactive configuration process.

C. Evolutionary Learning Still Rules

Without the remarkable result we presented in this paper,

the slow convergence toward correct solutions may tempt us to

abandon MEOAs and go directly to theorem provers, find all

0

10

20

30

40

50

10 100 1000 10000

V
al

id
 C

o
n

fi
gu

ra
ti

o
n

s

Time (sec)

one "feature-rich" seed

30 correct seeds

one "low-feature" seed

possible product variants and evaluate them all. Such approach

may be feasible with small and simple SPLs, but would not be

scalable to large and complex ones, such as the Linux feature

model, and the run times become prohibitive. Evolutionary

methods (and especially IBEA) are still the best way to

optimize with many objectives and vast decision spaces.

Navigating the decision space with the aid of heuristics and

simultaneously evaluating a population of candidates has

proven to outperform exhaustive search over many years of

research. This trend should continue to scale up with the help

of innovative techniques that inhibit the randomness of

exploration and nudge the optimizer towards respecting domain

constraints. The seeding trick is one such helper.

D. Be Careful with Problem Formulation

Many-objective optimization is a paradigm shift that forces

researchers to reformulate traditional problems in order to bring

out the various objectives and map out a Pareto front. The same

problem can have different formulations according to which

parameters the researcher chooses to bring out as independent

dimensions. In a recent survey [21], we found that most

researchers only examined two-objective formulations of their

problems. But we also found several examples of the same

researchers addressing different formulations of the same

problems by varying the number of objectives.

The most interesting problem formulation would have a

maximum number of objectives among which there are

minimal correlations. Such formulation would challenge the

multiobjective optimizer to find the set of best trade-offs

among competing objectives. On the other hand, if the

formulation separates two objectives among which there’s a

high correlation, then the optimization takes a monolithic

direction, with the solutions crowding in the same area that

tends to optimize both objectives at the same time.

A case in point is our 5-objective formulation of the

software configuration problem. We seek to 1) minimize

violations, 2) maximize features, 3) minimize newly-developed

features (not used before), 4) minimize known defects, and 5)

minimize cost. Some have looked at the second objective and

questioned its merit; does the user really seek to maximize the

number of features in a product? Our answer takes a holistic

look at the goal of our optimization: to provide the user with a

wide range of Pareto-optimal solutions that explore as many

feature configuration choices as possible, and then let the user

make their own decisions. If the “feature-richness” objective is

removed, the other four objectives would push the solutions

toward minimizing the number of features, since that area of

the decision space tends to decrease violations, new features,

known defects, and cost. Such formulation would defeat the

overall purpose of offering a diverse set of valid configurations.

E. Confirming IBEA’s Advantage in Many-Objective Problems

The results of this experiment confirm the findings of

earlier work by the authors [23] [22] and by Wagner et al. [27]

regarding the superiority of IBEA over other Pareto-based

algorithms (such as NSGA-II) in high-dimensional objective

spaces. This is attributed to IBEA’s fitness assignment strategy

which heavily factors in the user preferences, whereas Pareto-

based methods rely on absolute dominance as primary fitness

criterion and diversity as secondary criterion, which tend to

ignore differences in quality that IBEA is able to capture.

F. Building on the Seeding Approach

In light of the limited success of the seeding technique, we

suggest the use of a pre-computed set of seeds (a set of correct

solutions), given that it is diverse in the amount of selected

features. The more selected features the better chance there will

be of promoting correct solutions in the many-objective

optimization problem. Furthermore, since the Z3 SMT solver

can arrive at valid solutions much faster than the 2-objective

IBEA, we will try to create the desired set of seeds using Z3.

VII. THREATS TO VALIDITY

In the first part of the results, i.e. the feature fixing

technique, we repeated each algorithm run 10 times for each of

the 7 models. We performed the Mann-Whitney test and found

significant improvements in the %Correct indicator for 6 out of

7 models. This should be sufficient to eliminate a potential

threat to conclusion validity.

As for the second part of the results, i.e. the seeding

technique, we didn’t validate the findings with the same level

of repeats and statistical testing. We plan to do so in future

work as we explore the proper characterization of the effective

seeds and reduce the time needed to generate them.

A potential threat to construct validity is the use of

synthetic data as attributes of features, i.e. COST, DEFECTS,

and USED_BEFORE. The use of synthetic data is common in

software engineering literature. The difficulty of obtaining real

data comes from the fact that such data are usually associated

with software components, not features. When available, such

data is often proprietary and not published. Nevertheless, the

results we obtained have such a large margin of superiority

achieved by IBEA with feature fixing over other methods

which couldn’t possibly be biased by the synthetic data.

VIII. CONCLUSION AND FUTURE WORK

This experiment explored the scalability of optimum 5-

objective product configuration using IBEA for very large

feature models. For models with less than 2000 features, IBEA

was able to achieve the goal within reasonable time only with

the help of feature fixing. As for the Linux kernel, a 6888-

feature model, we were able to achieve 30 valid configurations

within 30 minutes with the help of an innovative population-

seeding technique. One pre-computed feature-rich solution was

enough to influence the rest of the population into learning

valid solutions faster.

Future work will focus on characterizing the quality and

quantity of the best seed which would be most influential in

helping IBEA to converge faster to large amounts of valid

solutions. In addition, the Z3 SMT solver will be utilized to

generate the desired set of seeds in shorter times than possible

using evolutionary methods.

ACKNOWLEDGMENT

This research work was funded by the Qatar National
Research Fund (QNRF) under the National Priorities Research

Program (NPRP) Grant No.: 09-1205-2-470. Additional
funding by the National Science Foundation (NSF) Grant No.:
CCF 1017330.

REFERENCES

[1] D. Benavides, A. Ruiz-Cortés, and P. Trinidad, "Automated

Reasoning on Feature Models," in Proc. CAISE, 2005, pp. 491-503.

[2] D. Benavides, S. Segura, and A. Ruiz-Cortes, "Automated Analysis

of Feature Models 20 Years Later: A Literature Review,"

Information Systems, vol. 35, no. 6, pp. 615-636, 2010.

[3] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki,

"Feature-to-Code Mapping in Two Large Product Lines,"

Department of Computer Science, University of Leipzig, Leipzig,

Technical Report 2010. [Online].

http://gsd.uwaterloo.ca/sites/default/files/2010-TR-

presence_conditions.pdf

[4] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki,

"Variability Modeling in the Real: A Perspective from the Operating

Systems Domain," in Proc. ASE, Antwerp, Belgium, 2010, pp. 73-

82.

[5] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki,

"Variability Modeling in the Systems Software Domain," Generative

Software Development Laboratory, University of Waterloo,

Waterloo, Canada, Technical Report GSDLAB–TR 2012–07–06,

2012. [Online]. http://gsd.uwaterloo.ca/sites/default/files/vm-2012-

berger.pdf

[6] L. de Moura and N. Bjørner, "Z3: An Efficient SMT Solver," in

Proc. TACAS, LNCS 4963 , Budapest, Hungary, 2008, pp. 337-340.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A Fast and

Elitist Multiobjective Genetic Algorithm: NSGA-II," IEEE

Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-

197, 2002.

[8] J.J. Durillo and A.J. Nebro, "jMetal: A Java Framework for Multi-

Objective Optimization," Advances in Engineering Software, vol.

42, pp. 760-771, 2011.

[9] G. Fraser and A. Arcuri, "The Seed is Strong: Seeding Strategies in

Search-Based Software Testing," in Proc. ICST, 2012, pp. 121-130.

[10] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, "A Genetic

Algorithm for Optimized Feature Selection with Resource

Constraints in Software Product Lines," Journal of Systems and

Software, vol. 84, no. 12, pp. 2208–2221, December 2011.

[11] M. Harman, "Software Engineering Meets Evolutionary

Computation," IEEE Computer, vol. 44, no. 10, pp. 31-39, October

2011.

[12] M. Harman, S.A. Mansouri, and Y. Zhang, "Search Based Software

Engineering: A Comprehensive Analysis and Review of Trends

Techniques and Applications," King’s College, London, UK,

Technical Report TR-09-03, 2009.

[13] C. Henard et al., "Bypassing the combinatorial explosion: Using

similarity to generate and prioritize t-wise test suites for large

software product lines ," arXiv preprint, pp. arXiv:1211.5451, 2012.

[14] M.F. Johansen, O. Haugen, and F. Fleurey, "Properties of Realistic

Feature Models Make Combinatorial Testing of Product Lines

Feasible," in Proc. MODELS'11, LNCS 6981, 2011, pp. 638-652.

[15] S.Q. Lau, "Domain Analysis of E-Commerce Systems using

Feature-Based Model Templates," Dept. Electrical and Computer

Engineering, University of Waterloo, Canada, Master's Thesis 2006.

[16] R.E. Lopez-Herrejon and A. Egyed, "Searching the Variability

Space to Fix Model Inconsistencies: A Preliminary Assessment," in

Proc. SSBSE, Szeged, Hungary, 2011.

[17] M. Mendonca, M. Branco, and D. Cowan, "S.P.L.O.T. - Software

Product Lines Online Tools," in Proc. OOPSLA, Orlando, USA,

2009.

[18] M. Mendonca, A. Wąsowski, and K. Czarnecki, "SAT-Based

Analysis of Feature Models is Easy," in Proc. SPLC, San Francisco,

USA, 2009.

[19] M. Mendonca, A. Wąsowski, K. Czarnecki, and D. Cowan,

"Efficient Compilation Techniques for Large Scale Feature Models,"

in Proc. GPCE, Nashville, USA, 2008.

[20] R. Pohl, K. Lauenroth, and K. Pohl, "A Performance Comparison of

Contemporary Algorithmic Approaches for Automated Analysis

Operations on Feature Models," in Proc. ASE, Lawrence, KS, USA,

2011, pp. 313-322.

[21] A.S. Sayyad and H. Ammar, "Pareto-Optimal Search-Based

Software Engineering: A Literature Survey," in Proc. RAISE, San

Francisco, USA, 2013.

[22] A.S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, "Optimum

Feature Selection in Software Product Lines: Let Your Model and

Values Guide Your Search," in Proc. CMSBSE, San Francisco,

USA, 2013.

[23] A.S. Sayyad, T. Menzies, and H. Ammar, "On the Value of User

Preferences in Search-Based Software Engineering: A Case Study in

Software Product Lines," in Proc. ICSE, San Francisco, USA, 2013,

pp. 492-501.

[24] S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki,

"Reverse Engineering Feature Models," in Proc. ICSE'11, Honolulu,

USA, 2011.

[25] R. Shi, J. Guo, and Y. Wang, "A Preliminary Experimental Study on

Optimal Feature Selection for Product Derivation using Knapsack

Approximation," in Proc. PIC, 2010, pp. 665-669.

[26] S. Soltani, M. Asadi, H. Marek, D. Gasevic, and E. Bagheri,

"Automated Planning for Feature Model Configuration based on

Stakeholder's Business Concerns," in Proc. ASE, Lawrence, KS,

USA, 2011, pp. 536-539.

[27] T. Wagner, N. Beume, and B. Naujoks, "Pareto-, Aggregation-, and

Indicator-Based Methods in Many-Objective Optimization," in Proc.

EMO, LNCS Volume 4403/2007, 2007, pp. 742-756.

[28] J. White, B. Dougherty, and D.C. Schmidt, "Selecting Highly

Optimal Architectural Feature Sets with Filtered Cartesian

Flattening," Journal of Systems and Software, vol. 82, no. 8, pp.

1268–1284, August 2009.

[29] J. White, B. Dougherty, D.C. Schmidt, and D. Benavides,

"Automated Reasoning for Multi-Step Feature Model Configuration

Problems," in Proc. SPLC, San Francisco, USA, 2009, pp. 11-20.

[30] J. White, D.C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz–

Cortés, "Automated Diagnosis of Product-line Configuration Errors

in Feature Models," in Proc. SPLC, 2008, pp. 225-234.

[31] J. White, D.C. Schmidt, A. Nechypurenko, and E. Wuchner,

"Optimizing and Automating Product-Line Variant Selection for

Mobile Devices," in Proc. MOBISYS, Puerto Rico, 2007.

[32] G. Zhang, H. Ye, and Y. Lin, "Using Knowledge-Based Systems to

Manage Quality Attributes in Software Product Lines," in Proc.

SPLC, 2011.

[33] E. Zitzler and S. Kunzli, "Indicator-Based Selection in

Multiobjective Search," in Parallel Problem Solving from Nature.

Berlin, Germany: Springer-Verlag, 2004, pp. 832–842.

[34] E. Zitzler and L. Thiele, "Multiobjective Evolutionary Algorithms:

A Comparative Case Study and the Strength Pareto Approach,"

IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp.

257–271, 1999.

