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Abstract Background: When projects lack sufficient local data to make predictions,

they try to transfer information from other projects. How can we best support this

process?

Aim: In the field of software engineering, transfer learning has been shown to be

effective for defect prediction. This paper checks whether it is possible to build transfer

learners for software effort estimation.

Method: We use data on 154 projects from 2 sources to investigate transfer learning

between different time intervals and 195 projects from 51 sources to provide evidence

on the value of transfer learning for traditional cross-company learning problems.

Results: We find that the same transfer learning method can be useful for transfer

effort estimation results for the cross-company learning problem and the cross-time

learning problem.

Conclusion: It is misguided to think that: (1) Old data of an organization is irrel-

evant to current context or (2) data of another organization cannot be used for local

solutions. Transfer learning is a promising research direction that transfers relevant

cross data between time intervals and domains.
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1 Introduction

There is a solid body of evidence that data miners can find interesting and useful

patterns from within-project data; i.e. the data found within one software organiza-

tion. This data can take many forms including information from mobile phone app

store [Harman et al., 2012]; natural languages requirements documents [Hayes et al.,

2006]; logs of software inspections [Menzies et al., 2007, Turhan et al., 2009]; or even

the power consumption records associated with software [Hindle, 2012].

The next challenge after within-project learning is how to transfer results across

different projects. Transfer learning divides data into domains where each domain is

a set of examples plus a probability distribution over some class variable (and this

distribution must be learned from the examples) [Pan and Yang, 2010]. When we jump

from domain1 to domain2, the examples and/or the distribution may change and it

is the task of the transfer learner to discover how much of domain1 can be suitably

applied to domain2.

Transfer learning can be potentially very useful for software engineering. For ex-

ample, if a project is using some technology for the first time, it can use transfer

learning to acquire valuable insights from another project where developers had more

experience in that technology. To facilitate this process, many organizations expend

much effort to create repositories of software project data. For example, Rodriguez et

al. [D. Rodriguez and Harrison, 2012] report 13 active SE repositories that researchers

can access; e.g. PROMISE, BUGZILLA, ISBSG, etc.

These repositories are valuable resources for researchers, since they offer benchmark

problems for testing techniques. Better still, if other researchers can access the same

repositories, then those benchmark problems encourage replication studies where one

researcher tries to repeat, improve, or perhaps even refute the results from another.

While these repositories are useful to researchers, it is an open issue if repositories

of software project data are valuable to industrial software companies. This

issue must be asked for two reasons: Such repositories may not predict properties for

future projects and they may be very expensive to build:

– Zimmermann et al. report over 600 experiments where data from Project1 was

used to build a defect predictor for Project2 [Zimmermann et al., 2009]. In only

3% of those experiments did models learned from Project1 adequately predicted

defects for Project2. Other researchers offer similar pessimistic results [Menzies

et al., 2012, Menzies et al., 2011, Posnett et al., 2011, Bettenburg et al., 2012].

For example, we have one study where data from six projects is used to predict

for defects in a seventh project. The false alarm rate in those predictions was

unacceptably high (median values above 65%) [Turhan et al., 2009]1.

– These empirical results are troubling since it can be quite costly to create these

repositories. For example, Jairus Hihn from the Jet Propulsion Laboratory [Hihn

and Habib-agahi, 1991] reports that NASA spent two million dollars in the early

1990s to build their own repository of project data from 121 NASA software projects

developed in the 1970s and 1980s. If we cannot use such expensive repositories to

predict properties in future projects, then all that expense is wasted.

It might be argued that, for software engineering, this goal of transfer learning is

wrong-headed. After all, software is built by specific people using specific tools for

1 In the literature, this is known as a negative transfer effect [Pan and Yang, 2010] where
transfer learning actually makes matters worse.
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specific tasks on specific platforms. Given that, perhaps all we can ever hope to do

is to monitor some current project until some stable pattern emerges for that specific

team, tool, task, and platform. But if that was the case, if all conclusions are local and

cannot be transferred to other projects, then:

– Managers would have no basis for planning for future software projects.

– We must conclude that these repositories are not valuable, at least for the purposes

of predicting the properties of new projects.

Recent results in one specific area of software engineering suggest that these concerns

may be unfounded. In the specific sub-domain of defect prediction, relevancy filter

has been shown to allow effective transfer of data across projects. A relevancy filter

carefully selects some subset of the training data. For example, weights can be applied

to control how we prune away irrelevant training data. Such weights can be learned at

the level of instances [Turhan et al., 2009,Ma et al., 2012] or data sets [He et al., 2012].

Alternatively, partitioning methods can be used to find clusters within the training data

that are most relevant to the test data [Posnett et al., 2011,Menzies et al., 2011,Menzies

et al., 2012,Bettenburg et al., 2012].

These promising results from the area of defect prediction motivate our exploration

of other areas of software engineering. This paper explores transfer learning for soft-

ware effort estimation. Previous results show transferring effort estimation results is a

challenging task:

– Kitchenham et al. reviewed 7 published transfer studies in effort estimation2. They

found that in most (10) cases, transferred data generated worse predictors than

using within-project information. This is a worrying finding for, e.g., start-up com-

panies since it means they will not be able to make adequate effort estimates until

after completing numerous local projects (and, in the meanwhile, they run the risk

of projects failing due to inadequate effort allocations).

– In a similar result, Ye et al. report that the tunings to Boehm’s COCOMO model

have changed radically for new data collected in the period 2000 to 2009 [Yang

et al., 2011].

Note that effort estimation is a different problem to defect prediction:

– While defect data sets store information on hundreds to millions of methods,

– Effort data sets are smaller, often they are just a few dozen records.

Since the data sets are so different, we must use different methods to transfer effort

estimation data. In prior work [Kocaguneli et al., 2012], we have found that a self-tuning

analogy-based effort estimation method called TEAK out-performs other approaches

such as linear regression, neural networks, and traditional analogy-based reasoners. Like

the above work on defect prediction, TEAK uses relevancy filtering. TEAK explores

outwards from each test instance, taking care not to enter “suspicious” regions where

consensus breaks down and the training data offers wildly contradictory conclusions.

To optimize that process, TEAK first builds a dendogram (a tree of clusters of project

data), then computes the variance of the conclusions of the examples in each sub-tree.

This paper uses TEAK as laboratory for studying transfer learning in effort esti-

mation. Using TEAK, we will explore the following research questions.

2 Terminology note: Kitchenham et al. called such transfers “cross-company” learning.



4

RQ1: Is transfer learning possible outside the area of defect prediction?

Our studies will divide effort data into numerous stratifications (e.g. different compa-

nies, different development sites, different languages, etc). All this data will then be

loaded into TEAK. Our software will then group together similar data seen in different

stratifications.

RQ2: Is transfer learning effective for effort estimation?

We will compare estimates learned from within a single stratification to those trans-

ferred across different stratifications.

RQ3: How useful are manual divisions of the data?

TEAK has a choice about where it finds its training data: Either in one stratification

or in many. Hence it can assess the relative merits of automated vs manual groups

of data. Automated groups are generated by methods like TEAK. The alternative to

automatic grouping is manual grouping via delphi localization; i.e. the practice where

(a) some human expert offers a division of the data then (b) effort models are built

from just the data within each such localization3.

RQ4: Does transfer learning for effort estimation work across time as well as

space?

We find that transfer learning is a unifying framework for two, previously distinct,

research themes in software engineering. Turhan discusses the problem of data set

shift [Turhan, 2012] where, within one project, something has changed and the old

data for that project no longer applies. This issue of changes within one project is

not discussed in the cross-company learning literature in SE [Kitchenham et al., 2007,

Turhan et al., 2009] since cross-company learning usually focuses on, say, transferring

data across two divisions of one company found in two different physical locations.

Note that, from the perspective of transfer learning, both problems are the same; i.e.

the transfer data from domain1 to domain2 regardless of whether the domains are:

– from the same project at different times (i.e. the data set shift problem);

– or from different projects at similar times in different places (i.e. the cross company

learning problem).

This leads to the following conjecture: A transfer learner that works for cross-company

learning can also be applied to transferring past data to current projects. To test

that conjecture, this paper applies the same transfer learner without modification to

traditional cross-company learning problems and data set shift problems.

RQ5: Are repositories of software project data valuable to industrial companies?

Based on the above, we will make an assessment of the question that originally moti-

vated this paper.

RQ6: Does the history of software engineering have relevant lessons for today?

3 Examples of delphi localizations come from Boehm [Boehm, 1981] and Petersen &
Wohlin [Petersen and Wohlin, 2009]. Boehm divided software projects into one of the “embed-
ded”, “semi-detached” or “organic” projects and offered different COCOMO-I effort models for
each. Petersen & Wohlin offer a rich set of dimensions for contextualizing projects (processes,
product, organization, etc).
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We know of many researchers and managers that are so enamoured with the fast

pace of change in SE that they are willing to throw out conventional wisdom in fa-

vor of new ideas, even when those ideas are still immature and not fully investigated.

This “everything must be new” mentality often effects our own work. As data min-

ing researchers, we often struggle to find appropriate data for checking our proposed

prediction methods. Previously, we have encountered some resistance to the use of

seemingly “out-dated” data sets from last century such as COC-81 and NASA-93 for a

21st century paper on effort estimation. Therefore, in this paper, we check if any parts

of older data sets have any relevancy on later projects.

Note that, from an economic perspective, this last point is quite important. Col-

lecting data can be very expensive (we saw above that the NASA-93 was the result of

a two million dollar project review exercise conducted by NASA). If any organization

goes to all the trouble of building such repositories, it seems important and appropriate

to understand the life expectancy of that data.

1.1 Contributions and Structure

In summary, the contributions of this study are:

– Proposing transfer learning as a solution to the important problem of local data

issues for effort estimation.

– Empirically showing that effort estimation data can be successfully transfered with-

out performance loss across time and space. To the best of our knowledge, this is

the first report in the effort estimation literature of a successful transfer learning

application that can effectively transfer data across time and space.

– Evaluating the success of transfer learning on recent proprietary as well as public

data sets; hence, providing evidence for practitioners as well as benchmark avail-

ability for further research.

This paper extends a prior publication as follows:

– In 2011, Kocguenli et al. offered a limited study on just cross-company learning

with 8 data sets [Kocaguneli and Menzies, 2011a]. This paper doubles the number

of case studies as well as exploring issues of data set shift. That is, that prior

publication explored learning across space while here we explore transfer across

time and space.

– Furthermore, the data used in that prior study is somewhat dated while this paper

uses more recent data from organizes building Web-based applications.

– This research uses more evaluation criteria including a recently proposed error

measure [Shepperd and MacDonell, 2012].

– Lastly, that prior aforementioned work did not recognize the connection of its

research to transfer learning. This paper makes that connection via a more extensive

literature review.

The rest of this paper is structured as follows. After some background notes, TEAK is

evaluated on the proprietary data sets of 8 Web companies from the Tukutuku [Mendes

and Mosley, 2008] data base (for transfer between domains) as well as publicly available

NASA data sets called Cocomo814 and Nasa935 (for transfer between time intervals).

In the experimentation, each test instance is evaluated in two different scenarios:

4 http://goo.gl/WxGXv
5 http://goo.gl/ioXDy
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– In the first scenario, the test instance is allowed to use only within training data

(i.e. restricted to its own domain or time interval).

– In the second scenario, the test instance is allowed to transfer data or use within-

project data (i.e. it is allowed to transfer instances from other domains or time

intervals). This second scenario study shows that there is a considerable amount of

cross data that can be successfully transferred across time and space.

The performance of the test instances in both scenarios are compared according to 8

different error measures (details in §3.2) subject to Wilcoxon test (at 95% confidence).

In 6 out of 8 companies, transfer learning resulted in performance that is statistically

identical to estimates generated from within-data experiments. In all cases of the trans-

fer learning between time intervals, the within and transferred data performance were

statistically the same.

2 Related Work

In this paper, we will refer to transfer learning and software effort estimation as TL

and SEE (respectively).

2.1 Transfer Learning

A learning problem can be defined by:

– a specific domain D, which consists of a feature space and a marginal distribution

defining this space;

– and a task T , which is the combination of a label space and an objective estimation

function.

TL allows for the training and test data to have different domains and tasks [Ma

et al., 2012]. According to Jialin et al. TL can be formally defined as follows [Pan

and Yang, 2010]: Assuming we have a source domain DS , a source task TS , a target

domain DT and a target task TT ; TL tries to improve an estimation method in DT

using the knowledge of DS and TS . Note that the assumption in the above definition

is that DS 6= DT and TS 6= TT . There are various subgroups of TL, which define the

relationship between traditional machine learning methods and various TL settings,

e.g. see Table 1 of [Pan and Yang, 2010]. SEE transfer learning experiments have the

same task but different domains, which places them under the category of transductive

TL [Arnold et al., 2007].

There are 4 different approaches to TL [Pan and Yang, 2010]: instance-transfer

(or instance-based transfer) [Foster et al., 2010], feature representation transfer [Lee

et al., 2007], parameter-transfer [Gao et al., 2008] and relational-knowledge trans-

fer [Mihalkova et al., 2007]. The TL approach of the estimation method used in this

research corresponds to instance-transfer. The benefits of instance-transfer learning are

used in various research areas, e.g. Ma et al. use TL for cross-company defect predic-

tion, where they use a weighted Naive Bayes classifier [Ma et al., 2012]. Other research

areas that benefit from instance-transfer are text classification [Dai et al., 2007], e-mail

filtering [Zhang et al., 2007] and image classification [Wu and Dietterich, 2004].
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2.2 Transfer Learning and SE

TL between different time intervals has been paid very little attention in SEE. To

the best of our knowledge, the only work that has previously questioned TL between

different time frames is that of Lokan et al. [Lokan and Mendes, 2009a, Lokan and

Mendes, 2009b]. In [Lokan and Mendes, 2009b] Lokan and Mendes found out by using

chronological sets of instances that time frame divisions of instances did not affect

prediction accuracy. In [Lokan and Mendes, 2009a], they found out that it is possible

to suggest a window size of a time frame of past instances, which can yield performance

increase in estimation. They also note that the size of the window frame is data set

dependent. Our research builds on the prior findings to provide evidence of knowledge

transfer through both space and time.

The prior results on the performance of TL (a.k.a. cross-company learning in SEE)

are unstable. In their review, Kitchenham et al. [Kitchenham et al., 2007] found equal

evidence for and against the value of TL in SEE. Out of the 10 studies reviewed

by Kitchenham et al., 4 studies favored within data, another 4 studies found that

transferring data is not statistically significantly worse than within data, and 2 studies

had inconclusive results. In the field of defect prediction, Zimmermann et al. studied

the use of transferring data [Zimmermann et al., 2009]. Zimmermann et al. found that

predictors performed worse when trained on cross-application data than from within-

application data. From a total of 622 transfer and within data comparisons, they report

that within performed better in 618 cases. Recently Ma et al. defined using data across

other domains in the research field of defect prediction as a TL problem [Ma et al.,

2012]. Ma et al. propose a Naive Bayes variant, so called Transfer Naive Bayes (TNB),

so as to use all the appropriate features from the training data. TNB is proposed as

an alternative TL method for defect prediction when there are too few training data.

According to Ma et al. data transferring problem of defect prediction corresponds to an

inductive TL setting; where source and target tasks are the same, yet source and target

domains are different. The inductive TL methods are summarized as either instance

transfer or feature transfer [Huang et al., 2007]. The current literature of TL in defect

prediction as well as SEE focuses on instance transfer.

Turhan et al. compared defect predictors learned from transferred or within data.

Like Zimmermann et al., they found that transferring all data leads to poor estimation

method performance (very large false alarm rates). However, after instance selection

pruned away irrelevant data during TL, they found that the estimators built on trans-

ferred data were equivalent to the estimators learned from within data [Turhan et al.,

2009]. Motivated by Turhan et al. [Turhan et al., 2009], Kocaguneli et al. [Kocaguneli

et al., 2010] used instance selection as a pre-processor for a study of TL in SEE, where

test instances are allowed to use only transferred or only within data. In a limited study

with three data sets, they found that through instance selection, the performance dif-

ferences in the predictors trained on transferred or within data were not statistically

significant. This limited study was challenged by Kocaguneli et al. in another study that

uses 8 different data sets [Kocaguneli and Menzies, 2011b]. The results were identical:

performance differences of within and transferred data are not significant.
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2.3 Data Set Shift

A repeated result in software engineering is that the conclusions that hold in one context

do not hold in another. For example, Keung et al. investigated 90 SEE methods induced

on 20 data sets [Keung et al., 2012]. Their results behaved in accordance with the

prediction of Shepperd et al. [Shepperd and Schofield, 1997], i.e. changing conditions

(different data sets and/or error measures) change the ranking of methods.

Turhan offers a formal treatment for this problem of “context change” in software

engineering [Turhan, 2012]. He discusses data set shift which appears when training

and test joint distributions are different6. Turhan investigates different types the data

set shift issues as proposed by Storkey [Storkey, 2009]:

– Covariate shift: The covariates in test and train sets differ;

– Prior probability shift: Prediction model is found via Bayes Rule, yet the distribu-

tion of the dependent variable differ for training and test sets;

– Sample selection bias: The training and test sets are selected from populations

with different characteristics, e.g. training set coming from a higher maturity level

company being used on a test set of a lower maturity level company;

– Imbalanced data: Certain event (or class) types of interest are rarer compared to

other events (or classes);

– Domain shift: The cases where the method of measurement (e.g. performance mea-

sures, size measures) changes between training and test conditions.

– Source component shift: Parts of data come from different sources with particu-

lar characteristics in varying sizes, e.g. data sets that are collection of instances

collected in different companies or time frames.

Turhan continues his discussion by introducing techniques to handle data set shift

problems in software engineering, which are grouped under two main groups: Instance-

based techniques and distribution-based techniques. The former group of techniques

aim at handling instances (through outlier removal [Turhan et al., 2009], relevancy

filtering [Kocaguneli and Menzies, 2011b] or instance weighting [Zhang and Sheng,

2004]), whereas the latter group of techniques aim at regulating the distribution of

instances to train and test sets (through stratification [Turhan, 2012], cost curves [Jiang

et al., 2008] and mixture models [Alpaydin, 2010]).

Quoting from Storkey: “Dataset shift and transfer learning are very related.” Data

set shift is a specific case of transfer learning. Transfer learning deals with the cases,

where there are multiple training scenarios that are partially related and are used

to predict in one specific scenario. For example, in the case of our research multiple

training scenarios are either data from different companies (transfer of data in space) or

data from different time frames (transfer of data in time). Dataset shift is the specific

case, where there are only two scenarios (training and test sets) and one of them has

no training targets [Storkey, 2009]. Turhan’s mapping of the data set shift types to

software engineering is an excellent example of specific transfer learning issues that are

becoming imminent.

In this research, we provide a more general treatment of the transfer learning and

propose that our earlier work that we called “cross company learning” [Kocaguneli

6 Note that the literature contains numerous synnonyms for data set shift including “con-
cept shift” or “concept drift”, “changes of classification”, “changing environments”, “contrast
mining in classification learning”,“fracture points” and “fractures between data”. We will use
the term as defined in the above text.
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Cross 
Company Dataset Shift 

Transfer Learning 
Problem 

Fig. 1: Prior studies of cross company and dataset shift studies are specific cases of

transfer learning.

and Menzies, 2011a] as well as specific data set issues are in fact particular cases of

transfer learning (see Figure 1). One of the main ideas of this research is that separate

problems of cross company and time frame estimation as well as data set shift problems

are the same. Hence, instead of proposing different solutions for each specific case of

each specific problem, we should be looking for general transfer learning solutions that

work for multiple cases in both problem types.

3 Methodology

3.1 Dataset

This study uses the Tukutuku data base for TL between domains [Mendes and Mosley,

2008]. Tukutuku brings together data sets coming from a high number of companies.

The version used in this research is composed of a total of 195 projects developed by

a total of 51 companies. However, not all the companies in the data set are useful for

TL analysis. We eliminated all the companies with less than 5 projects, which yielded

125 projects from 8 companies. The abbreviations used for the 8 companies that were

selected and their corresponding number of projects are given in Figure 2.

The Tukutuku data base is an active project, which is maintained by Emilia

Mendes. The data set includes information collected from completed Web projects [Mendes

et al., 2005]. These projects come from a total of 10 different countries around the

world [Corazza et al., 2010]. The majority of the projects in Tukutuku data base are

new development (65%), whereas the remaining ones are enhancement projects. Tuku-

Company # of Projects

tuku1 14
tuku2 20
tuku3 15
tuku4 6
tuku5 13
tuku6 8
tuku7 31
tuku8 18

Fig. 2: The abbreviations that will be used for selected companies and the correspond-

ing number of projects.
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tuku data base is characterized by a total of 19 independent variables and a dependent

variable. The dependent variable is the total effort in person hours used to develop an

application. The abbreviations as well as the meanings of the independent variables

are as follows:

– Typeproj: Project type, enhancement or new

– nlang: Number of programming languages used in the project.

– DocProc: Whether or not projects followed defined and documented processes

– ProImpr: Whether or not project team involved in a process improvement program

– Metrics: Whether or not project team is part of a software metrics program

– DevTeam: Size of the development team

– TeamExp: Average team experience with the employed development language(s)

– Accuracy: The procedure used to record effort data

– TotWP: Total number of Web pages (new and reused)

– NewWP: Total number of new Web pages

– TotImg: Total number of images (new and reused)

– NewImg: Total number of new images created

– Fots: Number of features reused without any adaptation

– HFotsA: Number of reused high-effort features/ functions adapted

– Hnew: Number of new high-effort features/functions

– totHigh: Total number of high-effort features/ functions

– FotsA: Number of reused low-effort features adapted

– New: Number of new low-effort features/functions

– totNHigh: Total number of low-effort features/functions

So as to see the TL performance and selection tendency between time intervals,

we used 2 data sets: Cocomo81 and Nasa93. Each of these data sets are divided into 2

subsets of different time periods. The subsets of Cocomo81 are: coc-60-75 and coc-76-

rest, where coc stands for Cocomo81, 60-75 stands for projects developed from 1960

to 1975 and 76-rest stands for projects developed from 1976 onwards. It is possible to

have different divisions of the data depending on different time frames. Our selection

selects these particular divisions of time periods so that both subsets span a certain

amount of time (e.g. more than a decade) and yet have at least 20 instances. The

subsets of nasa93 are: nasa-70-79 and nasa-80-rest. The naming convention is similar

to that of Cocomo81 subsets: nasa stands for Nasa93 dataset, 70-79 stands for projects

developed in the time period of 1970 to 1979 and 80-rest stands for projects developed

from 1980 onwards. The details of these projects are provided in Figure 3.

Dataset Features Size Description
coc-60-75 17 20 Nasa projects between 1960 and 1975
coc-76-rest 17 43 Nasa projects from 1976 onwards
nasa-70-79 17 39 Nasa projects between1970 and 1979
nasa-80-rest 17 54 Nasa projects from 1976 onwards

Total: 156

Fig. 3: Data sets for transfer learning over time period.



11

3.2 Performance Measures

There are multiple performance measures (a.k.a. error measures) used in SEE. In this

research, we use a total of 8 error measures. Performance measures aim to measure

the success of a prediction. For example, the absolute residual (AR) is the absolute

difference between the predicted and the actual:

ARi = |xi − x̂i| (1)

(where xi, x̂i are the actual and predicted value for test instance i). We use a summary

of AR through taking the mean of AR, which is known as Mean AR (MAR).

The Magnitude of Relative Error measure a.k.a. MRE is a very widely used per-

formance measure for selecting the best effort predictor from a number of competing

software prediction models [Shepperd and Schofield, 1997,Foss et al., 2003]. MRE mea-

sures the error ratio between the actual effort and the predicted effort and is expressed

by the following equation:

MREi =
| xi − x̂i |

xi
=

ARi

xi
(2)

A related measure is MER (Magnitude of Error Relative to the estimate [Foss et al.,

2003]):

MERi =
| xi − x̂i |

x̂i
=
ARi

x̂i
(3)

The overall average error of MRE can be derived as the Mean or Median Magnitude

of Relative Error measure (MMRE and MdMRE, respectively):

MMRE = mean(allMREi) (4)

MdMRE = median(allMREi) (5)

A common alternative to MMRE is PRED(25), which is defined as the percentage

of successful predictions falling within 25% of the actual values, and can be expressed

as follows, where N is the dataset size:

PRED(25) =
100

N

N∑
i=1

{
1 if MREi ≤ 25

100
0 otherwise

(6)

For example, PRED(25)=50% implies that half of the estimates fall within 25% of the

actual values [Shepperd and Schofield, 1997].

Other performance measures used here are Mean Balanced Relative Error (MBRE)

and the Mean Inverted Balanced Relative Error (MIBRE), both suggested by Foss et

al. [Foss et al., 2003]:

MBREi =
|x̂i − xi|

min(x̂i, xi)
(7)

MIBREi =
|x̂i − xi|

max(x̂i, xi)
(8)

The above mentioned performance measures are selected due to their wide use in

the SEE research. However, none of these error measures are devoid of problems. For
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instance, MRE-based error measures have been criticized due to their asymmetry [Foss

et al., 2003]. This criticism applies to MMRE, MdMRE and Pred(25). The matter of

providing an in depth discussion about error measures is out of our scope in this paper.

Rather than going into the debate of which error measure is better than the others,

we evaluated our results subject to a total of 8 error measures. A recent study by

Shepperd et al. provides an excellent discussion of the error measures [Shepperd and

Macdonell, 2011]. In this study Shepperd et al. propose a new unbiased error measure

called Standardized Accuracy (SA), which is based on the mean absolute error (MAE).

SA’s equation is as follows:

SA = 1−
MAEPi

MAEP0

(9)

MAEPi
is defined to be the MAE of the estimation method Pi. MAEP0

is the

mean of a large number of (in our case 1000) random guessing. In the random guess-

ing procedure a training instance is randomly chosen with equal probability from the

training set (with replacement) and its effort value is used as the estimate of the test

instance. SA gives us an idea of how good an estimation method is in comparison to

random guessing. Since the term MAEPi
is in the nominator, the higher the SA values,

the better an estimation method.

3.3 Instance Selection and Retrieval

One of our goals in this research is to find the selection tendency of test instances, i.e.

the percentages of training instances (with respect to the training set size) selected

from within or transferred data. This investigation will help us identify what percent

of the data across domain or time frame are transferred for a test instance, given the

chance that it can select either within or transferred instances. If test instances were

to select mostly the within domain or within time interval instances (i.e. transferred

instances are not much used), then there would not be much need for a study like

this; because, within sources would turn out to be the most relevant instances to test

instances. However, as we will see in our results section, that is not the case.

Inspecting the selection tendency of an estimation method for test instances makes

sense only if the estimation method is a state-of-the-art learner. Because, inspection

of the selected instances has its merits, provided that it leads to estimates that are as

good as that of the best-of-breed estimation methods. Therefore, we selected to use

a variance-based instance selection method that was previously shown to successfully

work on TL experiments (across space) on public data sets. In this section we briefly

introduce the method used as a TL solution, called TEAK [Kocaguneli et al., 2012].

Then we quote prior research to show that TEAK’s performance is comparable to or

better than various other estimation methods.

3.3.1 ABE0

Analogy-based estimation (ABE) methods generate their estimates by using a data base

of past projects. For a test project, ABE methods retrieve analogies from a database

of past projects. Then the effort values of the retrieved analogies are adapted into an

estimate. We use ABE methods in this study since 1) they are widely investigated
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methods in the literature [Mendes et al., 2003, Chang, 1974, Keung, 2008, Li et al.,

2009,Kadoda et al., 2000,Kocaguneli et al., 2010,Kocaguneli et al., 2012], 2) they are

particularly helpful for TL studies as they are based on distances between individual

project instances.

There is a high number of design options concerning ABE methods such as the

distance measure for nearness [Mendes et al., 2003], adaptation of analogy effort val-

ues [Mendes et al., 2003], row processing [Chang, 1974,Keung, 2008], column process-

ing [Keung, 2008, Li et al., 2009] and so on. For example, Keung et al. show that the

number of different design options can easily lead to more than 6000 ABE variants [Ke-

ung et al., 2012]. Here we define ABE0 that is a baseline ABE method that combines

the methods used in Kadoda & Shepperd [Kadoda et al., 2000], Mendes et al. [Mendes

et al., 2003], and Li et al. [Li et al., 2009]:

– Input a database of past projects

– For each test instance, retrieve k similar projects (analogies).

– For choosing k analogies use a similarity measure.

– Before calculating similarity, scale independent features to 0-1 interval so that

higher numbers do not dominate the similarity measure.

– Use a feature weighting scheme to reduce the effect of less informative features.

– Adapt the effort values of the k nearest analogies to come up with the effort esti-

mate.

ABE0 uses the Euclidean distance as a similarity measure, detailed in Equation 10,

where wi corresponds to feature weights applied on independent features. The ABE0

framework does not favor any features over the others, therefore each feature has equal

importance in ABE0, i.e. wi = 1. For adaptation, ABE0 takes the median of k projects.

Distance =

√√√√ n∑
i=1

wi(xi − yi)2 (10)

3.3.2 TEAK

TEAK is a variance-based instance selector that discards training data associated with

regions of high dependent variable (effort) variance [Kocaguneli et al., 2012]. TEAK is

based on the locality principle, which states that instances that are close to one another

in space according to a distance measure (e.g. Euclidean distance measure) are similar

instances and should have similar dependent variable values. A high variance region,

where similar instances have very different effort values (hence the high variance) vio-

lates the locality assumption and is pruned away by TEAK [Kocaguneli et al., 2012].

TEAK augments ABE0 with instance selection and an indexing scheme for filtering

relevant training examples. In summary, TEAK is a two-pass system:

– Pass 1 prunes training instances implicated in poor decisions (instance selection);

– Pass 2 retrieves closest instances to the test instance (instance retrieval).

In the first pass, training instances are combined using greedy-agglomerative clus-

tering (GAC), to form an initial cluster tree that we call GAC1; e.g. see Figure 4.

Level zero of GAC1 is formed by leaves, which are the individual project instances.

These instances are greedily combined (combine the two closest instances) into tuples

to form the nodes of upper levels. The variance of the effort values associated with
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Var = Low Var = High 

a b c d e f g 

ab cd efg 

abcdefg 

GAC1 

Fig. 4: A sample GAC tree with regions of high and low variance (dashed triangles).

GAC trees may not always be binary. For example here, leaves are odd numbered,

hence node “g” is left behind. Such instances are pushed forward into the closest node

in the higher level. For example, “g” is pushed forward into the “e+f” node to make

“e+f+g” node.

Var = Low Var = High 

Var = Lowest 

GAC1 

GAC2 

Fig. 5: Execution of TEAK on 2 GAC trees, where tree on the left is GAC1 of Figure 4

and the one on the right is GAC2. The instances in the low variance region of GAC1

are selected to form GAC2. Then test instance traverses GAC2 until no decrease in

effort variance is possible. Wherever the test instance stops is retrieved as the subtree

to be used for adaptation (var=lowest labeled, dashed triangle of GAC2).
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each sub-tree (the performance variance) is then recorded and normalized: min..max

to 0..1. The high variance sub-trees are then pruned, as these are the sub-trees that

would cause an ABE method to make an estimate from a highly variable instance

space. Hence, pass one prunes sub-trees with a variance in the vicinity of rand() ∗ α%

of the maximum variance seen in any tree, where rand() gives a normal random value

from 0-1 interval. After some experimentation, we found that α = 10 leads to estimates

with lowest errors.

The leaves of the remaining sub-trees are the survivors of pass one. They are filtered

to pass 2 where they are used to build a second GAC tree (GAC2). GAC2 is generated

in a similar fashion to GAC1, then it is traversed by test instances that are moved from

root to leaves. Unlike GAC1, this time variance is a decision criterion for the movement

of test instances: If the variance of the current tree is larger than its sub-trees, then

continue to move down; otherwise, stop and retrieve the instances in the current tree

as the analogies. TEAK is a form of ABE0, so its adaptation method is the same, i.e.

take the median of the analogy effort values. A simple visualization of this approach is

given in Figure 5.

We use TEAK in this study since, as shown by the leave-one-out experiments of

Kocaguneli et al. [Kocaguneli et al., 2012], its performance is comparable, or even

better, than other commonly-used effort estimators including neural networks (NNet)

and linear regression (LR). For a complete analysis of TEAK compared to NNet, LR

as well as various ABE0 methods please refer to Figure 7 of [Kocaguneli et al., 2012].

That study evaluated different SEE methods using the win − loss calculation of

Figure 6. We first check if two distributions i, j are statistically different according to

the Wilcoxon test. In our experimental setting, i, j are arrays of performance measure

results coming from two different methods. If they are not statistically different, then

they are said to tie and we increment tiei and tiej . On the contrary, if they are different,

we updated wini, winj and lossi, lossj after a numerical comparison of performance

measures. The related pseudocode is given in Figure 6. In order to reduce any possible

bias due to a particular experimental setting, for every experiment 20 runs are made.

In the study of Kocaguneli et al. [Kocaguneli et al., 2012], TEAK always performed

better than the other ABE0 methods, and mostly performed better than neural nets.

TEAK’s only near-rival was linear regression but (using Figure 6) TEAK was ranked

top nearly twice as much as linear regression.

3.4 Experimentation

The goals of the experiments carried out herein can be summarized as follows:

1. To answer whether TL can enable the use of data from other organizations as well

as from other time intervals: We employ TEAK as a TL method and compare

its performance when trained from just within data versus when trained from a

combination of transferred and within data.

2. The retrieval tendency questions the tendency of a within test instance to retrieve

within or transferred data. In other words, given the chance that a test instance

had access to within and transferred data at the same time, what percentage of

every subset would be retrieved into k analogies used for estimation?
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The first goal searches for a very important topic in SEE: Is it possible to use TL so that

we can transfer training instances between time intervals and different companies? If

yes, then how good of a performance would TL yield, i.e. can we still attain performance

values as good as using training data from within source (same domain or time interval).

The second goals is somewhat complementary to the first one. Second goal questions

whether test instances make use of an important amount of transfered data or whether

the transfered data from across different domains is so small that it is not really worth

investigating.

3.4.1 Performance Comparison

With regard to performance comparison we have two settings: Within and transfer. In

the within data setting, only the within source is used as the dataset, and a testing

strategy of leave-one-out cross-validation (LOOCV) is employed. LOOCV works as

follows: Given a within dataset of T projects, 1 project at a time is selected as the test

and the remaining T − 1 projects are used for training, so eventually we have T pre-

dictions. The resulting T predictions are then used to compute 8 different performance

measures defined in §3.2.

Transfer setting uses one instance at a time (since we use LOOCV) from the within

data as the test set and the combination of the remaining within instances and all the

transferred data as the training set. In this setting an estimate for each test instance

is found via the transfer of the analogies from the training set by TEAK. Ultimately

we end up with T predictions adapted from the analogies that are transferred from a

training set of transferred and within instances. Finally, the performances under within

and transfer settings are compared. For that purpose, we use both mere performance

values as well as win-tie-loss statistics.

3.4.2 Retrieval Tendency

For retrieval tendency experiments we mark every within and transferred instance in

the training set and let the test instance choose analogies from both groups of training

wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if Wilcoxon(Perfi, Perfj) says they are the same then

tiei = tiei + 1;
tiej = tiej + 1;

else
if mean or median(Perfi) < median(Perfj) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 6: Pseudocode for win-tie-loss calculation between methods i and j w.r.t. per-

formance measures Perfi and Perfj . If Perfi and Perfj are measures like MMRE,

MdMRE or MAR, lower values are better, whereas for performance measures like

Pred(25) higher values are better.
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instances. Note that retrieved analogies are the unique training instances in the lowest-

variance region of GAC2 (see Figure 5). In this setting our aim is to see what percentage

of within and transferred data would appear among retrieved k analogies, i.e. how much

of transferred data is relevant? The retrieval percentage is the average ratio of instances

retrieved in analogies to the total size of the training set:

Percentage =
NumberOfRetrievedAnalogies

TrainingSetSize
∗ 100 (11)

4 Results

4.1 Transfer in Space

Comparing the performance of within and transferred data is the first goal of the

experimentation. The result of this goal will tell us whether TL can enable instances

transfer between domains and time intervals without loss from the performance, or

whether the transfer comes at the expense of higher error rates. Due to space constraints

and also in order to make the results more readable we equally divided the domain

transfer results of the Tukutuku subsets into two figures: Figure 7 and Figure 8. The

time interval transfer results of Cocomo81 and Nasa93 are provided in Figure 10 and

Figure 11, respectively.

Figure 7 shows a uniformity of results. The tie values are very high for 5 out of

8 companies (tuku1, tuku4-to-7), which means that transferred data performance is

as good as within data performance. For 1 company, tuku8, within and transferred

data performance depends on the error measure: According to all error measures ex-

cept MMER the within and transferred data performances are very close, whereas for

MMRE the within data performance appears to be better. For 2 companies out of 8

(tuku2 and tuku3), the within data performance is dominantly better with a win value

of 20. Remember from §3.3.2 that TEAK performs 20 times LOOCV, hence the total

of win, tie and loss values for each data set subject to each error measure amounts to

20.

Figure 8 shows the within and transferred data performance comparison for the

error measures of MMER, MBRE, MIBRE and SA. The reading of Figure 8 is exactly

the same as of Figure 7, i.e. it shows the win, tie, and loss values according to 4 error

measures. The general pattern we have observed from 4 error measures in Figure 7 are

also visible in Figure 8. In relation to the error measures MBRE, MIBRE and SA, in 6

data sets (tuku1, tuku2, tuku4-to-7) transferred and within data performances are the

same. According to the MMER, within performance is better for 2 data sets: tuku3

and tuku8.

The aforementioned results are parallel to the prior results reported by Kocaguneli

et al. [Kocaguneli and Menzies, 2011b], where they have used 21 public data sets

and questioned merely the TL between domains [Boetticher et al., 2007]. A summary

of their results on 21 public data sets are provided in Figure 9. As can be seen in

Figure 9, Kocaguneli et al. use 4 error measures and identify only 2 data sets (gray

highlighted rows) for which within data performance is worse than that of transferred

data. For 21−2 = 19 data sets, transferred data performance is shown to be statistically

significantly the same as that of within.
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Dataset MAR

Win Tie Loss
tuku1 8 12 0
tuku2 20 0 0
tuku3 20 0 0
tuku4 2 18 0
tuku5 0 20 0
tuku6 8 12 0
tuku7 2 18 0
tuku8 1 19 0

Dataset MMRE

Win Tie Loss
tuku1 9 11 0
tuku2 20 0 0
tuku3 20 0 0
tuku4 2 18 0
tuku5 0 19 1
tuku6 5 15 0
tuku7 3 17 0
tuku8 0 20 0

Dataset MdMRE

Win Tie Loss
tuku1 8 12 0
tuku2 20 0 0
tuku3 20 0 0
tuku4 2 18 0
tuku5 0 19 1
tuku6 5 15 0
tuku7 3 17 0
tuku8 0 20 0

Dataset Pred(25)

Win Tie Loss
tuku1 6 10 4
tuku2 18 0 2
tuku3 20 0 0
tuku4 2 18 0
tuku5 1 19 0
tuku6 5 15 0
tuku7 3 17 0
tuku8 0 20 0

Fig. 7: Performance comparison of

within vs transferred data w.r.t. 4

of 8 different performance measures:
MAR, MMRE, MdMRE, Pred(25).

Win, tie, loss values are w.r.t. within

data.

Dataset MMER

Win Tie Loss
tuku1 0 20 0
tuku2 0 20 0
tuku3 20 0 0
tuku4 0 20 0
tuku5 6 14 0
tuku6 8 12 0
tuku7 6 14 0
tuku8 14 6 0

Dataset MBRE

Win Tie Loss
tuku1 6 14 0
tuku2 20 0 0
tuku3 20 0 0
tuku4 1 19 0
tuku5 0 20 0
tuku6 6 14 0
tuku7 5 15 0
tuku8 2 18 0

Dataset MIBRE

Win Tie Loss
tuku1 2 18 0
tuku2 17 3 0
tuku3 20 0 0
tuku4 1 19 0
tuku5 0 20 0
tuku6 6 14 0
tuku7 4 16 0
tuku8 3 17 0

Dataset SA

Win Tie Loss
tuku1 8 12 0
tuku2 20 0 0
tuku3 20 0 0
tuku4 2 18 0
tuku5 0 20 0
tuku6 8 12 0
tuku7 2 18 0
tuku8 1 19 0

Fig. 8: Performance comparison of

within vs transferred data w.r.t. 4

of 8 different performance measures:
MMER, MBRE, MIBRE, SA. Win,

tie, loss values are w.r.t. within data.
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Dataset MAR MMRE MdMRE Pred(30)
WinTieLoss WinTieLoss WinTieLoss WinTieLoss

cocomo81e 0 20 0 0 16 4 4 16 0 4 16 0
cocomo81o 0 20 0 2 18 0 2 18 0 2 18 0
cocomo81s 18 2 0 15 5 0 15 5 0 13 5 2

nasa93 center 1 0 20 0 0 20 0 0 20 0 0 20 0
nasa93 center 2 4 16 0 2 18 0 2 18 0 2 18 0
nasa93 center 5 0 20 0 0 12 8 8 12 0 8 11 1

desharnaisL1 11 9 0 9 11 0 9 11 0 9 11 0
desharnaisL2 0 20 0 0 20 0 0 20 0 0 20 0
desharnaisL3 0 20 0 2 18 0 2 18 0 2 18 0

finnishAppType1 0 20 0 0 20 0 0 20 0 0 20 0
finnishAppType2345 0 20 0 0 17 3 0 17 3 0 17 3

kemererHardware1 0 0 20 0 0 20 0 0 20 0 0 20
kemererHardware23456 0 20 0 0 20 0 0 20 0 0 20 0

maxwellAppType1 6 14 0 1 19 0 1 19 0 0 19 1
maxwellAppType2 0 18 2 0 19 1 0 19 1 0 19 1
maxwellAppType3 0 20 0 1 19 0 1 19 0 1 19 0

maxwellHardware2 0 20 0 0 20 0 0 20 0 0 20 0
maxwellHardware3 0 20 0 0 20 0 0 20 0 0 20 0
maxwellHardware5 0 20 0 0 20 0 0 20 0 0 20 0

maxwellSource1 6 14 0 1 19 0 1 19 0 1 19 0
maxwellSource2 0 20 0 0 20 0 0 20 0 0 20 0

Fig. 9: Summary of prior TEAK results [Kocaguneli and Menzies, 2011b] on 21 public

data sets, within vs transferred data (i.e. win, tie, loss values are w.r.t. within data.).

For 19 data sets, transferred and within data performances are the same (note high tie

values). For only 2 data sets (highlighted) within data performance is better.

4.2 Transfer in Time

Figure 10 and Figure 11 show the performance results of TL in time intervals for

Cocomo81 and Nasa93. For Cocomo81, two within sources are defined: 1) projects

developed from 1960 to 1975 (called as coc-60-75) and 2) projects developed from

1976 onwards (called as coc-76-rest). Similarly, the subsets of Nasa93 are: 1) projects

from 1970 to 1979 (called as nasa-70-79) and 2) projects from 1980 onwards (called

as nasa-80-rest). In both Figure 10 and Figure 11, the tie values are quite high with

the smallest tie value of 16. Note that in none of the two figures there is a highlighted

row, which means that in none of the time interval instance transfer experiments was

there a case where we failed to transfer instances between different time intervals. The

implications of within and transferred data experiments through instance transfer in

time intervals are important for practitioners. TL results on Cocomo81 and Nasa93

subsets show that TL methods, may help companies use aged data sets by identifying

which instances are still relevant, hence can be transfered to contemporary estimation

tasks. Figure 10 and Figure 11 fundamentally show that decades of time difference can

be crossed with the help of instance transfer.
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Dataset MAR
Win Tie Loss

coc-60-75 0 20 0
coc-76-rest 0 20 0

Dataset MMRE
Win Tie Loss

coc-60-75 0 19 1
coc-76-rest 0 20 0

Dataset MdMRE

Win Tie Loss
coc-60-75 0 19 1
coc-76-rest 0 20 0

Dataset Pred(25)

Win Tie Loss
coc-60-75 0 19 1
coc-76-rest 0 20 0

Dataset MMER

Win Tie Loss
coc-60-75 0 20 0
coc-76-rest 0 20 0

Dataset MBRE

Win Tie Loss
coc-60-75 1 19 0
coc-76-rest 0 20 0

Dataset MIBRE

Win Tie Loss
coc-60-75 0 19 1
coc-76-rest 0 20 0

Dataset SA

Win Tie Loss
coc-60-75 0 20 0
coc-76-rest 0 20 0

Fig. 10: Performance comparison of

Cocomo81 subsets for transfer learn-

ing in time. Win, tie, loss values are

w.r.t. within data.

Dataset MAR
Win Tie Loss

nasa-70-79 0 20 0
nasa-80-rest 4 16 0

Dataset MMRE
Win Tie Loss

nasa-70-79 0 20 0
nasa-80-rest 4 16 0

Dataset MdMRE

Win Tie Loss
nasa-70-79 0 20 0
nasa-80-rest 4 16 0

Dataset Pred(25)

Win Tie Loss
nasa-70-79 0 20 0
nasa-80-rest 4 16 0

Dataset MMER

Win Tie Loss
nasa-70-79 4 16 0
nasa-80-rest 0 20 0

Dataset MBRE

Win Tie Loss
nasa-70-79 2 18 0
nasa-80-rest 2 18 0

Dataset MIBRE

Win Tie Loss
nasa-70-79 2 18 0
nasa-80-rest 2 18 0

Dataset SA

Win Tie Loss
nasa-70-79 0 20 0
nasa-80-rest 4 16 0

Fig. 11: Performance comparison of

Nasa93 subsets for transfer learning in

time. Win, tie, loss values are w.r.t.

within data.
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The results of the TL research reported herein on proprietary data sets combined

with the prior results of public data sets [Kocaguneli and Menzies, 2011b] give us a

broader picture of the transferred data performance. By using instance transfer meth-

ods, such as TEAK between domains, we have:

– 5 out of 8 proprietary data sets (results of this study);

– 19 out of 21 public data sets (results of prior study);

where the performance difference between within and transferred data is not statisti-

cally significant. This shows us that from a total of 21 + 8 = 29 public and proprietary

data sets, transferred data performs as well as within data for 5 + 19 = 24 cases. Also,

as for the TL between time intervals, we have 2 data sets subject to 8 error measures

(2 × 8 = 16 cases), where transferred data performance is always the same as within

data performance.

4.3 Inspecting Selection Tendencies

The second goal of our experimentation is to observe the selection tendencies of the

test instances. Figure 12 shows what percentage of instances are selected from within

data sources (diagonal cells) as well as the amount of the transferred data (off diagonal

cells) in TL experiments between domains. The first column of Figure 12 shows the

within data sources (8 different companies) as well as their sizes in parenthesis. The

second column shows the number of analogies retrieved from GAC2 on average over 20

runs. For each row, the columns tuku1-to-8 show how the number of analogies in the

second column is distributed to each data source. The values outside the parenthesis

in each cell of columns tuku1-to-8 are the number of analogies selected from that data

source; the percentage value of that number w.r.t. the second column is given inside

the parenthesis. Figure 13 and Figure 14 show the selection tendency of test instances

for Cocomo81 and Nasa93 time interval TL experiments. These figures are structured

in the same manner as Figure 12.
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tuku1 (14) 5.8 0.5 (3.7) 1.0 (4.8) 0.1 (0.8) 0.1 (2.3) 0.4 (2.8) 0.4 (4.9) 1.7 (5.4) 1.6 (9.1)
tuku2 (20) 11.0 1.1 (8.0) 1.6 (8.2) 0.3 (2.0) 0.8 (12.9) 0.7 (5.0) 0.7 (8.3) 2.7 (8.7) 3.1 (17.2)
tuku3 (15) 7.3 0.9 (6.2) 1.3 (6.3) 0.4 (2.9) 0.2 (4.1) 0.8 (6.4) 0.2 (2.9) 1.5 (4.9) 1.9 (10.5)
tuku4 (6) 6.7 0.6 (4.4) 1.5 (7.6) 0.2 (1.5) 0.3 (5.0) 0.2 (1.7) 0.7 (8.9) 1.2 (3.8) 2.0 (10.9)
tuku5 (13) 9.3 2.4 (17.2) 1.4 (7.2) 0.3 (2.1) 0.5 (8.5) 0.5 (4.2) 0.4 (5.4) 1.3 (4.0) 2.4 (13.1)
tuku6 (8) 8.9 0.7 (4.7) 1.6 (7.8) 0.2 (1.5) 0.7 (12.4) 0.7 (5.5) 0.7 (8.4) 1.8 (5.7) 2.6 (14.3)
tuku7 (31) 7.8 1.2 (8.3) 1.3 (6.4) 0.3 (2.3) 0.5 (8.4) 0.6 (4.5) 0.1 (1.5) 1.7 (5.5) 2.1 (11.6)
tuku8 (18) 6.9 1.1 (7.9) 1.1 (5.7) 0.3 (2.3) 0.3 (4.5) 0.7 (5.5) 0.3 (3.3) 1.3 (4.3) 1.8 (9.7)

Fig. 12: The amount of within and transferred data selected. The first column is the

subset names and their sizes in parenthesis. The second column is the average number

of retrieved instances in GAC2. The following columns show the number of analogies

from each particular subset, in parenthesis the percentage values of these numbers

w.r.t. the second column are given.
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coc-60-75 (20) 3.6 0.8 (4.1) 2.8 (6.4)
coc-76-rest (43) 4.5 1.3 (6.6) 3.2 (7.4)

Fig. 13: The amount of within and transferred data from subsets of Cocomo81.
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nasa-70-79 (39) 7.3 2.6 (6.6) 4.7 (8.7)
nasa938089 (54) 9.5 3.2 (8.2) 6.3 (11.7)

Fig. 14: The amount within and transferred data selected from the subsets of Nasa93.

The selection tendency values of Tukutuku, Cocomo81 and Nasa93 subsets provide

us with suggestions regarding how much data a test instance uses from within and

transferred data during the domain and time interval transfer of training instances.

From the selection tendency figures, we can identify two findings:

Finding #1: See the second columns of Figure 12, Figure 13 and Figure 14 that only

a very small portion of all the available data is transferred as useful analogies. This

finding points to the importance of: a) instance transfer, a.k.a filtering; b) TL methods

like TEAK that are capable of transferring relevant analogies between domains and

time intervals. The low number of instances selected are also supported by relevant

literature: Chang’s prototype generators [Chang, 1974] replaced training sets of size

T = (514, 150, 66) with prototypes of size N = (34, 14, 6) (respectively). That is, pro-

totypes may be as few as N
T = (7, 9, 9)% of the original data. Note that these values

are close to how many instances were retrieved in the above results.

Finding #2: When we compare the diagonal and off-diagonal percentages, we see that

the values are very close. The second finding bears importance regarding whether or

not the TL is worthy of investigation. We see that the amount of data transfered from

other domains or time intervals is as much as the instances used from the within data

sources. In other words, there is a considerable amount of data that is transfered as

relevant across time and space. In addition (recall from the previous subsection) the

high amount of transfered data does not come at the expense of higher error rates. This

shows us that discarding aged data sets because they are old is a misguided practice.

There are relevant instances in old data sets that are relevant to current practices.

To better observe how close within and transferred data percentages are, we plot

the percentage values of within and transferred data sources of Tukutuku subsets in

Figure 15(a) and Figure 15(b), respectively. Figure 15(a) and Figure 15(b) are basically

the plots of diagonal and off-diagonal percentage values of Figure 12. We see from
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Fig. 15: Percentages of instances (a.k.a. analogies) from (a) within and (b) transferred

data. The percentage values come from Figure 12. Within company percentages are the

gray-highlighted diagonal cells, whereas transferred data percentages are the remaining

off-diagonal cells. The percentile graph (c) shows the percentiles of (a) and (b).

Figure 15(a) and Figure 15(b) that the maximum and minimum percentages of within

and transferred data selection are very close. To align these percentages, we took the

percentile values from 0th percentile to 100th percentile with increments of 10. The

resulting percentiles are shown in Figure 15(c). See in Figure 15(c) that within and

transferred data have similar percentile values, i.e. the selection tendencies are very

close to one another. Note that percentage and percentile plots are unnecessary for

Figure 13 and Figure 14, since the closeness of within and transfer data percentages

of Cocomo81 and Nasa93 subsets can easily be verified with manual inspection: For

Cocomo81 subsets the biggest percentage difference is 6.6 − 4.1 = 2.5%; for Nasa93

subsets it is 11.7− 8.2 = 3.5%.

Figure 16 is taken from Kocaguneli et al.’s selection tendency experiments [Koca-

guneli and Menzies, 2011b]. In the performance experiments, we have seen the similarity

between the results of this research and that of Kocaguneli et al. in terms of perfor-

mance. Comparison of Figure 16 to Figure 15 shows that the similarity of results are

also valid in terms of the selection tendencies. See in particular the percentile values of

Figure 15 and Figure 16 that TL between domains of proprietary data sets and public

data sets have similar selection tendencies.

5 Threats to Validity

Internal validity questions the extent to which the association between dependent and

independent variables holds [Alpaydin, 2010]. To observe this relationship SEE studies
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Fig. 16: Percentages and percentiles of instances from within and transferred data as

given by Kocaguneli et al. [Kocaguneli and Menzies, 2011b]. Note the similarity of the

percentile plot of this figure to that of Figure 15.

make use of dividing data sets into test and train data. This division is performed in

accordance with various sampling methods such as LOOCV or any N-Way cross val-

idation. However, selecting any particular sampling method is inherently an internal

validity threat [Hastie et al., 2008] as different sampling methods are expected to have

different biases and variance values. In this research LOOCV is employed, whose alter-

native is any N-Way cross-validation. In a N-Way cross-validation, data is randomly

divided into B bins and each bin is tested on a model learned from the combination

of other bins (typical values for B are 3 or 10). Elsewhere [Kocaguneli and Menzies,

2012], we show that there is very little difference in the bias and variance values gener-

ated for LOOCV and N-way cross-validation. Since two testing strategies have similar

bias-variance characteristics for effort datasets, we opted for LOOCV due to the fact

that LOOCV is a deterministic procedure that can be exactly repeated by any other

researcher with access to a particular data set.

External validity deals with the generality of the results, i.e. whether the results

can be generalized outside the specifications of a study [Milicic and Wohlin, 2004].

This study challenges the validity of prior results of 21 within and transfer data source

pairs [Kocaguneli and Menzies, 2011b] on proprietary data sets coming from 8 Web

development companies. The results of this study confirm prior findings, i.e. a total

of 21 + 8 = 29 data sets agree on the reported conclusions, which is way more ex-

tensive than other TL studies. Among 10 studies investigated by Kitchenham et al.

in [Kitchenham et al., 2007], 9 of them used single within-transfer dataset pairs, and 1

study used 6 pairs. Therefore, concerning external validity, this research bears higher

validity than other similar studies. However, it is important to note that none of the

data sets employed here represents a random sample; therefore the results presented

herein are much more likely to scale to those companies that manage projects similar

to those detailed here.

Construct validity (a.k.a. face validity) observes whether a study measures what it

actually intends to measure [Robson, 2002]. Previous studies have concerned themselves

with the construct validity of different performance measures for effort estimation (e.g.

[Stensrud et al., 2002]). The intention of this paper is neither providing evidence for a

particular error measure nor biasing our conclusions due to selection of one particular

error measure. Instead, we used 8 different performance measures (which covers a big

majority of all the previously used error measures in SEE) aided with win-tie-loss

statistics so that our results are able to be benchmarked against other studies.
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6 Future Research

Based on the majority of the companies in the domain TL experiments (depending on

the error measure, 5 or 6 companies out of 8) the transferred data performance is the

same as the within data performance. In terms of time interval TL, in all of the cases,

within and transferred data performances were statistically the same. This shows us

that TL through methods like TEAK can help transfer instances between domains and

time intervals so that transferred data can perform as well as within data.

That said, an interesting fact is that error measures can result in different conclu-

sions. For example, see in Figure 7 and Figure 8 that transferred data performance for

the company tuku8 depends on error measures. This disagreement may cause different

companies to make different conclusions depending on the particular error measures

they are using. Hence as part of the future work we intend to investigate error mea-

sure studies like that of Shepperd et al. [Shepperd and Macdonell, 2011], as they bear

a significant importance for SEE as well as for the recommendations to practitioner

audiences.

Another area of future work would be the exploration of other kinds of trans-

fer learning. For example, this paper has employed instance-based transfer where the

instances share the same ontology (names of column headers). A more challenging

task would be to explore instance-based transfer to take data from different projects

collected using different ontologies. For example, [Pan and Yang, 2010] described ex-

periments in image processing where data is collected using 2D and 3D sensors, then

both projected and clustered within a new synthesized set of dimensions. The key to

making that work is to find some (possible small) number of common reference points

to enable the mapping of the raw dimensions onto the synthesized dimensions. Our

own experiments in that direction are encouraging, but very preliminary. If other ef-

fort estimation researchers want to explore this issue, then we offer them the Rosetta

Stone challenge:

– The COCOMO Rosetta Stone was create by Reifer et al. [Reifer et al., 1999] to

translate between COCOMO-81 effort estimation model and the revised COCOMO-

2000 model (the new model had some new parameters and deleting some old ones).

– The Rosetta Stone Challenge is to automatically recreate that manually derived

translator from the COCOMO-81 to COCOMO-2000 ontology (or, alternatively,

show that some better translator exists).

– Note that COCOMO-81 and COCOMO-2000 data sets are available at the PROMISE

web site promisedata.googlecode.com.

7 Conclusion

When projects lack sufficient local data to make predictions, they can try to transfer

information from other projects. In the field of software engineering, transfer learning

has been shown to be effective for defect prediction. This paper checked if it was

possible to build transfer learners for effort estimation. We explored the following

research questions.

RQ1: Is transfer learning possible outside the area of defect prediction?
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We find that an analogy-based learner called TEAK that clusters together similar

projects can be used for transfer learning. Such a learner has the following properties

that make it useful for transfer learning:

1. Regardless of the source of the data, TEAK groups together similar data from

different stratifications.

2. TEAK makes its conclusions using the local neighborhood, regardless of what strat-

ifications generated that neighborhood.

RQ2: Is transfer learning effective for effort estimation?

We compared estimates learned from within a single stratification to those transferred

across different stratifications. In the majority case, the cross-stratification estimates

transferred by TEAK do as well as the within-stratification estimates.

RQ3: How useful are manual divisions of the data?

The selection tendency results of this research show that test instances select equal

amounts of instances from within and transferred data sources; i.e. TEAK found no

added value in restricting reasoning to just within a delphi localization. We therefore

advise that delphi localization should be used with great care, perhaps only after

checking if automatic clustering methods can generate better estimates than clustering

after delphi localization.

RQ4: Does transfer learning for effort estimation work across time as well as

space?

This paper has tested a conjecture from Storkey [Storkey, 2009] that what is called

“data set shift” and “cross-company learning” are both instances of TL. To explore

that conjecture, this paper successfully applied the same transfer learner without mod-

ification to traditional cross-company learning problems as well as data set shift prob-

lems. Hence, we would suggest that it is useful to combine research methods for two

previously unrelated research threads in SE: Turhan’s “data set shift” and Kitchenham

et al.’s “cross-company learning”.

Note also that, to the best of our knowledge, this is the first report in the effort

estimation literature of a successful transfer learning application that can effectively

transfer data across time and space.

RQ5: Are repositories of software project data valuable to industrial companies?

The above shows that, for the particular purpose of effort estimation, such repositories

let us predict properties in new projects. Hence, the conclusion of this article is that

for that purpose, repositories of software project data are valuable to industry.

RQ6: Does the history of software engineering have relevant lessons for today?

Our results show that it is misguided to think that:

– The data of another organization cannot be used for local solutions.

– Old data of an organization is irrelevant to current context. This is a very important

point. The success of our transfer learners in moving data means that we should

not always discard the hard-won lessons of the past. Our history has lessons that

are still relevant today.
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