
JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 1

Learning Project Management Decisions:
A Case Study with Case-Based Reasoning

Versus Data Farming
Tim Menzies, Member, IEEE , Adam Brady, Jacky Keung, Member, IEEE , Jairus Hihn,

Steven Williams, Oussama El-Rawas, Phillip Green, Barry Boehm

Abstract—

BACKGROUND: Given information on just a few prior projects, how to learn best and fewest changes for current projects?

AIM: To conduct a case study comparing two ways to recommend project changes. (1) Data farmers use Monte Carlo sampling to

survey and summarize the space of possible outcomes. (2) Case-Based Reasoners (CBR) explore the neighborhood around test

instances.

METHOD: We applied a state-of-the data farmer (SEESAW) and a CBR tool (W2) to software project data.

RESULTS: CBR with W2 was more effective than SEESAW’s data farming for learning best and recommend project changes, effectively

reduces runtime, effort and defects. Further, CBR with W2 was comparably easier to build, maintain, and apply in novel domains

especially on noisy data sets.

CONCLUSION: Use CBR tools like W2 when data is scarce or noisy or when project data can not be expressed in the required form

of a data farmer.

FUTURE WORK: This study applied our own CBR tool to several small data sets. Future work could apply other CBR tools and data

farmers to other data (perhaps to explore other goals such as, say, minimizing maintenance effort).

Index Terms—Search-based software engineering, Case-based reasoning, data farming, COCOMO

✦

1 INTRODUCTION

In the age of Big Data and cloud computing, it is tempting to

tackle problems using:

• A data-intensive Google-style collection of gigabytes of

data; or, when that data is missing ...

• A CPU-intensive data farming analysis; i.e. Monte Carlo

sampling [1] to survey and summarize the space of

possible outcomes (for details on data farming, see §2).

For example, consider a software project manager trying to

• Reduce project defects in the delivered software;

• Reduce project development effort

How can a manager find and assess different ways to address

these goals? It may not be possible to answer this question via

• Tim Menzies (corresponding author) Adam Brady, Phillip Green and

Oussama El-Rawas are with the Lane Department of Computer Science and

Electrical Engineering, West Virginia University. E-mail: tim@menzies.us,

adam.m.brady@gmail.com, deathcheese@yahoo.com, orawas@gmail.com

• Jacky Keung is with the Department of Computer Science, The City Uni-

versity of Hong Kong, Hong Kong SAR E-mail: jacky.keung@cityu.edu.hk.

• Steven Williams is with the School of Informatics and Computing Indiana

University, Bloomington. E-mail: stevencwilliams@gmail.com.

• Jairus Hihn is with Caltech’s Jet Propulsion Laboratory. E-mail:

jairus.hihn@jpl.nasa.gov.

• Barry Boehm is with the University of Southern California. E-mail:

boehm@sunset.usc.edu.

This research was conducted at West Virginia University, University of

Southern California, and NASA Jet Propulsion Laboratory under a NASA

sub-contract. Reference herein to any specific commercial product, process,

or service by trade name, trademark, manufacturer, or otherwise, does not

constitute or imply its endorsement by the United States Government.

This research was funded in part by NSF,CISE, project #0810879.

data-intensive methods. Such data is inherently hard to access.

For example, as discussed in §2.2, we may never have access

to large amounts of software process data.

As to the cpu-intensive approaches, we have been exploring

data farming for a decade [2] and, more recently, cloud com-

puting [3], [4]. Experience shows that cpu-intensive methods

may not be appropriate for all kinds of problems and may

introduce spurious correlation under certain situations.

In this paper, we document that experience. The experiments

of this paper benchmark our SEESAW data farming tool

proposed in [5]–[12] against a lightweight case-based reasoner

(CBR) called W2 [13], [14]. We find that if we over-analyze

scarce data (such as the software process data of §2.2) then we

run into the risk of drawing conclusions based on insufficient

background supporting data. Such conclusions will perform

poorly on future examples. Our experience shows that the

SEESAW data farming tool suffers from many “optimization

failures” where if some test set is treated with SEESAW’s rec-

ommendations, then some aspect of that treated data actually

gets worse. On the other hand, the W2 CBR tool suffers from

far fewer failures.

Based on those experiments, this paper will conclude that

when reasoning about changes to software projects:

1) Use data farming in data rich-domains (e.g. when rea-

soning about thousands of inspection reports on millions

of lines of code [15]) and when the data is not noisy and

when the software project data can be expressed in the

same form as the model inputs;

2) Otherwise, use CBR methods such as our W2 tool.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 2

The rest of this paper is structured as follows. §2 discusses

data farming, its use in software engineering, and our own data

farmer tool: STAR&SEESAW. §3 discusses CBR and W2.

These two tools are experimentally compared in §4, which

allows us to reflect and assess data farming vs CBR, §5. §6

discusses related work. §7 provides the discussion and future

directions to this research.

Before beginning, we emphasis the specific scope of this

study. This paper compares one particular data farmer called

SEESAW with another particular CBR tool called W2. We

will recommend CBR over data farming, under the specific

conditions listed at the end of the previous page. It is important

to note that this paper does not compare all CBR tools to all

data farming tools. Hence, this is a case study paper rather

than, say, some formal proof with universal generality.

Nevertheless, it is insightful to compare SEESAW vs W2:

• SEESAW is a complex tool, developed over many years,

while W2 was a quick prototype, built very rapidly.

• That is, we are comparing our most complex data farmer

against our simplest CBR tool.

The experiments of this paper endorse the simpler CBR tool

since it out-performs the more complex data farming tool.

1.1 Relationship to Previous Work

Most of our prior work has been concerned with predictive

modeling in software engineering (e.g. [16], [17]). Here, the

task is different: we do not predict the properties of software

projects, but we seek a plan to change the project so to improve

that prediction. Until very recently, our preferred planning

methods was based on either:

• Data-intensive machine learning that need at least hun-

dreds of prior examples [18], [19];

• Or cpu-intensive data farming [5]–[12].

This paper explores a third approach that is neither data-

intensive nor cpu-intensive.

The W2 CBR algorithm introduced in this paper is an

extension of two prior instance-based algorithms. W0 [13] was

a initial quick proof-of-concept prototype that performed no

better than a traditional simulated annealing (SA) algorithm.

W1 [14] improved W0’s ranking scheme with a Bayesian

method. With this improvement, W1 performed at least as

well as a state-of the art model-based method (the SEESAW

algorithm discussed below)1. W2 improved W1’s method for

selecting related examples. With that change, W2 now out-

performs state-of-the art model-based methods.

Apart from the new experiments with W2 reported in

this paper (see §3.3 and §4), the other material that has not

appeared before is the background material of §2.1,§2.2; the

detailed description of W2 in §3.1.1, §3.2; and the discussion

material of §5, §6.

1. To defend the claim that SEESAW is a state-of-the-art tool, we note that
papers discussing SEESAW and its development have appeared in research
forums with extensive peer review such as the international conference on SE
(ICSE) [8]; the automated SE conference (ASE) [11], [20]; the ICSP software
process conference [7]; and peer-reviewed journals [9], [12]. Note that none
of those reviewers proposed an obvious better method than SEESAW.

2 DATA FARMING

2.1 Background

Data Farming is a model-based activity that reflects over a

model learned from data:

1) Plant a seed: build a model from domain information.

All uncertainties or missing parts of the domain infor-

mation are modeled as a space of possibilities.

2) Grow the data: execute model and, when the model

moves into the space of possibilities, output is created

by selecting at random from the possibilities.

3) Harvest: summarize the grown data via data mining.

4) Optionally, use the harvested summaries to improve the

model, then go to 1 [21].

Data farming has a long tradition in computer science- its

origins dates back to the first experiments with Monte Carlo

analysis on the Princeton computers in the early 1950s [22].

Rosenbluth showed that the sampling favors the more probable

choices then within a Monte Carlo simulation, any deviations

from the non-canonical distributions die away. That is, this

kind of Monte Carlo sampling correctly converges on the

underlying distribution [1].

Rosenbluth et al. applied Metropolis sampling to many

problems like the design of nuclear weaponry. Another appli-

cation of data farming is in the social sciences. The statistician

Nate Silver used this method to successfully predicted the

results of the 2008 and 2012 American presidential election.

His data farmers repeatedly sampled the distributions seen in

polling data to compute the probability of politicians winning

in different seats [23]. Note that, with Rosenbluth and Silver,

this work combined extensive simulation with extensive data

collection (i.e. Silver collected data from many voters while

Rosenbluth and his colleagues tuned their models via data

collected from extensive experimentation).

Data farming has been used extensively by the U.S. Mil-

itary [24] and, as shown below, in software engineering.

Data farming builds a “landscape” of output that can be

analyzed for trends, anomalies, and insights in multiple param-

eter dimensions. Figure 1 shows the landscape around some

NASA project data. This landscape is particularly useful for

extrapolating from the older projects to new projects.

 50
 100 l

 n
 h

 vh

 0

 0.5

 1

S

KLOC
pmat

S

 50
 100KLOC l

 n
 h

 vh

pmat

 0

 0.5

 1

S

Fig. 1: In data farming, past project data (shown on left) is used to
develop a software process model. This model is then executed to
generate a landscape of possibilities (on right). In this figure, pmat
is process maturity; KLOC is lines of code; “S”= a score function
that rewards projects with low defects and fast development times
(so larger “S” scores are better). For an example of this function,
see Equation 1 shown later in this paper.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 3

The drawback with data farming is that models can make

predictions outside of the space of data seen in past projects.

For example, in Figure 1, most of the data is clustered around

low KLOC and low to nominal process maturity. Outside of

that region, project data is sparser and the conclusion from a

data farmer can be less reliable (such reliability is less manifest

in the work of (say) Rosenbluth or Silver since the simulations

are used in conjunction with extensive data collection).

The problem of drawing conclusions from sparse data is

particularly acute with software process data. As discussed

in the next section, we have tried unsuccessfully for many

years to access large databases of software process data.

Consequently, all the data sets used in this study are relatively

small. Hence, we might expect poor results from data farming:

• Poor improvement: When we compare the (say) defect

and effort distributions before and after we apply those

recommendations, the median reduction in defect and

effort will not be large;

• Poor control in the treated data: When we study the (say)

defect and effort distributions in the data treated with the

recommendation, then the spread of those distributions

will be very large.

The aim of this paper is to check if CBR or data farming

suffers most from poor improvement or poor control.

2.2 Software Process Data

Once reason to explore data farming is that it can be used

to draw conclusions from small databases of software process

data. Given some information about past projects, it is possible

to interpolate and extrapolate from the past into the present.

Fenton [25] divides software project data into:

• Process measures about the way software is constructed;

• The resources used to generate the project;

• The details of the constructed product.

It is easier to collect product measurements than process

measurements. For example, any open source repository offers

many details of its products. However, process and resource

information are harder to find. Consider one project running

for one year writing hundreds to thousands of classes:

• Each one of those classes may have an extensive in-

spection log and entries in the issue tracking system.

Hence, that project may generate hundreds to thousands

of product records.

• On the other hand, that year of work may generate only

a single record in a process database.

Figure 2 shows the small size of the data sets used in this

paper. Note the small size of those data sets. Small training sets

are very common in software process databases. For example,

when compared to data sets seen in effort estimation literature,

the data of Figure 2 are not unusually small2.

We do not expect our process data sets to grow larger in

the foreseeable future. After 26 years of trying, one of us

(Boehm) has collected less than 200 sample projects for the

COCOMO database. In other work, even after 2 years of effort,

2. Five recent effort estimation publications [17], [26]–[29] use data sets
with 13,15,31,33,52 rows (respectively).

Data set Cols Rows Notes

Kemerer 7 15 Large business applications
Telecom 3 18 U.K. telecom enhancements
Finnish 8 38 Finnish IS projects

Miyazaki 8 48 Japanese COBOL projects
COC81dem 26 63 NASA projects

NASA93dem 26 93 NASA projects
Median 8 43

Fig. 2: The data sets used in this study (available on-line at
http://promisedata.googlecode.com).

we could add just seven records to a NASA-wide software cost

metrics repository [20]. This is due to the business sensitivity

associated with the data as well as differences in how the

metrics are collected and archived.

Many researchers have explored the analysis of large sets

of product data: e.g. see the proceedings of the following

conferences: Mining Software Repositories or PROMISE.

However, the analysis of small data sets is less represented

in that literature. The rest of this paper discusses methods for

making decisions about the small data sets of Figure 2.

2.3 Applications of Data Farming in SE

When historical data is scarce, it is possible to hypothesis

a model, then extrapolate examples from that model. Such

model-based data farming runs a simulation many times across

a large parameter and value space. As shown by the following

examples, this approach is often applied in SE.

For example, consider the 2CEE effort estimation

model [28]. In 2CEE, any uncertainty about project attributes

is represented as a probability distribution. The effort estimates

shown in Figure 3 result from passing thousands of samples

from those input distributions to an effort estimation model.

The 2CEE convention is to report to the users the 50th to 70th

percentile range of the generated effort estimates. In Figure 3,

that range is 853 to 1141 months.

In summary, 2CEE is a Monte Carlo simulator for esti-

mations models, where the inputs are drawn from probability

distributions. This kind of analysis is widely-used in the the

effort estimation community; e.g. [30]. In fact, on of the most

famous examples of data farming in software engineering are

Fig. 3: Simulation output from the 2CEE effort estimation tool [28].

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 4

the two IEEE TSE simulation studies papers of Myrtveit,

Stensrud, Shepperd & Kadoda [31], [32]. Those papers studied

the comparative rankings of effort estimation models under

different experimental conditions. A challenge faced by those

papers was a lack of real-world software project data. Hence,

they applied data farming. Artificial data sets were generated

by learning distributions for the available data, then sampling

from those distributions to auto-generating large data sets.

Pearce [33] used data farming to build monitoring software

for satellites from qualitative models of requirements, written

in Prolog. Prolog’s backtracking mechanism was used to

generate large samples of data from the requirements model.

This output was summarized by a data miner into a set of rules,

which were compared to another rule set, built manually by

another team:

• The manual rules took twice as long to build and had

more syntactic errors (e.g., type errors and dead-end

rules).

• In an analysis of abnormal satellite behaviors generated

by a simulator for that satellite, the manual rules predicted

far fewer abnormal conditions than the farmed rules.

Another modeling framework used for data farming are goal

graphs [34] and Mylopoulos’ soft-goal graphs [35]. Soft goals

are optional nonfunctional requirements. The task of a soft

goal analysis is to satisfy as many of these goals as possible.

Chang et al. explored Prolog models of soft-goals [36]. Like

Pearce, Chang et al. backtracked through all possible sets of

satisfied soft-goal graphs, then asked a data miner to learn the

decisions that selected for maximal soft-goal coverage.

Goal graphs are a tree of alternative sets of goals, tagged

with the data structures required to achieve each sub-goal.

Once the user selects their particular goals, the associated

data structures then form the high-level architecture for a

system. Heaven & Leiter [37] applied data farming to a

quantitative goal graph model of the requirements of the

London Ambulance Services [37] (the upper layers of that

requirements model were a standard van Lamsweerde goal

graph [34] while the leafs drew their values from statistical

distributions). During the multiple simulations conducted by a

genetic algorithm (GA), choices were evaluated by selecting

at random from the leaf distributions.

GAs have been used in other data farming applications.

Rodriguez et al. [38] studied systems dynamics models of

software projects. They combined a systems model with the

NSGA-II genetic algorithm [39] that reviewed prior inputs

to propose inputs for the next simulation. That GA searched

for inputs that generated outputs which most decreased time

and cost while increasing productivity. That study generated a

three-dimensional surface where managers can explore trade-

offs between the goals of cost, time and productivity.

Yet another approach to data farming was reported by Jiang

et al [40]. That study sought patterns in “runaway” projects;

i.e. those whose schedule, cost, or functionality was twice

as bad as the original estimates. The challenge with that

work was that the research team only had access to a very

small database of example runaway projects (10 runaways

and 22 other projects expressed in the same format). In their

twice-learning scheme, a random forest of decision trees was

generated from the original data. New “virtual examples”

were generated by, many times, picking some tree branch and

generating an instance consistent with the constraints on that

branch. These virtual examples were then summarized by a

second decision tree learner.

In summary, data farming has been applied numerous times

in software engineering. While not a widely used technique, it

is used commonly enough to deserve the serious consideration

of the research community.

2.4 Data Farming with STAR & SEESAW

To assess the merits of data farmer vs something else, we

need to carefully select the case study for that comparison.

This evaluation will be based on our own STAR/SEESAW

data farmer (described in this section) and the W2 CBR

tool (described in the next section). One advantage of this

comparison is that both tools were developed independently

to handle the same test data (see Figure 2). Hence, at least at

the level of data inputs, the two tools are compatible.

To introduce STAR/SEESAW, we return to Figure 3. When

business users see that diagram, they often ask “what causes

the difference between the low and high effort projects?”. In

asking that question, they are seeking ways to change their

projects so as to complete them in less time.

To answer this question, we built the STAR data farmer [20].

STAR’s goal was to find the smallest set of inputs ranges

that most improves model outputs. STAR used Bohem’s CO-

COMO/COQUALMO effort/defect estimation tools [41].

STAR used distributions specific to each project to control

the distribution of model inputs. For example, Figure 4 shows

the known ranges for a NASA flight guidance system called

“Orbital Space Plane” (OSP). When generating model inputs,

STAR selected across all the ranges of Figure 4. Note that

these ranges are divided into controllable and uncontrollable,

where the latter represent attributes that managers cannot

change for the OSP project.

STAR’s models use the variables of Figure 5. These models

generate estimates for effort, defect, and months. Time is

the calendar months from start to finish; effort is the total

staff hours over that time; so the recommended number of

programmers is
effort
time

. STAR tries to maximize:

value = 1−
(

√

Effort2 + Defects2 + Time2/
√
3

)

(1)

If the estimates are normalized to the range between 0 and 1

(0 ≤ value ≤ 1) then higher values of Equation 1 are better.

STAR executed by growing a recommendations on how

to change a project. For example, after analyzing Figure 4,

STAR’s recommendation was:

pmat = 4 ∧ sced = 3 ∧ cplx = 5 ∧
acap = 3 ∧ ruse = 2 ∧ stor = 3

STAR’s search algorithm (simulated annealing) had op-

erators for taking an existing recommendation, then trying

some additions. After each addition, Boehm’s models would

be called to check if a more complex recommendation was

any better than a shorter one. Once that check failed, STAR

terminated and returned the best recommendation seen to date.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 5

controllable uncontrollable
project attribute low high attribute setting

prec 1 2 data 3
OSP: flex 2 5 pvol 2

Orbital resl 1 3 rely 5
space team 2 3 pcap 3
plane pmat 1 4 plex 3

stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125

Fig. 4: OSP: a JPL flight guidance system prototype for the Orbital
Space Plane. The numbers {1, 2, 3, 4, 5, 6} map to {very low, low,
nominal, high, very high, extra high}. Attribute names from Figure 5.

id attributes
1 pcap: Personnel/team capability
2 cplx: Product complexity
3 acap: Analyst capability
4 time: Time constraint
5 rely: Required software reliability
6 site: Multi-site development
7 docu: Doc. match to life cycle
8 pcan: Personnel continuity
9 aexp: Applications experience

10 tool: Use of software tools
11 pvol: Platform volatility
12 stor: Storage constraint
13 pmat: Process maturity
14 ltex: Language & tools experience
15 sced: Required dev. schedule
16 data: Data base size
17 pexp: Platform experience
18 resl: Arch. & risk resolution
19 prec: Precedentedness
20 reuse: Developed for reuse
21 team: Team cohesion
22 flex: Development flexibility

Fig. 5: Variables in Boehm’s COCOMO models [41].

Experience with STAR suggested that the algorithm was

wasting much time by exploring useless additions [10]. No-

tice how, in the above recommendation, all the values are

some extreme point of the supplied range; e.g. Figure 4

says pmat ∈ {1, 2, 3, 4} and STAR recommended maximum

process maturity (pmat = 4). When we reviewed STAR’s

recommendations, we noticed that while STAR can sometimes

recommend non-extreme values, at least half the time, the

algorithm prefers the extremes. This observation lead to the

development of SEESAW [8], a search algorithm that tended

to select those extreme values.

To comparatively assess SEESAW, we built a generalization

of STAR that supported multiple search engines including

STAR’s simulated annealing and SEESAW and (just to be

thorough) the other algorithms of Figure 6: ISSAMP, Beam

search, A-STAR, and MaxWalkSat. These algorithms were

chosen to include traditional AI search methods (e.g. A-STAR)

as well as more recent, state of the art, tools (MaxWalkSat).

Green and Menzies et al. [10] ran these six algorithms

on four case studies like Figure 4. Each algorithm was run

20 times (guided by the value function of Equation 1) over

Boehm’s effort, months, and defect estimation models. In that

evaluation, the best algorithms were SEESAW and BEAM.

While the performance of these two was usually equivalent,

BEAM ran 10 times slower than SEESAW. Also, occasionally,

SEESAW beat BEAM. Hence, we use SEESAW for compar-

ing data farming to CBR.

Simulated annealing [42] (SA) is a Monte Carlo (MC) sam-
pling algorithm that samples controllable model inputs. The
classic MC algorithm is Metropolis [43], which creates new
states by small mutations to some current state. The algorithm
is silent on the mutation mechanism. For our experiments, we
freeze 2

3
of the inputs and randomly select ranges for the rest.

In SA, if a new state is “better” (as assessed via an “energy
function” such as Equation 1), it becomes the new “current”
state used for future mutations. Otherwise, a probabilistic
criteria is applied to accept, or reject, the new state: (the worse
the new state, the less likely that it becomes the new current
state). SA uses a “temperature” variable to the acceptance
criteria such that, at high temperatures, it is more likely that the
algorithm will jump to a new worst current state. This allows
the algorithm to jump out of local minima while sampling
the space of options. As the temperature cools, such jumps
become less likely and the algorithm reverts to a simple hill
climber.

ISSAMP is a fast stochastic sampling method that extends a
current set of controlled variables using randomly selected
ranges. After finding a solution, ISSAMP resets to the start
to try other paths (our ISSAMP uses 20 resets). ISSAMP is
remarkably effective at scheduling problems, perhaps because
it can rapidly explore more of the search space [44]. To avoid
exploring low-value regions, our version of ISSAMP stores
the worst solution observed so far. Any conjunction whose
“value” exceeds that of the worst solution is abandoned, and
the new “worst value” is retained. If a conjunction runs out
of new ranges to add, then the “worst value” is slightly de-
creased. This ensures that consecutive failing searches do not
permanently raise the “worst value” by an overly permissive
value.

BEAM search is a tree search algorithm Each branch of the
tree is a different “what-if” query of size i. If i is less than the
number of input values to the model input, the missing values
were selected at random from the legal ranges of those inputs.
Each branch forks once for every new option available to that
range. All the new leaves are sorted by their value and only
the top N ranked branches are marked for further expansion.
For this study we used N = 10 and results scored using the
median values seen in the top N branches.

A-STAR runs like BEAM, but the sort order is determined by
the sum f (the cost of reaching the current solution) plus g
(a heuristic estimate of the cost to reach the final solution).
Also, unlike BEAM, the list of options is not truncated so a
termination criterion is needed (we stop the search if the best
solution so far has not improved after m iterations). F was
estimated as the percentage of the project descriptors with
ranges in the current branch; Also, g was estimated using
1 − Equation 1 (i.e. distance to the utopia of no effort, no
development time, and no defects).

MaxWalkSat: Given a random selected set of model inputs,
MaxWalkSat tries n modifications to randomly selected at-
tributes [45]. Sometimes (controlled by the α parameter),
the algorithm chooses the range that minimizes the value of
the current solution. Other times (at probability 1 − α), a
random range is chosen for the attribute. After N retries, the
best solution is returned. Our implementation used n = 50,
α = 0.5, and N = 10.

SEESAW [10] augments MaxWalkSat with a search heuristic
taken from simplex optimization. Like MaxWalkSat, SEESAW
selects each attribute at random, selected on each iteration.
SEESAW ignores all ranges except the minimum and maxi-
mum values for an attribute.

Fig. 6: Some AI algorithms used for data farming.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 6

3 CASE-BASED REASONING WITH W2

Cohen [46] advises that a supposedly sophisticated system

should be baselined against a simpler algorithm. Accordingly,

after determining that SEESAW was our best data farming

algorithm, we set out to build a simpler alternative: the W2

case-based reasoner (CBR).

CBR matches details of a current project to a library of past

completed projects. Decisions about the current project are

made by reflecting over similar prior completed projects [47],

[48]. CBR does not build an intermediary model of (e.g.)

the correlation between lines of code and defects. Rather, all

reasoning is a partial match between the new examples and

the old examples.

CBR is used extensively in software effort estimation [27],

[49]–[59]. There are many reasons for this:

• It works even if the domain data is sparse [31].

• Unlike other predictors, it makes no assumptions about

data distributions or an underlying model.

With very few exceptions, much of the research into analyzing

project effort such as [17], [27], [29], [49], [51]–[55], [57]–

[61] offers algorithms to estimate the effort of the current

project. Those exceptions include Pendharkar & Rodger [62]

who note a scale effect in development, such that increasing

team size can have a serious detrimental effect on the cost of

that project. They propose trade-offs between software effort,

team size, and development costs. Their analysis requires some

skill in the human operators. On the other hand, the W2 case-

based reasoner described below fully automates the process of

finding the least changes to a project in order to most improve

it (e.g. reduce defects and effort).

3.1 W2: Design Assumptions

The goal of W2 is to find minimal changes to a project that

most improve that project.

Like any CBR system, W2 assumes access to historical

cases described using P project descriptors (e.g. analyst

capability, process maturity, etc).

W2 also assumes that (a) each case is described by a set of

qualities such as number of defects, development time, total

staff effort etc; and that (b) all these qualities are summarized

into a single value by some value function such as Equation 1.

Further, W2 assumes that a manager can offer us (a)

a description of the context ⊆ P that interests them and

(b) a list of controlable options which they can change

(control ⊆ context). For example, once we asked a NASA

software project manager for a description of the effects

of assigning inexperienced people. The manager commented

that, at her site, such inexperience implies low applications

experience (aexp), low to very low platform experience (plex),

and language and tool experience (ltex) that is not high. Next,

we asked the manager to describe the range of projects seen

at her site (using the COCOMO names of Figure 5). The

resulting context1 is shown below:

context1 =
apex ∈ {2} ∧ plex ∈ {1, 2} ∧ ltex ∈ {1, 2, 3}∧
?pmat ∈ {2, 3}∧?rely ∈ {3, 4, 5}∧?data ∈ {2, 3}∧
?cplx ∈ {4, 5}∧?time ∈ {4, 5}∧?stor ∈ {3, 4, 5}∧
?pvol ∈ {2, 3, 4}∧?acap ∈ {3, 4, 5}∧?pcap ∈ {3, 4, 5}∧
?tool ∈ {3, 4}∧?sced ∈ {2, 3}

Here, “?” are the controllabels; for example, this manager is

senior enough to adjust factors like schedule pressure (sced).

Note that there is no requirement for managers to include all

project descriptors in their context statement since W2 can

handle contexts that are a subset of the descriptors.

Finally, W2 assumes that we should not reason on all

the data. Given a distance measure the distance between a

context and a case, W2 restricts the reasoning to just the cases

closest to the contexts (thus respecting the context limitations

offered by the user). A simple Euclidean measure will not

work for W2 since our context attributes are a multi-set (e.g.

in the above, pcap ∈ {3, 4, 5}). Also, in the case where

the context mentions only a few attributes, then most of the

Euclidean distances will have to be approximated using some

function that handles missing values. Consequently, we use a

set overlap function inspired by Aha et al. [63]. The distance

between case and a context is the size of their overlap; i.e. the

number of attribute values they have in common:

overlap(context, case) = |case ∩ context| (2)

3.1.1 W2: Pseudo code

This section describes W2’s pseudo code, shown in Figure 7.

Any italic number in brackets refers to a line number in

Figure 7. For example, the algorithm starts by discretizing

all numeric values (15) into a fixed number of bins (such

discretization is recommended practice for dealing with small

data sets [64]). Also, any letter in bold font refers to globals al-

located in the settings function of Figure 7. W2’s settings

were determined using our engineering judgment. In future

studies, we will investigate other settings. For the moment,

we comment that the current settings let W2 out-perform the

model-based data farming methods discussed above.

W2 inputs (11) a data set of projects and a context. As

output, it prints (a) what treatments it can find and (b) the

effects of those treatments on a hold-out test set (19). Each

treatment is a conjunction of attributes, where each attribute

can take one or more values.

All the reasoning is restricted to data that overlaps the

context. In order to determine the stability of the learned treat-

ment, the algorithm runs multiple times (14) using different

randomly selected subsets of the data (16,17).

The code divides the cases randomly into train:test in the

ratio T:t (17). Following Quinlan [65], we use two-thirds, one-

thirds for training and test. Then, Equation 2 is used to find

the neighborhood of the context (22). This neighborhood is

divided into those cases with the B best scores, and the R rest

scores. (25) Appealing to the central limit theorem, we say

that the neighborhood of a context are the 20 cases “nearest”

to that context, where “near” is measured by Equation 2.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 7

1 function settings() {
2 T = 67 ;; size of training set

3 t = 100 - T ;; size of test set

4 N = 20 ;; size of neighbors

5 B = 5 ;; #best items in neighbors

6 R = N - B ;; #rest items in neighbors

7 S = 3 ;; min support of an acceptable test

8 repeats = 20

9 bins = 5

10 }
11 function w2 (context, dataset) {
12 settings() ;; set control variables

13 while (repeats > 0)

14 repeats--

15 dataset = discretizeNumerics(dataset, bins)

16 train_cases = T% of dataset, chosen randomly

17 test_cases = dataset - train_cases

18 treatments = train(context, train_cases)

19 print test(context, test_cases, treatments) }
20 }
21 function train (context, train_cases) {
22 neighbors = overlaps(context,train_cases)

23 neighbors = sort neighbors by Equation 1

24 best = top B cases from neighbors

25 rest = remaining R cases from neighbors

26 for attr_val ∈ context {
27 b = frequency of attr_val in best / B

28 r = frequency of attr_val in rest / R

29 if b > r {
30 scores[attr_val] = b*b / (b+r) }} ;; Equation 3

31 candidates = list of attr_vals ranked on sorted(scores)

32 return prune(candidates, neighbors)

33 }
34 function overlaps (constraing, data) {
35 for case ∈ data { score[case] = overlap(constraing,case)}
36 return top N cases from sorted(scores)

37 }
38 function overlap(constraing,case) { ;;implements Equation 2

39 for attr_val ∈ case {
40 if attr_val ∈ constraint {
41 n++}}
42 return n

43 }
44 function prune (candidates, neighbors) {
45 median[0] = median(all util in neighbors)

46 spread[0] = spread(all util in neighbors)

47 constrained = neighbors

48 treatments = empty set

49 i = 0

50 while (treatment = pop(candidates)) {
51 for case ∈ constrained {
52 if not (treatment ∈ case) {
53 constrained = constrained - case

54 if size(constrained) <= S

55 goto END}}
56 i++ ; at this point, the treatment is acceptble

57 median[i] = median(all util in constrained)

58 spread[i] = spread(all util in constrained)

59 if median[i] > median[i-1]

60 if spread[i] > spread[i-1]

61 return treatments ; since no improvement

62 treatments[i] = treatment }
63 return treatments

64 }
65 function test (context, test_cases, treatments) {
66 neighbors = overlaps(context,test_cases)

67 selected = overlaps(treatments, neighbors)

68 m0 = median(all util in neighbors)

69 m1 = median(all util in selected)

70 s0 = spread(all util in neighbors)

71 s1 = spread(all util in selected)

72 return treatments, (m0 - m1)/m0, (s0 - s1)/s0

73 }
74 function median(x){return x’s 50th percentile}
75 function spread(x){return x’s (75th -25th) percentile}

Fig. 7: Pseudo code for W2. “Util” refers to the values generated by
Equation 1 for a particular case. Code for discretizeNumerics
is not shown: that function replaces each value x in columns with
numeric attributes with round((x−min)/((max−min)/bins), where
max and min are the maximum and minimum values in that column.

All attribute values are ranked according to how often they

appear in best than rest. After a review of the analogy-based

estimation literature, [26], [29], [49], [50], [66] we noted that

no researcher proposed using more than five neighbors for

instance-based effort estimation. Hence, we used B = 5. W2

ranks attribute values using a Bayesian ranking scheme (30).

If “nominal tool use” (denoted as tool=nom) occurs 5 times

in the best set and 14 times in rest, then:

E = (tool = nom)

freq(E|best) = 5

freq(E|rest) = 14

ratio(E|best) = 5/5 = 1

ratio(E|rest) = 10/15 = 0.93

rank(E) =
ratio(E|best)

ratio(E|best) + ratio(E|rest)
= 0.52

In order to avoid evidence that is infrequent, but relatively

more frequent in best than rest, W2 uses a support term. Such

support should increase as the frequency of a range increases,

i.e. ratio(E|best) is a valid support measure. Hence, W2’s

range ranking formula (as used at line 29) is:

rank(E) ∗ support(E) =
ratio(E|best)2

ratio(E|best) + ratio(E|rest)
(3)

We have found Equation 3 to be a successful ranking heuristic

in many applications such the optimization of NASA require-

ments models [67] and flight guidance systems [68] as well

as other applications. [10], [11], [20]

Once all the attribute values are ranked, W2 applies a

greedy search to prune away the least effective (44) (this

is the over-fitting avoidance step used in many data mining

algorithms such as C4.5 [65] and RIPPER [69]). Using the

neighborhood of the context in the training set, W2 applies the

top i-th ranked attribute values to select progressively smaller

subsets of the cases. This process stops when:

1) It runs out of attribute values (50);

2) Or the selected set is too small (54);

3) Or the scores in the selected subsets stop improving (59).

To define stopping rule #2, we used the machine learning

literature. Quinlan [65] blocks sub-tree generation for subsets

with 3 or less examples; hence, we used S = 3.

To define stopping rule #3, Equation 1 was applied to

selected cases. These scores are reported as either the median

value (74) or the “spread” a.k.a. inter-quartile range (75).

Finally, to test the generated treatment, W2 applies them

to the neighborhood of the context in the test cases (65). The

results of that test are reported as the reduction percentage

100 ∗ (initial − final)/initial).

3.2 Complexity

W2 is not a slow algorithm. Given simple indexing, the

frequency counts requested in train (on lines 27,28) could

take linear time. Similarly, the search for constrained subsets

in prune (51) would also take linear time. Much of the

processing is linear on the number of attributes a times the

number of bins per attribute. The only exception to this is the

log linear sort of the a ∗ bins attribute values at line (31).

Hence, we say that the complexity of W2 is log linear on the

number of attribute values; i.e. O(a ∗ bins ∗ log(a ∗ bins)).

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 8

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 s

p
re

a
d
 i
m

p
ro

v
e
m

e
n
t

% median improvement

telecom
finnish

kemerer
miyazaki

Fig. 8: Effort improvements for four data sets.

3.3 Example

Figure 8 shows the results seen after applying W2 to four of

the data sets of Figure 2:

• Enhancements to a U.K. TELECOM product;

• Projects collected by Miyazaki et al [70];

• FINNISH Information Systems projects;

• Large COBOL projects, collected by KEMERER [71].

The attributes in this data are highly varied and includes

number of basic logical transactions, query count, and number

of distinct business units serviced. For each data set, three

contexts were generated (so 3*4=12 experiments, in all):

• The first contained the entire range of possible project de-

scriptors, representing complete freedom to recommend

any change within the space.

• The other two queries were generated by randomly choos-

ing 50% of each attribute values from either the lower,

middle, or upper ranges for each project descriptor.

For these experiments, the values function was just “reduce

effort”. The results, shown in Figure 8, are expressed in terms

of “improvement” defined as 100 ∗ (initial − final)/initial
(and large values are better since that indicates a smaller

final effort). Here, initial is a measure seen in all the test data

while “final” was the measure seen after the rules of W2 were

applied. Two measures were used in this study: median and

spread of effort; i.e. the 50th and 75th-25th percentile range.

Note that all the points in Figure 8 are positive; i.e.

improvements were seen in all cases. While the large median

improvements of Figure 8 are encouraging, they may not

reflect what is realistically achievable. In these examples,

we focused only on effort and there are many ways to cut

a project’s budget with disastrous results (e.g. allocating no

effort to testing). Hence, our next experiment will seek to

improve effort, defects and months.

4 CBR VS DATA FARMING

Recall that SEESAW uses Boehm’s COCOMO models. That

is, any data run through SEESAW must conform to the

structure of Figure 5. Accordingly, to test SEESAW and W2

on the same data, we must restrict that test to COCOMO data.

For this comparison, we ran the recommendations generated

by SEESAW and W2 on the the NASA93dem and COC81dem

data sets of Figure 2. These data sets all have the attributes de-

fined by Boehm [72]; e.g. analyst capability, required software

controlable uncontrolable

project attribute low high attribute setting

rely 3 5 tool 2
JPL data 2 3 sced 3

flight cplx 3 6
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418

prec 3 5 flex 3
OSP2 pmat 4 5 resl 4

docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

rely 1 4 tool 2
JPL data 2 3 sced 3

ground cplx 1 4
software time 3 4

stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Fig. 9: Three contexts described by domain experts from JPL [67].
Attribute names from Figure 5. {1, 2, 3, 4, 5, 6} denote {very low,
low, nominal, high, very high, extra high}.

reliability, and use of software tools (for a full list of attributes,

see Figure 5). Originally collected in the COCOMO-I format,

JPL business experts have translated these data sets from their

original COCOMO format to COCOMOII.

Both SEESAW and W2 guided their search using Equa-

tion 1 and the contexts of Figure 4 and Figure 9:

• OSP: orbital space plane;

• OSP2: a second generation of the OSP software;

• JPL FLIGHT systems;

• JPL GROUND systems.

SEESAW used those contexts to constrain its exploration

of possible recommendations. W2 took those contexts then

applied the train procedure of Figure 7. Recall that, in that

procedure, some treatment was assessed on projects similar to

the context in a test set; i.e. all the cases in the context’s

neighborhood. Our comparison rig studied that same test
neighborhood using SEESAW and W2.

To make that comparison, we applied SEESAW and W2’s

recommendations (and by “apply”, we mean reject any row

that contradicts the ranges in the recommendation). Note that

this comparison was made on hold-out test data set, not used

in any proceeding analysis (for details on the construction of

that test set, refer back to Figure 7).

The results of this comparisons are shown in Figure 10, di-

vided into the defect, effort, months changes from GROUND,

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 9

Median Spread Median Spread

a = t = A = T = improv. improv.

Win Goal Treatment as is to be as is to be
a−t

a

A−T

A

NASA93dem Flight

defects SEESAW 1276 626 3737 2311 51% 38%

defects W 2042 1688 3992 2501 17% 37%

effort SEESAW 159 72 378 192 55% 49%

effort W 265 183 416 242 31% 42%

months SEESAW 21 15 13 8.6 27% 33%

months W 22 20 15 11.1 5% 24%

NASA93dem Ground

defects SEESAW 2006 688 4254 2203 66% 48%

defects W 2007 933 3763 1121 54% 70%

effort SEESAW 240 95 390 166 61% 57%

effort W 177 81 361 156 54% 57%

months SEESAW 22 16 15 8.8 28% 41%

months W 21 17 14 6.2 19% 55%

NASA93dem OSP

* defects W 1586 767 3557 1741 52% 51%

defects SEESAW 1265 1696 3722 3077 -34% 17%

* effort W 210 99 557 179 53% 68%

effort SEESAW 150 174 411 372 -16% 10%

* months W 21 15 15 9.0 28% 39%

months SEESAW 21 21 15 12 -2% 21%

NASA93dem OSP2

* defects W 2077 744 4222 1356 64% 68%

defects SEESAW 2042 1172 4369 3127 43% 28%

* effort W 239 79 465 145 67% 69%

effort SEESAW 210 118 514 275 44% 46%

months W 21 15 17 6.8 31% 60%

months SEESAW 21 16 17 11 25% 36%

COC81dem Flight

defects W 1529 1265 1867 2369 17% -27%

defects SEESAW 1487 1629 2054 1965 -9% 4%

effort W 86 81 181 200 6% -11%

effort SEESAW 89 106 246 237 -19% 4%

* months W 18 16 6.5 10 11% -49%

months SEESAW 18 20 10 8.9 -8% 8%

COC81dem Ground

defects W 1541 1248 1902 2102 19% -11%

defects SEESAW 1650 1496 2445 2499 9% -2%

effort W 98 65 199 223 33% -12%

effort SEESAW 106 122 383 372 -15% 3%

* months W 18 15 9.2 10 17% -7%

months SEESAW 19 19 10 10 0% -5%

COC81dem OSP

* defects W 1496 1068 1787 2054 29% -15%

defects SEESAW 1496 1765 2233 2233 -18% 0%

effort SEESAW 93 83 332 200 11% 40%

effort W 88 93 209 205 -5% 2%

* months W 19 14 9.0 8.9 22% 1%

months SEESAW 19 19 9.4 10 -3% -4%

COC81dem OSP2

* defects W 1850 1802 2697 2405 3% 11%

defects SEESAW 1473 2269 1769 2061 -54% -17%

* effort W 122 130 431 356 -7% 17%

effort SEESAW 98 447 289 288 -356% 0%

months SEESAW 19 19 7.9 8.6 -3% -9%

months W 20 21 11 10 -4% 10%

Fig. 10: Changes in median and spread. Asteriks (*) in column
one mark a comparison with a better and statistically significantly
different median value (Mann- Whitney, 95% confidence). Median=
50th percentile. Spread= 75th-50th percentile range. Gray cells show
optimization failures (zero or negative improvement).

FLIGHT, OSP2 & OSP. We show 24 comparisons:

(

NASA93dem

COC81dem

)

∗

(

defects

effort

effort

)

∗

(

ground

flight

OSP

OSP2

)

W2 produced larger median reductions than SEESAW in

16/24 comparisons. The “Win” column of those figures in-

dicates when any member of a comparison had a higher

value and was statistically and significantly different (Mann-

Whitney, 95% confidence). In nearly half the comparisons

(11/24), W2 results were statistically different and better than

-50

-25

 0

 25

 50

 75

p
e
rc

e
n
t
c
h
a
n
g
e

changes, sorted

20.5,20.5

medians
spreads

Fig. 11: Range of changes in median and spread generated by
applying the recommendations of W2. The median observed changes
were (20.5, 20.5)% for (medians, spreads), respectively.

SEESAW (in the remaining comparisons, SEESAW’s median

improvements were never better than W2).

The gray cells in Figure 10 show optimization failures; i.e.

a zero or negative improvement. W2 had fewest failures: 3/24
and 7/24 failures for medians and spreads (respectively), while

SEESAW showed 13/24 and 7/24 failures for medians and

spreads (respectively). One SEESAW failures was particularly

dramatic: an increase from 98 effort months to 447 effort

months in the OSP2 effort results.

Figure 11 shows the sorts of the median and spread improve-

ments seen from the Figure 10 results. Note that rarely were

the changes to the median less than zero. In the majority of

cases, W2’s median and spread improvements were positive

(an expected value of 20.5; sometimes ranging over 50%).

While occasionally the spread degraded sharply (down to 50%

worse), such cases were uncommon: note that in only 10% of

our results were the spread changes below -15%. Also, all the

cases with poor spreads W2 were in the COC81dem data set

(an observation we will return to, below).

5 DISCUSSION

This section discusses the issues raised at the end of §2.1, as

well as the validity and reliability of our conclusions.

5.1 What methods generate results with poorer im-

provements and poorer control?

Recall from Figure 10 that in the majority case (1624), SEESAW

resulted in smaller reductions than W2. That is, data farmer

resulted in poorer improvements than CBR.

Also recall from Figure 10 that SEESAW had more op-

timization failures than W2. That is, the recommendations

generated by data farmer resulted in poorer control of the

treated projects than CBR.

We conjecture that CBR out-performed data farming for the

reasons discussed in §2:

• Data farming uses a model to extrapolate a landscape

around the data used to develop models.

• Incorrect conclusions result when the landscape extends

into poorly sampled regions of the training data.

Our results suggest that, when learning small data sets that

only cover a small space of possible projects, it is unwise to

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 10

fit one model over all the data (since that model can fail in

sparsely sampled local regions). For small data sets, it may

be better to extrapolate from just locals region around the test

case (in the case of W2, that local region is selected by the

context query discussed in §3.1).

Also, there is some evidence that CBR may be the preferred

approach when data contains noise. Note that most of the gray

cells of Figure 10 occur in the COC81dem results. Boehm

assumed that this data was to be analyzed by regression

so he spent much effort on the COC81dem data (applying

his domain expertise to prune or trim outstanding values).

Curiously, W2 performed best on the “non-cleansed” data

set (NASA93dem) than the cleaner data set (COC81dem). We

conjecture that seemingly “dirty” data may contain data that is

insightful in some contexts. While outliers confuse regression-

based methods (that fit one model over all data), instance-

based tools like W2 can exploit those less-common instances

(since they build local models around each context).

5.2 What methods for generating project recommen-
dations are hardest to apply?

SEESAW is a more complicated system to implement than

W2 since the latter just needs the code of Figure 7 while

the former needs an AI search engine as well as a software

process model. Also, compared to other data miners, W2 is a

relatively simpler procedure:

• W2 does not use an intricate recursive descent as done

in iterative dichotomization algorithms such as C4.5 or

CART (in our experience with teaching data mining, we

have found that novices have trouble with that kind of

recursion).

• W2 does not use intricate mathematics such as Latent

Dirichlet allocation or the quadratic programming used

by SVM (in our experience with teaching data mining,

we have found that novices rarely code those tools from

scratch; rather, novices typically download and apply

other people’s packages for that work).

• In terms of the learners we have implemented, the only

one simpler than W2 are (1) a Naive Bayes classifier

on discretized data or (2) a K=1 nearest neighbor. Note

that once a developer has access to the source code for

a K=1 nearest neighbor, then W2 is less than 100 lines

more code (in a high-level programming language like

Python).

Not only is SEESAW more complex than W2 to build,

it can also add onerous demands to how data is collected

from the domain. Like any data farming tool, SEESAW can

only process project data in a format compatible with the

underlying model. In practice, this limits the scope of the tool.

For example, our current version of SEESAW uses Boehm’s

COCOMO models. Hence, we can only reason about projects

expressed in the COCOMO format. Note that W2 does not

suffer from such data dependencies. For example, none of the

examples studied in §3.3 used the COCOMO structure shown

in Figure 5. Rather, the attributes of the examples of §3.3

included the number of basic logical transactions, query count,

the number of distinct business units serviced, and several

other attributes not referenced in COCOMO.

Finally, SEESAW is harder to maintain than W2. Like any

CBR system, W2’s knowledge is instantly updated as soon as

the training data is changed. On the other hand, SEESAW is

much harder to maintain since its knowledge is held within the

intricacies of its model. As an example of how complicated

that can be, consider the following:

• We have used SEESAW to offer advice to several projects

at NASA’s Jet Propulsion Laboratory.

• When business users saw the generated recommenda-

tions, they often wanted extra constraints added to the

model to handle local policies; e.g. “do not increase au-

tomatic tools usage without increasing analyst capability”

or “increase the weighting given to the defects term in

Equation 1 for high reliability systems”.

• After two years of working with SEESAW, the system

contained two dozen extra constraints, some with intricate

cycle relationships between them.

This is troubling since, while Boehm’s original models have

been extensively validated [73], we doubt that this certification

extends to our modified models.

5.3 Conclusion Reliability and Validity

This paper is a case study that studied the effects of varying

some treatments on some data sets. This section discusses

limitations of such case studies.

As we read standard texts on empirical software engineering

(e.g. Runeson & Höst [74]) the term “case study” often

refers to some act which includes observing or changing

the conditions under which humans perform some software

engineering action. In the age of data mining and model-

based optimization this definition should be further extended

to include case studies exploring how data collected from

different projects can be generalized across multiple projects.

As Cruzes et al. comment:

Choosing a suitable method for synthesizing evi-

dence across a set of case studies is not straightfor-

ward... limited access to raw data may limit the abil-

ity to fully understand and synthesize studies. [75]

This quote from Cruzes et al. is almost a summary of the

specific goals of this paper: given limited amounts of software

process data, it is best to extrapolate between those data points:

• Use a CPU-intensive data farming method?

• Or to perform some locality-based reasoning using CBR?

Note that it is not possible to explore all the different ways to

generalize data collected from individual case studies since:

• There are many methods to perform that generalization3;

• There is limited time to explore those methods.

That is, a paper that attempts to generalizing across multiple

case studies is itself a case study. Hence, any case studies

3. The next section of this paper cites review articles that list hundreds of
different optimizers (e.g. [76]). The same large range of options exist for other
data mining tools (decision trees, neural nets, genetic algorithms, etc). For
example, recently we listed the design decisions made by different researchers
using case-based reasoning for effort estimation: when combined together,
there are several thousand ways to configure such a CBR tool [77].

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 11

in SE data mining or optimization can only explore a small

subset of options, selected by the biases of the researcher. For

example, the main experiments of this paper compare just two

algorithms: SEESAW and W2. Runeson & Höst comment that

case studies biased in this way are subject to criticsm:

As they are different from analytical and controlled

empirical studies, case studies have been criticized

for being of less value, impossible to generalize

from, being biased by researchers etc.

For this reason, it is important to state those biases and explore

how they affect the reliability and validity of the stated result.

5.3.1 Reliability

Reliability refers to the consistency of the results obtained

from the research. It has at least two components: internal

and external reliability.

Internal reliability checks if an independent researcher

reanalyzing the data would come to the same conclusion. Note

that large variances in the results threaten internal reliability.

For this reason, one of the assessment criteria of this paper

was “optimization failure”; i.e. where the treated project data

had a larger spread in results than the untreated data. Note

that one of the reasons we recommend W2 over data farming

is that the latter was observed to exhibit more optimization

failures.

External reliability assesses how well independent re-

searchers could reproduce the study. To increase external

reliability, this paper has taken care to clearly define our

algorithms. Also, all the data used in this work is available

on-line in the PROMISE code repository.

5.3.2 Validity

Validity refers to the extent to which a piece of research ac-

tually investigates what the researcher purports to investigate.

Validity has at least three components: internal, construct, and

external validity [74].

Internal validity checks that if the differences found in

the treatments can be ascribed to the treatments under study.

In this paper, the treatments refer to the algorithms built

extensively extrapolated the existing data or CBR tools that

used small local models. We noted that data farming exhibited

a larger number of optimization failures, which we argue as

an indication that data farmer over-extrapolates the data to

derive inappropriate conclusions, in regions of the data that

is sparsely populated. CBR, on the other hand, exhibited far

fewer such failures suggesting that nearest neighbor methods

that build local “bridges” across local data is safer than the

extrapolation used in data farming (at least that is, for sparsely

populated data sets).

Construct validity refers to qualities that we cannot directly

observe but that we assume they exist in order to explain

behavior we can observe. It is extremely important to define

constructs that are being investigated in such a way that would

otherwise enable an outsider to identify these characteristics

if they came across them. In our case, the important construct

is the optimization failure. If another data farming researcher

is working on data where all their treatments selected from

projects with a large variance than the original population, then

that should be an indication that they might wish to explore

CBR in place of their data farmers.

Finally, external validity checks if the results are of rel-

evance for other cases, or can be generalized from samples

to populations. For example, the datasets used here comes

from COCOMO and NASA projects and these projects do not

represent the space of all possible projects. Also, optimization

is a large and active field of research (see the range of

optimizers discussed in the next section) and any single study

can only use a small subset of the known algorithms. And if

anyone reads this sentence, timm will send whiskey. To reduce

the effects of external validity, this paper first sorted the AI

algorithms of Figure 6, then compared the best of that set

of algorithms to W2. Nevertheless, it is a important area for

future work to observe if other optimizers can produce better

results than W2 in data-starved domains.

For case study research, it is difficult to completely avoid

problems of external validity The best we can do is to define

our algorithms and publicize our data to enable replication

of our results by other researchers, and perhaps, point out

a previously unknown bias in our analysis. Desirably, other

researchers will emulate our methods to repeat, refute, or

improve our results.

6 OTHER RELATED WORK

Some of the related work to this research was discussed above.

This section reviews the remaining related work.

6.1 Standard Numeric Optimization

When discussing this work, a frequently asked question is

“why use CBR or data farming instead of standard numeric op-

timizers?”. Such optimizers use gradient descent that assume

an objective function F (X) is differentiable at any point N .

A Taylor-series approximation of F (X) decreases fastest if

the negative gradient (−∆F (N)) is followed from point N .

An example of the state-of-the-art in gradient descent are the

Quasi-Newton (QN) methods (possibly augmented a BFGS

update and heuristics for jumping away from discontinuities

in the solution when those discontinuities are discovered) [78].

Note that numeric optimizers assume they can access the

gradient about a specific point. This, in turn, assumes coeffi-

cient stability; thus that the slope around some point is known

with some certainty. At least for the effort estimation data sets,

this assumption is very problematic. For example, consider

Boehm’s COCOMO parametric model (the 1981 version [72]):

Effort = a ∗ Locb ∗
∏

i

βixi (4)

Here xi is an effort multiplier and βi is a coefficient that

controls the influence of xi (the a, b parameters are the

calibration parameters).

Our empirical results show that, for effort estimation data

sets, we cannot assume stability in the coefficients. To demon-

strate, we applied Boehm’s method for finding coefficients for

the COCOMO attributes [41]. This was repeated twenty times

using 66% samples (selected at random) of the NASA93 data

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 12

-15

-10

-5

 0

 5

 10

 15

c
o
e
ff

e
c
ie

n
t

v
a
lu

e

all coeffecients, sorted

attributes coeffecients

acap
aexp
cplx
data
lexp
loc

modp
pcap

rely
sced
stor
time
tool
turn

vexp
virt

Fig. 12: COCOMO 1 effort multipliers, and the sorted coefficients
found by linear regression from twenty 66% sub-samples (selected
at random) from the NASA93 PROMISE data set [79]. Prior to
learning, training data was linearized in the manner recommended
by Boehm (x was changed to log(x); for details, see [79]). During
learning, a greedy back-select removed attributes with no impact on
the estimates: hence, some of the attributes have less than 20 results.
After learning, the coefficients were un-linearized.

set from the PROMISE repository. The results are shown in

Figure 12. While some of the coefficients are stable (e.g. the

white circles of loc remains stable around 1.1), the coefficients

of other attributes are highly unstable:

• The (max−min) range of some of the coefficients is very

large; e.g. the upside down black triangles of stor ranges

from −2 ≤ βi ≤ 8.

• Consequently, nine of the coefficients in Figure 12 jump

from negative to positive.

We have seen similar βi instabilities in other data sets,

including Boehm’s COCOMO81 data [79]. Accordingly, we

cannot recommend standard numeric optimization for learning

project management decisions (at least, not use the kinds of

process data that we have seen previously).

6.2 Other Optimizers

If standard numeric optimizers are inadequate, then perhaps

alternate optimization methods might suffice. When discussing

SEESAW, the paper reviewed six such alternate optimizers

(see Figure 6) and the literature contains many more:

• Some methods map discrete values true/false into contin-

uous ranges of 1 and 0, and then use integer programming

methods such as CPLEX [80].

• Other approaches use meta-heuristic methods like tabu

search [81], the simulated annealing method explored

in this paper, or the genetic algorithms [82]. GAs have

been applied to COCOMO data set by many researchers

including Sheta [83] and Li et al. [29]. For a review

on the state-of-the-art of evolutionary programming and

predictive modeling, see Afzal & Torkar [84].

For yet another methods, see the extensive survey of Gu et

al. [76] who list hundreds of model-based search methods.

No article is able to explore all the above methods but we

have some comments on why we do not use some of them.

Any meta-heuristic search method that requires data sam-

pling from the domain is probably inappropriate for data sets

as small as those shown in Figure 2. An alternative approach

would be to create a model, then use it to generate the data

required for a Monte Carlo analysis that is guided by a meta-

heuristic search. This is exactly the notion that led us to the

model-based search of COCOMO models described above.

Note that we no longer recommend that approach since our

instance-based methods are performing comparatively better.

Similar to our work, research into search-based software en-

gineering (SBSE) eschews standard numerical optimizers for

the exploration of software engineering data. A premise of the

SBSE community [85]–[87] is that due to the computational

complexity of these problems, exact optimization techniques

of operations research like linear programming or dynamic

programming are mostly impractical for software engineering

problems. Because of this, researchers and practitioners in

that field use search technologies to find near-optimal or

good-enough solutions. For a review of techniques emerging

from the SBSE community that relate to predictions, see

Harman [88].

Harman recognizes that Dolado pioneered the use of evo-

lutionary algorithms for software effort estimation [89], [90]

(and for more recent work, see [29], [83], [84]). In this respect,

this work has some overlap with W2. However, as mentioned

above, merely estimating effort is only half the task of W2

(and the other half is finding what to change such that some

set of quality measures are most altered).

Historically, our work had much overlap to SBSE. Prior

to W2, we used a standard SBSE algorithm (simulated an-

nealing) to explore the input space of our models [20]. Based

on the results of this paper, we are not currently exploring

SBSE for small process data sets. Nevertheless, one branch

of SBSE might be of particular interest for W2. Harman [88]

reports a class of SBSE algorithms called Bayesian Evolution-

ary algorithms (BEA). BEA’s use evolutionary algorithms to

search for models with the highest posterior probabilities. This

is a promising approach that could have application to W2’s

Bayesian ranking scheme.

6.3 Exploring Other Goals

The experiments demonstrated in this paper focus on pre-

release defect, development time, and development effort.

Other quality goals of interest, that are not explored here,

are the post-release development effort studied by (amongst

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 13

others) Banker & Slaughter [91], who used a DEA analysis

for that work. DEA indicates on the appropriate weightings

to input and output variables. It is a linear programming

framework that selects weights that maximize the weighted

sum of outputs divided by weighted sum of inputs, subject to

constraints on those weightings (in this regard it has some

similarities to the feature selection work of, say, Hall &

Holmes [92]). Like the Pareto frontier used in evolutionary

programming [82], [93], DEA prunes dominated solutions

(those that provide less impact on outputs). Incorporating DEA

into W2 is a future work under development.

Other kinds of quality goals include minimizing mainte-

nance effort (as studied by Banker & Slaughter) or the release

planning problem introduced by Bagnall et al. [94] (explored

using evolutionary algorithms by Zhang et al. [95] including

the Pareto optimal approach of Saliu & Ruhe [93]). We

conjecture that in large multi-requirement projects, W2 could

be a tactical tool to make small adjustments to strategic plans

generated by other algorithms.

6.4 Parametric and Non-Parametric Methods

For our final notes on related work, we discuss parametric and

non-parametric methods for modeling software processes.

W2 is a non-parametric method since it makes no assump-

tions about the underlying distributions of the attribute ranges.

Other SE research avoids such parametric assumptions:

• DEA, as discussed in §6.3, does not assume parametric

models of any specific format;

• Meta-heuristic search algorithms, like those used in

SBSE, are also agnostic about whether or not the models

that they are exploring are parametric or non-parametric.

Other research assumes parametric methods including meth-

ods that with a single underlying parametric function. For

example:

• Zhang [96] proposes that software defects follow a

Weibull distribution;

• Boehm [72] proposed that development effort was expo-

nentially proportional to lines of code;

• Pendharkar et al. [97] a CobbDouglas function (a convex

production function where, for a fixed software size

and team size, there exists a unique minimum software

development effort).

In theory, we prefer parametric over non-parametric meth-

ods. Such parametric methods are better grounded in core

principles and their models can be used as summaries of the

important effect within certain domains.

However, in practice, many domains lack the data to

generate stable settings to the coefficients of the parameter.

In those domains, parametric methods can generate unstable

conclusions. It turns out that our data sets exhibit coefficient

instability (see §6.1). Accordingly, we have tried reducing

coefficient instability via:

• Feature subset selection to prune spurious details [98],

[99];

• Instance subset selection to prune irrelevancies [61].

Instance subset selection failed to reduce model instabil-

ity [61]. Feature subset selection has also been disappointing:

• It reduces the performance variance4 somewhat (in our

experiments, from 150% to 53% [99]);

• However the residual median error rates are still large

enough that it is hard to use the predictions of these

models as evidence for the value of some proposed

approach.

After years of unfruitful research on reduced models, feature

subset selection, and instance subset selection, we were keen

to experiment on some different technology. That leads to the

development of W2.

7 CONCLUSION & FUTURE WORK

This paper has compared methods for learning changes to

software projects in data-sparse and potentially noisy domains:

1) A small extension to standard CBR (a greedy search

over the neighborhood of some query, and then divided

into best and rest regions);

2) A data farmer.

Surprisingly the conclusion is that this relatively simple CBR

system out-performed the state-of-the-art data farmer. Note

that this argument would not be possible without the compari-

son with the data farmer. That is, before the simpler approach

can be evaluated and endorsed. It may be necessary to spend

months/years to certify a much more complex approach. In

our study, the result was to discard years of work that recalls

a quote from Ken Thompson, one of the inventors of UNIX,

who said “one of my most productive days was throwing away

1,000 lines of code” [100]. As researchers, we should always

seek for such a simplification, lest our tools grow needlessly

complicated5.

To explain why CBR succeeds, we note that CBR does not

attempt to fit a single model across all the data. Instead, it

builds multiple micro-models (one for each test instance). In

such a way, extraneous influences from remote examples can

be largely ignored.

To explain why data farming fails or at least performed less

desirable, it is useful to refer to Figure 1:

• For a mathematical audience, we say that the landscape

generated by a data farmer is not a clear boundary. Rather,

that boundary is itself a distribution which exhibits large

variance in regions with low support in the training data

set. Any lesson learned in that high variance region has

a low probability of intersecting the data distributions of

the test set. Hence, it has a high probability of failing

when applied to the test set.

• For a less mathematical audience, we say that the land-

scape is like a frozen sheet of ice that is thickest in regions

of greatest data. Where the training data is sparse, the

lessons learned are standing on very thin ice and should

not be trusted.

4. By variance, we mean how much each estimate xi varies from the mean

(µ) of all N estimates; specifically
∑

N

i
(xi − µ)2/N .

5. The late Steve Jobs, founder of Apple Computers, once expressed a
similar view: “Simple can be harder than complex: You have to work hard to
get your thinking clean to make it simple. But its worth it in the end because
once you get there, you can move mountains.”

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 14

As to external validity, we conjecture that any data farming

method will likely to make incorrect decisions if it generates

elaborated extrapolations of very small software process data

sets such as in Figure 2. Very small data sets contain limited

amounts of information. Any extrapolation of that information

runs into the risk of over-fitting the data and performing poorly

on as-yet-unseen test data.

This is not to conclude that all data farming tools can always

be replaced with simpler CBR methods like W2. The test

domain of this paper is very specific; i.e. using historical logs

of effort/defect data to select minimal sets of most effective

changes to a project. The generality of our conclusions must be

validated by means of experimentation in other domains. For

example, the release planning problem discussed in [94], [95],

[101] is a process problem of great complexity. We mentioned

above that for such a complex domain, W2 might be the best

as a tactical tool to adjust the project structures generated from

more complex model-based methods.

Nevertheless, the results of this paper have been greatly

piqued our interest in CBR and we plan to further explore

this promising technology in the following areas:

1) Are model-based methods worse for noisier data?

2) Is “data cleansing” recommended for regression, but

deprecated for instance-based methods?

3) How best to reduce spread, thus increase the confidence

a user has in the results?

4) Are there better settings for W2 than those of Figure 7?

5) Can CBR tools like W2 be used for other quality im-

provement tasks (e.g. minimizing maintenance effort)?

6) Can DEA and Bayesian evolutionary programming im-

prove W2?

7) For small data sets like Figure 2, does CBR always

perform better than model-based methods?

REFERENCES

[1] M. Rosenbluth, “Genesis of the monte carlo algorithm for statistical
mechanics: a talk at los alamos national laboratory,” June 2003.

[2] M. Feather and T. Menzies, “Converging on the optimal attainment of
requirements,” in IEEE Joint Conference On Requirements Engineering

ICRE’02 and RE’02, 9-13th September, University of Essen, Germany,
2002, available from http://menzies.us/pdf/02re02.pdf.

[3] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models
for adaptive resource provisioning in the cloud,” Future Gener. Comput.

Syst., vol. 28, no. 1, pp. 155–162, Jan. 2012.

[4] V. T. K. Tran, K. Lee, A. Fekete, A. Liu, and J. Keung, “Size estimation
of cloud migration projects with cloud migration point (cmp),” in Pro-

ceedings of the 2011 International Symposium on Empirical Software

Engineering and Measurement, ser. ESEM ’11, 2011, pp. 265–274.

[5] T. Menzies, O. Elrawas, D. Baker, J. Hihn, and K. Lum, “On the value
of stochastic abduction (if you fix everything, you lose fixes for ev-
erything else),” in International Workshop on Living with Uncertainty,
2007.

[6] T. Menzies and Y. Hu, “Just enough learning (of association rules):
The TAR2 treatment learner,” in Artificial Intelligence Review, 2007,
available from http://menzies.us/pdf/07tar2.pdf.

[7] A. Orrego, T. Menzies, and O. El-Rawas, “On the relative merits
of software reuse,” in International Conference on Software Process,
2009.

[8] T. Menzies, S. Williams, O. El-rawas, B. Boehm, and J. Hihn, “How
to avoid drastic software process change,” in ICSE’09, 2009.

[9] T. Menzies, S. Williams, O. Elrawas, D. Baker, B. Boehm, J. Hihn,
K. Lum, and R. Madachy, “Accurate estimates without local data?”
Software Process Improvement and Practice, vol. 14, pp. 213–225,
2009.

[10] T. Menzies, O. El-Rawas, J. Hihn, and B. Boehm, “Can we build
software faster and better and cheaper?” in PROMISE’09, 2009.

[11] P. Green, T. Menzies, S. Williams, and O. El-waras, “Understanding the
value of software engineering technologies,” in IEEE ASE’09, 2009.

[12] O. El-Rawas and T. Menzies, “A second look at faster, better, cheaper,”
Innovations in Systems and Software Engineering, pp. 319–335, 2010.

[13] A. Brady, T. Menzies, O. El-Rawas, E. Kocaguneli, and J. Keung,
“Case-based reasoning for reducing software development effort,”
Journal of Software Engineering and Applications, December 2010.

[14] A. Brady and T. Menzies, “Case-based reasoning vs parametric models
for software quality optimization,” in PROMISE ’10, 2010, pp. 1–10.

[15] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A system-
atic review of fault prediction performance in software engineering,”
IEEE Transactions on Software Engineering, no. PrePrints, 2011.

[16] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Soft-

ware Engineering, January 2007, available from http://menzies.us/pdf/
06learnPredict.pdf.

[17] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung, “Exploiting
the essential assumptions of analogy-based effort estimation,” IEEE

Transactions on Software Engineering, vol. 99, no. PrePrints, 2011.

[18] T. Menzies, A. Butcher, A. Marcus, T. Zimmermann, and D. Cok,
“Local vs global models for effort estimation and defect prediction,”
in IEEE ASE’11, 2011, available from http://menzies.us/pdf/11ase.pdf.

[19] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local vs. global lessons for defect
prediction and effort estimation,” IEEE Transactions on Software Engi-

neering, p. 1, 2012, available from http://menzies.us/pdf/12localb.pdf.

[20] T. Menzies, O. Elrawas, J. Hihn, M. Feathear, B. Boehm, and
R. Madachy, “The business case for automated software engineerng,”
in IEEE ASE ’07. New York, NY, USA: ACM, 2007, pp. 303–312.

[21] D. Geletko and T. Menzies, “Model-based software testing via treat-
ment learning,” in IEEE NASE SEW 2003, 2003, available from
http://menzies.us/pdf/03radar.pdf.

[22] G. Dyson, Turing’s Cathedral: The Origins of the Digital Universe.
Pantheon, 2012.

[23] N. Silver, The Signal and the Noise: Why So Many Predictions Fail -

But Some Don’t. Penguin, 2012.

[24] G. Horne and T. Meyer, “Data farming: discovering surprise,” in
Simulation Conference, 2004. Proceedings of the 2004 Winter, vol. 1,
dec. 2004.

[25] N. E. Fenton, Software Metrics. Chapman and Hall, London, 1991.

[26] E. Mendes, I. D. Watson, C. Triggs, N. Mosley, and S. Counsell,
“A comparative study of cost estimation models for web hypermedia
applications,” Empirical Software Engineering, 2003, 8(2):163-196.

[27] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl,
“Optimal project feature weights in analogy-based cost estimation:
Improvement and limitations,” IEEE Trans. Softw. Eng., vol. 32, pp.
83–92, 2006.

[28] D. Baker, “A hybrid approach to expert and model-based effort esti-
mation,” Master’s thesis, Lane Department of Computer Science and
Electrical Engineering, West Virginia University, 2007.

[29] Y. Li, M. Xie, and T. Goh, “A study of project selection and feature
weighting for analogy based software cost estimation,” Journal of

Systems and Software, vol. 82, pp. 241–252, 2009.

[30] D. Strickland, P. McDonald, and C. Wildman, “Nostromo: Using monte
carlo simulation to model uncertainty risk in cocomo ii,” in 18th

COCOMO Forum, Los Angeles, http://goo.gl/SpB9K, 2003.

[31] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity in
comparative studies of software prediction models,” IEEE Trans. Softw.

Eng., vol. 31, no. 5, pp. 380–391, May 2005.

[32] M. Shepperd and G. F. Kadoda, “Comparing software prediction
techniques using simulation,” IEEE Trans. Software Eng, vol. 27,
no. 11, pp. 1014–1022, 2001.

[33] D. Pearce, “The induction of fault diagnosis systems from qualitative
models,” in Proc. AAAI-88, 1988.

[34] A. van Lamsweerde and E. Letier, “Integrating obstacles in goal-
driven requirements engineering,” in Proceedings of the 20th Inter-

national Conference on Software Engineering. IEEE Computer
Society Press, 1998, pp. 53–62, available from http://citeseer.nj.nec.
com/vanlamsweerde98integrating.html.

[35] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional

Requirements in Software Engineering. Kluwer Academic Publishers,
2000.

[36] E. Chiang and T. Menzies, “Simulations for very early lifecycle quality
evaluations,” Software Process: Improvement and Practice, vol. 7, no.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 15

3-4, pp. 141–159, 2003, available from http://menzies.us/pdf/03spip.
pdf.

[37] W. Heaven and E. Leiter, “Simulating and optimising design decisions
in quantitative goal models,” in The 19th IEEE International Confer-

ence on Requirements Engineering, 2011, pp. 79–88.
[38] D. Rodriguez, M. Ruiz, J. C. Riquelme, and R. Harrison, “Multiob-

jective simulation optimisation in software project management,” in
Proceedings of the 13th annual conference on Genetic and evolutionary

computation, ser. GECCO ’11, 2011, pp. 1883–1890.
[39] K. Deb and D. Kalyanmoy, Multi-Objective Optimization Using Evo-

lutionary Algorithms. New York, NY, USA: John Wiley & Sons, Inc.,
2001.

[40] Y. Jiang, M. Li, and Z.-H. Zhou, “Mining extremely small
data sets with application to software reuse,” Software—Practice

Experience, vol. 39, no. 4, pp. 1–27, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1527071

[41] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. K. Clark, B. Steece,
A. W. Brown, S. Chulani, and C. Abts, Software Cost Estimation with

Cocomo II. Prentice Hall, 2000.
[42] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

simulated annealing,” Science, 1983, number 220, 4589:671-680.
[43] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,

“Equation of state calculations by fast computing machines,” J. Chem.

Phys, vol. 21, pp. 1087–1092, 1953.
[44] S. Craw, D. Sleeman, R. Boswell, and L. Carbonara, “Is knowledge

refinement different from theory revision?” in ECML, 1994, pp. 32–34.
[45] B. Selman, H. A. Kautz, and B. Cohen, “Local search strategies for

satisfiability testing,” in Proceedings of the Second DIMACS Challange

on Cliques, Coloring, and Satisfiability, 1993.
[46] P. Cohen, Empirical Methods for Artificial Intelligence. MIT Press,

1995.
[47] R. C. Schank and R. P. Abelson, Scripts, plans, goals and understand-

ing: an inquiry into human knowledge structures. Erlbaum, 1977.
[48] J. Kolodner, Case-Based Reasoning. Morgan Kaufmann, 1993.
[49] F. Walkerden and R. Jeffery, “An empirical study of analogy-based

software effort estimation,” Empirical Softw. Engg., 1999, 4(2):135-
158.

[50] C. Kirsopp and M. Shepperd, “Making inferences with small numbers
of training sets,” Software, IEEE Proc., vol. 149, 2002.

[51] M. Shepperd and C. Schofield, “Estimating software project effort
using analogies,” IEEE Trans. on Software Engineering, vol. 23, no. 12,
November 1997.

[52] G. Kadoda, M. Cartwright, L. Chen, and M. Shepperd, “Experiences
using case-based reasoning to predict software project effort,” in EASE,
2000, pp. 23–28.

[53] J. Li and G. Ruhe, “Analysis of attribute weighting heuristics for
analogy-based software effort estimation method aqua+,” ESEM,
vol. 13, pp. 63–96, February 2008.

[54] J. Li and R. Ruhe, “A comparative study of attribute weighting
heuristics for effort estimation by analogy,” in Proceedings of the

2006 ACM/IEEE international symposium on Empirical software

engineering, ser. ISESE ’06. New York, NY, USA: ACM, 2006,
pp. 66–74. [Online]. Available: http://doi.acm.org/10.1145/1159733.
1159746

[55] J. Li and G. Ruhe, “Decision support analysis for software effort
estimation by analogy,” in PROMISE, 2007, p. 6.

[56] Y. Li, M. Xie, and G. T., “A study of the non-linear adjustment for anal-
ogy based software cost estimation,” Empirical Software Engineering,
pp. 603–643, 2009.

[57] J. Keung, “Empirical evaluation of analogy-x for software cost estima-
tion,” in ESEM. New York, NY, USA: ACM, 2008, pp. 294–296.

[58] J. Keung, B. A. Kitchenham, and D. R. Jeffery, “Analogy-x: Providing
statistical inference to analogy-based software cost estimation,” IEEE

Trans. Softw. Eng., vol. 34, no. 4, pp. 471–484, 2008.
[59] J. Keung and B. Kitchenham, “Experiments with analogy-x for soft-

ware cost estimation,” in ASWEC ’08. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 229–238.

[60] C. Kirsopp and M. Shepperd, “Case and feature subset selection in
case-based software project effort prediction,” in Proc. 22nd SGAI Int’l

Conf. Knowledge-Based Systems and Applied Artificial Intelligence,
2002.

[61] E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, and J. W. Keung, “When
to use data from other projects for effort estimation,” in IEEE ASE,
2010.

[62] P. Pendharkar and J. Rodger, “The relationship between software de-
velopment team size and software development cost,” Communications

of the ACM, vol. 52, no. 1, pp. 141–144, 2009.

[63] D. K. D.W. Aha and M. Albert, “Instance-based learning algorithms,”
in Machine Learning, 1991, pp. 37–66.

[64] Y. Yang and G. Webb, “Weighted proportional k-interval discretization
for naive-bayes classifiers,” in Proceedings of the 7th Pacific-Asia

Conference on Knowledge Discovery and Data Mining, 2003.
[65] R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufman,

1992, iSBN: 1558602380.
[66] U. Lipowezky, “Selection of the optimal prototype subset for 1-NN

classification,” Pattern Recognition Letters, 1998, 19(10):907-918.
[67] G. Gay, T. Menzies, O. Jalali, G. Mundy, B. Gilkerson, M. Feather,

and J. Kiper, “Finding robust solutions in requirements models,” ASE,
vol. 17, no. 1, pp. 87–116, 2010.

[68] G. Gay, T. Menzies, M. Davies, and K. Gundy-Burlet, “Automatically
finding the control variables for complex system behaviour,” Automated

Software Engineering, no. 4, December 2010.
[69] W. Cohen, “Fast effective rule induction,” in ICML, 1995, pp. 115–123.
[70] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust regres-

sion for developing software estimation models,” J. Syst. Softw., vol. 27,
no. 1, pp. 3–16, 1994.

[71] C. Kemerer, “An empirical validation of software cost estimation
models,” Comm. of the ACM, vol. 30, no. 5, pp. 416–429, May 1987.

[72] B. Boehm, Software Engineering Economics. Prentice Hall, 1981.
[73] S. Chulani, B. Boehm, and B. Steece, “Bayesian analysis of empirical

software engineering cost models,” IEEE Trans. on Software Engineer-

ing, 1999, 25(4), 1999.
[74] P. Runeson and M. Host, “Guidelines for conducting and reporting

case study research in software engineering,” Empirical Software

Engineering, vol. 14, pp. 131–164, 2009.
[75] P. R. M. H. Daniela Cruzes, Tore Dyba, “Case studies synthesis:

Brief experience and challenges for the future,” in ESEM’11: the

International Symposium on Empirical Software Engineering and Mea-

surement, 2011.
[76] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah, “Algorithms for the

satisfiability (sat) problem: A survey,” in DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 1997, pp. 19–152.
[77] E. Kocaguneli, T. Menzies, A. Bener, and J. Keung, “Exploiting

the essential assumptions of analogy-based effort estimation,” IEEE

Transactions on Software Engineering, vol. 28, pp. 425–438, 2012,
available from http://menzies.us/pdf/11teak.pdf.

[78] C. Sims, “Matlab optimization software,” QM&RBC Codes, Quantita-
tive Macroeconomics & Real Business Cycles, Mar. 1999.

[79] T. Menzies, Z. Chen, D. Port, and J. Hihn, “Simple software cost
estimation: Safe or unsafe?” in Proceedings, PROMISE workshop,

ICSE 2005, 2005, available from http://menzies.us/pdf/05safewhen.pdf.
[80] H. Mittelmann, “Recent benchmarks of optimization software,” in 22nd

Euorpean Conference on Operational Research, 2007.
[81] F. Glover and M. Laguna, “Tabu search,” in Modern Heuristic Tech-

niques for Combinatorial Problems, C. Reeves, Ed. Oxford, England:
Blackwell Scientific Publishing, 1993.

[82] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, 1989.
[83] A. F. Sheta, “Estimation of the cocomo model parameters using genetic

algorithms for nasa software projects,” Journal of Computer Science,
vol. 2, no. 2, pp. 118–123, 2006.

[84] W. Afzal and R. Torkar, “Review: On the application of genetic pro-
gramming for software engineering predictive modeling: A systematic
review,” Expert Syst. Appl., vol. 38, pp. 11 984–11 997, September
2011.

[85] M. Harman and B. Jones, “Search-based software engineering,” Journal

of Info. and Software Tech., vol. 43, pp. 833–839, December 2001.
[86] J. Clarke, J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,

B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,
“Reformulating software engineering as a search problem,” Software,

IEE Proceedings -, vol. 150, no. 3, pp. 161 – 175, june 2003.
[87] M. Harman, “The current state and future of search based software

engineering,” in Future of Software Engineering, ICSE’07, 2007.
[88] M. Harman, “The relationship between search based software

engineering and predictive modeling,” in Proceedings of the

6th International Conference on Predictive Models in Software

Engineering, ser. PROMISE ’10. New York, NY, USA: ACM, 2010,
pp. 1:1–1:13. [Online]. Available: http://doi.acm.org/10.1145/1868328.
1868330

[89] J. Dolado and L. Fernandez, “Genetic programming, neural networks
and linear regression in software project estimation,” in INSPIRE, 1998.

[90] J. J. Dolado, “A validation of the component-based method for software
size estimation,” IEEE Transactions of Software Engineering, vol. 26,
no. 10, pp. 1006–1021, 2000.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 16

[91] R. D. Banker and S. A. Slaughter, “A field study of scale economies
in software maintenance,” Management Science, vol. 43, no. 21, pp.
1709–1725, December 1997.

[92] M. Hall and G. Holmes, “Benchmarking attribute selection techniques
for discrete class data mining,” IEEE Transactions On Knowledge And

Data Engineering, vol. 15, no. 6, pp. 1437– 1447, 2003.
[93] M. O. Saliu and G. Ruhe, “Bi-objective release planning for evolving

software systems,” in ESEC/FSE. Dubrovnik, Croatia: ACM, 3-7
September 2007, pp. 105–114.

[94] A. Bagnall, V. Rayward-Smith, and I. Whittley, “The next release
problem,” Information and Software Technology, vol. 43, no. 14,
December 2001.

[95] H. Zhang and X. Zhang, “Comments on ’data mining static code
attributes to learn defect predictors’,” IEEE Trans. on Software En-

gineering, September 2007.
[96] H. Zhang, “On the distribution of software faults,” Software Engineer-

ing, IEEE Transactions on, vol. 34, no. 2, pp. 301 –302, march-april
2008.

[97] G. S. P.C. Pendharkar, J .A. Rodger, “An empirical study of the cobb–
douglas production function properties of software development effort,”
Information and Software Technology, pp. 1181–1188, 2008.

[98] Z. Chen, T. Menzies, and D. Port, “Feature subset selection can improve
software cost estimation,” in PROMISE’05, 2005.

[99] T. Menies, K. Lum, and J. Hihn, “The deviance problem in effort
estimation,” in PROMISE, 2006, 2006.

[100] E. S. Raymond, The Art Of Unix Programming. Addison-Wesley,
2003.

[101] A. Ngo-The and G. Ruhe, “Optimized resource allocation for soft-
ware release planning,” IEEE Trans. on Software Engineering, 2009,
35(1):109-123.

Tim Menzies (Ph.D., UNSW) is a Professor
in CS at WVU and author 200+ referred pub-
lications. He teaches data mining, AI & pro-
gramming languages. He was co-chair of the
ASE’12 PC and PI on NSF, NIJ, DoD, and
NASA projects. He is an associate editor of
IEEE Transactions on SE, Empirical SE Journal,
and the Automated SE Journal. For more, see
http://menzies.us.

Adam Brady is a master’s student at West Vir-
ginia University. His current research focuses on
instance-based reasoning, specifically its appli-
cation to improving software quality.

Jacky Keung (Ph.D, UNSW) is an Assistant
Professor in CS, City University, Hong Kong.
He was a Research Scientist in SE Research
Group NICTA. He also holds an academic posi-
tion, CSE, UNSW. An active software engineer-
ing researcher, his main research interests are
in software cost estimation, empirical modeling
and evaluation of complex systems, and data-
intensive analysis for SE data and its application
to project management.

Jairus Hihn (Ph.D. U.Maryland) is a princi-
pal member of the engineering staff at JPL,
CalTech and manager for the Software Quality
Improvement Projects Measurement Estimation
and Analysis Element. He has built estimation
models and providing software and mission level
cost estimation support to JPLs Deep Space
Network and flight projects since 1988. He has
extensive experience in in the areas of decision
analysis, institutional change, R&D project se-
lection cost modeling, and process models.

Steven Williams Steven Williams is a PhD
student at Indiana University where he studies
cognitive science and informatics. He holds BS
degrees in civil engineering and computer sci-
ence from West Virginia University.

Oussama El-Rawas Oussama ”Ous” El-Rawas
graduated with his Bachelors in Computer Engi-
neering from The American University of Beirut
(AUB). He proceeded to obtain his Masters of
Science in Electrical Engineering From West Vir-
ginia University (WVU) and is currently working
at Medquist Inc. as a researcher as well as being
a part time PhD student at WVU. His current
research interests include Machine Learning,
Natural Language Processing, among others.

Phillip Green Phillip Green is a Masters student at West Virginia
University. His current research focuses on architectural principles for
AI toolkits. Currently, he works as a team leader and lead developer for
web-based instructor tools at WVU.

Barry Boehm (Ph.D. UCLA) served from 1989
and 1992 as Director of DARPA’s Information
Science and Technology Office, and as Director
of the DDR&E Software and Computer Technol-
ogy Office. He worked at TRW from 1973 to
1989, finally as Defense Systems Chief Scien-
tist. Before that we worked at the Rand Corpo-
ration from 1959 to 1973, finally as Head of the
IS Department. His research explores software
process modeling, software requirements and
architectures and metrics & cost models, SE

environments, and knowledge-based SE.

