
NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 1

Better Model-Based Analysis of
Human Factors for Safe Aircraft Approach

Joseph Krall, Tim Menzies Member, IEEE, Misty Davies Member, IEEE

Abstract—How can analysts better reason about the complex
interactions between humans and machines in safety critical
systems? For example, consider the complexities arising when
a large commercial aircraft makes a runway approach. At that
time, pairs of pilots interact with both each other and a large
number of intricate on-board automated systems. Any model of
that kind of pilot interaction is inherently complex and, therefore,
inherently hard to commission, debug, and study.

We advocate exploring complex models by combining data
miners (to find a small set of most critical examples) and of
multi-objective optimizers (that focus on those critical examples).
An example of such a combination is the GALE optimizer
that intelligently explores thousands of scenarios by examining
just a few dozen of the most informative examples. GALE-style
reasoning enables a very fast, very wide-ranging exploration of
behaviors, as well as the effects of those behaviors’ limitations.

Index Terms—Human Factors, Cognitive Modeling, Multi-
objective Optimization, Active Learning

I. INTRODUCTION

There are many advantages of a model-based approach
to human factors. Traditional human-in-the-loop experimental
case-studies are expensive, time consuming, and difficult to
reproduce. Model-based conclusions, on the other hand, are
reproducible and verifiable (just run the model again). Another
advantage of the model-based approach is that models can
simulate real world behavior much faster than real-time;
thereby enabling an extensive evaluation of more options than
slow-time real-world case studies.

In theory, complex models can be analyzed via multi-
objective optimizers by running them across many CPUs. In
practice, that CPU may not be available. For example one of
us (Davies) regularly analyzes a model that needs 30 weeks of
CPU time. For high priority issues in need of urgent resolution,
then this 30 weeks of computer time can be achieved in
five days of parallel execution on NASA’s supercomputers.
However, researchers can usually access a small fraction of
that CPU. For example, if there has been some incident on a
manned space mission, NASA enlists all available CPU time
for “damage modeling” (which is a large series of “what-if”
queries to assess potential impacts). At those times, researchers
can access zero CPU for any other purpose.

To address this problem in other domains, we have proposed
a new optimization method, called GALE [1]–[3], that focuses

Joseph Krall is a postdoctoral research fellow at LoadIQ, Reno, Nevada;
e-mail: kralljoe@gmail.com

Tim Menzies is with the Computer Science department, NcState University;
email: tim.menzies@gmail.com.

Misty Davies is with the Intelligent Systems Division, NASA Ames
Research Center, CA, USA; e-mail: misty.d.davies@nasa.gov.

on a small number of most informative examples. Hence,
GALE explores only a few dozen examples rather than the
thousands (or more) used by traditional methods [1], [3]. This
simplifies and improves our ability to reason about complex
cognitive models.

In practice, GALE runs much faster than traditional opti-
mizers. Standard optimization algorithms such as NSGA-II [4]
require 3000 to 5000 evaluations to explore the pilot simulator
that is the large study of this paper. GALE, on the other
hand, performs the same task using 25 to 50 evaluations [2].
In practice, this has tremendous practical implications. When
generating conclusions from a randomizing optimizer such
as GALE or NSGA-II, it is important to check that the
conclusions hold in multiple repeats (say, 20 repeats). This
number of evaluations is a critical indicator of runtime in
optimizers when the model is complex. For example, a study
of the pilot simulator (replicated 20 times) takes 1.5 and 100
hours for GALE and NSGA-II, respectively [2].

The algorithms behind GALE have been presented previ-
ously [1]–[3]. Those prior reports focused on runtimes and
did not explore the analysis implications of GALE. The core
contribution of this paper is a case study on how GALE-
style reasoning assists in the analysis of cognitive modeling.
This paper takes a large model of pilot cognition (CDA [8]–
[12]) and explores in detail how GALE’s conclusions relate
to pilot cognitive workloads and safe aircraft operation within
the context of that model. As shown in §III, (1) GALE offers
many novel insights into complex cognitive models; (2) other
methods would be so slow to run that it might be impractical
to find those insights without GALE.

The rest of this paper is structured as follows. Figure 2
lists the frequently used acronyms in this paper. §II motivates
this paper with a review on how cockpits are becoming
increasingly more complex. An effective search of the mod-
els requires the utilization of automated tools such as the
multi-objective objective evolutionary algorithms (MOEAs)
discussed in §III. These models are intricate and take time to
run. One such MOEA is our GALE tool discussed in §III-B
which, in §IV is applied to a large simulation of pilots flying
a plane. We show that GALE can answer cognitive research
questions like:

• RQ1: Given a limited maximum human task load capac-
ity, what are the effects to safety assurance when a pilot’s
workload exceeds his or her capacity?

• RQ2: What are the effects of changing how much pilots
rely on automation?

• RQ3: What are the effects of changing pilot policies for
monitoring and overlooking flight procedures?



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 2

Fig. 1a: Haviland Moth,1936 [5].

Fig. 1b: DC7, 1953 [6]. Fig. 1c: Airbus 380, 2005 [7].

Fig. 1: The evolution of airplane cockpit complexity from 1936 to 2005.

II. MOTIVATION

This work is motivated by the growing complexity of
models. For example, consider a model of pilot behavior. As
shown in Figure 1a, a cockpit in 1936 was little more than a
starter, a yoke, a throttle, pedals, and about a dozen gauges
that the pilot could use to monitor airspeed, pressures, engine
speed and altitude. A pilot model for that kind of plane would
be relatively simple.

By 1953, pilots had access to much more information. Civil
transport aircraft now included redundant systems, including
a copilot, and the other machinery as shown in Figure 1b.
Concepts of operation had to clearly define the roles and the
responsibilities of the pilot and copilot. For these kinds of
planes, pilot simulation models would be more complex.

By 2010, aircraft had become computers with wings; e.g.
the Airbus 380 cockpit of shown in Figure 1c. Autopilots allow
the pilot to turn over much of the route planning and control to
automation on the flight deck, and instead pilots can now take a
more passive monitoring role. While automation has certainly
helped to reduce the number of aviation accidents [13], the
kinds of errors that lead to accidents has changed. In particular,
as shown by the examples in Figure 3 there have been an
increasing number of accidents and of near-misses caused by
the pilots’ interaction with automation [14]–[16].

Mitigation for human-automation interaction errors consists

CDA = Continuous Descent Approach
CPU = Central Processing Unit

GALE = Geometric Active LEarning
HTM = Maximum Human Task load
MOO = Multi-objective optimization
WMC = Working Models that Compute

Fig. 2: Acronyms in this paper.
.

primarily of defining concepts of operation in which the
roles and responsibilities of the pilots and of the automation
are clearly laid out. The problem here is that our current
generation of cockpit systems are now so complex that, in
emergency situations, misunderstandings about the current
state and the most important monitoring and control tasks
cause life-threatening problems. As a result, there is active re-
search on using models of human-machine interaction in con-
junction with model-checking in order to find these aviation
cockpit (and control tower) errors at the time of automation
design [17]–[19]. Accessing the interactions between pilots
and plans is a difficult task. Collecting enough data about
pilots’ behavior, repeated for an adequate sample of flight
conditions, can take months to years or even decades. Worse,
if some conclusion of that study is subsequently challenged,
then it is very difficult to reproduce the conditions that led to
the original conclusions.

In response to this issue, researchers have built models
of behavior of humans performing in those safety critical
systems. Using those models, analysts can quickly exercise
more scenarios in a reproducible manner. For example, re-
searchers at Georgia Tech [8]–[11], [20], [21] have developed
the WMC (Work Models that Compute) framework. WMC’s
CDA (continuous descent approach) simulation models the
physics of flight and the atomic actions of the pilots and the
automation, in the context of prioritization schemes.

CDA can understood by contrasting it with another landing
tactic, the standard descent. In a standard descent, an aircraft
must descend via several steps, requesting a new clearance at
every step. As a consequence, flight times are longer and more
fuel is burned. Also, at lower steps, the aircraft is effectively
closer to the city itself, emitting lots of noise as the aircraft
passes by. As the aircraft reroutes and encircles an airport
before a runway is clear to land on, these wait times equate



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 3

In the 2009 Air France 447 crash [22], the autopilot disengaged
when it lost airspeed data from the pitot tubes. A copilot lost
situational awareness, and believed he was in ‘take-off, go-
around’ mode, in which the appropriate response is to climb.
However, at 38,000 feet, the rate of climb that the copilot was
commanding was unsustainable; Air France 447 stalled. During
the one sequence in which the copilot responded appropriately
and dropped the plane’s nose, the plane gained enough airspeed
that the autopilot started working again and began issuing a
stall warning; this effectively punished the copilot for reacting
appropriately. Two other, more experienced pilots on the flight
deck scanned the many screens and gauges available to them,
but failed to notice the fact that the copilot was commanding a
climb. One of the pieces of data that might have helped the pilots
understand their situation was the plane’s angle-of-attack, but this
information was available only to the automation.
Asiana Flight 214 crashed in June of 2013 at the San Francisco
International Airport (SFO). The final report suggests that this
crash may also have been partly due to confusion about the
division of labor between the pilots and the automation [23].
Ground automation at SFO (the precision instrument landing
system) was not working, and the pilots of Asiana 214 were asked
to fly a manual approach. The plane’s tail struck the seawall at
the end of the runway; the plane was too slow and too low for
landing. Both pilots reported that, until the last few seconds of the
crash, they believed the autothrottle was controlling the plane’s
speed. The autothrottle was in an ‘armed’ position, but was not on.
The pilot flying’s flight director (another system for automation
in the cockpit) was deactivated and the instructor pilot’s flight
director was activated; had the systems been in the same state,
the autothrottle would have ‘woken up’. The flight crew failed
to monitor airspeed, and the investigators concluded that fatigue
and over-reliance on automation were primary contributors to the
accident.

Fig. 3: Two examples of accidents in which complex cockpits
played a role.

to more noise for the city. Additionally, it is harder to fly at
lower altitudes due to changes in the atmosphere and wind
environments.

By contrast a continuous descent approach is a continuous
non-stepped descent in which only one request for landing is
needed. This simplifies the communication overhead between
radio towers and pilots, and avoids extended duration at low
altitude. As a result, a continuous descent can more accurately
approach the runway, less fuel is burned, and less noise is
emitted into the city. Figure 4 illustrates the difference between
CDA and traditional landing methods.

III. LEARNING FROM MODELS

For analyzing complex models like CDA, we prefer GALE
to traditional optimizers since those optimizers require certain
simplification assumptions. For example, if models are simple
continuous equations, then they could be readily explored
with gradient descent methods such as the Quasi-Newton
method (perhaps using the BFGS update rule recommended
by Sims [24]). However, all such gradient descent methods
assume that the model being explored is essentially continu-
ous. Models like CDA are not continuous since their internal
state space is divided into one combination of each branch of
each if statement in the code [25].

Fig. 4: The red line shows a Continuous Descent Approach
(CDA). The green stepped line represents the traditional ap-
proach, which is closer to the city, so the city hears more noise
emitted from the aircraft.

.

A better approach for exploring complex models is a multi-
objective evolutionary algorithm (MOEA). There are many
such optimizers including GALE and more traditional tools
such as NSGA-II [4]. MOEAs assume that the model is a
function that converts decisions “d” into objective scores “o”;
i.e.

o = model(d)

In this framework, each pair (d, o) is an individual within
a population. MOEAs try to find a range of good inputs by
progressively improving the population using the generational

approach of Figure 5. Note that MOEAs make no assump-
tions about model continuity (e.g. unlike the Quasi-Newton
methods, they do not assume that models have local smooth
gradients). They can also explore trade-offs between goals (see
the domination predicate discussed in Figure 5). As discussed
below, MOEAs have problems with brittleness and CPU.

An evolutionary multi-objective optimization algorithm (MOEA)
requires at least two operators: cull and perturb: MOEAs generate
an initial population by randomly selecting decisions then culling
the individuals with the lower objective scores. A new population
Pn is generated by perturbing the decisions of the surviving
individuals (e.g. via random mutation or grafting together parts
of the decisions of different individuals). MOEA’s halt when Pn

scores no better than prior generations Pm<n.
One way to implement the culling (step 2) is via domination;
i.e. remove one example if it can be shown that it is worse
than (a.k.a. “is dominated by”) some other examples. Two forms
of domination are binary and continuous domination. In binary
domination, one individual x dominates y if all of x’s objectives
are never worse than the objectives in y but at least one objective
in solution x is better than its counterpart in y; i.e.

{∀oj ∈ objectives | ¬(oj,x ≺ oj,y)}
{∃oj ∈ objectives | oj,x ≻ yj,y}

where (≺,≻) tests if an objective score in one individual is
(worse,better) than in the other individual.
An alternate culling method is the continuous domination predi-
cate [26] that favors y over x if x “losses” least:

worse(x, y) = loss(x, y) > loss(y, x)
loss(x, y) =

∑n

j
−e∆(j,x,y,n)/n

∆(j, x, y, n) = wj(oj,x − oj,y)/n
(1)

where “n” is the number of objectives and wj ∈ {−1, 1}
depending on whether we seek to maximize goal xj .

Fig. 5: Multi-objective evolutionary algorithms.



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 4

A. Brittleness

Ideally, any insight we glean from a model is not “brittle”;
i.e. it is a conclusion that is robust in the face of minor changes
to model inputs. Unfortunately, experts in MOEA reasoning
caution that many MOEAs generate “brittle” decisions.

According to Harman [27], understanding the neighborhood
around individual solutions is an open and pressing issue:

“It may be better to locate an area of the search space
that is rich in fit solutions, rather than identifying an
even better solution that is surrounded by a set of
far less fit solutions.” [28].

He argues that many software model problems are over-

constrained; i.e. no precise solution over all variables is
achievable. Such over-constrained problems are usually ex-
plored using heuristic search methods such as the MOEA of
Figure 5. The results of such partial heuristic search may be
“brittle”; i.e., small changes to the search results may dramat-
ically alter the effectiveness of the solution [28]. One way to
check for brittleness is to use neighborhood perturbation:

1) Cluster a population into local neighborhoods;
2) Build a new population by perturbing the decisions in

each neighborhood;
3) Halt if objectives do not change after perturbation;
4) Else, go to step 1.

One reason we endorse the GALE algorithm for reaching
conclusions from complex cognitive models is that it directly
implements neighborhood perturbation.

B. Problems with CPU

CDA is a complex model with many input parameters. The
input parameter space for such models tends to grow very large
so there is a pressing and urgent need for efficient modeling
techniques.

The primary design criteria for standard MOEAs is “ability
to explore complex trade-offs” and not runtime speed. While
the internal details of standard MOEAS may be very different
(see Figure 6); most of them share one key characteristic:
they evaluate O(2N) examples (twice the population size
because they generate offspring which are perturbations of
their parent examples) for each generation. One reason we
advocate GALE is that it replaces O(2N) with a much faster
O(log2N) technique (see below).

GALE combines (a) the neighborhood perturbation (de-
scribed above) with (b) the MOEA algorithm of Figure 5.
The algorithm reflects over a population of points, each of
which contains decisions (some inputs to a model). It then
searches for the input decisions that lead to best outcomes.
For example:

• if we adjust the inputs to the model for (say) high tailwind
conditions...

• ... then GALE can report the best monitoring policies for
the cockpit instrumentation.

Figure 7 lists the procedure by which GALE clusters the
data into neighborhoods, then perturbs each neighborhood. In
terms of monitoring for brittleness, the key point of GALE
is that this process continues until the perturbations stop

• NSGA-II [4] uses a non-dominating sort procedure to divide
the solutions into bands where bandi dominates all of the
solutions in bandj>i (and NSGA-II favors the least-crowded
solutions in the better bands).

• SPEA2: favors solutions that dominate the most number of
other solutions that are not nearby (to break ties, it uses
density sampling) [29];

• IBEA: uses continuous dominance to find the solutions that
dominate all others [26];

• In Particle swarm optimization (PSO), a particle’s velocity
is ‘pulled’ towards the individual and the community’s best
current solution [30];

• The many-objective optimizers are designed for very large
numbers of objectives [31];

• Multi-objective differential evolution (DE): members of the
frontier compete (and are possibly replaced) by candidates
generated by extrapolation from any three other members of
the frontier [32], [33];

• The decomposition methods that first divide the space of
candidate solutions into numerous small regions; then sec-
ond run a relatively simple optimizer in each region [34],
[35].

Fig. 6: Some sample MOEAs. Note that this list is not
exhaustive since this is a very active area of research.

GALE initially builds a population of points by selecting decisions
at random. It then clusters those decisions into neighborhoods as
follows:

1) Find two distant points in that population; call them the east
and west poles.

2) Draw an axis of length c between the poles.
3) Let each point be at distance a, b to the east, west poles.

Using the cosine rule, project each point onto the axis at
x = (a2 + c2 − b2)/(2c).

4) Using the median x value, divide the population.
5) For each half that is larger than

√
N of the original popu-

lation, go to step 1.

Note that the above requires a distance measure between sets of
decisions: GALE uses the standard case-based reasoning measure
defined by Aha et al. [36]. Note also that GALE implements step
1 via the FASTMAP [37] linear-time heuristic:

• Pick any point at random;
• Let east be the point furthest from that point;
• Let west be the point furthest from east.

These final sub-divisions found by this process are the neighbor-
hoods that GALE will perturb as follows:

• Find the objective scores of the east, west poles in each
neighborhood.

• Using the continuous domination predicate of Figure 5, find
the better pole.

• Perturb all points in that neighborhood by pushing them
towards the better pole, by a distance c/2 (recall that c is
the distance between the poles).

• Let generation i+1 be the combination of all pushed points
from all neighborhoods.

From a formal perspective, GALE is an active learner [38] that
builds a piecewise linear approximation to the Pareto frontier [39].
For each piece, it then pushes the neighborhood up the local
gradient. This approximation is built in the reduced dimensional
space found by the FASTMAP Nyström approximation to the first
component of PCA [40].

Fig. 7: Inside GALE



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 5

having any new effect (i.e. they stop generating better objective
scores). That is, all GALE solutions are guaranteed not to be
brittle.

Also, in terms of reducing runtime, the key feature of GALE
is that, unlike traditional MOEAs such as NSGA-II [4], GALE
does not evaluate its entire population. Instead, as it recursively
clusters the data in two (using steps 1,2,3,4,5 in Figure 7),
GALE only computes the objective scores for the two most
distant points in each division. This means that this binary
division of the data terminates after just log2(N) comparisons
of evaluated individuals. This is much less than the 2N
evaluations required by traditional methods like NSGA-II.

Note that the above is a very brief description on GALE.
For a full description including algorithms, download sites,
and results from dozens of models, see [2], [3].

IV. A CASE STUDY: CDA AND GALE

This case study was designed after reflecting on the fol-
lowing. Sometimes, when monitoring cockpit instruments, a
pilot is unable to complete all of their required tasks. Such
lack-of-attention can have adverse consequences on aviation
safety. It can occur for many reasons, including (1) fatigue; or
(2) unexpected or stressful situations such as:

• Unexpected flight conditions such as increased tail winds
or unscheduled rerouting;

• Emergency situations (e.g. a threatened near miss with
another aircraft);

• Training situations in which one pilot must monitor a
plane at the same time as watching over another, less
experienced, pilot.

A. Goals

The goals of this study are:

1) To understand the safety implications of lack-of-attention;
2) To learn what mitigations exist (if any) for reducing safety

problems associated with lack-of-attention.

We use interrupted, forgotten, and delayed tasks within the
CDA model as an incomplete proxy for a safety metric. Our
possible mitigations are restricted to the input of our CDA
problem space.

B. Methods

1) Apparatus: This study uses the CDA model as described
herein. CDA is a model of pilot interactions: with each other
and also with the navigation systems critical to safe flight.
CDA employs a continuous descent approach to a runway. As
aforementioned, a continuous descent is an alternative to the
standard approach to a runway. A continuous descent approach
is arguably much more efficient in terms of a) fuel economy
and cost, b) noise, and c) flight duration.

CDA is packaged within the WMC (Work Models that
Compute) suite. WMC has the capability of modeling the way
humans select which task to do next. In the CDA model, pilots
have a handful of requirements and tasks that they must satisfy,
and each requirement and task has a given level of priority
that affects the order in which it is satisfied. WMC also takes

into account that humans have a “maximum human task load”
variable which describes how much they can handle. If the
task load is too large, then some of the workload will not be
completed in time, or worse yet, might go forgotten entirely.
We use the metrics that describe these problems as the output
objectives for GALE, i.e., the dependent variables which are
detailed in the subsection just below.

Different strategies of pilot interaction can help alleviate
the problems of large task loads. These different strategies
are employed in CDA through its inputs, i.e. the independent
variables as described in the next subsection. By studying the
different strategies in terms of the output objective scores
(the dependent variables), it is possible to understand the
safety implications of different strategies and to learn what
mitigations might exist (and can be exploited for safety gain).

2) Independent Variables: A CDA “problem instance” de-
fined within the WMC framework consists of four decisions
and five objectives. The CDA implementation itself within
WMC contains many other inputs (for example, the flight path
and aircraft type are fixed) but for the purposes of this study,
they are held constant.

CDA’s four decision variables are:

HTM: maximum human task load. This value describes how
many tasks (where a task is an atomic action) can be
maintained in a mental to-do list by a person. Tasks in
the model are assigned a duration and a priority. For
a thorough description of this variable, please see [8].
When the number of necessary tasks exceeds the number
of tasks that the person can maintain, there can be
incurred delays, errors, or the possibility of the task being
forgotten and lost.

FA: function allocation. This variable refers mainly to the rel-
ative authority between the human pilot and the avionics,
and is discussed in more detail to follow.

CCM: contextual control mode of pilots. These describe the
pilots’ ability to apply patterns of activity in response to
the demands and resources in the environment, and are
described in detail below.;

SC: the air environment scenario. WMC’s CDA model in-
cludes four different arrival and approach scenarios.

The four arrival and approach scenarios (SC) implemented
within the CDA model are:

Nominal: (ideal) arrival and approach.
Late Descent: controller delays the initial descent.
Unpredicted rerouting: pilots directed to an unexpected

waypoint.
Tailwind: wind pushes plane from ideal trajectory.

The function allocation (FA) defines the different ways the
pilots can configure the autoflight controls. We list the different
possible modes within the CDA below, interested readers are
referred to [20] for more details.

Highly Automated: The computer processes most of the
flight instructions directly; the pilot only confirms the
clearances.

Mostly Automated: The pilot processes the instructions and
programs the autoflight sytem, but then the autoflight



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 6

system controls the flight path automatically. This mimics
current “LNAV” and “VNAV” flight operations.

Mixed-Automated: The pilot processes the instructions and
programs the computer to handle the lateral flight path.
The flight crew directly flies the vertical profile, including
the altitude, vertical speed, and airspeed.

CDA also knows of three different pilot contextual control

modes (CCM). These are based on Hollnagel’s work on
representative patterns of activity [41]. For more information
on how these CCM’s are implemented as sets of actions within
WMC, please refer to [21].

Opportunistic: Pilots monitor and perform tasks related to
only the most critical functions.

Tactical: Pilots cycle through most of the available monitor-
ing tasks, and double check some of the computer’s tasks.

Strategic: Pilots cycle through all of the available monitoring
tasks, and try to anticipate future tasks.

3) Dependent Variables: CDA’s five objectives keep track
of how many tasks were delayed, interrupted or forgotten
entirely (which impacts the relative safety of the flight itself).
We summarize these metrics below; the interested reader
should see [8] for full details. Better pilot organizational
structures can be found by exploring different inputs of CDA
to optimize these goals so that safety is improved:

Num Forgotten Actions: tasks forgotten by the pilot. When
the number of tasks expected of the pilot exceed the
HTM, tasks with the lowest priority are ‘forgotten’.

Num Delayed Actions: number of delayed actions. Tasks
have a scheduled time and a duration. When a higher
priority task causes another task to begin later than its
scheduled time, it is ‘delayed’.

Num Interrupted Actions: interrupted actions. A higher pri-
ority task can cause a lower priority task to be interrupted.

Interrupted Time: time spent on interruptions.
Delayed Time: total time of all of the delays.

In CDA, the HTM (maximum task load) variable controls
how many tasks a pilot can either perform or hold in working
memory. In all the following, CDA was run for varying and
decreasing values of HTM. For each HTM value, we collect:

• The baseline objective scores seen in CDA. Recall from
the above that those baseline values relate to number
of forgotten actions; delayed actions; interrupted actions;
total interrupted time; etc.

• The treated objective scores seen in CDA. These treat-
ments are learned by GALE and represent the best case
actions that could be performed by pilots to mitigate
against the lack-of-attention problem.

When analyzing CDA, GALE was run using parameters
found to work best on several other models [2]:

• GALE uses a population of size 100;
• GALE must terminate after a maximum number of 20

generations;
• GALE may terminate if no improvement is seen in any

objective in the last three generations;

To control for random effects during optimization, all scores
are the mean values of 20 repeated runs of baseline or the
model treated with GALE’s conclusions.

4) Data Analysis: Originally, we only planned one experi-
ment, called Experiment #1, to compare baseline and treated

by letting GALE select any inputs across the full range of all
CDA input values.

That first experiment found a curious threshold effect: un-
derneath a certain HTM point, all the best decisions concerned
a particular contextual control mode. As described above, in
Opportunistic mode, pilots monitored and performed tasks
related to only the most critical functions in the cockpit.
That is, in this mode, pilots executed only the most essential
monitoring actions according to the CDA model (e.g. moni-
toring altitude and monitoring descent airspeed), and focused
primarily on adjusting the lateral profile. For full details,
see [8], pages 110-135.

To understand the impact of this Opportunistic mode, an
Experiment #2 was conducted, exactly like Experiment #1,
but with the Opportunistic mode disabled.

5) Sanity Checks: We define two sanity checks on our
results:

Sanity check #1: The clear pre-experimental intuition is that,
as we decrease HTM (maximum human task load), we should
see increasing adverse flight operations. If this observation
was not seen in the results, the entire investigation should be
doubted.

Sanity check #2: Using CDA and GALE, we can find
mitigations that reduce the effects of decreasing HTM. If this
were otherwise, that would suggest that MOEAs like GALE
are not useful here.

V. RESULTS

A. Experiment #1: Results

Figure 8 and Figure 9 show the results of these two
experiments. As an aid to help visualization, bar graphs are
added to each column (and the bar with the largest, smallest
value shows the max,min values in the column). In those
figures, GALE’s decisions are shown at top. Beneath that, we
show two sets of objective scores:

• The baseline runs which are the average objective scores
seen without using GALE (just from randomly selecting
input decisions).

• The treated runs which are the average final objective
scores seen after 20 runs of GALE.

For the tables of objective results:

• The controlled value (HTM, maximum human task load)
is shown on the left hand side of the table.

• The values in the other columns are all counts per
simulated minute.

When reading these results, it is insightful to look for satura-

tion, trends, absences and cliffs.

1) Saturation: Values saturate when they are driven to-
wards their theoretical maximum. In the case of the CDA
objectives, any Time objective that occurs at 60 seconds per
minute is saturated. Such saturation can be observed in the
avg Interrupted Time and the avg Delayed Time values of 60
at HTM = 1 in Figure 8b and Figure 9b.

In terms of a pilot maintaining safe operations, saturation
is highly undesirable. At saturation, a pilot is permanently



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 7

Figure 8a: Exp #1. Decisions found by GALE, all contextual control modes enabled.

Figure 8b: Exp #1. Objectives obtained, all contextual control modes enabled.

Fig. 8: Experiment #1: All contextual control modes enabled. Forgotten, delayed, and interrupted actions are reported by the
simulation at each 0.05s time step. E.g. a monitoring action can be ‘forgotten’ 20 times each second.

interrupted for all tasks so everything gets delayed. Note that
this saturation result satisfies one of our sanity checks (that
less HTM leads to more problems).

The good news is that saturation can be avoided. In Fig-
ure 8b, we see that the simulated pilots following GALE’s
advice never reach saturation at HTM = 1. GALE advises
the simulated pilots to restrict themselves to only the most
important tasks (in CDA’s model, this means operating in
opportunistic mode) and to allow the automation to handle all
or most of the tasks that the automation can handle. Note that
this means that our experiment satisfies another sanity check

(that GALE can learn mitigations to the low HTM problems).

2) Trends: Trends are values that change smoothly with
changes to HTM. For example, the num Forgotten Acts per
minute is low in all results until HTM falls below four (after

which time it can spike to alarmingly large values).

With one exception, this trend holds for all objectives—
which is to say that airplane safety is critically dependent on
this HTM value.

The exceptions to this trend are the GALE results of
Figure 8b. In those rows, GALE could learn mitigations that
compensate for pilots struggling to control. Those mitigations
are shown in Figure 8a.

3) Absence: Several columns in Figure 8a and Figure 9a
contain nearly all zero values. That is they are mostly absent

from the recommendations made by GALE.

Sometimes, these absences are not informative. For exam-
ple, in Figure 9a, the absent values in OPP are the result of
that experiment (this mode was disabled for that experiment).
But other absent columns are more interesting:



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 8

• A MIXed level of autonomy was rarely useful, suggesting
that the simulated pilots should very rarely program the
computer to handle only some of the airplane instructions.

• Similarly, the STR strategic cognitive control mode was
also rarely used. From this result, we say that, in this
model, pilots should avoid cycling through all of the
available monitoring tasks while trying to anticipate fu-
ture tasks.

• Other absent columns can be seen in the scenarios GALE
found it could handle. In Figure 9b, GALE found that
when opportunistic mode was disabled, it rarely could
handle the LATE approach or high tail WIND situations.
On the other hand, when opportunistic model was en-
abled, GALE’s recommendations to the simulated pilot
could handle all the Scenarios (see all the non-zero
numbers in the Scenario columns of Figure 8b).

4) Cliffs: Cliffs are values that change sharply between one
HTM value and the next; there are two large cliffs in Figure 8.

The first cliff relates to Level of Autonomy. At HTM = 1,
GALE nearly always selected for a HIGH level of autonomy.
However, as soon as pilots can do or hold in memory two
things at once (at HTM > 1), that recommendation no longer
holds. In fact, for all levels of HTM > 1, GALE usually
prefers for the pilot to process flight data and program the
computer (i.e. to use the MOST approach). Another way to say
this is that, when their attention is failing, our simulated human
pilots should give more tasks to the machines. However, at
any other time, it is better to guide, and not be guided by, the
automatic systems.

The other cliff in these results is seen in the right-hand-side
columns of Figure 8a. In those results, it can be seen that
for 1 ≤ HTM ≤ 3 the OPP (opportunistic) cognitive control
mode is most often selected by GALE. However, above that
point (for HTM > 3), it is rarely selected. This cliff is a large
enough effect in a critical range of the model to deserve spe-
cial attention. Accordingly, Experiment #2 (discussed below)
explores the the relative merits of opportunistic control versus
other modes.

B. Experiment #2: Disabling Opportunistic Mode

As shown in Figure 8a, at low HTM levels of HTM < 4,
most of GALE’s recommended actions use the opportunistic
cognitive control mode (where pilots monitor and perform
tasks related to only the most critical functions). To see if this
was some quirk of the simulation, or an important effect, we
repeated the above experiment with this opportunistic mode
disabled.

The results are shown in Figure 9. In those results, the
following aspects are noteworthy:

• Comparing the baseline and GALE distributions of Fig-
ure 9b, we see that the GALE treatment barely changes
the baseline distributions. That is, if GALE cannot use
the opportunistic control mode, then it cannot mitigate
for low HTM values.

• Comparing the Scenario results in Figure 9a to Figure 8a,
we see that when we cannot use opportunistic mode
there are more absent columns in LATE and WIND. That

is, if GALE cannot use opportunistic control, then it
cannot find another mitigation for late arrival or high wind
conditions.

From these results, we say that opportunistic mode is an
essential tool for combating the problems associated with low
HTM in the CDA model.

VI. DISCUSSION

In principle, all the above conclusions could have been
reached using an MOEA like NSGA-II. However, in practice,
that would have been impractically slow. To understand why,
we must review the systems-level tasks associated with con-
ducting this kind of study. Note that a discussion of these
systems-level tasks rarely occurs in research publications.
Researchers present only their final results and do not mention
the work required before those results can be collected. In the
case of this study, that work was quite extensive. Commis-

sioning this CDA model took several months as one of us
(Krall) worked inside the NASA firewalls to port the CDA
model to the NASA servers. In that process, CDA was run
many times to “iron out the bugs”. Often it was necessary
to trace through the evaluations to determine what was going
astray. During this period, we were grateful that GALE was
only making O(log(N)) evaluations per generation since the
O(2N) evaluations used by standard optimizers would have
led to an overwhelming amount of data.

Also note that after commissioning the model came gener-

ating conclusions. This required 20 repeats of all models for
baselines and with GALE, repeated for HTM set from one to
eight, then repeated twice (for Experiment #1 and #2). With
GALE, those runs took 83 hours and with NSGA-II, those
runs would have taken much longer. Based on some samples
we made of NSGA-II performing parts of Experiment #1, we
estimate that if NSGA-II was used for the above experiments,
then that would have taken 6 months.

As to the external validity of this work, all the conclusions
made here came from two tools: the CDA model and GALE.
If these tools are somehow distorted or biased then our
conclusions would be distorted or biased in the same manner.
That said, there is enough prior work on CDA and GALE to
make the case that it useful to study the CDA model with the
GALE optimizer. We note that these tools are the products
of years of research and much analysis and testing [1]–
[3], [8]–[12], [20], [21]. CDA is one of the largest and most
studied models of pilot cognition currently available. Given
the resources spent on its construction, it seems prudent and
timely to learn what we can from that model.

VII. CONCLUSION

A common, and naive, assumption made by researchers who
have not conducted model-based experiments is this: once the
model is built, then inference is easy.

We have shown in this paper that, for large and complex
models, this naive assumption may not hold. In fact, it is crit-
ically important to consider how that inference is conducted.
This paper endorses the use of modeling for complex studies,



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 9

Figure 9a: Exp #2. Decisions found by GALE, opportunistic mode disabled.

Figure 9b: Exp #2. Objectives obtained, opportunistic mode disabled.

Fig. 9: Experiment #2: Opportunistic mode disabled. See Figure 8 for a description of how the tasks are counted.

but it also addresses a few issues that must also be handled
whenever learners are used in conjunction with models.

Firstly, there is a need to develop and commission the model
for integration with the learner tools. This can be a time-
intensive task and moreover, additional modifications can be
cause for restarting the actual experimentation which follows
thereafter.

Secondly, the learners themselves are complex computa-
tional intelligence software tools which have been the subject
of decades of research. The selection and deployment of just a
single tool can become a complex decision process. Moreover,
high model runtimes can restrain the space of usable learning
tools by a vast amount as much of the research on those
learners has focused on optimizing very small models.

In this paper, GALE was used because it can optimize
very large models. This sort of enabling technology is made

possible because GALE does not need to run the models as
often as other learning tools (specifically, GALE performs
O(log(N)) evaluations while standard methods explore a
space of O(2N) options). GALE can quickly generate con-
clusions from complex models. For example, in the case study
explored here we offer the following answers to the research
questions posed in the introduction.

A. RQ1: Safety and Low HTM

We say that unsafe operation occurs if pilots cannot com-
plete their assigned tasks. For little to no cognitive limitations
(HTM is 4 or higher), there is very little effect on taskload
completion times. The reason for this is simple: if the pilot
can perform all tasks as they come, then there should not be
any backlog of delayed tasks. For lower levels of HTM, there
were many delays and interruptions noted for our simulated



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 10

pilots. Hence, we conclude that low HTM levels are especially
dangerous within this model.

B. RQ2: Impact of Automation

For nearly all levels of HTM, it was sufficient to rely
on a MOST level of autonomy where the pilot is in charge
of processing input and programming the cockpit computers.
However, in extreme situations (HTM = 1), that recommen-
dation is not supported. For such very low levels of HTM, our
simulated pilots should switch to HIGH levels of automation
to ensure aircraft safety.

This recommendation intuitively makes sense if we assume
that the automation works as the pilot intends. Automation
failures and automation surprise are beyond the scope of
our study; we note that the creators of WMC have recently
published a study with a version of their model tuned to study
automation surprise [19].

C. RQ3: Pilot Monitoring Policies

As to appropriate cognitive control modes for watching over
an aircraft, for higher levels of HTM, it was sufficient to
step up to the tactical control mode (which allows the pilot
to monitor more of the aircraft flight procedures). For lower
levels of HTM, tactical flight operations proved to be too much
for our simulated pilot to handle and opportunistic control
mode was essential to mitigate against low HTM.

More validation should be done before applying the rec-
ommendations we make here for the CDA model to the
real-world safety problems that have inspired both CDA and
this study. However, our findings intuitively make sense. In
both the AirFrance and Asiana accidents that we used in
our motivation, a key finding was that the pilots became
distracted by off-nominal behavior, and failed to monitor the
most important flight state information (e.g. airspeed, altitude
and attitude). When stressed, pilots are asked to do something
very like the opportunistic mode as implemented within the
CDA model—worry about the key monitoring and flight tasks
first.

ACKNOWLEDGEMENTS

The work was funded by NSF grant CCF:1017330 and the
Qatar/West Virginia University research grant NPRP 09-12-5-
2-470. This research was partially conducted at NASA Ames
Research Center. Reference herein to any specific commer-
cial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government.

REFERENCES

[1] J. Krall, T. Menzies, and M. Davies, “Learning the task management
space of an aircraft approach model,” in Proceedings of the 2014 AAAI
Workshop, ser. AAAI’14, 2014.

[2] J. Krall, “Faster evolutionary multi-objective optimization via GALE: the
geometric active learner,” Ph.D. dissertation, West Virginia University,
2014.

[3] J. Krall, T. Menzies, and M. Davies, “Geometric active learning for
software engineering,” Under-Review, IEEE TSE, 2014.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2000.

[5] A. Pingstone. (2007) Hornet moth dh87b g-adne arp.jpg. Released into
the public domain. [Online]. Available: http://commons.wikimedia.org/
wiki/File:Hornet moth dh87b g-adne arp.jpg

[6] A. Radecki. (2007) Butler-dc7-n6353c-071102-fox-tanker66-01-16.jpg.
Photo released under the Creative Commons Attribution-Share
Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic
license. [Online]. Available: http://commons.wikimedia.org/wiki/File:
Butler-dc7-N6353C-071102-fox-tanker66-01-16.jpg

[7] Naddsy. (2007) Airbus A380 cockpit.jpg. Photo released under the
Creative Commons Attribution 2.0 Generic license. [Online]. Available:
http://www.flickr.com/photos/83823904@N00/64156219/

[8] S. Y. Kim, “Model-based metrics of human-automation function al-
location in complex work environments,” Ph.D. dissertation, Georgia
Institute of Technology, 2011.

[9] A. R. Pritchett, H. C. Christmann, and M. S. Bigelow, “A simulation
engine to predict multi-agent work in complex, dynamic, heterogeneous
systems,” in IEEE International Multi-Disciplinary Conference on Cog-
nitive Methods in Situation Awareness and Decision Support, Miami
Beach, FL, 2011.

[10] K. M. Feigh, M. C. Dorneich, and C. C. Hayes, “Toward a character-
ization of adaptive systems: A framework for researchers and system
designers,” Human Factors: The Journal of the Human Factors and
Ergonomics Society, vol. 54, no. 6, pp. 1008–1024, 2012.

[11] S. Y. Kim, A. R. Pritchett, and K. M. Feigh, “Measuring human-
automation function allocation,” Journal of Cognitive Engineering and
Decision Making, vol. 8, no. 1, 2014.

[12] A. R. Pritchett, S. Y. Kim, and K. M. Feigh, “Modeling human-
automation function allocation,” Journal of Cognitive Engineering and
Decision Making, vol. 8, no. 1, 2014.

[13] L. Coombs, Control in the Sky: the Evolution and History of the Aircraft
Cockpit. Leo Cooper, Ltd., 2005.

[14] C. Billings, “Human-centered aircraft automation: A concept and guide-
lines,” NASA, Tech. Rep. 103885, 1991.

[15] N. B. Sarter and D. D. Woods, “”from tool to agent”: The evolution of
(cockpit) automation and its impact on human-machine coordination,”
in Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 1995, pp. 79–83.

[16] N. Sarter, D. D. Woods, and C. Billings, “Automation surprises,” in
Handbook of Human Factors & Ergonomics, G. Salvendy, Ed. Wiley,
1997, pp. 543–501.

[17] M. Bolton, R. Siminiceanu, and E. Bass, “A systematic approach
to model checking human-automation interaction using task-analytic
models.” IEEE Transactions on Systems, Man, and Cybernetics, Part
A: Systems and Humans, vol. 41, no. 5, pp. 961–976, 2011.

[18] N. Rungta, G. Brat, W. Clancey, C. Linde, F. Raimondi, S. Chin,
and M. Shafto, “Aviation safety: Modeling and analyzing complex
interactions between humans and automated systems,” in International
Conference on Application and Theory of Automation in Command and
Control Systems (ATACCS), May 2013.

[19] G. Gelman, K. M. Feigh, and J. Rushby, “Example of a complementary
use of model checking and human performance simulation,” IEEE
Transactions on Human-Machine Systems, vol. 44, no. 5, Oct. 2014.

[20] A. R. Pritchett, K. M. Feigh, S. Y. Kim., and S. K. Kannan, “Work
models that compute to describe multiagent concepts of operation: Part
1.” Journal of Aerospace Information Systems, vol. 11, no. 10, Oct. 2014.

[21] K. M. Feigh, A. R. Pritchett, S. Mamessier, and G. Gelman, “Generic
agent models for simulations of concepts of operation: Part 2,” Journal
of Aerospace Information Systems, vol. 11, no. 10, Oct. 2014.

[22] “Final report on the accident on 1st June 2009 to the Airbus A330-203
registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro
- Paris,” BEA, Tech. Rep., 2012.

[23] “Descent below visual glidepath and impact with seawall asiana airlines
flight 214 boeing 777-200er, hl7742 san francisco, california july 6,
2013,” National Transportation Safety Board, Tech. Rep., 2014.

[24] C. Sims, “Matlab optimization software,” 1999.
[25] M. Davies, C. Pasareanu, and V. Raman, “Symbolic execution enhanced

system testing,” in Verified Software: Theories, Tools, Experiments.
Springer Berlin Heidelberg, 2012, pp. 294–309.

[26] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in in Proc. 8th International Conference on Parallel Problem
Solving from Nature (PPSN VIII). Springer, 2004, pp. 832–842.

[27] M. Harman and B. Jones, “Search-based software engineering,” Journal
of Information and Software Technology, vol. 43, pp. 833–839, Decem-
ber 2001.



NAME OF JOURNAL HERE, VOL. X, NO. Y, JANUARY 2014 11

[28] M. Harman and J. Wegener, “Getting results from search-based ap-
proaches to software engineering,” in ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 728–729.

[29] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
pareto evolutionary algorithm for multiobjective optimization,” in Evo-
lutionary Methods for Design, Optimisation, and Control. CIMNE,
Barcelona, Spain, 2002, pp. 95–100.

[30] H. Pan, M. Zheng, and X. Han, “Particle swarm-simulated annealing
fusion algorithm and its application in function optimization,” in Inter-
national Conference on Computer Science and Software Engineering,
2008, pp. 78–81.

[31] K. Deb and H. Jain, “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, part
i: Solving problems with box constraints,” Evolutionary Computation,
IEEE Transactions on, vol. 18, no. 4, pp. 577–601, Aug 2014.

[32] R. Storn and K. Price, “Differential evolution– a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[33] S. Das and P. Suganthan, “Differential evolution: A survey of the state-
of-the-art,” Evolutionary Computation, IEEE Transactions on, vol. 15,
no. 1, pp. 4–31, Feb 2011.

[34] K. Deb, M. Mohan, and S. Mishra, “Evaluating the epsilon-
domination based multi-objective evolutionary algorithm for a quick
computation of pareto-optimal solutions.” Evolutionary Computation,
vol. 13, no. 4, pp. 501–525, 2005. [Online]. Available: http:
//dblp.uni-trier.de/db/journals/ec/ec13.html#DebMM05

[35] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm
based on decomposition,” Trans. Evol. Comp, vol. 11, no. 6, pp.
712–731, Dec. 2007. [Online]. Available: http://dx.doi.org/10.1109/
TEVC.2007.892759

[36] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Mach. Learn., vol. 6, no. 1, pp. 37–66, January 1991.

[37] C. Faloutsos and K.-I. Lin, “FastMap: a fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets,”
in Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, 1995, pp. 163–174.

[38] S. Dasgupta, “Analysis of a greedy active learning strategy,” in Neural
Information Processing Systems 17:, vol. 1, no. x, 2005.

[39] M. Zuluaga, A. Krause, G. Sergent, and M. Püschel, “Active learning for
multi-objective optimization,” in International Conference on Machine
Learning (ICML), 2013.

[40] J. C. Platt, “FastMap, MetricMap, and Landmark MDS are all Nyström
algorithms,” in In Proceedings of 10th International Workshop on
Artificial Intelligence and Statistics, 2005, pp. 261–268.

[41] E. Hollnagel, Human Reliability Analysis: Context and Control. Lon-
don: Academic Press, 1993, pp. 159–202.

Joseph Krall (Ph.D., WVU) is a Postdoctoral Re-
search Fellow funded by the National Science Foun-
dation and is employed at LoadIQ, a high-tech start-
up company in Reno, Nevada that researches and
investigates cheaper energy solutions. His research
relates to the application of intelligent machine
learning and data mining algorithms to solve NP-
Hard classification problems. Further research inter-
ests lie with multi-objective evolutionary algorithms,
search based software engineering, games studies,
game development, artificial intelligence, and data

mining.

Tim Menzies (Ph.D., UNSW) is a Professor in CS
at NcState and the author of over 200 referred publi-
cations. In terms of citations, he is one of the top 100
most most cited authors in software engineering (out
of 54,000+ researchers, see http://goo.gl/vggy1). In
his career, he has been a lead researcher on projects
for NSF, NIJ, DoD, NASA, as well as joint re-
search work with private companies. He teaches
data mining and artificial intelligence and program-
ming languages. Prof. Menzies is the co-founder of
the PROMISE conference series (along with Jelber

Sayyad) devoted to reproducible experiments in software engineering: see
http://promisedata.googlecode.com. He is an associate editor of IEEE Trans-
actions on Software Engineering. the Empirical Software Engineering Journal,
and the Automated Software Engineering Journal. For more information, see
his web site http://menzies.us or his vita at http://goo.gl/8eNhY or his list of
publications at http://goo.gl/8KPKA .

Misty Davies (Ph.D. Stanford),is a Computer Re-
search Engineer at NASA Ames Research Cen-
ter, working within the Robust Software Engineer-
ing Technical Area. Her work focuses on predict-
ing the behavior of complex, engineered systems
early in design as a way to improve their safety,
reliability, performance, and cost. Her approach
combines nascent ideas within systems theory and
within the mathematics of multi-scale physics mod-
eling. For more information, see her web site
http://ti.arc.nasa.gov/profile/mdavies or her list of

publications at http://ti.arc.nasa.gov/profile/mdavies/papers.


