
Tuning for Software Analytics: is it Really Necessary?

Wei Fu, Tim Menzies, Xipeng Shen
Computer Science, North Carolina State University, Raleigh, USA

fuwei.ee, tim.menzies@gmail.com, xshen5@ncsu.edu

ABSTRACT

One of the “black arts” of data mining is setting the tuning param-
eters that control the miner. We offer a simple, automatic, and very
effective method for finding those tunings.

Contrary to our prior expectations, finding these tunings was re-
markably simple: it only required tens, not thousands, of attempts
to obtain very good results. For example, when learning software
defect predictors, this method can quickly found tunings that alter
detection precision from 2% to 98%.

Given that (1) the improvements are so large, and (2) the tuning
is so simple, these results prompt for a change to standard meth-
ods in software analytics. At least for defect prediction, it is no
longer enough to just run a data miner and present the result with-

out conducting a tuning optimization study. The implication for
other kinds of analytics is now an open and pressing issue.

Categories/Subject Descriptors: D.2.8 [Software Engineering]:
Product metrics; I.2.6 [Artificial Intelligence]: Induction

Keywords: defect prediction, CART, random forest, differential
evolution, search-based software engineering.

1. INTRODUCTION
In the 21st century, it is impossible to manually browse all avail-

able software project data. The PROMISE repository of SE data
has grown to 200+ projects [38] and this is just one of over a dozen
open-source repositories that are readily available to researchers [58].
For example, at the time of this writing (Aug 2015), our web searches
show that Mozilla Firefox has over 1.1 million bug reports, and
platforms such as GitHub host over 14 million projects.

Faced with this data overload, researchers in empirical SE use
data miners to generate defect predictors from static code measures.
Such measures can be automatically extracted from the code base,
with very little effort even for very large software systems [46].

One of the “black arts” of data mining is setting the tuning pa-
rameters that control the choices within a data miner. Prior to this
work, our intuition was that tuning would change the behavior or a
data miner, to some degree. Nevertheless, we rarely tuned our de-
fect predictors since we reasoned that a data miner’s default tunings
have been well-explored by the developers of those algorithms (in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

which case tuning would not lead to large performance improve-
ments). Also, we suspected that tuning would take so long and be
so CPU intensive that the benefits gained would not be worth effort.

The results of this paper show that the above points are false, at
least for defect prediction from code attributes:

1. Tuning defect predictors is remarkably simple;

2. And can dramatically improve the performance.

Those results were found by exploring six research questions:

• RQ1: Does tuning improve the performance scores of a predic-

tor? We will show below examples of truly dramatic improve-
ment: usually by 5 to 20% and often by much more (in one
extreme case, precision improved from 2% to 98%);

• RQ2: Does tuning change conclusions on what learners are bet-

ter than others? Recent SE papers [21, 31] claim that some
learners are better than others. Some of those conclusions are
completely changed by tuning.

• RQ3: Does tuning change conclusions about what factors are

most important in software engineering? Numerous recent SE
papers (e.g. [5, 23, 40, 44, 53, 66]) use data miners to conclude
that this is more important than that for reducing software project
defects. Given the tuning results of this paper, we show that such
conclusions need to be revisited.

• RQ4: Is tuning easy? We show that one of the simpler multi-
objective optimizers (differential evolution [60]) works very well
for tuning defect predictors.

• RQ5: Is tuning impractically slow? We achieved dramatic im-
provements in the performance scores of our data miners in less
than 100 evaluations (!); i.e., very quickly.

• RQ6: Should data miners be used “off-the-shelf” with their de-

fault tunings? For defect prediction from static code measures,
our answer is an emphatic “no” (and the implication for other
kinds of analytics is now an open and urgent question).

Based on our answers to these questions, we strongly advise that:

• Data miners should not be used “off-the-shelf” with their de-
fault tunings (since we show below just how much tuning can
alter default settings both for different data sets and for different
goals).

• Any future paper on defect prediction should include a tuning
study. Here, we have found an algorithm called differential evo-
lution to be a useful method for conducting such tunings.

1

• Tuning needs to be repeated whenever data or goals are changed.
Fortunately, the cost of finding good tunings is not excessive
since, at least for static code defect predictors, tuning is easy
and fast.

2. PRELIMINARIES

2.1 Issues of Tuning: Important and Ignored?
In other fields, the impact of tuning is well understood [6]. Yet,

as argued in this section, issues of tuning are rarely or poorly ad-
dressed in the defect prediction literature.

The formal definitions of data mining stresses that these learners
are heuristic explorers of a truly vast space of the possible models
within a data set [42]. For example, given 20 columns of boolean
variables, there are 220 possible models. Data mining is practical
since various heuristics allow automatic algorithms to ignore most
of those possibilities. While heuristic search makes data mining
possible, it also means that tunings can significantly affect what
comes out of a data miner. When we tune a data miner, what we are
really doing is changing how a learner applies its heuristics. This
means tuned data miners use different heuristics, which means they
ignore different possible models, which means they return different
models; i.e. how we learn changes what we learn.

Are the impacts of tuning addressed in the defect prediction lit-
erature? To answer that question, in August 2015 we searched
scholar.google.com for the conjunction of "data mining" and "soft-
ware engineering" and "defect prediction"1. After sorting by the
citation count and discarding the non-SE papers (and those without
a pdf link), we read over this sample of 50 highly-cited SE defect
prediction papers. What we found in that sample was that few au-
thors acknowledged the impact of tunings (exceptions: [18, 31]).
Overall, 80% of papers in our sample did not adjust the “off-the-
shelf” configuration of the data miner (e.g. [13, 36, 44]). Of the
remaining papers:

• Some papers in our sample explored data super-sampling [52] or
data sub-sampling techniques via automatic methods (e.g. [18,
28, 36, 52]) or via some domain principle (e.g. [22, 44, 45]). As
an example of the latter, Nagappan et al. [45] checked if metrics
related to organizational structure were relatively more powerful
for predicting software defects. However, it should be notes that
these studies varied the input data but not the “off-the-shelf”
settings of the data miner.

• A few other papers did acknowledge that one data miner may
not be appropriate for all data sets. Those papers tested different
“off-the-shelf” data miners on the same data set. For example,
Elish et al. [13] compared support vector machines to other data
miners for the purposes of defect prediction. SVM’s execute
via a “kernel function” which should be specially selected for
different data sets and the Elish et al. paper makes no mention
of any SVM tuning study. To be fair to Elish et al., we hasten
to add that we ourselves have published papers using “off-the-
shelf” tunings [36] since, prior to this paper it was unclear to us
how to effectively navigate the large space of possible tunings.

Over our entire sample, there was only one paper that conducted
a somewhat extensive tuning study. Lessmann et al. [31] tuned
parameters for some of their algorithms using a grid search; i.e. di-
vide all C configuration options into N values, then try all NC

combinations. This is a slow approach– we have explored grid
search for defect prediction and found it takes days to terminate [36].

1https://goo.gl/Inl9nF

Not only that, we found that grid search can miss important opti-
mizations [3]. Every grid has “gaps” between each grid division
which means that a supposedly rigorous grid search can still miss
important configurations [6]. Bergstra and Bengio [6] comment
that for most data sets only a few of the tuning parameters really
matter– which means that much of the runtimes associated with
grid search is actually wasted. Worse still, Bergstra and Bengio
comment that the important tunings are different for different data
sets– a phenomenon makes grid search a poor choice for configur-
ing data mining algorithms for new data sets.

Since the Lessmann et al. paper, much progress has been made
in configuration algorithms and we can now report that finding use-

ful tunings is very easy. This result is both novel and unexpected.
A standard run of grid search (and other evolutionary algorithms) is
that optimization requires thousands, if not millions, of evaluations.
However, in a result that we found startling, that differential evolu-

tion (described below) can find useful settings for learners generat-
ing defect predictors in less than 100 evaluations (i.e. very quickly).
Hence, the “problem” (that tuning changes the conclusions) is re-
ally an exciting opportunity. At least for defect prediction, learners
are very amenable to tuning. Hence, they are also very amenable to
significant performance improvements. Given the low number of
evaluations required, then we assert that tuning should be standard
practice for anyone building defect predictors.

2.2 Notes on Defect Prediction
This section is our standard introduction to defect prediction [37],

plus some new results from Rahman et al. [54].
Human programmers are clever, but flawed. Coding adds func-

tionality, but also defects. Hence, software sometimes crashes (per-
haps at the most awkward or dangerous moment) or delivers the
wrong functionality. For a very long list of software-related errors,
see Peter Neumann’s “Risk Digest” at catless.ncl.ac.uk/Risks.

Since programming inherently introduces defects into programs,
it is important to test them before they’re used. Testing is expensive.
Software assessment budgets are finite while assessment effective-
ness increases exponentially with assessment effort. For example,
for black-box testing methods, a linear increase in the confidence
C of finding defects can take exponentially more effort2. Expo-
nential costs quickly exhaust finite resources so standard practice
is to apply the best available methods on code sections that seem
most critical. But any method that focuses on parts of the code can
blind us to defects in other areas. Some lightweight sampling policy

should be used to explore the rest of the system. This sampling pol-
icy will always be incomplete. Nevertheless, it is the only option
when resources prevent a complete assessment of everything.

One such lightweight sampling policy is defect predictors learned
from static code attributes. Given software described in the at-
tributes of Table 1, data miners can learn where the probability of
software defects is highest.

The rest of this section argues that such defect predictors are easy

to use, widely-used, and useful to use.
Easy to use: Static code attributes can be automatically col-

lected, even for very large systems [46]. Other methods, like man-
ual code reviews, are far slower and far more labor-intensive. For
example, depending on the review methods, 8 to 20 LOC/minute
can be inspected and this effort repeats for all members of the re-
view team, which can be as large as four or six people [39].

2A randomly selected input to a program will find a fault with probability p. After N
random black-box tests, the chances of the inputs not revealing any fault is (1−p)N .

Hence, the chances C of seeing the fault is 1 − (1 − p)N which can be rearranged

to N(C, p) = log(1 − C)/log(1 − p). For example, N(0.90, 10−3) = 2301

but N(0.98, 10−3) = 3901; i.e. nearly double the number of tests.

2

amc average method complexity e.g. number of JAVA byte codes
avg_cc average McCabe average McCabe’s cyclomatic complexity seen in class

ca afferent couplings how many other classes use the specific class.
cam cohesion amongst classes summation of number of different types of method parameters in every method divided by a multiplication of number of

different method parameter types in whole class and number of methods.
cbm coupling between methods total number of new/redefined methods to which all the inherited methods are coupled
cbo coupling between objects increased when the methods of one class access services of another.
ce efferent couplings how many other classes is used by the specific class.

dam data access ratio of the number of private (protected) attributes to the total number of attributes
dit depth of inheritance tree
ic inheritance coupling number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)

lcom lack of cohesion in methods number of pairs of methods that do not share a reference to an instance variable.
locm3 another lack of cohesion measure if m, a are the number of methods, attributes in a class number and µ(a) is the number of methods accessing an

attribute, then lcom3 = ((1

a

∑a
j µ(aj))−m)/(1−m).

loc lines of code
max_cc maximum McCabe maximum McCabe’s cyclomatic complexity seen in class

mfa functional abstraction number of methods inherited by a class plus number of methods accessible by member methods of the class
moa aggregation count of the number of data declarations (class fields) whose types are user defined classes
noc number of children
npm number of public methods
rfc response for a class number of methods invoked in response to a message to the object.

wmc weighted methods per class
defect defect Boolean: where defects found in post-release bug-tracking systems.

Table 1: OO measures used in our defect data sets.

Widely used: Researchers and industrial practitioners use static
attributes to guide software quality predictions. Defect prediction
models have been reported at Google [32]. Verification and valida-
tion (V&V) textbooks ([56]) advise using static code complexity
attributes to decide which modules are worth manual inspections.

Useful: Defect predictors often find the location of 70% (or
more) of the defects in code [36]. Defect predictors have some
level of generality: predictors learned at NASA [36] have also been
found useful elsewhere (e.g. in Turkey [61,62]. The success of this
method in predictors in finding bugs is markedly higher than other
currently-used industrial methods such as manual code reviews.
For example, a panel at IEEE Metrics 2002 [59] concluded that
manual software reviews can find ≈60% of defects. In other work,
Raffo documents the typical defect detection capability of indus-
trial review methods: around 50% for full Fagan inspections [14]
to 21% for less-structured inspections.

Not only do static code defect predictors perform well compared
to manual methods, they also are competitive with certain auto-
matic methods. A recent study at ICSE’14, Rahman et al. [54]
compared (a) static code analysis tools FindBugs, Jlint, and Pmd
and (b) static code defect predictors (which they called “statistical
defect prediction”) built using logistic regression. They found no
significant differences in the cost-effectiveness of these approaches.
Given this equivalence, it is significant to note that static code de-
fect prediction can be quickly adapted to new languages by building
lightweight parsers that find information like Table 1. The same is
not true for static code analyzers– these need extensive modifica-
tion before they can be used on new languages.

2.3 Notes on Data Miners
There are many ways to build defect predictors such as CART [7],

Random Forest [8], WHERE [33] and LR (logistic regression). For
this study, we use WHERE-based learner, CART, Random Forest
and LR versions from SciKitLearn [51] (and WHERE is available
from github.com/ai-se/where). We use these algorithms for the fol-
lowing reasons.

CART and Random Forest were mentioned in a recent IEEE TSE
paper by Lessmann et al. [31] that compared 22 learners for defect
prediction. That study ranked CART worst and Random Forest as
best. In a demonstration of the impact of tuning, this paper shows
we can reverse the conclusions of Lessmann et al. such that CART
performs just as well as Random Forest.

LR was mentioned by Hall et al. [21] as usually being as good

or better as more complex learners (e.g. Random Forest). In a
finding that endorses the Hall et al. result, we show that untuned
LR performs better than untuned Random Forest (at least, for the
data sets studied here). However, we will show that tuning raises
doubts about the optimality of the Hall et al. recommendation.

Finally, this paper uses WHERE since, as shown below, it offers
an interesting case study on the benefits of tuning.

2.4 Learners and Their Tunings
Our learners use the tuning parameters of Table 2. This section

describes those parameters. The default parameters for CART and
Random Forest are set by the SciKitLearn authors and the default
parameters for WHERE-based learner are set via our own expert
judgement. When we say a learner is used “off-the-shelf”, we mean
that they use the defaults shown in Table 2.

As to the value of those defaults, it could be argued that these
defaults are not the best parameters needed for practical defect pre-
diction. That said, prior to this paper, two things were true:

• Many data scientists in SE use the standard defaults in their data
miners, without tuning (e.g. [23, 36, 44, 66]).

• The effort involved to adjust those tunings seemed so onerous,
that many researchers in this field were content to take our prior
advice of “do not tune... it is just too hard” [37].

As to why we used the "Tuning Range" shown in Table 2, and not
some other ranges, we note that (1) those ranges included the de-
faults; (2) the results shown below show that by exploring those
ranges, we achieved large gains in the performance of our defect
predictors. This is not to say that larger tuning ranges might not re-
sult in greater improvements. However, for the goals of this paper
(to show that some tunings do matter), exploring just these ranges
shown in Table 2 will suffice.

As to the details of these learners, LR is a parametric modeling
approach. Given f = β0 +

∑

i
βixi, where xi is some measure-

ment in a data set, and βi is learned via regression, LR converts that
into a function 0 ≤ g ≤ 1 using g = 1/

(

1 + e−f
)

. This function
reports how much we believe in a particular class.

CART, Random Forest, and WHERE-based learners are all tree
learners that divide a data set, then recur on each split. All these
learners generate numeric predictions which are converted into bi-
nary “yes/no” decisions via Equation 1.

3

Learner

Name
Parameters Default

Tuning

Range
Description

Where-based

Learner

threshold 0.5 [0.01,1] The value to determine defective or not .

infoPrune 0.33 [0.01,1] The percentage of features to consider for the best split to build its final decision tree.

min_sample_split 4 [1,10] The minimum number of samples required to split an internal node of its final decision tree.

min_Size 0.5 [0.01,1] Finds min_samples_leaf in the initial clustering tree using n_samplesmin_Size.

wriggle 0.2 [0.01, 1] The threshold to determine which branch in the initial clustering tree to be pruned

depthMin 2 [1,6] The minimum depth of the initial clustering tree below which no pruning for the clustering tree.

depthMax 10 [1,20] The maximum depth of the initial clustering tree.

wherePrune False T/F Whether or not to prune the initial clustering tree.

treePrune True T/F Whether or not to prune the final decision tree.

CART

threshold 0.5 [0,1] The value to determine defective or not.

max_feature None [0.01,1] The number of features to consider when looking for the best split.

min_sample_split 2 [2,20] The minimum number of samples required to split an internal node.

min_samples_leaf 1 [1,20] The minimum number of samples required to be at a leaf node.

max_depth None [1, 50] The maximum depth of the tree.

Random

Forests

threshold 0.5 [0.01,1] The value to determine defective or not.

max_feature None [0.01,1] The number of features to consider when looking for the best split.

max_leaf_nodes None [1,50] Grow trees with max_leaf_nodes in best-first fashion.

min_sample_split 2 [2,20] The minimum number of samples required to split an internal node.

min_samples_leaf 1 [1,20] The minimum number of samples required to be at a leaf node.

n_estimators 100 [50,150] The number of trees in the forest.

Logistic Regression This study uses untuned LR in order to check a conclusion of [21].

Table 2: List of parameters tuned by this paper.

inspect =

{

di ≥ T → Yes

di < T → No,
(1)

The splitting process is controlled by numerous tuning parame-
ters. If data contains more than min_sample_split, then a split is
attempted. On the other hand, if a split contains no more than
min_samples_leaf, then recursion stops. CART and Random For-
est use a user-supplied constant for this parameter while WHERE-
based learner firstly computes this parameter m=min_samples_leaf

from the size of the data sets via m = size
min_size to build an ini-

tial clustering tree. Note that WHERE builds two trees: the ini-
tial clustering tree (to find similar sets of data) then a final deci-
sion tree (to learn rules that predict for each similar cluster)3. The
tuning parameter min_sample_ split controls the construction of
the final decision tree (so, for WHERE-based learner, min_size and
min_sample_split are the parameters to be tuned).

These learners use different techniques to explore the splits:

• CART finds the attributes whose ranges contain rows with least
variance in the number of defects4.

• Random Forest divides data like CART then builds F > 1 trees,
each time using some random subset of the attributes.

• When building the initial cluster tree, WHERE projects the data
on to a dimension it synthesizes from the raw data using a pro-
cess analogous to principle component analysis5. WHERE di-
vides at the median point of that projection. On recursion, this

3A frequently asked question is why does WHERE build two trees– would not a single
tree suffice? The answer is, as shown below, tuned WHERE’s twin-tree approach
generates very precise predictors.
4If an attribute ranges ri is found in ni rows each with a defect count
variance of vi, then CART seeks the attributes whose ranges minimizes
∑

i

(√
vi × ni/(

∑

i ni)
)

.
5PCA synthesises new attributes ei, e2, ... that extends across the dimension of great-
est variance in the data with attributes d. This process combines redundant variables
into a smaller set of variables (so e≪ d) since those redundancies become (approxi-
mately) parallel lines in e space. For all such redundancies i, j ∈ d, we can ignore j
since effects that change over j also change in the same way over i. PCA is also useful
for skipping over noisy variables from d– these variables are effectively ignored since
they do not contribute to the variance in the data.

generates the initial clustering tree, the leaves of which are clus-
ters of very similar examples. After that, when building the fi-
nal decision tree, WHERE pretends its clusters are “classes”,
then asks the InfoGain of the Fayyad-Irani discretizer [15], to
rank the attriubutes, where infoPrune is used. WHERE’s final
decision tree generator then ignores everything except the top
infoPrune percent of the sorted attributes.

Some tuning parameters are learner specific:

• Max_feature is used by CART and Random Forest to select the
number of attributes used to build one tree. CART’s default is
to use all the attributes while Random Forest usually selects the
square root of the number of attributes.

• Max_leaf_nodes is the upper bound on leaf notes generated in a
Random Forest.

• Max_depth is the upper bound on the depth of the CART tree.

• WHERE’s tree generation will always split up to depthMin num-
ber of branches. After that, WHERE will only split data if the
mean performance scores of the two halves is “trivially small”
(where “trivially small” is set by the wriggle parameter).

• WHERE’s tree_prune setting controls how WHERE prunes back
superflous parts of the final decision tree. If a decision sub-tree
and its parent have the same majority cluster (one that occurs
most frequently), then if tree_prune is enabled, we prune that
decision sub-tree.

2.5 Tuning Algorithms
How should researchers select which optimizers to apply to tun-

ing data miners? Cohen [10] advises comparing new methods against
the simplest possible alternative. Similarly, Holte [24] recommends
using very simple learners as a kind of “scout” for a preliminary
analysis of a data set (to check if that data really requires a more
complex analysis). Accordingly, to find our “scout”, we used en-
gineering judgement to sort candidate algorithms from simplest to
complex. For example, here is a list of optimizers used widely

4

Algorithm 1 Pseudocode for DE with Early Termination

Input: np = 10, f = 0.75, cr = 0.3, life = 5, Goal ∈ {pd, f, ...}
Output: Sbest

1: function DE(np, f , cr, life, Goal)
2: Population← InitializePopulation(np)
3: Sbest ←GetBestSolution(Population)
4: while life > 0 do

5: NewGeneration← ∅
6: for i = 0→ np − 1 do

7: Si ← Extrapolate(Population[i], Population, cr, f)
8: if Score(Si) >Score(Population[i]) then

9: NewGeneration.append(Si)
10: else

11: NewGeneration.append(Population[i])
12: end if

13: end for

14: Population← NewGeneration
15: if ¬ Improve(Population) then

16: life− = 1
17: end if

18: Sbest ← GetBestSolution(Population)
19: end while

20: return Sbest

21: end function

22: function SCORE(Candidate)
23: set tuned parameters according to Candidate
24: model←TrainLearner()
25: result←TestLearner(model)
26: return Goal(result)
27: end function

28: function EXTRAPOLATE(old, pop, cr, f)
29: a, b, c← threeOthers(pop, old)
30: newf ← ∅
31: for i = 0→ np − 1 do

32: if cr < random() then

33: newf .append(old[i])
34: else

35: if typeof(old[i]) == bool then

36: newf .append(not old[i])
37: else

38: newf .append(trim(i,(a[i] + f ∗ (b[i]− c[i]))))
39: end if

40: end if

41: end for

42: return newf
43: end function

in research: simulated annealing [16, 35]; various genetic algo-

rithms [20] augmented by techniques such as differential evolu-

tion [60], tabu search and scatter search [4, 19, 43, 47]; particle

swarm optimization [50]; numerous decomposition approaches that
use heuristics to decompose the total space into small problems,
then apply a response surface methods [30, 67]. Of these, the sim-
plest are simulated annealing (SA) and differential evolution (DE),
each of which can be coded in less than a page of some high-level
scripting language. Our reading of the current literature is that there
are more advocates for differential evolution than SA. For example,
Vesterstrom and Thomsen [63] found DE to be competitive with
particle swarm optimization and other GAs.

DEs have been applied before for parameter tuning (e.g. see [9,
48]) but this is the first time they have been applied to optimize
defect prediction from static code attributes. The pseudocode for
differential evolution is shown in Algorithm 1. In the following
description, superscript numbers denote lines in that pseudocode.

DE evolves a NewGeneration of candidates from a current Pop-

ulation. Our DE’s lose one “life” when thee new population is no
better than current one (terminating when “life” is zero)4. Each
candidate solution in the Population is a pair of (Tunings, Scores).
Tunings are selected from Table 2 and Scores come from training a
learner using those parameters and applying it test data23−27.

The premise of DE is that the best way to mutate existing tun-
ings is to Extrapolate28 between current solutions. Three solutions

a, b, c are selected at random. For each tuning parameter i, at some
probability cr, we replace the old tuning xi with yi. For booleans,
we use yi = ¬xi (see line 36). For numerics, yi = ai+f×(bi−ci)
where f is a parameter controlling cross-over. The trim function38

limits the new value to the legal range min..max of that parameter.
The main loop of DE6 runs over the Population, replacing old

items with new Candidates (if new candidate is better). This means
that, as the loop progresses, the Population is full of increasingly
more valuable solutions. This, in turn, also improves the candi-
dates, which are Extrapolated from the Population.

For the experiments of this paper, we collect performance values
from a data mining, from which a Goal function extracts one per-
formance value26 (so we run this code many times, each time with
a different Goal1). Technically, this makes a single objective DE
(and for notes on multi-objective DEs, see [25, 57, 65]).

3. EXPERIMENTAL DESIGN

3.1 Data Sets
Our defect data comes from the PROMISE repository 6 and per-

tains to open source Java systems defined in terms of Table 1: ant,
camel, ivy, jedit, log4j, lucene, poi, synapse, velocity and xerces.

An important principle in data mining is not to test on the data
used in training. There are many ways to design a experiment
that satisfies this principle. Some of those methods have limita-
tions; e.g. leave-one-out is too slow for large data sets and cross-

validation mixes up older and newer data (such that data from the
past may be used to test on future data).

To avoid these problems, we used an incremental learning ap-
proach. The following experiment ensures that the training data
was created at some time before the test data. For this experiment,
we use data sets with at least three consecutive releases (where re-
lease i+ 1 was built after release i).

• The first release was used for some training, to collect a baseline
using an untuned learner. This release is also used on line 24 of
Algorithm 1 to build some model using some the tunings found
in some Candidate.

• The second release was used on line 25 of Algorithm 1 to test
the model found on line 24.

• Finally the third release was used to gather the performance
statistics reported below from (a) the model generated by the
untuned learner or (b) the best model found by DE.

Some data sets have more than three releases and, for those data,
we could run more than one experiment. For example, ant has five
versions in PROMISE so we ran three experiments called V0,V1,V2:

• AntV0: first, second, third = versions 1, 2, 3

• AntV1: first, second, third = versions 2, 3, 4

• AntV2: first, second, third = versions 3, 4, 5

These data sets are displayed in Table 3.
As an aside, an alternate experimental design would be to learn

a baseline learner from the first and second release instead of, as
shown above, just the first release. On the one hand, this would
mean that the baseline could be learned from more data. On the
other hand, this adds a conflation to our experimental design since
the optimizer uses the second release for pruning, not growing a
data set set. Happily, from piror work [41] we know that defect

6http://openscience.us/repo

5

Dataset antV0 antV1 antV2 camelV0 camelV1 ivy jeditV0 jeditV1 jeditV2
training 20/125 40/178 32/293 13/339 216/608 63/111 90/272 75/306 79/312
tuning 40/178 32/293 92/351 216/608 145/872 16/241 75/306 79/312 48/367
testing 32/293 92/351 166/745 145/872 188/965 40/352 79/312 48/367 11/492
Dataset log4j lucene poiV0 poiV1 synapse velocity xercesV0 xercesV1
training 34/135 91/195 141/237 37/314 16/157 147/196 77/162 71/440
tuning 37/109 144/247 37/314 248/385 60/222 142/214 71/440 69/453
testing 189/205 203/340 248/385 281/442 86/256 78/229 69/453 437/588

Table 3: Data used in this experiment. E.g., the top left data set has 20 defective classes out of 125 total. See §3.1 for explanation of
training, tuning, testing sets.

predictors usually saturates (i.e. does not generate better predic-
tors) after 100 examples, which is a number smaller than all our
first release data sets. Hence, their would be little value in generat-
ing the baselines using the first and second releases.

3.2 Optimization Goals
Recall from Algorithm 1 that we call differential evolution once

for each optimization goal. This section lists those optimization
goals. Let {A,B,C,D} denote the true negatives, false nega-
tives, false positives, and true positives (respectively) found by a
binary detector. Certain standard measures can be computed from
A,B,C,D:

pd = recall = D/(B + D)

pf = C/(A + C)

prec = precision = D/(D + C)

F = 2 ∗ pd ∗ prec/(pd + prec)

For pf , the better scores are smaller. For all other scores, the
better scores are larger. One technical detail: prec and F refer
to both the defect and non-defective modules. This is different to
pf and recall which only refer to either non-defective or defective
modules (repsectively).

This paper does not assume that (e.g.) minimizing false alarms is
more important than maximizing precision. Such a determination
depends on business conditions. For example, (1) for safety criti-
cal applications, high false alarm rates are acceptable if the cost of
overlooking critical issues outweighs the inconvenience of inspect-
ing a few more modules. On the other hand, (2) when rushing a
product to market, there is a business case to avoid the extra rework
associated with false alarms. In that business context, managers
might be willing to lower the recall somewhat in order to minimize
the false alarms. These two examples are just the tip of the iceberg
(see other criteria in Figure 1) and there is insufficient space in this
paper to explore all the above optimization goals.

In this paper, what we can show examples where changing op-
timization goals can also change the conclusions made from that

Anda, Sjoberg and Mockus advocate using the coefficient of variation

(CV =
stddev
mean

). Using this measure, they defined reproducibility as
1

CV
[1].

Arisholm & Briand [2], Ostrand & Weyeuker [49] and Rahman et
al. [55] say that a defect predictor should maximizing reward; i.e. find
the fewest lines of code that contain the most bugs.
Yin et al. are concerned about incorrect bug fixes; i.e. those that require
subsequent work in order to complete the bug fix. These bugs occur
when (say) developers try to fix parts of the code where they have very
little experience [64]. To avoid such incorrect bug fixes, we have to
optimize for finding the most number of bugs in regions that the most

programmers have worked with before.
In Better-faster-cheaper, managers want fewer defects, faster develop-
ment, using less resources [12, 26, 34, 35].

Figure 1: Many ways to assess defect predictors.

learner on that data. Accordingly, we warn that it is important not
to overstate empirical results from analytics. Rather, those results
need to be expressed along with the context within which they are
relevant (and by “context”, we mean the optimization goal).

3.3 An Aside
One comment before presenting the results. The following text

does not show results for tuning on recall or false alarms. Those
goals focus on only the defective or non-defective modules (respec-
tively). Hence. when DE tunes for recall, we can achieve near
100% recall– but the cost of a near 100% false alarms. Similarly,
tuning can achieve near zero false alarm rates by effectively turn-
ing off the detector (when recall is zero). Accordingly, this paper
explores performance measures that comment on all target classes
(i.e. precision and “F”).

4. EXPERIMENTAL RESULTS
In the following, we explore the effects of tuning WHERE, Ran-

dom Forest, and CART. LR will be used, untuned, in order to check
one of the recommendations made by Hall et al. [21].

4.1 RQ1: Does Tuning Improve Performance?
Figure 2 says that the answer to RQ1 is “yes”– tuning has a pos-

itive effect on performance scores. This figure sorts deltas in the
precision and the F-measure between tuned and untuned learners.
Our reading of this figure is that, overall, tuning rarely makes per-
formance worse and usually can make it much better.

Table 4 and Table 5 show the the specific values seen before and
after tuning (two separate experiments with different tuning goals).
For each data set, the maximum precision or F values for each data
set are shown in bold. As might have been predicted by Lessmann
et al. [31], untuned CART is indeed the worst learner (only one of
its untuned results is best and bold). And, in 13

17
cases, the untuned

Random Forest performs better than or equal to untuned CART.
That said, tuning can improve those poor performing detectors.

For jeditV2, nearly all learners report precisions of under 20%. But
tuned WHERE scores a 98% precision. A similar pattern can be
seen in results from ivy, and xercesV0. In those two data sets,
nearly all the precision values are low except for tuned WHERE
that scored 89% and 85%. Finally, note the jeditV2 result for the
WHERE learner. Here, tuning changes precision from 2% to 98%.

4.2 RQ2: Does Tuning Change a Learner’s
Ranking ?

Researchers often use performance criteria to assert that one learner
is better than another [21, 31, 36]. For example:

1. Lessmann et al. [31] conclude that Random Forest is consid-
ered to be statistically better than CART.

2. Also, in Hall et al.’s systematic literature review [21], it is
argued that defect predictors based on simple modeling tech-

6

data sets, sorted

1 4 8 12 17

-50

0

50

100
precision

WHERE

CART

R.Forest

data sets, sorted

1 4 8 12 17

-50

0

50

100
F

WHERE

CART

R.Forest

Figure 2: Deltas in performance seen in Table 4 (left) and Ta-

ble 5 (right) between tuned and untuned learners. Tuning im-

proves performance when the deltas are above zero.

WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned

antV0 30 89 27 89 28 89
antV1 32 74 36 74 41 74
antV2 78 52 52 56 64 100

camelV0 83 83 26 34 50 78
camelV1 22 81 24 83 25 31

ivy 16 89 17 25 16 21
jeditV0 35 48 49 61 44 50
jeditV1 24 87 28 62 28 37
jeditV2 2 98 3 18 5 5

log4j 94 100 97 100 99 100
lucene 61 76 67 70 67 77
poiV0 74 74 79 75 77 78
poiV1 100 75 73 89 82 100

synapse 66 66 71 100 65 100
velocity 34 43 34 39 34 42

xercesV0 13 85 14 47 15 14
xercesV1 56 26 49 26 49 26

Table 4: Precision results (best results shown in bold).

WHERE CART Random Forest
Data set default Tuned default Tuned default Tuned

antV0 39 20 32 40 41 21
antV1 11 5 38 49 37 55
antV2 0 3 44 48 47 46

camelV0 0 91 9 28 4 31
camelV1 35 35 31 33 37 33

ivy 28 32 28 30 27 33
jeditV0 50 57 56 57 56 57
jeditV1 37 38 36 45 43 49
jeditV2 4 6 5 9 9 8

log4j 61 54 47 46 57 45
lucene 70 74 56 74 70 75
poiV0 82 71 79 62 83 73
poiV1 5 78 21 78 19 78

synapse 0 2 40 55 41 56
velocity 51 51 49 53 51 51

xercesV0 22 23 21 27 24 20
xercesV1 23 4 18 47 18 40

Table 5: F-value results (best results shown in bold).

niques such as LR perform better than complicated tech-

data sets, sorted
1 4 8 12 17

0

10

20

30

40

50

60

70

80

90

100
Precision

Logistic Regression

Untuned R.Forest

data sets, sorted
1 4 8 12 17

0

10

20

30

40

50

60

70

80

90

100
Precision

Logistic Regression

Tuned R.Forest

Figure 3: Comparison between Logistic Regression and Ran-

dom Forest before and after tuning.

niques such as Random Forest7.

Given tuning, how stable are these conclusions? Before answering
issue, we digress for two comments.

Firstly, it is important to comment on why it is so important to
check the conclusions of these particular papers. These papers are
prominent publications (to say the least). Hall et al. [21] is the
fourth most-cited IEEE TSE paper for 2009 to 2014 with 176 ci-
tations (see goo.gl/MGrGr7) while the Lessmann et al. paper [31]
has 394 citations (see goo.gl/khTp97)– which is quite remarkable
for a paper published in 2009. Given the prominence of these pa-
pers, researchers might believe it is appropriate to use their advice
without testing that advice on local data sets.

Secondly, while we are critical of the results of Lessmann et al.
and Hall et al., it needs to be said that their analysis was excel-
lent and exemplary given the state-of-the-art of the tools used when
those papers were written. While Hall et al. did not perform any
new experiments, their summarization of so many defect predic-
tion papers have not been equalled before (or since). As to the
Lessmann et al. paper, they compared 22 data miners using various
data sets (mostly from NASA) [31]. In that study, some learners
were tuned using manual methods (C4.5, CART and Random For-
est) and some are tuned automatic grid search for the SVM-Type
learners (for more on grid search, see §2.1).

That said, our tuning results show that it is time to revise the
recommendations of those papers. Figure 3 comments on the ad-
vice from Hall et al. (that LR is better than Random Forest). In a
result that might have been predicted by Hall et al., Logistic Re-
gression does perform better than untuned Random Forests over
17 data sets. However, it turns out that advice is sensitive to the
tunings used with Random Forest. After tuning, we find that Ran-
dom Forest is often competitive, and sometimes even better, than

7By three measures, Random Forest is the more complicated than LR. Firstly, LR
builds one model while Random Forest builds many models. Secondly, LR is just a
model construction tool while Random Forest needs both a tool to construct its forests
and a second tool to infer some conclusion from all the members of that forest. Thirdly,
the LR model can be printed in a few lines while the multiple models learned by
Random Forest model would take up multiple pages of output.

7

Logistic Regression.
As to Lessmann et al.’s advice (that Random Forest is better than

CART), in Table 4 and Table 5, we saw those counter-examples to
that statement. Recall in those tables, tuned CART are better than
or equal to tuned Random Forest in 11

17
and 10

17
data sets in terms

of precision and F-measure, respectively. Results from the non-
parametric Kolmogorov-Smirnov Test show that the performance
scores of tuned CART and tuned Random Forest are not statistically
different. Note that Random Forest is not significantly better than
CART, would not have been predicted by Lessmann et al.

Hence we answer RQ2 as “yes”: tuning can change how data
miners are comparatively ranked.

4.3 RQ3: Does Tuning Select Different Project
Factors?

Researchers often use data miners to test what factors have most
impact on software projects [5,23,40,44,53,66]. Table 6 comments
that such tests are unreliable since the factors selected by a data
miner are much altered before and after tuning.

Table 6 shows what features are found in the trees generated by
the WHERE algorithm (bold shows the features found by the trees
from tuned WHERE; plain text shows the features seen in the un-
tuned study). Note that different features are selected depending on
whether or not we tune an algorithm.

For example, consider mfa which is the number of methods in-
herited by a class plus the number of methods accessible by mem-
ber methods of the class. For both goals (precision and “F”) mfa is
selected for 9 and 5 data sets, for the untuned and tuned data miner
(respectively). Similar differences are seen with other attributes.

As to why different tunings select for different features, recall
from §2.1 that tuning changes how data miners heuristically ex-
plore a large space of possible models. As we change how that
exploration proceeds, so we change what features are found by that
exploration.

In any case, our answer to RQ3 is “yes”, tuning changes our

Data set Precision F

antV0
mfa None
mfa, dam, wmc, ic mfa, dam, wmc, ic

camelV0
mfa, rfc, lcom3, cam,
amc, loc, ic

mfa, wmc, cam, dam,
loc, lcom3, rfc, ic, dit

mfa, rfc, lcom3, cam,
dam, loc

mfa, rfc, lcom3, cam,
dam, loc

ivy
dam, cam cam, dit, npm, dam,

wmc, lcom3
cam, dit, dam, ic cam, dit, dam, ic

jeditV0
mfa, dam, rfc, avg_cc,
lcom3, dit

dam, rfc, mfa, wmc, ce,
cam, loc, avg_cc

mfa, dam, lcom3, dit, ic,
cbm

mfa, dam, lcom3, dit, ic,
cbm

log4j
lcom3, mfa, loc, cbm,
wmc

mfa, wmc

lcom3, mfa, loc, cbm, dit lcom3, mfa, loc, ic

lucene
rfc, mfa, npm, cam mfa, dam, wmc, loc, rfc,

ic
mfa, lcom3, cam, dam, ic mfa, lcom3, cam, dam, ic

poiV0
loc loc
mfa, loc, amc, wmc, npm,
lcom

mfa, loc, amc, wmc,npm,
lcom

synapse
dam loc, dam
dam, loc, mfa, cam dam, loc, mfa, cam

velocity
dit, dam, cam, rfc, cbo,
lcom3, wmc, ic, cbm

dam, dit, loc, amc,
lcom3, ic, mfa

dit, dam, lcom3, ic, mfa dit, dam, lcom3, ic, mfa

xercesV0
None dam, rfc, avg_cc, dit,

loc, lcom3, cam
cam, loc, dam, mfa, amc cam, loc, dam, mfa, amc

Table 6: Features selected by tuned WHERE with differ-
ent goals: bold features are those found useful by the tuned
WHERE. Also, features shown in plain text are those found
useful by the untuned WHERE.

data sets, sorted

1 4 8 12 17

-50

0

50

100
Precision

WHERE

CART

R.Forest

data sets, sorted

1 4 8 12 17

-50

0

50

100
F

WHERE

CART

R.Forest

Figure 4: Deltas in performance between np = 10 and the rec-

ommended np’s. The recommended np is better when deltas

are above zero. np = 90, 50 and 60 are recommended popula-

tion size for WHERE, CART and Random Forest by Storn.

conclusions about what factors are most important in software en-
gineering. Hence, many old papers need to be revisited and perhaps
revised [5, 23, 40, 44, 53, 66]. For example, one of us (Menzies)
used data miners to assert that some factors were more important
than others for predicting successful software reuse [40]. That as-
sertion should now be doubted since Menzies did not conduct a
tuning study before reporting what factors the data miners found
were most influential.

4.4 RQ4: Is Tuning Easy?
In terms of the search space explored via tuning, optimizing de-

fect prediction from static code measures is much smaller than the
standard optimization.

To see this, recall from Algorithm 1 that DE explores a Popu-

lation of size np = 10. This is a very small population size since
Rainer Storn (one of the inventors of DE) recommends setting np

to be ten times larger than the number of attributes being opti-
mized [60].

From Table 2, we see that Storn would therefore recommend
np values of 90, 50, 60 for WHERE, CART and Random Forest
(respectively). Yet we achieve our results using a constant np = 10;
i.e. 10

90
, 10

50
, 10

60
of the recommended search space.

To justify that np = 10 is enough, we did another tuning study,
where all the settings were the same as before but we set np = 90,

np = 50 and np = 60 for WHERE, CART and Random Forest, re-
spectively (i.e. the settings as recommended by Storn). The tuning
performance of learners was evaluated by precision and F. To com-
pare performance of each learner with different np’s, we computed
the delta in the performance between np = 10 and np using any of
{90, 50, 60}.

Those deltas, shown in Figure 4, are sorted along the x-axis. In
those plots, a zero or negative y value means that np = 10 performs
as well or better than np ∈ {90, 50, 60}. One technical aside: the
data set orderings in Figure 4 on the x-axis are not the same (that is,
if np > 10 was useful for optimizing one data set’s precision score,

8

Precision F
Learner CART WHERE CART WHERE
CART - 0.42 - 0.24

R. Forest 0.29 0.18 0.24 0.29

Table 7: Kolmogorov-Smirnov Tests for distributions of Fig-
ure 4

it was not necessary for that data set’s F-measure score).
Figure 4 shows that the median improvement is zero; i.e. np = 10

usually does as well as anything else. This observation is supported
by the KS results of Table 7. At a 95% confidence, the KS threshold
is 1.36

√

34/(17 ∗ 17) = 0.46 which is greater than the values in
Figure 4. That is, no result in Figure 4 is significantly different to
any other– which is to say that there is no evidence that np = 10 is
a poor choice of search space size.

Another measure showing that tuning is easy (for static code de-
fect predictors) is the number of evaluations required to complete
optimization (see next section). That is, we answer RQ4 as “yes”,
tuning is surprisingly easy– at least for defect predictors and using
DE.

4.5 RQ5: Is Tuning Impractically Slow?
The number of evaluations/runtimes used by our optimizers is

shown in Table 8 and Table 9. WHERE’s runtimes are slower than
CART and Random Forest since WHERE has yet to benefit from
decades of implementation experience with these older algorithms.
For example, SciKitLearn’s CART and Random Forest make ex-
tensive use of an underlying C library whereas WHERE is a purely
interpreted Python.

Looking over Table 8 and Table 9, the general pattern is that
50 to 80 evaluations suffice for finding the tuning improvements
reported in this paper. 50 to 80 evaluations are much fewer than
our pre-experimental intuition. Prior to this paper, the authors have
conducted numerous explorations of evolutionary algorithms for
search-based SE applications [16, 26, 29, 30, 35]. Based on that
work, our expectations were that non-parametric evolutionary op-
timization would take thousands, if not millions, of evaluations of
candidate tunings. This turned out not to be that case.

Hence, we answer RQ5 as “no”: tuning is so fast that it could
(and should) be used by anyone using defect predictors.

4.6 RQ6: Should we use “off-the-shelf” Tun-
ings?

In Figure 5, we show how tuning selects the optimal values for
parameters. For space limitation, only four parameters from WHERE
learner are selected as representatives and all the others can be
found in our online support documents8. Note that the tunings
learned were different in different data sets and for different goals.
Also, the tunings learned by DE were often very different to the
default (the default value for threshold, infoPrune, min_Size and
wriggle are 0.5, 0.33, 0.5 and 0.2, respectively). That is, to achieve
the performance improvements seen in the paper, the default tuning
parameters required a wide range of adjustments.

Hence, we answer RQ6 as “no” since, to achieve the improve-
ments seen in this paper, tuning has to be repeated whenever the
goals or data sets are changed. Given this requirement to repeat-
edly run tuning, it is fortunate that (as shown above) tuning is so
easy and so fast (at least for defect predictors from static code at-
tributes).

5. GUIDELINES Wei: ADDED!

8
https://goo.gl/aHQKtU

data sets, sorted
1 4 8 12 17

0

0.2

0.33

0.5

1

Precision

threshold
infoPrune
min_Size
wriggle

data sets, sorted
1 4 8 12 17

0

0.2

0.33

0.5

1

F

threshold
infoPrune
min_Size
wriggle

Figure 5: Four representative tuning values in WHERE with

precision and F as the tuning goal, respectively.

As discussed above, tuning is helpful and easy to do. Any de-
fect prediction study based on data mining should include a tuning
study. However, if tuning is not done properly, performance may
not be improved but degraded to some extent. Here’re some tips
for tuning:

Tuning Data is important for the whole tuning process. If avail-
able data size for the study is very small, k-fold cross evaluation
method can be used to split data and generate new training data as
well as tuning data. On the other hand, if the study concerns more
about chronology, incremental learning approach can be adopted.

Tuning Range will determine how large the searching space the
tuner will explore and how good the parameter got from tuning.
The recommended range will set the default value as the median
of the range with a reasonable distance. If the performance from
tuning dose not better than the default parameter, adjust ranges ac-
cordingly.

Searching algorithm is the engine of the tuning process. Since
tuning has to be repeatedly done for different goals and different
data sets, simple searching algorithms, like DE and Generic algo-
rithms, are good choice to complete this task. Other more advanced
algorithms, like NSGA III [11] and GALE [30], can also be used if
multi-objective tuning is considered.

6. RELIABILITY AND VALIDITY
Reliability refers to the consistency of the results obtained from

the research. For example, how well independent researchers could
reproduce the study? To increase external reliability, this paper has
taken care to either clearly define our algorithms or use implemen-
tations from the public domain (SciKitLearn). Also, all the data
used in this work is available on-line in the PROMISE code repos-
itory and all our algorithms are on-line at github.com/ai-se/where.

External validity checks if the results are of relevance for other
cases, or can be generalized from samples to populations. The
examples of this paper only relate to precision, recall, and the F-
measure but the general principle (that the search bias changes the
search conclusions) holds for all any set of goals. Also, the tuning

9

Datasets Tuned_Where Default_Where Tuned_CART Default_CART Tuned_RanFst Default_RanFst
antV0 50 / 90.18 1.57 60 / 4.36 0.09 50 / 8.12 0.18
antV1 50 / 174.67 2.90 50 / 6.35 0.10 50 / 11.77 0.27
antV2 50 / 403.63 6.92 70 / 9.71 0.16 60 / 13.28 0.35

camelV0 50 / 537.53 8.60 50 / 9.14 0.18 50 / 13.73 0.31
camelV1 60 / 1640.54 24.57 60 / 17.06 0.24 70 / 31.53 0.73

ivy 70 / 77.75 1.02 60 / 3.86 0.06 50 / 8.00 0.17
jeditV0 80 / 472.57 5.49 60 / 6.30 0.09 70 / 13.01 0.30
jeditV1 60 / 489.45 6.82 70 / 7.61 0.11 60 / 12.87 0.32
jeditV2 50 / 435.43 7.21 50 / 6.46 0.12 90 / 20.34 0.37

log4j 70 / 113.73 1.36 70 / 3.25 0.05 60 / 7.07 0.16
lucene 70 / 224.39 2.70 50 / 4.07 0.08 50 / 8.87 0.26
poiV0 60 / 261.06 4.00 60 / 6.23 0.10 50 / 10.57 0.29
poiV1 80 / 607.85 7.18 60 / 7.69 0.13 50 / 11.39 0.29

synapse 50 / 116.04 1.87 60 / 4.07 0.05 70 / 9.74 0.16
velocity 60 / 195.27 2.75 60 / 4.49 0.06 80 / 12.15 0.21

xercesV0 60 / 143.69 2.17 70 / 7.26 0.09 60 / 10.28 0.23
xercesV1 50 / 794.50 13.37 50 / 8.24 0.15 60 / 14.54 0.38

Table 8: Evaluations/runtimes and runtimes for tuned and default learners(in sec), optimizing for precision.

Datasets Tuned_Where Default_Where Tuned_CART Default_CART Tuned_RanFst Default_RanFst
antV0 50 / 94.08 1.71 60 / 4.55 0.08 60 / 10.79 0.21
antV1 60 / 193.74 3.02 70 / 7.77 0.09 60 / 12.30 0.25
antV2 80 / 643.94 7.59 60 / 8.38 0.15 70 / 16.99 0.41

camelV0 60 / 662.56 9.97 60 / 13.19 0.23 80 / 26.11 0.32
camelV1 60 / 1800.64 24.25 50 / 15.02 0.28 50 / 28.52 0.78

ivy 60 / 69.95 1.03 50 / 3.35 0.08 70 / 9.40 0.18
jeditV0 90 / 553.80 5.58 50 / 5.58 0.09 60 / 15.08 0.33
jeditV1 60 / 519.75 8.76 50 / 7.43 0.13 60 / 18.13 0.41
jeditV2 70 / 621.32 8.98 50 / 9.71 0.15 60 / 17.38 0.63

log4j 70 / 125.29 1.73 50 / 2.90 0.06 60 / 8.76 0.19
lucene 50 / 221.99 3.52 50 / 5.20 0.10 50 / 10.09 0.33
poiV0 60 / 327.48 5.13 50 / 6.56 0.11 50 / 12.88 0.36
poiV1 50 / 523.85 8.95 80 / 12.26 0.14 60 / 19.56 0.35

synapse 70 / 148.23 1.91 60 / 3.96 0.06 60 / 8.19 0.16
velocity 50 / 156.51 2.75 60 / 4.27 0.06 50 / 7.70 0.22

xercesV0 60 / 142.83 2.01 70 / 7.15 0.08 60 / 9.61 0.20
xercesV1 50 / 751.92 12.98 60 / 9.28 0.16 50 / 12.69 0.38

Table 9: Evaluations/runtimes and runtimes for tuned and default learners(in sec), optimizing for “F”.

results shown here only came from one software analytics task (de-
fect prediction from static code attributes). There are many other
kinds of software analytics tasks (software development effort esti-
mation, social network mining, detecting duplicate issue reports,
etc) and the implication of this study for those tasks is unclear.
However, those other tasks often use the same kinds of learners
explored in this paper so it is quite possible that the conclusions of
this paper apply to other SE analytics tasks as well.

7. CONCLUSIONS
Our exploration of the six research questions listed in the intro-

duction show that when learning defect predictors for static code
attributes, analytics without parameter tuning are considered harm-

ful and misleading:

• Tuning improves the performance scores of a predictor. That
improvement is usually positive (see Figure 2) and sometimes
it can be quite dramatic (e.g. precision changing from 2% to
98%).

• Tuning changes conclusions on what learners are better than
others. Hence, it is time to revisit numerous prior publications
of our own [36] and others [21, 31].

• Also, tuning changes conclusions on what factors are most im-
portant in software development. Once again, this means that
old papers may need to be revised including those some of our
own [40] and others [5, 23, 44, 53, 66].

As to future work, it is now important to explore the implications
of these conclusions to other kinds of software analytics. This pa-
per has investigated some learners using one optimizer. Hence, we
can make no claim that DE is the best optimizer for all learners.

Rather, our point is that there exists at least some learners whose
performance can be dramatically improved by at least one simple
optimization scheme. We hope that this work inspires much fu-
ture work as this community develops and debugs best practices
for tuning software analytics.

Finally, on a more general note, we point out that Fürnkranz [17]
says data mining is inherently a multi-objective optimization prob-
lem that seeks the smallest model with the highest performance,
that generalizes best for future examples (perhaps learned in mini-
mal time using the least amount of data). In this view, we are using
DE to optimize an optimizer. Perhaps a better approach might be to
dispense with the separation of “optimizer” and “learner” and com-
bine them both into one system that learns how to tune itself as it
executes. If this view is useful, then instead of adding elaborations
to data miners (as done in this paper, or by researchers exploring
hyper-heuristics [27]), it should be possible to radically simplify
optimization and data mining with a single system that rapidly per-
forms both tasks.

Acknowledgments

The work has partially funded by a National Science Foundation
CISE CCF award #1506586.

8. REFERENCES

[1] B. Anda, D. I. K. Sjøberg, and A. Mockus. Variability and
reproducibility in software engineering: A study of four
companies that developed the same system. IEEE Trans.

Softw Eng., 35(3):407–429, 2009.

[2] E. Arisholm and L. Briand. Predicting fault-prone
components in a java legacy system. In ISESE ’06, 2006.

10

Available from http://simula.no/research/

engineering/publications/Arisholm.2006.4.

[3] Dan Baker. A Hybrid Approach to Expert and Model-based

Effort Estimation. PhD thesis, Lane Department of Computer
Science and Electrical Engineering, West Virginia
University, 2007.

[4] R. P. Beausoleil. MOSS: multiobjective scatter search
applied to non-linear multiple criteria optimization.
European Journal of Operational Research, 169(2):426 –
449, 2006.

[5] R. M. Bell, T. J. Ostrand, and E. J. Weyuker. The limited
impact of individual developer data on software defect
prediction. Empirical Software Engineering, 18(3):478–505,
2013.

[6] J. Bergstra and Y. Bengio. Random Search for
Hyper-Parameter Optimization. Journal of Machine

Learning Research, 13:281–305, 2012.

[7] L. Breiman and A. Cutler. Random forests, 2001.
https://www.stat.berkeley.edu/ breiman/RandomForests.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. 1984.

[9] I. Chiha, J. Ghabi, and N. Liouane. Tuning pid controller
with multi-objective differential evolution. In ISCCSP ’12,
pages 1–4. IEEE, 2012.

[10] P. R. Cohen. Empirical Methods for Artificial Intelligence.
MIT Press, 1995.

[11] Kaushik Deb and Himanshu Jain. An evolutionary
many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i:
solving problems with box constraints. IEEE Trans. Evol.

Comp, 18(4):577–601, 2014.

[12] O. El-Rawas and T. Menzies. A second look at faster, better,
cheaper. Innovations Systems and Software Engineering,
6(4):319–335, 2010. Available from
http://menzies.us/pdf/10bfc.pdf.

[13] K. O. Elish and M. O. Elish. Predicting defect-prone
software modules using support vector machines. Journal of

Systems and Software, 81(5):649 – 660, 2008.

[14] M. Fagan. Design and code inspections to reduce errors in
program development. IBM Systems Journal, 15(3), 1976.

[15] U. M. Fayyad and I. H. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In
Proceedings of the Thirteenth International Joint Conference

on Artificial Intelligence, pages 1022–1027, 1993.

[16] M. S. Feather and T. Menzies. Converging on the optimal
attainment of requirements. In IEEE Joint Conference On

Requirements Engineering ICRE’02 and RE’02, 2002.
Available from
http://menzies.us/pdf/02re02.pdf.

[17] J. Fürnkranz and P. Flach. Roc ’n’ rule learning: towards a
better understanding of covering algorithms. Machine

Learning, 58(1):39–77, 2005.

[18] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya.
Choosing software metrics for defect prediction: An
investigation on feature selection techniques. Softw. Pract.

Exper., 41(5):579–606, April 2011.

[19] F. Glover and C. McMillan. The general employee
scheduling problem. an integration of ms and ai. Computers

& Operations Research, 13(5):563 – 573, 1986.

[20] A. Goldberg. On the complexity of the satisfiability problem.
In Courant Computer Science conference, No. 16, New York
University, NY, 1979.

[21] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A
systematic review of fault prediction performance in
software engineering. IEEE Trans. Softw. Eng.,
38(6):1276–1304, 2012.

[22] Ahmed E. Hassan. Predicting faults using the complexity of
code changes. In Proceedings of the 31st International

Conference on Software Engineering, ICSE ’09, pages
78–88, Washington, DC, USA, 2009. IEEE Computer
Society.

[23] K. Herzig, S. Just, A. Rau, and A. Zeller. Predicting defects
using change genealogies. In ISSRE ’13, pages 118–127.
IEEE, 2013.

[24] R.C. Holte. Very simple classification rules perform well on
most commonly used datasets. Machine Learning, 11:63,
1993.

[25] W. Huang and H. Li. On the differential evolution schemes in
moea/d. In ICNC ’10, volume 6, pages 2788–2792, Aug
2010.

[26] P. Green II, T. Menzies, S. Williams, and O. El-Rawas.
Understanding the value of software engineering
technologies. In ASE ’09, pages 52–61. IEEE, 2009.

[27] Y. Jia, M. B. Cohen, M. Harman, and J. Petke. Learning
combinatorial interaction testing strategies using
hyperheuristic search. In ICSE ’15, 2015.

[28] Sunghun Kim, Hongyu Zhang, Rongxin Wu, and Liang
Gong. Dealing with noise in defect prediction. In ICSE ’11,
pages 481–490. ACM, 2011.

[29] J. Krall, T. Menzies, and M. Davies. Better model-based
analysis of human factors for safe aircraft approach. To

appear, IEEE Transactions on Human Machine Systems,
2015.

[30] J. Krall, T. Menzies, and M. Davies. Gale: Geometric active
learning for search-based software engineering. To appear,

IEEE Trans. Softw Eng., 2015.

[31] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings. IEEE

Trans. Softw Eng., 34(4):485–496, 2008.

[32] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and
E. J. Whitehead Jr. Does bug prediction support human
developers? findings from a google case study. In ICSE ’13,
pages 372–381. IEEE, 2013.

[33] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman,
F. Shull, B. Turhan, and T. Zimmermann. Local versus
global lessons for defect prediction and effort estimation.
IEEE Trans. Softw Eng., 39(6):822–834, 2013.

[34] T. Menzies, O. El-Rawas, J. Hihn, and B. Boehm. Can we
build software faster and better and cheaper? In
PROMISE’09, 2009. Available from
http://menzies.us/pdf/09bfc.pdf.

[35] T. Menzies, O. El-Rawas, J. Hihn, M. Feather, B. Boehm,
and R. Madachy. The business case for automated software
engineerng. In ASE ’07, pages 303–312. ACM, 2007.
Available from
http://menzies.us/pdf/07casease-v0.pdf.

[36] T. Menzies, J. Greenwald, and A. Frank. Data mining static
code attributes to learn defect predictors. IEEE Trans. Softw

Eng., 33(1):2–13, Jan 2007. Available from
http://menzies.us/pdf/06learnPredict.pdf.

[37] T. Menzies, E. Kocaguneli, L. Minku, F. Peters, and
B. Turhan. Sharing Data and Models in Software

11

Engineering. Morgan Kaufmann, 2015.

[38] T. Menzies, C. Pape, and M. Rees-Jones. The promise
repository of empirical software engineering data, Feb 2015.

[39] T. Menzies, D. Raffo, S. Setamanit, Y. Hu, and
S. Tootoonian. Model-based tests of truisms. In ASE ’02,
2002. Available from
http://menzies.us/pdf/02truisms.pdf.

[40] T. Menzies and J.S. Di Stefano. More success and failure
factors in software reuse. IEEE Trans. Softw Eng.,
29(5):474–477, May 2003. Available from
http://menzies.us/pdf/02sereuse.pdf.

[41] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and
Y. Jiang. Implications of ceiling effects in defect predictors.
In Proceedings of the 4th International Workshop on

Predictor Models in Software Engineering, PROMISE ’08,
pages 47–54. ACM, 2008.

[42] T. Mitchell. Generalization as search. Artificial intelligence,
18(2):203–226, 1982.

[43] J. Molina, M. Laguna, R. Marti, and R. Caballero. Sspmo: A
scatter tabu search procedure for non-linear multiobjective
optimization. INFORMS Journal on Computing, 2005.

[44] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction. In ICSE ’08, pages 181–190. ACM,
2008.

[45] N. Nagappan, B. Murphy, and V. Basili. The influence of
organizational structure on software quality: An empirical
case study. In ICSE ’08, pages 521–530. ACM, 2008.

[46] Nachiappan Nagappan and Thomas Ball. Static analysis
tools as early indicators of pre-release defect density. In
ICSE ’05, pages 580–586. ACM, 2005.

[47] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo,
and A. Beham. Abyss: Adapting scatter search to
multiobjective optimization. IEEE Trans. Evol. Comp.,
12(4):439–457, 2008.

[48] M. Omran, A. P. Engelbrecht, and A. Salman. Differential
evolution methods for unsupervised image classification. In
IEEE Congress on Evolutionary Computation ’05, volume 2,
pages 966–973, 2005.

[49] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs
are. In ISSTA ’04, pages 86–96. ACM, 2004.

[50] H. Pan, M. Zheng, and X. Han. Particle swarm-simulated
annealing fusion algorithm and its application in function
optimization. In International Conference on Computer

Science and Software Engineering, pages 78–81, 2008.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

[52] L. Pelayo and S. Dick. Applying novel resampling strategies
to software defect prediction. In Fuzzy Information

Processing Society, 2007. NAFIPS ’07. Annual Meeting of

the North American, pages 69–72, June 2007.

[53] F. Rahman and P. Devanbu. How, and why, process metrics
are better. In ICSE ’13, pages 432–441. IEEE Press, 2013.

[54] F. Rahman, S. Khatri, E. Barr, and P. Devanbu. Comparing
static bug finders and statistical prediction. In ICSE 2014,
pages 424–434. ACM, 2014.

[55] F. Rahman, D. Posnett, and P. Devanbu. Recalling the
’imprecision’ of cross-project defect prediction. In FSE’12,
pages 61:1–61:11. ACM, 2012.

[56] S.R. Rakitin. Software Verification and Validation for

Practitioners and Managers, Second Edition. Artech House,
2001.

[57] T. Robič and B. Filipič. Demo: Differential evolution for
multiobjective optimization. In Evolutionary Multi-Criterion

Optimization, pages 520–533. Springer, 2005.

[58] D. Rodriguez, I. Herraiz, and R. Harrison. On software
engineering repositories and their open problems. In
Proceedings RAISE’12, 2012.

[59] F. Shull, V.R. Basili ad B. Boehm, A.W. Brown, P. Costa,
M. Lindvall, D. Port, I. Rus, R. Tesoriero, and M.V.
Zelkowitz. What we have learned about fighting defects. In
Proceedings of 8th International Software Metrics

Symposium, Ottawa, Canada, pages 249–258. IEEE, 2002.

[60] R. Storn and K. Price. Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces. Journal of global optimization, 11(4):341–359, 1997.

[61] A. Tosun, A. Bener, and R. Kale. AI-based software defect
predictors: Applications and benefits in a case study. In IAAI,
2010.

[62] A. Tosun, A. Bener, and B. Turhan. Practical considerations
of deploying ai in defect prediction: A case study within the
Turkish telecommunication industry. In PROMISE’09, 2009.

[63] J. Vesterstrom and R. Thomsen. A comparative study of
differential evolution, particle swarm optimization, and
evolutionary algorithms on numerical benchmark problems.
In IEEE Congress on Evolutionary Computation ’04, 2004.

[64] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and
L. Bairavasundaram. How do fixes become bugs? In
ESEC/FSE ’11, pages 26–36, 2011.

[65] Q. Zhang and H. Li. Moea/d: A multiobjective evolutionary
algorithm based on decomposition. IEEE Trans. Evol. Comp,
11(6):712–731, December 2007.

[66] T. Zimmermann, R. Premraj, and A. Zeller. Predicting
defects for eclipse. In PROMISE’07, pages 9–9. IEEE, 2007.

[67] M. Zuluaga, A. Krause, G. Sergent, and M. Püschel. Active
learning for multi-objective optimization. In International

Conference on Machine Learning (ICML), 2013.

12

