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Heterogeneous Defect Prediction
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Abstract—Much recent work has documented the success of cross-project defect prediction (CPDP) to predict defects for new projects
lacking in defect data by using prediction models built by other projects. However, much of that work share the same limitations: it
requires homogeneous data; i.e., different projects must describe themselves using the same metrics.
This paper presents methods for heterogeneous defect prediction (HDP) that matches up different metrics in different projects. HDP’s
metric matching requires a “large enough” sample of distributions in the source and target projects—which raises the question on how
large is “large enough” for effective heterogeneous defect prediction. This paper shows that empirically and theoretically, “large enough”
may be as small as 200 instances (with as low as 20 defective instances). That is, even when projects use different metric sets, it is
possible to quickly transfer lessons learned about defect prediction.

Index Terms—defect prediction, quality assurance, heterogeneous metrics, transfer learning.
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1 INTRODUCTION

MOST defect prediction models are based on machine
learning. Therefore, it is a must to collect defect

datasets to train a prediction model [1], [2]. The defect
datasets consist of various software metrics and labels.
Software metrics are the terminology describing software
projects. Commonly used software metrics for defect predic-
tion are complexity metrics (such as lines of code, Halstead
metrics, McCabe’s cyclometic complexity, and CK metrics)
and process metrics [3], [4], [5], [6]. Labels indicate whether
the source code is buggy or clean for binary classification [7],
[8].

Most proposed defect prediction models have been
evaluated on within-project defect prediction (WPDP) set-
tings [1], [2], [7]. In Figure 1a, each instance representing
a source code file or function consists of software metric
values and is labeled as buggy or clean. In the WPDP
setting, a prediction model is trained using the labeled
instances in Project A and predict unlabeled (‘?’) instances
in the same project as buggy or clean.

However, it is difficult to build a prediction model
for new software projects or projects with little historical
information [9] since they do not have enough training
instances. Various process metrics and label information can
be extracted from the historical data of software repositories
such as version control and issue tracking systems [6]. Thus,
it is difficult to collect process metrics and instance labels in
new projects or projects that have little historical data [8],
[9], [10]. For example, without instances being labeled using
past defect data, it is not possible to build a prediction
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model.
To address this issue, researchers have proposed cross-

project defect prediction (CPDP) [8], [9], [11], [12], [13], [14].
CPDP approaches predict defects even for new projects lack-
ing in historical data by reusing prediction models built by
other project datasets. As shown in Figure 1b, a prediction
model is trained by labeled instances in Project A (source)
and predicts defects in Project B (target).

However, most CPDP approaches have a serious limita-
tion: CPDP is only feasible for projects which have exactly
the same metric set as shown in Figure 1b. Finding other
projects with exactly the same metric set can be challenging.
Publicly available defect datasets that are widely used in de-
fect prediction literature usually have heterogeneous metric
sets [1], [8], [15]. For example, many NASA datasets in the
PROMISE repository have 37 metrics but AEEEM datasets
used by D’Ambroas et al. have 61 metrics [1], [15]. The only
common metric between NASA and AEEEM datasets is lines
of code (LOC). CPDP between NASA and AEEEM datasets
with all metric sets is not feasible since they have completely
different metrics [14].

Some CPDP studies use only common metrics when
source and target datasets have heterogeneous metric
sets [12], [14]. For example, Turhan et al. use the only 17
common metrics between the NASA and SOFTLAB datasets
that have heterogeneous metric sets [14]. However, finding
other projects with multiple common metrics can be chal-
lenging. As mentioned, there is only one common metric
between NASA and AEEEM. Also, only using common met-
rics may degrade the performance of CPDP models. That is
because some informative metrics necessary for building a
good prediction model may not be in the common metrics
across datasets. For example, the CPDP approach proposed
by Turhan et al. did not outperform WPDP in terms of the
average f-measure (0.35 vs. 0.39) [14].

In this paper, we propose the heterogeneous defect pre-
diction (HDP) approach to predict defects across projects
even with heterogeneous metric sets. If the proposed ap-
proach is feasible as in Figure 1c, we could reuse any
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Fig. 1: Various Defect Prediction Scenarios

existing defect datasets to build a prediction model. For
example, many PROMISE defect datasets even if they have
heterogeneous metric sets [15] could be used as training
datasets to predict defects in any project.

The key idea of our HDP approach is to transfer knowl-
edge from a source dataset to predict defects in a target
dataset by matching metrics that have similar distributions
between source and target datasets. In addition, we also
used metric selection to remove less informative metrics
of a source dataset for a prediction model before metric
matching.

In addition to proposing HDP, it is important to identify
the lower bounds of the sizes of the source and target
datasets for effective transfer learning since HDP compares
distributions between source and target datasets. If HDP
requires many source or target instances to compare there
distributions, HDP may not be effective to build a prediction
model. We address this limit in this paper as well.

1.1 Research Questions

To systematically evaluate HDP models, we set two research
questions.

• RQ1: Is heterogeneous defect prediction comparable to
WPDP and existing CPDP approaches for heterogeneous
metric sets?
• RQ2: What are the lower bounds of the size of source

and target datasets for effective HDP?

1.2 Contributions

Our experimental study shows that HDP models are feasible
and their prediction performance is promising. About 68%
of HDP predictions are better or comparable to WPDP
predictions with statistical significance.

For RQ2, we conducted the experimental study by us-
ing various sampling sizes of source and target datasets
for HDP and validate the generality of its results through
a Monte Carlo simulation. Our results suggest that 200
instances for source (with at least 20 defective samples)
and target datasets could be effective enough for our HDP
models.

Our contributions are summarized as follows:

• Proposing the heterogeneous defect prediction models.
• Conducting extensive and large-scale experiments to

evaluate the heterogeneous defect prediction models.
• Validating the lower bounds of the size of source and

target datasets for effective heterogeneous defect predic-
tion.

1.3 Extensions from Prior Publication

We extend the previous conference paper of the same
name [16] in the following ways. First, we motivate this
study in the view of transfer learning in SE. Thus, we
discuss how transfer learning can be helpful to understand
the nature of generality in SE and why we focus on defect
prediction in terms of transfer learning (Section 2). Second,
we address new research question about the effective sizes
of source and target datasets when conducting HDP. In
Section 7 and 8, we show experimental and theoretical val-
idation to investigate the effective sizes of project datasets
for HDP. Third, we discuss more related work with recent
studies. In Section 3, we discuss metric sets used in CPDP
and how our HDP is similar to and different from recent
studies about CPDP using heterogeneous metric sets.

2 MOTIVATION

2.1 Why Explore Transfer Learning?

One reason to explore transfer learning is to study the
nature of generality in SE. Professional societies assume
such generalities exist when they offer lists of supposedly
general “best practices”:

• For example, the IEEE 1012 standard for software veri-
fication [17] proposes numerous methods for assessing
software quality;
• Endres & Rombach catalog dozens of lessons of software

engineering [18] such as McCabe’s Law (functions with a
“cyclomatic complexity” greater than ten are more error
prone);
• Further, many other widely-cited researchers do the

same such as Jones [19] and Glass [20] who list (for
exmple) Brooks’ Law (adding programmers to a late
project makes it later).
• More generally, Budgen & Kitchenham seek to reorga-

nize SE research using general conclusions drawn from
a larger number of studies [21], [22].
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Given the constant pace of change within SE, can we
trust those supposed generalities? Numerous local learning
results show that we should mistrust general conclusions
(made over a wide population of projects) since they may
not hold for projects. Posnett et al. [23] discuss ecological
inference in software engineering, which is the concept that
what holds for the entire population also holds for each indi-
vidual. They learn models at different levels of aggregation
(modules, packages, files) and show that models that work
at one level of aggregation can be sub-optimal at others.
For example, Yang et al. [24], Bettenburg et al. [25], and
Menzies et al. [26] all explore the generation of models
using all data versus local samples that more specific to
particular test cases. These papers report that better models
(sometimes with much lower variance in their predictions)
are generated from local information. These results have an
unsettling effect on anyone struggling to propose policies
for an organization. If all prior conclusions can change for
the new project, or some small part of a project, how can any
manager ever hope to propose and defend IT policies (e.g.,
when should some module be inspected, when should it
be refactored, where to focus expensive testing procedures,
etc.)?

If we cannot generalize to all projects and all parts of
current projects, perhaps a more achievable goal is to sta-
bilize the pace of conclusion change. While it may be a fool’s
errand and wait for eternal and global SE conclusions, one
possible approach is for organizations to declare N prior
projects as reference projects, from which lessons learned
will be transferred to new projects. In practice, using such
reference sets requires three processes:

• Finding the reference sets (this paper shows that finding
them may not be a too complex task, at least for defect
prediction).
• Recognizing when to update the reference set. In prac-

tice, this could be as simple as noting when predictions
start failing for new projects—at which time, we would
loop to point #1.
• Transferring lessons from the reference set to new

projects.

In this approach, the policies of the organization will be
stable just as long as the reference set is not updated. In
this paper, we do not address the pace of change in the
reference set (that is left for future work). Rather, we focus
on point #3: transferring lessons from the reference set to
new projects. To support this third point, we need to resolve
the problems that this paper addresses (data expressed in
different terminology cannot transfer till there is enough
data to match old projects to new).

2.2 Why Explore Defect Prediction?

There are many lessons we might try to transfer between
projects about staffing policies, testing methods, language
choices, etc. While all those matters are important and are
worthy of research, this section discusses why we focus on
defect prediction.

Human programmers are clever, but flawed. Coding
adds functionality, but also defects. Hence, software some-
times crashes (perhaps at the most awkward or dangerous

moment) or delivers the wrong functionality. For a very long
list of software-related errors, see Peter Neumann’s “Risk
Digest” at catless.ncl.ac.uk/Risks.

Since programming inherently introduces defects into
programs, it is important to test them before they’re used.
Testing is expensive. Software assessment budgets are fi-
nite while assessment effectiveness increases exponentially
with assessment effort. For example, for black-box testing
methods, a linear increase in the confidence C of finding
defects can take exponentially more effort1. Exponential costs
quickly exhaust finite resources so standard practice is to
apply the best available methods on code sections that seem
most critical. But any method that focuses on parts of the
code can blind us to defects in other areas. Some lightweight
sampling policy should be used to explore the rest of the
system. This sampling policy will always be incomplete.
Nevertheless, it is the only option when resources prevent a
complete assessment of everything.

One such lightweight sampling policy is defect predic-
tors learned from static code attributes. Given static code
descriptors for each module, plus a count of humber of
issues raised during inspect (or at runtime), data miners can
learn where the probability of software defects is highest.

The rest of this section argues that such defect predictors
are easy to use, widely-used, and useful to use.

Easy to use: Static code attributes can be automatically
collected, even for very large systems [27]. Other methods,
like manual code reviews, are far slower and far more labor-
intensive. For example, depending on the review methods,
8 to 20 LOC/minute can be inspected and this effort repeats
for all members of the review team, which can be as large
as four or six people [28].

Widely used: Researchers and industrial practitioners use
static attributes to guide software quality predictions. Defect
prediction models have been reported at Google [29]. Ver-
ification and validation (V&V) textbooks [30] advise using
static code complexity attributes to decide which modules
are worth manual inspections.

Useful: Defect predictors often find the location of 70%
(or more) of the defects in code [31]. Defect predictors have
some level of generality: predictors learned at NASA [31]
have also been found useful elsewhere (e.g. in Turkey [32],
[33]). The success of this method in predictors in finding
bugs is markedly higher than other currently-used indus-
trial methods such as manual code reviews. For example,
a panel at IEEE Metrics 2002 [34] concluded that manual
software reviews can find≈60% of defects. In another work,
Raffo documents the typical defect detection capability of
industrial review methods: around 50% for full Fagan in-
spections [35] to 21% for less-structured inspections.

Not only do static code defect predictors perform well
compared to manual methods, they also are competitive
with certain automatic methods. A recent study at ICSE’14,
Rahman et al. [36] compared (a) static code analysis tools
FindBugs, Jlint, and Pmd and (b) static code defect predic-

1. A randomly selected input to a program will find a fault with
probability p. After N random black-box tests, the chances of the
inputs not revealing any fault is (1 − p)N . Hence, the chances C
of seeing the fault is 1 − (1 − p)N which can be rearranged to
N(C, p) = log(1− C)/log(1− p). For example, N(0.90, 10−3) = 2301
but N(0.98, 10−3) = 3901; i.e. nearly double the number of tests.
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tors (which they called “statistical defect prediction”) built
using logistic regression. They found no significant differ-
ences in the cost-effectiveness of these approaches. Given
this equivalence, it is significant to note that static code
defect prediction can be quickly adapted to new languages
by building lightweight parsers to extract high-level static
code features. The same is not true for static code analyzers–
these need extensive modification before they can be used
on new languages.

Having offered general high-level notes on defect pre-
diction, the next section describes in detail the related work
on this topic.

3 RELATED WORK ON DEFECT PREDICTION

Recall from the above that we distinguish cross-project de-
fect prediction (CPDP) from within-project defect prediction
(WPDP). The CPDP approaches have been studied by many
researchers of late [8], [9], [12], [13], [14], [37], [38], [39], [40],
[41]. Since the performance of CPDP is usually very poor [9],
researchers have proposed various techniques to improve
CPDP [8], [12], [14], [37], [38], [39], [40], [42]. In this section,
we discuss CPDP studies in terms of metric sets in defect
prediction datasets.

3.1 CPDP Using Same/common Metric Sets

Watanabe et al. proposed the metric compensation approach
for CPDP [42]. The metric compensation transforms a target
dataset similar to a source dataset by using the average
metric values [42]. To evaluate the performance of the metric
compensation, Watanabe et al. collected two defect datasets
with the same metric set (8 object-oriented metrics) from
two software projects and then conducted CPDP [42].

Rahman et al. evaluated the CPDP performance in terms
of cost-effectiveness and confirmed that the prediction per-
formance of CPDP is comparable to WPDP [13]. For the
empirical study, Rahman et al. collected 9 datasets with the
same process metric set [13].

Fukushima et al. conducted an empirical study of just-in-
time defect prediction in the CPDP setting [10]. They used 16
datasets with the same metric set [10]. The 11 datasets were
provided by Kamei et al. but 5 projects were newly collected
with the same metric set used in the 11 datasets [10], [43].

However, collecting datasets with the same metric set
might limit CPDP. For example, if existing defect datasets
contain object-oriented metrics such as CK metrics [3], col-
lecting the same object-oriented metrics is impossible for
projects that are written in non-object-oriented languages.

Turhan et al. proposed the nearest-neighbour (NN) filter
to improve the performance of CPDP [14]. The basic idea
of the NN filter is that prediction models are built by
source instances that are nearest-neighbours of target in-
stances [14]. To conduct CPDP, Turhan et al. used 10 NASA
and SOFTLAB datasets in the PROMISE repository [14],
[15].

Ma et al. proposed Transfer Naive Bayes (TNB) [12].
The TNB builds a prediction model by weighting source
instances similar to target instances [12]. Using the same
datasets used by Turhan et al., Ma et al. evaluated the TNB
models for CPDP [12], [14].

Since the datasets used in the empirical studies of Turhan
et al. and Ma et al. have heterogeneous metric sets, they
conducted CPDP using the common metrics [12], [14]. There
is another CPDP study with the top-K common metric
subset [44]. However, as explained in Section 1, CPDP using
common metrics is worse than WPDP [14], [44].

Nam et al. adapted a state-of-the-art transfer learning
technique called Transfer Component Analysis (TCA) and
proposed TCA+ [8]. They used 8 datasets in two groups,
ReLink and AEEEM, with 26 and 61 metrics respectively [8].

However, Nam et al. could not conduct CPDP between
ReLink and AEEEM because they have heterogeneous met-
ric sets. Since the project pool with the same metric set is
very limited, conducting CPDP using a project group with
the same metric set can be limited as well. For example,
at most 18% of defect datasets in the PROMISE repository
have the same metric set [15]. In other words, we cannot
directly conduct CPDP for the 18% of the defect datasets
by using the remaining (82%) datasets in the PROMISE
repository [15].

There are other CPDP studies using datasets with the
same metric sets or using common metric sets [15], [26], [37],
[38], [39], [40], [41]. Menzies et al. proposed a local predic-
tion model based on clustering [26]. They used seven defect
datasets with 20 object-oriented metrics from the PROMISE
repository [15], [26]. Canfora et al., Panichella et al., and
Zhang et al. used ten Java projects only with the same metric
set from the PROMISE repository [15], [37], [38], [41]. Ryu et
al. proposed the value-cognitive boosting and transfer cost-
sensitive boosting approaches for CPDP [39], [40]. Ryu et al.
used common metrics in NASA and SOFTLAB datasets [39]
or Jureczko datasets with the same metric set from the
PROMISE repository [40]. These recent studies for CPDP
did not discuss about the heterogeneity of metrics across
project datasets.

Zhang et al. proposed the universal model for CPDP [45].
The universal model is built using 1398 projects from
SourceForge and Google code and leads to comparable pre-
diction results to WPDP in their experimental setting [45].

However, the universal defect prediction model may be
difficult to apply for the projects with heterogeneous metric
sets since the universal model uses 26 metrics including
code metrics, object-oriented metrics, and process metrics.
In other words, the model can only be applicable for target
datasets with the same 26 metrics. In the case where the
target project has not been developed in object-oriented
languages, a universal model built using object-oriented
metrics cannot be used for the target dataset.

3.2 CPDP Using Heterogeneous Metric Sets

He et al. [46] addressed the limitations due to heterogeneous
metric sets in CPDP studies listed above. Their approach,
CPDP-IFS, used distribution characteristic vectors of an
instance as metrics. The prediction performance of their best
approach is comparable to or helpful in improving regular
CPDP models [46].

However, the approach by He et al. is not compared
with WPDP [46]. Although their best approach is helpful
to improve regular CPDP models, the evaluation might be
weak since the prediction performance of a regular CPDP
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Fig. 2: Heterogeneous defect prediction

is usually very poor [9]. In addition, He et al. conducted
experiments on only 11 projects in 3 dataset groups [46].

Jing et al. proposed heterogeneous cross-company defect
prediction based on the extended canonical correlation anal-
ysis (CCA+) [47] to address the limitations of heterogeneous
metric sets. Their approach adds dummy metrics with zero
values for non-existing metrics in source or target datasets
and then transforms both source and target datasets to
make their distributions similar. CCA+ was evaluated on
14 projects in four dataset groups.

We propose HDP to address the above limitations caused
by projects with heterogeneous metric sets. Contrary to the
study by He et al. [46], we compare HDP to WPDP, and HDP
achieved better or comparable prediction performance to
WPDP in about 68% of predictions. Comparing to the exper-
iments for CCA+ [47] with 14 projects, we conducted more
extensive experiments with 28 projects in 5 dataset groups.
In addition, CCA+ transforms original source and target
datasets so that it is difficult to directly explain the meaning
of metric values generated by CCA+ [47]. However, HDP
keeps the original metrics and builds models with the small
subset of selected and matched metrics between source and
target datasets in that it can make prediction models simpler
and easier to explain [16], [48]. In Section 4, we describe our
approach in detail.

4 APPROACH

Figure 2 shows the overview of HDP based on metric
selection and metric matching. In the figure, we have two
datasets, Source and Target, with heterogeneous metric sets.
Each row and column of a dataset represents an instance
and a metric, respectively, and the last column represents
instance labels. As shown in the figure, the metric sets in
the source and target datasets are not identical (X1 to X4

and Y1 to Y7 respectively).

Source Metrics Target Metrics 

X1 

X2 

Y1 

Y2  

0.8 
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0.3 

Fig. 3: An example of metric matching between source and
target datasets.

When given source and target datasets with heteroge-
neous metric sets, for metric selection we first apply a
feature selection technique to the source. Feature selection is
a common approach used in machine learning for selecting
a subset of features by removing redundant and irrele-
vant features [49]. We apply widely used feature selection
techniques for metric selection of a source dataset as in
Section 4.1 [50], [51].

After that, metrics based on their similarity such as
distribution or correlation between the source and target
metrics are matched up. In Figure 2, three target metrics
are matched with the same number of source metrics.

After these processes, we finally arrive at a matched
source and target metric set. With the final source dataset,
HDP builds a model and predicts labels of target instances.

In the following subsections, we explain the metric se-
lection and matching in detail.

4.1 Metric Selection in Source Datasets
For metric selection, we used various feature selection ap-
proaches widely used in defect prediction such as gain
ratio, chi-square, relief-F, and significance attribute evalu-
ation [50], [51]. According to benchmark studies about vari-
ous feature selection approaches, a single best feature selec-
tion approach for all prediction models does not exist [52],
[53], [54]. For this reason, we conduct experiments under
different feature selection approaches. When applying fea-
ture selection approaches, we select top 15% of metrics as
suggested by Gao et al. [50]. In addition, we compare the
prediction results with or without metric selection in the
experiments.

4.2 Matching Source and Target Metrics
To match source and target metrics, we measure the simi-
larity of each source and target metric pair by using several
existing methods such as percentiles, Kolmogorov-Smirnov
Test, and Spearman’s correlation coefficient [55], [56]. We de-
fine the following three analyzers for metric matching:
• Percentile based matching (PAnalyzer)
• Kolmogorov-Smirnov Test based matching (KSAnalyzer)
• Spearman’s correlation based matching (SCoAnalyzer)

The key idea of these analyzers is computing matching
scores for all pairs between the source and target met-
rics. Figure 3 shows a sample matching. There are two
source metrics (X1 and X2) and two target metrics (Y1 and
Y2). Thus, there are four possible matching pairs, (X1,Y1),
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(X1,Y2), (X2,Y1), and (X2,Y2). The numbers in rectangles
between matched source and target metrics in Figure 3
represent matching scores computed by an analyzer. For
example, the matching score between the metrics, X1 and
Y1, is 0.8.

From all pairs between the source and target metrics, we
remove poorly matched metrics whose matching score is
not greater than a specific cutoff threshold. For example,
if the matching score cutoff threshold is 0.3, we include
only the matched metrics whose matching score is greater
than 0.3. In Figure 3, the edge (X1,Y2) in matched metrics
will be excluded when the cutoff threshold is 0.3. Thus,
all the candidate matching pairs we can consider include
the edges (X1,Y1), (X2,Y2), and (X2,Y1) in this example. In
Section 5, we design our empirical study under different
matching score cutoff thresholds to investigate their impact
on prediction.

We may not have any matched metrics based on the
cutoff threshold. In this case, we cannot conduct defect
prediction. In Figure 3, if the cutoff threshold is 0.9, none of
the matched metrics are considered for HDP so we cannot
build a prediction model for the target dataset. For this
reason, we investigate target prediction coverage (i.e., what
percentage of target datasets could be predicted?) in our
experiments.

After applying the cutoff threshold, we used the max-
imum weighted bipartite matching [57] technique to select a
group of matched metrics, whose sum of matching scores
is highest, without duplicated metrics. In Figure 3, after
applying the cutoff threshold of 0.30, we can form two
groups of matched metrics without duplicated metrics. The
first group consists of the edges, (X1,Y1) and (X2,Y2), and
another group consists of the edge (X2,Y1). In each group,
there are no duplicated metrics. The sum of matching scores
in the first group is 1.3 (=0.8+0.5) and that of the second
group is 0.4. The first group has a greater sum (1.3) of
matching scores than the second one (0.4). Thus, we select
the first matching group as the set of matched metrics for the
given source and target metrics with the cutoff threshold of
0.30 in this example.

Each analyzer for the metric matching scores is described
in the following subsections.

4.2.1 PAnalyzer

PAnalyzer simply compares 9 percentiles (10th, 20th,. . . ,
90th) of ordered values between source and target metrics.

First, we compute the difference of n-th percentiles in
source and target metric values by the following equation:

Pij(n) =
spij(n)

bpij(n)
(1)

, where Pij(n) is the comparison function for n-th per-
centiles of i-th source and j-th target metrics, and spij(n)
and bpij(n) are smaller and bigger percentile values re-
spectively at n-th percentiles of i-th source and j-th target
metrics. For example, if the 10th percentile of the source
metric values is 20 and that of target metric values is 15, the
difference is 0.75 (Pij(10) = 15/20 = 0.75).

Using this percentile comparison function, a matching
score between source and target metrics is calculated by the
following equation:

Mij =

9∑
k=1

Pij(10× k)

9
(2)

, where Mij is a matching score between i-th source and j-
th target metrics. The best matching score of this equation is
1.0 when the values of the source and target metrics of all 9
percentiles are the same.

4.2.2 KSAnalyzer
KSAnalyzer uses a p-value from the Kolmogorov-Smirnov
Test (KS-test) as a matching score between source and target
metrics. The KS-test is a non-parametric two sample test
that can be applicable when we cannot be sure about the
normality of two samples and/or the same variance [55],
[58]. Since metrics in some defect datasets used in our em-
pirical study have exponential distributions [2] and metrics
in other datasets have unknown distributions and variances,
the KS-test is a suitable statistical test to compute p-values
for these datasets. In statistical testing, a p-value shows the
probability of whether two samples are significantly differ-
ent or not. We used the KolmogorovSmirnovTest implemented
in the Apache commons math library.

The matching score is:

Mij = pij (3)

, where pij is a p-value from the KS-test of i-th source and
j-th target metrics. A p-value tends to be zero when two
metrics are significantly different.

4.2.3 SCoAnalyzer
In SCoAnalyzer, we used the Spearman’s rank correlation
coefficient as a matching score for source and target met-
rics [56]. Spearman’s rank correlation measures how two
samples are correlated [56]. To compute the coefficient,
we used the SpearmansCorrelation in the Apache commons
math library. Since the size of metric vectors should be the
same to compute the coefficient, we randomly select metric
values from a metric vector that is of a greater size than
another metric vector. For example, if the sizes of the source
and target metric vectors are 110 and 100 respectively, we
randomly select 100 metric values from the source metric to
agree to the size between the source and target metrics. All
metric values are sorted before computing the coefficient.

The matching score is as follows:

Mij = cij (4)

, where cij is a Spearman’s rank correlation coefficient
between i-th source and j-th target metrics.

4.3 Building Prediction Models

After applying metric selection and matching, we can fi-
nally build a prediction model using a source dataset with
selected and matched metrics. Then, as a regular defect
prediction model, we can predict defects on a target dataset
with the matched metrics.
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TABLE 1: The 28 defect datasets from five groups.

Group Dataset # of instances # of
metrics

Prediction
GranularityAll Buggy(%)

AEEEM
[1], [8]

EQ 325 129(39.69%)

61 Class
JDT 997 206(20.66%)
LC 399 64(9.26%)
ML 1862 245(13.16%)
PDE 1492 209(14.01%)

ReLink
[59]

Apache 194 98(50.52%)
26 FileSafe 56 22(39.29%)

ZXing 399 118(29.57%)

MORPH
[60]

ant-1.3 125 20(16.00%)

20 Class

arc 234 27(11.54%)
camel-1.0 339 13(3.83%)

poi-1.5 237 141(59.49%)
redaktor 176 27(15.34%)

skarbonka 45 9(20.00%)
tomcat 858 77(8.97%)

velocity-1.4 196 147(75.00%)
xalan-2.4 723 110(15.21%)
xerces-1.2 440 71(16.14%)

NASA
[15], [61]

cm1 327 42(12.84%)

37 Function
mw1 253 27(10.67%)
pc1 705 61(8.65%)
pc3 1077 134(12.44%)
pc4 1458 178(12.21%)

SOFTLAB
[14]

ar1 121 9(7.44%)

29 Function
ar3 63 8(12.70%)
ar4 107 20(18.69%)
ar5 36 8(22.22%)
ar6 101 15(14.85%)

5 EXPERIMENTAL SETUP

This section presents the details of our experimental study
such as benchmark datasets, experimental design, and eval-
uation measures.

5.1 Benchmark Datasets

We collected publicly available datasets from previous stud-
ies [1], [8], [14], [59], [60]. Table 1 lists all dataset groups used
in our experiments. Each dataset group has a heterogeneous
metric set as shown in the table. Prediction Granularity in
the last column of the table means the prediction granularity
of instances. Since we focus on the distribution or correla-
tion of metric values when matching metrics, it is beneficial
to be able to apply the HDP approach on datasets even in
different granularity levels.

We used five groups with 28 defect datasets: AEEEM,
ReLink, MORPH, NASA, and SOFTLAB.

AEEEM was used to benchmark different defect pre-
diction models [1] and to evaluate CPDP techniques [8],
[46]. Each AEEEM dataset consists of 61 metrics including
object-oriented (OO) metrics, previous-defect metrics, en-
tropy metrics of change and code, and churn-of-source-code
metrics [1].

Datasets in ReLink were used by Wu et al. [59] to
improve the defect prediction performance by increasing
the quality of the defect data and have 26 code complexity
metrics extracted by the Understand tool [62].

The MORPH group contains defect datasets of several
open source projects used in the study about the dataset
privacy issue for defect prediction [60]. The 20 metrics used
in MORPH are McCabe’s cyclomatic metrics, CK metrics,
and other OO metrics [60].

NASA and SOFTLAB contain proprietary datasets from
NASA and a Turkish software company, respectively [14].
We used five NASA datasets, which share the same metric
set in the PROMISE repository [15], [61]. We used cleaned
NASA datasets (DS′ version) [61]. For the SOFTLAB group,
we used all SOFTLAB datasets in the PROMISE reposi-
tory [15]. The metrics used in both NASA and SOFTLAB
groups are Halstead and McCabe’s cyclomatic metrics but
NASA has additional complexity metrics such as parameter
count and percentage of comments [15].

Predicting defects is conducted across different dataset
groups. For example, we build a prediction model by
Apache in ReLink and tested the model on velocity-1.4 in
MORPH (Apache⇒velocity-1.4).2

We did not conduct defect prediction across projects
in the same group where datasets have the same metric
set since the focus of our study is on prediction across
datasets with heterogeneous metric sets. In total, we have
600 possible prediction combinations from these 28 datasets.

5.2 Cutoff Thresholds for Matching Scores

To build HDP models, we apply various cutoff thresholds
for matching scores to observe how prediction performance
varies according to different cutoff values. Matched metrics
by analyzers have their own matching scores as explained
in Section 4. We apply different cutoff values (0.05 and 0.10,
0.20,. . . ,0.90) for the HDP models. If a matching score cutoff
is 0.50, we remove matched metrics with the matching score
≤ 0.50 and build a prediction model with matched metrics
with the score> 0.50. The number of matched metrics varies
by each prediction combination. For example, when using
KSAnalyzer with the cutoff of 0.05, the number of matched
metrics is four in cm1⇒ar5 while that is one in ar6⇒pc3.
The average number of matched metrics also varies by
analyzers and cutoff values; 4 (PAnalyzer), 2 (KSAnalyzer),
and 5 (SCoAnalyzer) in the cutoff of 0.05 but 1 (PAnalyzer),
1 (KSAnalyzer), and 4 (SCoAnalyzer) in the cutoff of 0.90 on
average.

5.3 Baselines

We compare HDP to three baselines: WPDP (Baseline1),
CPDP using common metrics (CPDP-CM) between source
and target datasets (Baseline2), and CPDP-IFS (Baseline3).

We first compare HDP to WPDP. Comparing HDP to
WPDP will provide empirical evidence of whether our HDP
models are applicable in practice.

We conduct CPDP using only common metrics (CPDP-
CM) between source and target datasets as in previous
CPDP studies [12], [14], [46]. For example, AEEEM and
MORPH have OO metrics as common metrics so we use
them to build prediction models for datasets between
AEEEM and MORPH. Since using common metrics has been
adopted to address the limitation on heterogeneous metric
sets in previous CPDP studies [12], [14], [46], we set CPDP-
CM as a baseline to evaluate our HDP models. The number
of matched metrics varies across the dataset group. Between
AEEEM and ReLink, only one common metric exists, LOC.

2. Hereafter a rightward arrow (⇒) denotes a prediction combina-
tion.
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NASA and SOFTLAB have 28 common metrics. On average,
the number of common metrics in our datasets are about
five.

We include CPDP-IFS proposed by He et al. as a base-
line [46]. CPDP-IFS enables defect prediction on projects
with heterogeneous metric sets (Imbalanced Feature Sets)
by using the 16 distribution characteristics of values of each
instance such as mode, median, mean, harmonic mean, min-
imum, maximum, range, variation ratio, first quartile, third
quartile, interquartile range, variance, standard deviation,
coefficient of variance, skewness, and kurtosis [46]. The 16
distribution characteristics are used as features to build a
prediction model [46].

5.4 Experimental Design
For the machine learning algorithm, we use Logistic Re-
gression, which is widely used for both WPDP and CPDP
studies [8], [9], [63], [64]. We use Logistic Regression imple-
mented in Weka with default options [65].

For WPDP, it is necessary to split datasets into training
and test sets. We use 50:50 random splits, which are widely
used in the evaluation of defect prediction models [8], [66],
[67]. For the 50:50 random splits, we use one half of the
instances for training a model and the rest for test (round 1).
In addition, we use the two splits in a reverse way, where
we use the previous test set for training and the previous
training set for test (round 2). We repeat these two rounds
500 times, i.e. 1000 tests, since there is a randomness in
selecting instances for each split [68]. Simply speaking, we
repeat the two-fold cross validation 500 times.

For CPDP-CM, CPDP-IFS, and HDP, we build a predic-
tion model by using a source dataset and test the model
on the same test splits used in WPDP. Since there are
1000 different test splits for a within-project prediction, the
CPDP-CM, CPDP-IFS, and HDP models are tested on 1000
different test splits as well.

These settings for comparing HDP to the baselines are
for RQ1. The experimental settings for RQ2 is described in
Section 7 in detail.

5.5 Measures
To evaluate the prediction performance, we use the area
under the receiver operating characteristic curve (AUC). The
AUC is known as a useful measure for comparing different
models and is widely used because AUC is unaffected by
class imbalance as well as being independent from the cutoff
probability (prediction threshold) that is used to decide
whether an instance should be classified as positive or neg-
ative [13], [69], [70], [71]. Mende confirmed that it is difficult
to compare the defect prediction performance reported in
the defect prediction literature since prediction results come
from the different cutoffs of prediction thresholds [72]. How-
ever, the receiver operating characteristic curve is drawn by
both the true positive rate (recall) and the false positive rate
on various prediction threshold values. The higher AUC
represents better prediction performance and the AUC of
0.5 means the performance of a random predictor [13].

To measure the effect size of AUC results among base-
lines and HDP, we compute Cliff’s δ that is a non-parametric
effect size measure [73]. As Romano et al. suggested, we

evaluate the magnitude of the effect size as follows: negli-
gible (|δ| < 0.147), small (|δ| < 0.33), medium (|δ| < 0.474),
and large (0.474 ≤ |δ|) [73].

To compare HDP by our approach to baselines, we also
use the Win/Tie/Loss evaluation, which is used for perfor-
mance comparison between different experimental settings
in many studies [74], [75], [76]. As we repeat the experiments
1000 times for a target project dataset, we conduct the
Wilcoxon signed-rank test (p<0.05) for all AUC values in
baselines and HDP [77]. If an HDP model for the target
dataset outperforms a corresponding baseline result after
the statistical test, we mark this HDP model as a ‘Win’. In a
similar way, we mark an HDP model as a ‘Loss’ when the
results of a baseline are better than those of our HDP ap-
proach with statistical significance. If there is no difference
between a baseline and HDP with statistical significance, we
mark this case as a ‘Tie’. Then, we count the number of wins,
ties, and losses for HDP models. By using the Win/Tie/Loss
evaluation, we can investigate how many HDP predictions
it will take to improve baseline approaches.

6 PREDICTION PERFORMANCE OF HDP

In this section, we present the experimental results of the
HDP approach to address RQ1.

RQ1: Is heterogeneous defect prediction comparable to
WPDP and existing CPDP approaches for heterogeneous
metric sets (CPDP-CM and CPDP-IFS)?

RQ1 leads us to investigate whether our HDP is com-
parable to WPDP (Baseline1), CPDP-CM (Baseline2), and
CDDP-IFS (Baseline3) [46]. We report the representative
HDP results in Section 6.1, 6.2, and 6.3 based on signif-
icance attribute selection for metric selection and KSAn-
alyzer with the cutoff threshold of 0.05. Among different
metric selections, significance attribute selection led to the
best prediction performance overall. In terms of analyzers,
KSAnalyzer led to the best prediction performance. Since
the KSAnalyzer is based on the p-value of a statistical test,
we chose a cutoff of 0.05 which is a commonly accepted
significance level in the statistical test [78].

In Section 6.4, 6.5, and 6.6, we report the HDP results by
using various metric selection approaches, metric matching
analyzers, and machine learners respectively to investigate
HDP performances more in terms of RQ1.

6.1 Comparison Result with Baselines

Table 2 shows the prediction performance (a median AUC)
of baselines and HDP by KSAnalyzer with the cutoff of 0.05,
for each target as well as all targets (the second last row
in the table). Baseline1 represents the WPDP results of a
target project and Baseline2 shows the CPDP results using
common metrics (CPDP-CM) between source and target
projects. Baseline3 shows the results of CPDP-IFS proposed
by He et al. [46]. The last column shows the HDP results
by KSAnalyzer with the cutoff of 0.05. If there are better
results between Baseline1 and our approach with statistical
significance (Wilcoxon signed-rank test [77], p<0.05), the
better AUC values are in bold font as shown in Table 2.
Between Baseline2 and our approach, better AUC values
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TABLE 2: Comparison results among WPDP, CPDP-CM,
CPDP-IFS, and HDP by KSAnalyzer with the cutoff of
0.05 in a median AUC.

Target WPDP
(Baseline1)

CPDP-CM
(Baseline2)

CPDP-IFS
(Baseline3)

HDP
KSAnalyzer
cutoff=0.05

EQ 0.583 0.776 0.461 0.783
JDT 0.795 0.781 0.543 0.767
LC 0.575 0.636 0.584 0.655
ML 0.734 0.651 0.557 0.692*
PDE 0.684 0.682 0.566 0.717

Apache 0.714 0.689 0.635 0.717*
Safe 0.706 0.749 0.616 0.818*

Zxing 0.605 0.619 0.530 0.650*
ant-1.3 0.609 0.590 0.500 0.835

arc 0.670 0.611 0.523 0.701
camel-1.0 0.550 0.590 0.500 0.639

poi-1.5 0.707 0.676 0.606 0.701
redaktor 0.744 0.500 0.500 0.537

skarbonka 0.569 0.736 0.528 0.694*
tomcat 0.778 0.746 0.640 0.818

velocity-1.4 0.725 0.609 0.500 0.391
xalan-2.4 0.755 0.658 0.499 0.751
xerces-1.2 0.624 0.453 0.500 0.489

cm1 0.653 0.622 0.551 0.717*
mw1 0.612 0.584 0.614 0.727
pc1 0.787 0.675 0.564 0.752*
pc3 0.794 0.665 0.500 0.738*
pc4 0.900 0.773 0.589 0.682*
ar1 0.582 0.464 0.500 0.734*
ar3 0.574 0.862 0.682 0.823*
ar4 0.657 0.588 0.575 0.816*
ar5 0.804 0.875 0.585 0.911*
ar6 0.654 0.611 0.527 0.640

All 0.657 0.636 0.555 0.724*

Cliff’s δ 0.143
(Negligible)

0.296
(Small)

0.792
(Large) –

with statistical significance are underlined in the table. Be-
tween Baseline3 and our approach, better AUC values with
statistical significance are shown with an asterisk (*).

The last row in Table 2 shows Cliff’s δ for the effect
size among baselines and HDP. If a Cliff’s δ is a positive
value, HDP improves a baseline in terms of the effect size
against the baseline. As explained in Section 5.5, based on
a Cliff’s δ, we can estimate the magnitude of the effect size.
For example, the Cliff’s δ between WPDP and HDP is 0.143
and its magnitude is negligible as in Table 2. In other words,
HDP is comparable to WPDP in terms of the effect size.

We observed the following results about RQ1:

• In 25 out of 28 targets, HDP by KSAnalyzer with the cut-
off of 0.05 leads to better or comparable results against
WPDP with statistical significance. (The WPDP results in
only ML, pc3, and pc4 are in bold font.)
• HDP by KSAnalyzer with the cutoff of 0.05 outperforms

WPDP with statistical significance when considering re-
sults from all targets (All in the second last row in the
table) together in our experimental settings.
• The Cliff’s δ between WPDP and HDP is 0.143 but the

magnitude of the effect size is negligible.
• HDP by KSAnalyzer with the cutoff of 0.05 leads to

better or comparable results to CPDP-CM with statistical
significance. (no underlines in CPDP-CM of Table 2)

TABLE 3: Median AUCs of baselines and HDP in KSAn-
alyzer (cutoff=0.05) by each source group.

Source WPDP
(Baseline1)

CPDP-CM
(Baseline2)

CPDP-IFS
(Baseline3)

HDP
KS,0.05

Target
Coverage
of HDP

AEEEM 0.654 0.736 0.528 0.739* 48%
ReLink 0.654 0.665 0.500 0.702* 88%

MORPH 0.657 0.667 0.590 0.736* 100%
NASA 0.654 0.527 0.500 0.734* 52%

SOFTLAB 0.695 0.612 0.554 0.708* 100%

• HDP by KSAnalyzer with the cutoff of 0.05 outperforms
CPDP-CM with statistical significance when considering
results from All targets in our experimental settings.
• The Cliff’s δ between CPDP-CM and HDP is 0.296 and

the effect size is small.
• HDP by KSAnalyzer with the cutoff of 0.05 leads to

better or comparable results to CPDP-IFS with statistical
significance. (no asterisks in CPDP-IFS of Table 2)
• HDP by KSAnalyzer with the cutoff of 0.05 outperforms

CPDP-IFS with statistical significance when considering
results from All targets in our experimental settings.
• The Cliff’s δ between CPDP-IFS and HDP is 0.792 and

the magnitude of the effect size is large.

6.2 Target Prediction Coverage

Target prediction coverage shows how many target projects
can be predicted by the HDP models. If there are no feasible
prediction combinations for a target because of there being
no matched metrics between source and target datasets, it
might be difficult to use an HDP model in practice.

For target prediction coverage, we analysed our HDP
results by KSAnalyzer with the cutoff of 0.05 by each source
group. For example, after applying metric selection and
matching, we can build a prediction model by using EQ in
AEEEM and predict each of 23 target projects in four other
dataset groups. However, because of the cutoff value, some
predictions may not be feasible. For example, EQ⇒Apache
was not feasible because there are no matched metrics
whose matching scores are greater than 0.05. Instead, an-
other source dataset, JDT, in AEEEM has matched metrics to
Apache. In this case, we consider the source group, AEEEM,
covered Apache. In other words, if any dataset in a source
group can be used to build an HDP model for a target, we
count the target prediction is as covered.

Table 3 shows the median AUCs and prediction target
coverage. The median AUCs were computed by the AUC
values of the feasible HDP predictions and their correspond-
ing predictions of WPDP, CPDP-CM, and CPDP-IFS. We
conducted the Wilcoxon signed-rank test on results between
WPDP and baselines [77]. Like Table 2, better results be-
tween baselines and our approach with statistical signifi-
cance are in bold font, underlined, and/or with asterisks.

First of all, in each source group, we could observe
HDP outperforms or is comparable to WPDP with statistical
significance. For example, target projects were predicted by
some projects in ReLink and the median AUC for HDP
by KSAnalyzer is 0.702 while that of WPDP is 0.654. In
addition, HDP by KSAnalyzer also outperforms or had
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TABLE 4: Win/Tie/Loss results of HDP by KSAnalyzer
(cutoff=0.05) against WPDP (Baseline1), CPDP-CM (Base-
line2), and CPDP-IFS (Baseline3).

Target
Against

WPDP
(Baseline1)

CPDP-CM
(Baseline2)

CPDP-IFS
(Baseline3)

Win Tie Loss Win Tie Loss Win Tie Loss
EQ 4 0 0 2 2 0 4 0 0
JDT 0 0 5 3 0 2 5 0 0
LC 6 0 1 3 3 1 3 1 3
ML 0 0 6 4 2 0 6 0 0
PDE 3 0 2 2 0 3 5 0 0

Apache 6 0 5 8 1 2 9 0 2
Safe 14 0 3 12 0 5 15 0 2

Zxing 8 0 0 6 0 2 7 0 1
ant-1.3 6 0 1 6 0 1 5 0 2

arc 3 1 0 3 0 1 4 0 0
camel-1.0 3 0 2 3 0 2 4 0 1

poi-1.5 2 0 2 3 0 1 2 0 2
redaktor 0 0 4 2 0 2 3 0 1

skarbonka 11 0 0 4 0 7 9 0 2
tomcat 2 0 0 1 1 0 2 0 0

velocity-1.4 0 0 3 0 0 3 0 0 3
xalan-2.4 0 0 1 1 0 0 1 0 0
xerces-1.2 0 0 3 3 0 0 1 0 2

cm1 7 1 2 8 0 2 9 0 1
mw1 5 0 1 4 0 2 4 0 2
pc1 1 0 5 5 0 1 6 0 0
pc3 0 0 7 7 0 0 7 0 0
pc4 0 0 7 2 0 5 7 0 0
ar1 14 0 1 14 0 1 11 0 4
ar3 15 0 0 5 0 10 10 2 3
ar4 16 0 0 14 1 1 15 0 1
ar5 14 0 4 14 0 4 16 0 2
ar6 7 1 7 8 4 3 12 0 3

Total 147
66.2%

3
1.4%

72
32.4%

147
66.2%

14
6.3%

61
27.5%

182
82.0%

3
1.3%

37
16.7%

a comparable prediction performance against CPDP-CM.
There are no better results in CPDP-CM than those in HDP
by KSAnalyzer with statistical significance (no underlined
results in third column in Table 3). In addition, HDP by
KSAnalyzer outperforms CPDP-IFS in all source groups.

The target prediction coverage in the MORPH and
SOFTLAB groups yielded 100% as shown in Table 3. This
implies our HDP models may conduct defect prediction
with high target coverage even using datasets which only
appear in one source group. AEEEM, ReLink, and NASA
groups have 48%, 88%, and 52% respectively since some
prediction combinations do not have matched metrics be-
cause of low matching scores (≤0.05). Thus, some prediction
combinations using matched metrics with low matching
scores can be automatically excluded. In this sense, our HDP
approach follows a similar concept to the two-phase predic-
tion model [79]: (1) checking prediction feasibility between
source and target datasets, and (2) predicting defects.

6.3 Win/Tie/Loss Results

To investigate our performance evaluation for HDP in de-
tail, we report the Win/Tie/Loss results of HDP by KS-
Analyzer with the cutoff of 0.05 against WPDP (Baseline1),
CPDP-CM (Baseline2), and CPDP-IFS (Baseline3) in Table 4.

KSAnalyzer with the cutoff of 0.05 conducted 222 out of
600 prediction combinations since 378 combinations do not
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Fig. 4: Distribution of metrics (matching score=0.91) from
ant-1.3⇒ar5 (AUC=0.946).

have any matched metrics because of the cutoff threshold.
In Table 4, the target dataset, EQ, was predicted in four
prediction combinations and our approach, HDP, outper-
forms Baseline1 and Baseline3 in the four combinations (i.e.
4 Wins). However, HDP outperforms Baseline2 in only two
combinations of the target, EQ (2 Wins).

Against Baseline1, the six targets such as EQ, Zxing,
skarbonka, tomcat, ar3, and ar4 have only Win results. In
other words, defects in those six targets could be predicted
better by other source projects using HDP models by KSAn-
alyzer compared to WPDP models.

In Figure 4, we analyzed distributions of matched met-
rics using box plots for one of Win cases, ant-1.3⇒ar5.
The gray, black, and white box plots show distributions
of matched metric values in all, buggy, and clean instances
respectively. The three box plots on the left-hand side rep-
resent distributions of a source metric while the three box
plots on the right-hand side represent those of a target
metric. The bottom and top of the boxes represent the first
and third quartiles respectively. The solid horizontal line in a
box represents the median metric value in each distribution.
Black points in the figure are outliers.

Figure 4 explains how the prediction combination of ant-
1.3⇒ar5 can have a high AUC, 0.946. Suppose that a simple
model predicts that an instance is buggy when the metric
value of the instance is more than 40 in the case of Figure 4.
In both datasets, approximately 75% or more buggy and
clean instances will be predicted correctly. In Figure 4, the
matched metrics in ant-1.3⇒ar5 are the response for class
(RFC: number of methods invoked by a class) [80] and the
number of unique operands (unique operands) [4], respec-
tively. The RFC and unique operands are not the same metric
so it might look like an arbitrary matching. However, they
are matched based on their similar distributions as shown in
Figure 4. Typical defect prediction metrics have tendencies
in which higher complexity causes more bug-proneness [1],
[2], [6]. In Figure 4, instances with higher values of RFC and
unique operands have the tendency to be more bug-prone.
For this reason, the model using the matched metrics could
achieve such a high AUC (0.938). We could observe this bug-
proneness tendency in other Win results. Since matching
metrics is based on similarity of source and target metric
distributions, HDP also addresses several issues related to
a dataset shift such as the covariate shift and domain shift
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Fig. 5: Distribution of metrics (matching score=0.45) from
Safe⇒velocity-1.4 (AUC=0.391).

discussed by Turhan [81].
The Win/Tie/Loss results show that with our HDP

model by KSAnalyzer there is a higher possibility of getting
a better prediction performance.

However, there are still about 32% Loss results against
WPDP as shown in Table 4. The eight targets such as JDT,
ML, redaktor, velocity-1.4, xalan-2.4, xerces-1.2, pc3, and pc4
have no Wins at all against Baseline1. In addition, other
targets still have Losses even though they have Win or Tie
results.

As a representative Loss case, we investigated distribu-
tions of the matched metrics in Safe⇒velocity-1.4, whose
AUC is 0.391. As observed, Loss results were usually caused
by different tendencies of bug-proneness between source
and target metrics. Figure 5 shows how the bug-prone
tendencies of source and target metrics are different. In-
terestingly, the matched source and target metric by the
KSAnalyzer is the same as LOC (CountLineCode and loc) in
both. As we observe in the figure, the median metric value
of buggy instances is higher than that of clean instances in
that the more LOC implies the higher bug-proneness in the
case of Safe. However, the median metric value of buggy
instances in the target is lower than that of clean instances
in that the less LOC implies the higher bug-proneness in
velocity-1.4. This inconsistent tendency of bug-proneness
between the source and target metrics could degrade the
prediction performance although they are the same metric.

We regard the matching that has an inconsistent bug-
proneness tendency between source and target metrics as a
noisy metric matching. We could observe this kind of noisy
metric matching in prediction combinations in other Loss
results.

However, it is very challenging to filter out the noisy
metric matching since we cannot know labels of target
instances in advance. If we could design a filter for the noisy
metric matching, the Loss results would be minimized.
Thus, designing a new filter to mitigate these Loss results
is an interesting problem to address. Investigating this new
filter for the noisy metric matching will remain as future
work.

Figure 5 also explains why CPDP-CM did not show
reasonable prediction performance. Although the matched
metrics are same as LOC, its bug-prone tendency is incon-
sistent. Thus, this matching using the common metric was
noisy and was not helpful for building a prediction model.

TABLE 5: Prediction performance (a median AUC and %
of Win) in different metric selections.

Approach
Against HDPWPDP CPDP-CM CPDP-IFS

AUC Win% AUC Win% AUC Win% AUC
Gain Ratio 0.657 63.7% 0.645 63.2% 0.536 80.2% 0.720
Chi-Square 0.657 64.7% 0.651 66.4% 0.556 82.3% 0.727
Significance 0.657 66.2% 0.636 66.2% 0.553 82.0% 0.724

Relief-F 0.670 57.0% 0.657 63.1% 0.543 80.5% 0.709
None 0.657 47.3% 0.624 50.3% 0.536 66.3% 0.663

TABLE 6: Prediction performance in other analyzers with
the matching score cutoffs, 0.05 and 0.90. (TgtCov=Target
coverage)

AnalyzerCutoff
Against HDP Tgt

CovWPDP CPDP-CM CPDP-IFS
AUCWin% AUC Win% AUC Win% AUC

P 0.05 0.684 30.3% 0.640 45.2% 0.511 54.5% 0.617* 100%
P 0.90 0.657 54.2% 0.622 65.1% 0.535 78.3% 0.692* 96%

KS 0.05 0.657 66.2% 0.636 66.2% 0.553 82.4% 0.724* 100%
KS 0.90 0.657 100% 0.761 71.4% 0.624 100.0% 0.852* 21%

SCo 0.05 0.684 28.5% 0.640 37.3% 0.511 46.3% 0.542* 100%
SCo 0.90 0.684 29.0% 0.639 36.6% 0.511 48.4% 0.547 100%

Overall, the numbers of Win and Tie results are 147 and
3 respectively out of all of the 222 prediction combinations.
This means that in 67.6% of prediction combinations our
HDP models achieve better or comparable prediction per-
formance than those in WPDP.

The Win/Tie/Loss results against Baseline2 and Base-
line3 show a similar trend. In the 161 (72.5%) out of 222
prediction combinations, HDP outperforms and is compara-
ble to CPDP-CM. Against Baseline3, 185 (83.3%) prediction
combinations are Win or Tie results.

6.4 Performance in Different Metric Selections
Table 5 shows prediction results on various metric selection
approaches including with no metric selection (‘None’). We
compare the median AUCs of the HDP results by KSAna-
lyzer with the cutoff of 0.05 to those of WPDP, CPDP-CM,
or CPDP-IFS, and report the percentages of Win results.

Overall, we could observe metric selection to be helpful
in improving prediction models in terms of AUC. When
applying metric selection, the Win results account for more
than about 63% in most cases against WPDP and CPDP-CM.
Against CPDP-IFS, the Win results of HDP account for more
than 80% after appying the metric selection approaches. This
implies that the metric selection approaches can remove
irrelevant metrics to build a better prediction model. In
addition, this result confirms the previous studies that we
can build prediction models better than or comparable to
WPDP models with even a few key metrics [44], [50].
However, the percentages of Win results in ‘None’ were
lower than those in applying metric selection. Among metric
selection approaches, ‘Chi-Square’ and ‘Significance’ based
approaches lead to the best performance in terms of the
percentages of the Win results (64.7%-66.2%) against WPDP.

6.5 Performance in Various Metric Matching Analyzers
In Table 6, we compare the prediction performance in other
analyzers with the matching score cutoff thresholds, 0.05
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TABLE 7: Win/Tie percentages of HDP by KSAnalyzer
(cutoff=0.05) against WPDP, CPDP-CM, and CPDP-IFS by
different machine learners.

HDP
Learners

Against
WPDP CPDP-CM CPDP-IFS

Win Tie Win Tie Win Tie
Logistic 66.2% 1.4% 66.2% 6.3% 82.0% 2.7%

RandomForest 10.4% 2.3% 42.3% 1.4% 65.8% 2.2%
BayesNet 34.7% 4.1% 45.9% 2.7% 66.2% 2.7%

SVM 24.3% 23.0% 27.5% 0.0% 32.9% 14.9%
J48 30.2% 11.7% 32.4% 1.4% 41.9% 12.1%

SimpleLogistic 45.5% 2.7% 69.4% 6.8% 84.2% 3.2%
LMT 42.8% 3.2% 64.4% 6.3% 79.7% 3.2%

and 0.90. HDP’s prediction results by PAnalyzer, with a
cutoff of 0.90, are comparable to WPDP. This implies that
comparing 9 percentiles between source and target metrics
can evaluate the similarity of them well with a threshold
of 0.90. However, PAnalyzer with the cutoff of 0.90 did not
achieve 100% target coverage and is too simple an approach
to lead to better prediction performance than KSAnalyzer.
In KSAnalyzer with a cutoff of 0.05, the AUC (0.724) outper-
forms it (0.657) in WPDP with statistical significance.

HDP by KSAnalyzer with a cutoff of 0.90 could lead to
significant improvement in the AUC value (0.852) compared
to that (0.724) with the cutoff of 0.05. However, the target
coverage is just 21%. This is because some prediction combi-
nations are automatically filtered out since poorly matched
metrics, whose matching score is not greater than the cutoff,
are ignored. In other words, defect prediction for 79% of
targets was not conducted since the matching scores of
matched metrics in prediction combinations for the targets
are not greater than 0.90 so that all matched metrics in the
combinations were ignored.

An interesting observation in PAnalyzer and KSAna-
lyzer is that AUC values of HDP by those analyzers im-
proved when a cutoff threshold increased. As the cutoff
threshold increased as 0.05, 0.10, 0.20,. . . , and 0.90, we
observed prediction results by PAnalyzer and KSAnalyzer
gradually improved from 0.617 to 0.692 and 0.724 to 0.852 in
AUC, respectively. This means these two analyzers can filter
out negative prediction combinations well. As a result, the
percentages of Win results are also significantly increased.

Results by SCoAnalyzer were worse than WPDP results.
In addition, prediction performance rarely changed regard-
less of cutoff thresholds; results by SCoAnalyzer in different
cutoffs from 0.05 to 0.90 did not vary as well. A possible
reason is that SCoAnalyzer does not directly compare the
distributions between source and target metrics. This result
implies that the similarity of distribution between source
and target metrics is a very important factor for building a
better prediction model.

6.6 Performance in Various Machine Learners

To investigate if HDP works with other machine learners,
we built HDP models (KSAnalyzer and the cutoff of 0.05)
with various learners used in defect prediction literature
such as Random Forest, BayesNet, SVM, J48 Decision Tree,
Simple Logistic, and Logistic Model Trees (LMT) [1], [7], [8],
[70], [71], [82]. Table 7 shows Win/Tie results.

Logistic Regression (Logistic) led to the best results
among various learners. The Logistic Regression models
works well when there is a linear relationship between a
predictor variable (a metric) and the logit transformation of
the outcome variable (bug-proneness) [83]. In our study, this
linear relationship is related to the bug-proneness tendency
of a metric, that is, a higher complexity causes more bug-
proneness [1], [2], [6]. As the consistent bug-prone tendency
of matched metrics is important in HDP, the HDP models
built by Logistic Regression can lead to the best prediction
performance.

HDP models built by other learners such as Simple Lo-
gistic and LMT led to comparable results to Logistic Regres-
sion against CPDP-CM and CPDP-IFS. Against Baseline2,
Win results (69.4% and 64.4%) in Simple Logistic and LMT
are comparable to Win results (66.2%) in Logistic. Simple Lo-
gistic also uses the logit function and LMT adopts Logistic
Regression at the leaves of decision tree [82]. In other words,
both learners consider the linear relationship like Logistic
Regression [83]. In our experimental settings, HDP tends to
work well with the learners based on the linear relationship
between a metric and a label (bug-proneness).

6.7 Summary

In Section 6, we showed HDP results for RQ1. The follow-
ings are the key observations of the results in our experi-
mental setting:

• Overall, HDP led to better or comparable results to
the baselines such as WPDP, CPDP-CM, and CPDP-
IFS when using KSAnalyzer with the cutoff of 0.05 and
significance attribute selection.
• Compared to WPDP, HDP achieved 67.6% of Win/Tie

results. However, there are still 32.4% of Loss results
against WPDP. Based on the analysis of distributions of
matched metrics, we observed that the Loss cases are
caused by the inconsistent defect-proneness tendency of
the matched metrics. Identifying the inconsistent ten-
dency in advance is a challenging problem to be solved.
• Applying metric selection approaches could improve

HDP performances against the baselines.
• KSAnalyzer showed the best HDP performance com-

pared to PAnalyzer and SCoAnalyzer. This confirms that
KS-test is a good tool to compare distributions of two
variables [55], [58].
• HDP worked well with Logistic Regression but not other

machine learners. One possible reason is that Logistic
Regression captures the linear relationship between met-
rics and the logit transformation of labels that is related
to the bug-proneness tendency of the metrics.

7 SIZE LIMITS (LOWER BOUNDS) FOR EFFECTIVE
TRANSFER LEARNING

In this section, we investigate the lower bounds of the
effective sizes of source and target datasets for HDP models
to address RQ2.

RQ2: What are the lower bounds of the size of source
and target datasets for effective HDP?
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Fig. 6: Improvements of using sampled data over all data
with sampled size N = {50, 100, 150, 200}. We label the
data in table 1 from a to z, and the last two datasets ar5
and ar6 as A and B.

Since HDP compares the distributions of source metrics
to those of target metrics, it is important to seek the em-
pirical evidence for the effective sizes of source and target
datasets to match source and target metrics. We first present
the results of the empirical study for RQ2 in this section and
validate the generality of its results in Section 8.

Like prior work [8], [12], [13], [39], [45], the basic HDP
method we proposed above uses all the instances in po-
tential source and target data to perform KS-test to select
the best matched metrics and then build defect prediction
learners. Collecting all that data from source and target
projects need much more work and also for the target
project, it requires waiting for it to finish before transferring
its learned lessons. This begs the question “how early can
we transfer?”. That is, how few data from source and target
projects do we need before transfer can be effective? In
this section, we conduct an empirical study to answer these
questions related to RQ2.

To investigate the size limits for effective transfer learn-
ing in the setting of CPDP across datasets with heteroge-
neous metric sets, we focus on the HDP approach. There are
other approaches such as CPDP-IFS [46] and CCA+ [47]. In
Section 6, we observed that HDP outperforms CPDP-IFS.
In addition, CCA+ was evaluated in somewhat different
context, i.e., cross-company defect prediction and with 14
projects which are far less than 28 projects used in our
experiments for HDP. In addition, the implementation of
CCA+ is not publicly available yet and more complex than
HDP. For this reason, we conducted our empirical study for
RQ2 based on HDP.

7.1 200 Random Samples are Enough

Recall from the above, HDP uses datasets in a two step
process. To test the impact of having access to less data,
we add an instance sampling process before performing
metric matching: instead of using all the instances from
candidate source and target datasets, those datasets will
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Fig. 7: Improvements of using sampled data N = {50, 100,
150, 200} with EPV constraints. We label the data in table
1 from a to z, and the last two datasets ar5 and ar6 as A
and B.

be randomly sampled to generate smaller datasets of size
N ∈ {50, 100, 150, 200}. If the number of instances in the
original dataset is smaller than N , all those instances will
be included. With those sampled data, we perform metric
matching to build a learner and finally predict labels of all
original data in the target project.

The results for this HDP-with-limited-data experiment is
shown in Figure 6 (we display median AUC results from 20
repeats, using Logistic Regression as the default learner). In
that figure:

• The black line show the results using all data;
• The colourful lines show results of transferring from some

small N number of samples (instead of all) in the source
and target datasets during metric matching and learner
building;
• The letters show the unique ID of each dataset.

The datasets are ordered left to right by the difference to the
black line (where we transfer using all the source data):

• On the left, the black line is above the red line; i.e. for
those datasets, we do better using all data than using
some.
• On the right, the black line is below the red line; i.e. for

those datasets, we do worse using all data than using
some.

Note that the gap between the red and black line shrinks
as we use more data and after N = 100, the net gap space
is almost zero. When N = 200, 27/28 tests are within 0.05
difference in terms of AUC and 17/28 tests show smaller
datasets have equivalent or even better performance. Here,
we recommend that sample size N = 200 could be good
enough for this HDP framework to obtain a good predictor.

7.2 20 Defective Examples are Enough

The results of the last section are very encouraging—a
small number of source and target examples are enough
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for effective transfer learning. Naturally, we were suspicious
of this result (since it was “almost too good to be true”).
Accordingly, we explored the literature and found:
• Evidence that this “a few examples are enough” has been

seen in other domains [84];
• Methods to reduce the cost of sampling this dataset, even

further.
Working in the domain cardiology, Peduzzi et al. [84] report
10 “events” per variable (EPV) are enough to maximize the
predictive performance of Logistic Regression (the learner
used in this study). Translated into our terminology, that
study would predict that 10 defective data per independent
variable should suffice for effective learning. Of course,
learners require defective and non-defective examples so to
M defective examples, we add (N − M) non-defective
examples more.

To apply the method of Peduzzi et al., we first instru-
mented HDP to determine how many independent vari-
ables were picked during metric selection. In practice, that
number was very small: usually just 2. Hence, applying
Peduzzi et al.’s rule (EPV=10), we picked 2 × 10 = 20
randomly selected defective data, then randomly added
(N − M) non-defective data for N ∈ {50, 100, 150, 250}
for the source data. For the target dataset, since we do not
know the data labels, we simply sampled N for target data
in metric matching.

(Aside: note that this is different to the above experiment
since, before, the more N examples we selected, the more
defective instances we would use. Now, in this experiment,
we will also use a fixed M = 20 number of defects.).

The results are shown in Figure 7. Like before:
• These are median AUC results from 20 repeats;
• The black/colourful lines show the results using all/some of

data from the source and target datasets during metric
matching and learner building, respectively (but now,
the some never contains more than M = 20 defective
instances);
• The datasets are ordered left to right according the

performance difference between using all or some of the
data;
• On the left/right , we do better/worse using all data than

using some.
We observe that between N = 50 and N = 200, the
performance delta does not change by much. Also, if we
compare N = 200 between Figure 6 and Figure 7, there
is no large disadvantage of using just M = 20 defective
instances.

Note that such a very small sample would be quick to
collect: after writing (say) a few hundred classes, inspect
enough to find 20 defective ones—at which point that data
is a candidate for transfer learning.

8 EXPLAINING RESULTS OF SIZE LIMITS FOR EF-
FECTIVE TRANSFER LEARNING

To assess the generality of the results in Section 7, we
need some background knowledge that knows when a few
samples will (or will not) be sufficient to build a defect
predictor. Using some sampling theory, this section:

• Builds such a mathematical model;
• Maps known aspects of defect data into that model;
• Identifies what need to change before the above results

no longer hold.
To start, we repeat the lessons learned above as well as what
is known about defect datasets. Next, we define a maths model
which will be used in a Monte Carlo simulation to generate a
log of how many samples are required to find some signal.
This log will be summarized via a decision tree learner.

8.1 Set up
8.1.1 Lessons from the above work
The results in Section 7 show that a small number of exam-
ples are sufficient to build a defect predictor, even when the
data is transferred from columns with other names. In the
following we will build a model to compute the probability
that n training examples are sufficient to detect e% defective
instances.

In order to simplify the analysis, we divide n into n <
50, n < 100, n < 200, and n ≥ 200 four ranges respectively
(and note that n ≥ 200 is where the above results do not
hold).

8.1.2 Known about defect datasets
Recent results [45], [85] show that, for defect data, good
predictors can be built via a median chop of numeric project
data; they are divided into b = 2 bins, i.e., defective bin
and non-defective bin. For example, defective instances that
likely have high metric values belong to the defective bin
while non-defective ones that have low metric values belong
to the non-defective bin [85].

Other results [86] show that defect prediction data con-
taining dozens of attributes, many of which are correlated
attributes. Hence, while a dataset may have many dimen-
sions, it only really “needs” a few (and by “need” we
mean that adding unnecessary dimensions does not add the
accuracy of defect predictors learned from this data).

Feature subset selection algorithms [53] can determine
which dimensions are needed, and which can be ignored.
When applied to defect data [2], we found that those
datasets may only need d ∈ {2, 3} dimensions.

Hence, in the following, we will pay particular attention
to the “typical” region of b = 2, d ≤ 3.

8.1.3 A Mathematical Model
Before writing down some maths, it is useful to start with
some intuitions. Accordingly, consider a chess board con-
taining small piles of defects in some cells. Like all chess
boards, this one is divided into a grid of b2 cells (in standard
chess, b = 8 so the board has 64 cells). Further, some cells of
the chess board are blank while other cells are e% covered
with that signal.

If we throw a small pebble at that chess board, then the
odds of hitting a defect is c× p where:
• c is the probability of picking a particular cell;
• p is the probability that, once we arrive at that cell, we

will find the signal in that cell.
With a few changes, this chess board model can be used
to represent the process of machine learning. For example,
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instead of a board with two dimensions, data mining works
on a “chess board” with d dimensions: i.e. one for all the
independent variables collected from a project (which are
“needed”, as defined as Section 8.1.2).

Also, instead of each dimension being divided into eight
(like a chess board), it is common in data mining for
SE [87] to divide dimensions accroding to some descritization
policy [88]. Discretization converts a numeric variable with
infinite range into a smaller number of b bins. Hence, the
number of cells in a hyper-dimensional chess board is bd

and the probability of selecting any one cell is

c = 1/(bd) = b−d (5)

Once we arrive at any cells, we will be in a region with e
percent errors. What is the probability p that we will find
those e errors, given n samples from the training data?
According to Voas and Miller [89], if we see something at
probability e, then we will miss it at probability 1− e. After
n attempts, the probability of missing it is (1 − e)n so the
probability of stumbling onto e errors is:

p(e, n) = 1− (1− e)n (6)

The premise of data mining is that in the data “chess board”,
some cells contain more of the signal than others. Hence, the
distribution of the e errors are “skewed” by some factor k.
If k = 1, then all the errors are evenly distributed over all
cells. But at all other values of k, some cells contain more
errors than others, computed as follows:
• Rc is a random number 0 ≤ R ≤ 1, selected for each

part of the space c ∈ C .
• xc is the proportion of errors in each part of C .
xc = Rk

c∈C .
• We normalize xc to be some ratio 0 ≤ xc ≤ 1 as follows:
X =

∑
c∈C xc then xc = xc/X

If e is the ratio of classes within a software project containing
errors, then E is the expected value of selecting a cell and
that cell containing errors:

E =
∑
c∈C

c× xce (7)

where c comes from Equation 5 and e is the ratio of classes
in the training set with defects.

Using these equations, we can determine how many
training examples n are required before p(E,n), from Equa-
tion 6, returns a value more than some reasonable thresh-
old T . To make that determination, we call p(E,n) for
increasing values of n until p ≥ T (for this paper, we used
T = 67%).

For completeness, it should be added that the procedure
of the above paragraph is an upper bound on the number
of examples needed to find a signal since it assumes ran-
dom sampling of a skewed distribution. In practice, if a
data mining algorithm is smart, then it would increase the
probability of finding the target signal, thus decreasing how
many samples are required.

8.1.4 Monte Carlo Simulation
The above maths let us define a Monte Carlo simulation to
assess the external validity of our results. Within 1000 times
of iterations, we picked k, d, b, e values at random from:

1 dimensions = (1,2)
2 | dimensions = 1
3 | | e ≤ 0.1
4 | | | bins = (1,2,3) : n < 50
5 | | | bins > 3 : n < 100
6 | | e > 0.1 : n < 50
7 | dimensions > 1
8 | | bins = (1,2,3)
9 | | | e = 0.1 : n < 100
10 | | | e > 0.1 : n < 50
11 | | bins > 3
12 | | | bins = (4,5)
13 | | | | e = 0.1 : n < 200
14 | | | | e > 0.1
15 | | | | | e ≤ 0.2
16 | | | | | | bins = 4 : n < 100
17 | | | | | | bins = 5 : n < 200
18 | | | | | e > 0.2 : n < 100
19 | | | bins > 5
20 | | | | e ≤ 0.2 : n ≥ 200
21 | | | | e > 0.2 : n < 200
22 dimensions > 2
23 | bins = (1,2)
24 | | dimensions = (3,4,5)
25 | | | dimensions = 3
26 | | | | e ≤ 0.2 : n < 200
27 | | | | e > 0.2 : n < 50
28 | | | dimensions = (4,5)
29 | | | | e = 0.1 : n < 200
30 | | | | e > 0.1
31 | | | | | dimensions = 4 : n < 100
32 | | | | | dimensions = 5
33 | | | | | | e ≤ 0.3 : n < 200
34 | | | | | | e > 0.3 : n < 100
35 | | dimensions > 5 : n ≥ 200
36 | bins > 2
37 | | dimensions = 3
38 | | | bins = (3,4)
39 | | | | e ≤ 0.3
40 | | | | | bins = 3
41 | | | | | | e = 0.1 : n ≥ 200
42 | | | | | | e > 0.1 : n < 200
43 | | | | | bins = 4 : n ≥ 200
44 | | | | e > 0.3 : n < 200
45 | | | bins > 4 : n ≥ 200
46 | | dimensions > 3 : n ≥ 200

Fig. 8: How many n examples are required to be at least
67% likely to find defects occurring at probability e.

• k ∈ {1, 2, 3, 4, 5};
• d ∈ {3, 4, 5, 6, 7} dimensions;
• b ∈ {2, 3, 4, 5, 6, 7} bins;
• e ∈ {0.1, 0.2, 0.3, 0.4}

(These ranges were set using our experience with data min-
ing, For example, our prior work shows in defect prediction
datasets with 40 or more dimensions, that good predictors
can be built using d ≤ 7 of those dimensions [2].)

Within 1000 iterations of Monte Carlo simulation, we in-
creased n until Equation 6 showed p passed our reasonable
threshold. Next, we generated examples of what n value
was found using k, b, d, e.

8.1.5 Decision Tree Learning
These examples were given to a decision tree learner to
determine what n values are selected by different ranges
of {k, b, d, e}. Decision tree learners seek an attribute range
that, when used to split the data, simplifies the distribution
of the dependent variable in each split. The decision tree
learner is then called recursively on each split. To test the
stability of the learned model, the learning is repeated ten
times, each time using 90% of the data from training and the
rest for testing. The weighted average performance values
for the learned decision tree were remarkably good:
• False alarm rates = 2%;
• F-measures (i.e. the harmonic mean of recall and preci-

sion) of 95%
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8.2 Results
The resulting decision tree, shown in Figure 8, defined
regions where building defect predictors would be very easy
and much harder. Such trees can be read as nested if-then-
else statements. For example, Line 1 is an “if”, lines 2 to 21
are the associated “then” and the tree starting at Line 22 is
the “else”. For another example, we could summarise lines
1 to 5 as follows:

If there are one dimension and the probability of the
defects is less than 10% then (if the number of bins per
dimension is three or less then 50 samples will suffice;
else, up to 100 samples may be required.)

In that tree:
• Lines 2 to 6 discuss a very easy case. Here, we only need

one dimension to build defect predictors and, for such
simple datasets, 50 to 100 examples are enough for defect
prediction.
• Lines 22, 36, 46 show a branch of the decision tree where

we need many dimensions that divide into many bins.
For such datasets, we require a larger number of samples
to learn a predictor (n ≥ 200).

The key part of Figure 8 is the “typical” region defined in
Section 8.1.2; i.e. b = 2, d ≤ 3:
• Lines 7 to 10 show one set of branches covering this

“typical” region. Note lines 9, 10: we need up to 100
examples when the defect signal is rare (10%) but far
fewer when the signal occurs at e > 10%.
• Lines 22 to 27 show another set of branches in this

“typical region”. Note lines 26, 27: we need up 50 to 200
examples.

8.3 Summary
Our experiments with transfer learning showed that 50 to
200 examples are needed for adequate transfer of defect
knowledge. If the reader doubts that this number is too
small to be effective, we note that:
• Other researchers working with Logistic Regression [84]

have reported that 10 “events per decision variable” are
adequate for building models using that data miner. For
our defect datasets, in Figure 7, we repeated the analysis
of [84] and found that considering 2 independent vari-
able on average, there was little improvement after 100
examples with EPV = 10 (as would have been predicted
by [84]).
• The maths of Section 8 show that this “100 examples are

enough” is a feature of the kinds of data currently being
explored in the defect prediction literature.

9 DISCUSSION

9.1 Practical Guidelines for HDP
We proposed the HDP models to enable defect prediction
on software projects by using training datasets from other
projects even with heterogeneous metric sets. When we have
training datasets in the same project or in other projects with
the same metric set, we can simply conduct WPDP or CPDP
using recently proposed CPDP techniques respectively [8],
[12], [37], [38], [39], [40]. However, in practice, it might be

that no training datasets for both WPDP and CPDP exist. In
this case, we can apply the HDP approach.

In Section 6 and Table 6, we confirm that HDP by KSAn-
alyzer with the cutoff of 0.05 outperforms WPDP and shows
100% target coverage. Since KSAnalyzer can match similar
source and target metrics, we guide the use of KSAnalyzer
for HDP. In terms of the matching score cutoff threshold,
there is a trade-off between prediction performance and
target coverage. Since a cutoff of 0.05 that is the widely
used level of statistical significance [78], we can conduct
HDP using KSAnalyzer with the cutoff of 0.05. However,
we observe some Loss results in our empirical study. To
minimize the percentage of Loss results, we can sacrifice the
target coverage by increasing the cutoff as Table 6 shows
KSAnalyzer with the cutoff of 0.90 led to 100% Win results
in feasible predictions against WPDP.

9.2 Threats to Validity

We evaluated our HDP models in AUC. AUC is known as
a good measure for comparing different prediction mod-
els [13], [69], [70], [71]. However, validating prediction mod-
els in terms of both precision and recall is also required
in practice. To fairly compare WPDP and HDP models in
precision and recall, we need to identify a proper threshold
of prediction probability. Identifying the proper threshold is
a challenging issue and remains as future work.

For RQ1, we computed matching scores using all source
and target instances for each prediction combination. With
that matching scores, we tested prediction models on a
test set from the 50:50 random splits because of the WPDP
models as explained in Section 5.4. To conduct WPDP with
all instances of a project dataset as a test set, we need
a training dataset from the previous releases of the same
project. However, the training dataset is not available for
our subjects. This may lead to an issue on construct validity
since the matching score computations are not based on ac-
tual target instances used in the 50:50 random sampling. To
address this issue, we additionally conducted experiments
with different sample sizes, i.e., 50, 100, 150, and 200 rather
using all instances when computing matching scores for
HDP in Section 7.

10 CONCLUSION

In the past, cross-project defect prediction cannot be con-
ducted across projects with heterogeneous metric sets. To
address this limitation, we proposed heterogeneous defect
prediction (HDP) based on metric matching using statistical
analysis [55]. Our experiments showed that the proposed
HDP models are feasible and yield promising results. In
addition, we investigated the lower bounds of the size of
source and target datasets for effective transfer learning in
defect prediction. Based on our empirical study, we sug-
gested that the sample size of 200 for source (with at least
20 defective samples) and target datasets could be effective
enough for our HDP models.

HDP is very promising as it permits potentially all
heterogeneous datasets of software projects to be used for
defect prediction on new projects or projects lacking in
defect data. In addition, it may not be limited to defect



IEEE TRANS SE. SUBMITTED JAN‘16, REVISION#?, APR‘16 17

prediction. This technique can potentially be applicable to
all prediction and recommendation based approaches for
software engineering problems. As future work, we will
explore the feasibility of building various prediction and
recommendation models using heterogeneous datasets.
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