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Are Delayed Issues Harder to Resolve?

Tim Menzies, William Nichols, Forrest Shull, Lucas
Layman

Abstract Many practitioners and academics believe in a delayed issue effect (DIE); i.e. as
issues linger longer in a system, they become very much harder to resolve. This belief is
often used to justify major investments in new development processes that promise to retire
more issues, sooner.

This paper tests for the delayed issue effect in 171 software projects conducted around
the world in the period from 2006–2014. To the best of our knowledge, this is the largest
study yet published on this effect. We found no evidence for the delayed issue effect; i.e.
the time to resolve issues in a later phase was not consistently more than when issues were
resolved soon after their introduction.

This paper documents the above studies and explores reasons for this mismatch between
this commonly held belief and empirical data. In summary, DIE is not some constant across
all projects. Rather, DIE might actually be an historical relic that occurs intermittently only
in certain kinds of infrequently occuring projects. This is a significant result since it predicts
that new development processes that promise to faster retire more issues will have only a
limited return on investment.
Categories/Subject Descriptors: D.2.8 [Software Engineering]: Process metrics.
Keywords: software economics, phase delay, cost to fix.

1 Introduction

In 2013-2014, eleven million programmers [30] and half a trillion dollars [3] were spent on
information technology. Such a large and growing effort should be managed and optimized
via well-researched conclusions.

It is standard practice in other fields, such as medicine, to continually revisit old con-
clusions [47]. Accordingly, this paper revisits the commonly held belief of a delayed issue
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effect (hereafter, DIE). Later in this paper, we offer a precise definition for this effect. For the
moment, we describe it as follows: it is far easier to resolve issues earlier rather than later
in the lifecycle. Figure 1 shows an example of the delayed issue effect (relating the relative
cost of fixing requirements issues at different phases of a project).

Basili & Boehm comment that since the 1980s, this effect

“...has been a major driver in focusing industrial software practice on thorough re-
quirements analysis and design, on early verification and validation, and on up-front
prototyping and simulation to avoid costly downstream fixes” [12].

Other prominent authors have commented on its perceived usefulness as a rule of thumb
for software engineers. McConnell mentions it as a ”common observation” in the field and
summarizes the intuitive argument for why it should be so:

”A small mistake in upstream work can affect large amounts of downstream work.
A change to a single sentence in a requirements specification can imply changes in
hundreds of lines of code spread across numerous classes or modules, dozens of test
cases, and numerous pages of end-user documentation” [37].

Glass also endorses this effect, asserting that “requirements errors are the most expensive
to fix when found during production but the cheapest to fix early in development” is “really
just common sense” [25]. Other researchers are just as adamant in asserting that that the
delayed issue effect is a proven fact. For example, what we call the delayed issued effect
was listed first by Boehm and Basili in their ”Top 10 list” of “objective and quantitative
data, relationships, and predictive models that help software developers avoid predictable
pitfalls and improve their ability to predict and control efficient software projects” [12].

This paper calls into question all the above claims about the delayed issue effect. We
suggest that the delayed issue effect might have been an dominant effect decades ago, but

Fig. 1: An example DIE effect. From Boehm’81 [10].
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not for 21st software development. The delayed issue effect was first reported in 1981 in a
era of punch card programming and non-interactive environments [10]. In the 21st century,
we program in interactive environments with higher-level languages and better source code
control tools. Such tools allow for the faster refactoring of existing code– in which case,
managing the changes required to fix (say) an incorrect requirements assumption is far less
onerous than before.

Also, we note that our development practices have changed in ways that could miti-
gate the delayed issued effect. Previously, software was large monolithic systems that were
”write once and maintain forever.” Today, there are more architectures that support extensive
and faster changes to software. For example, Microsoft is adjusting its development prac-
tices towards a continuous release paradigm. Theisen et al. reports their experiences where
Microsoft architects continually adjust their modules in response to security issues [55].
Also, upgrades to their Windows operating system is moving from service patches (which
occur rarely) to continuous deployment (so there will be no Windows 11- just a stream of
continuous updates to what is currently called Windows 10 [14]).

For another example, consider the MEAN stack preferred for web development by the
continuous deployment community. Older architectures for web development often used
some variant of LAMP (Linux + Appache + Mysql + PHP) that was an intricate combination
of tools written in different languages. MEAN stacks, on the other hand, use Javascript
throughout– which makes large scale reorganizations faster to complete [56].

Inspired by the success of agile approaches, other development organizations are simi-
larly reorganizing their work– witness the US Department of Defense’s 2010 mandate that
all new software acquisitions must adopt agile methods [34]. This change in DoD policy
arises from a separation of baseline architecture (e.g. the design of an aircraft carrier) and
the development of applications within that architecture. For the baseline architecture, bad
decisions made early in the life cycle may be too expensive to change. But at least at the
DoD, the majority of software development occurs within the framework of some larger
architecture (e.g. an aircraft carrier). These smaller projects can certainly lever the agile
advantage, while using fast refactoring tools that mitigate against the delayed issue effect.

The above argument is an anecdotal evidence that the delayed issue effect might no
longer exist. But anecdotes are not really rigorous evidence. Accordingly, this article ex-
plores the currency of the delayed issue effect. After some initial definitions, we discuss the
value of checking old ideas. Next, a survey of industrial practitioners and researchers to doc-
ument a widespread belief that delayed issues have a negative impact on projects. After that,
we analyze 171 software projects developed in the period 2006–2014 to find no evidence of
the delayed issue effect:

– To ensure reproducibility, all the data used in this study is available in the PROMISE
repository at openscience.us/repo.

– To the best of our knowledge, this the largest study devoted the delayed issue effect yet
conducted.

Finally, we discuss the validity and implications of our results.

1.1 Preliminaries

Before beginning, it is appropriate to make the following full disclosure statement.
All the 171 software projects studied here were developed using the Team Software Pro-

cess (TSPSM), which is a software development methodology developed and promulgated
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by the employer of the second and third author of this paper (for more details on TSP, see
§6.1). Hence, it is tempting to use these results to advocate for TSP since TSP might solve
the DIE problem for software projects without needing all the extra machinery seen in (say)
Silicon Valley continuous deployment organizations1.

That said, it is not clear to us that TSP is such a radical change to software development
that it can stamp out a supposedly rampant problem like the delayed issue effect. We view
TSP as a better way to monitor the activities of existing projects. TSP does not significantly
change a project– it just offers a better way to log the activity within that project.

Hence, given our data, the conclusion of this paper is either the delayed issue effect can
be removed via: simple changes to a project (like TSP) or that the DIE problem does not
exist in the first place. Either way, our general point is the same: the delayed issue effect
does not plague software development (which is a contrary claim to statements from leading
figures in the field of software engineering – see the introduction).

2 Definitions & Hypotheses

This paper uses the following definitions:

– The delayed issue effect: it is very much more difficult to resolve issues in a software
project, the longer they remain.

– Longer time is defined as per Boehm’81 [10]; i.e. the gap between the phases where
issues are introduced and resolved.

– We say that a measure collected in phase 1, ., i, ..j is very much more when that measure
at phase j is larger than the sum of that measure in earlier phases 1  i < j.

– Issues are more difficult when their resolution takes more time or costs more (e.g. needs
expensive debugging tools or the skills of expensive developers).

Note that we use the term “delayed issue effect” as generalization of the more specific rule
“requirements errors are hardest to fix”. This generalization is valid since the rationale for
the rule about requirements is usually done as per McConnell [37]; i.e. small upstream
mistakes very early in the system can cascade into huge problems later in the lifecycle.
That said, we prefer our more general term “delayed issue effect” since not only might
requirements errors cascade, so too might analysis errors, design errors, etc.

This paper defends the following claims. Note that we call them “claims” not “hypothe-
ses” since the later require defense via some statistical significance test. On the other hand,
our claims will be supported via a variety of arguments, presented later in this paper.

Claim1: “DIE” is a commonly held belief. Using a literature review, we can confirm
that there are numerous historical papers (dating back decades) that endorse DIE. Also, using
a survey conducted from this paper, we find that DIE appears as the single most strongly-
held beliefs amongst commercial software engineers.

Claim2: “DIE” is a poorly documented. As discussed in our literature review, many of
the papers reporting the DIE effect are either (1) quite old (papers dating from last century);
(2) quoting prior papers without presenting new data; (3) or citing data sources that can no
longer be confirmed.

Claim3: Delayed Issues not Harder to Resolve. In our sample of 171 software projects
developed, we will show no evidence that, during development, delayed issues were very
much more harder to resolve the longer they were left in the software.

1 E.g. large scale process changes such as open source development and/pr switching to new tools like
NoSQL, Docker, AWS, Javascript and MEAN, Jenkins, Github, etc.
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3 But Why Reassess Old Truisms?

Before going any further, we digress to discuss the merits of revisiting old conclusions in
software engineering.

Beliefs in general principles of software engineering are common to both research and
practice. Professional societies assume such generalities exist when they offer lists of sup-
posedly general “best practices” such as the IEEE 1012 standard for software verifica-
tion [29]. Endres & Rombach offer dozens of lessons of software engineering [20]. Many
other commonly cited researchers do the same; e.g. Glass [25]; Jones [31]; Boehm [13].
Budgen & Kitchenham seek to reorganize SE research using general conclusions drawn
from a larger number of studies [17, 35].

That said, there are many empirical findings that raise doubts that general laws of SE
even exist:

1. Turhan [41] lists 28 studies with contradictory conclusions on the relation of OO mea-
sures to defects. Those results directly contradict some of the laws listed by Endres &
Rombach [20].

2. Ray et al. [48] tested if strongly typed languages predict for better code quality. In 728
projects, they found only a modest benefit in strong typing (and caution that that effect
may actually be due to other conflating factors).

3. Fenton & Neil [22, 23] critique the truism that “pre-release fault rates for software are a
predictor for post-release failures” (as claimed by [18], amongst others). For the systems
described in [24], they show that software modules that were highly fault-prone prior to
release revealed very few faults after release.

4. Meyer claims that object-oriented (OO) encapsulation will reduce error rates in soft-
ware [43]. Yet empirical results suggest that debugging an OO program is many times
harder and longer than debugging a standard procedural program [26].

5. A truism of visual programming is that “visual representations are inherently superior to
mere textual representations”. A review by Menzies suggests that the available evidence
for this claim is hardly conclusive [39].

6. Numerous recent local learning results compare single models learned from all available
data to multiple models learned from clusters within the data [6,7,41,42,44,46,57,58].
A repeated result in those studies is that the local models generated the better effort and
defect predictions (better median results, lower variance in the predictions).

To be fair, SE is not the only field where practitioners hang on to persistent beliefs, even
if the evidence for those beliefs is not strong. The medical profession applies many practices
based on studies that have been disproved. For example, a recent article in the Mayo Clinic
Proceedings [47] found 146 medical practices based on studies in year i, but which were
reversed by subsequent trials within years i + 10. Even when the evidence for or against
a treatment or intervention is clear, medical providers and patients may not accept it [1].
Aschwanden warns that “cognitive biases” such as confirmation bias (the tendency to look
for evidence that supports what you already know and to ignore the rest) influence how we
process information [2].

The cognitive issues that complicate medicine are also found in software engineering.
According to Passos et al. [45], commercial developers are all too willing to believe in gen-
eral truisms. They warn that developers usually assume that the truisms they learn from a
few past projects are general to all their future projects. They comment “past experiences
were taken into account without much consideration for their context [45].” The results
of Jørgensen & Gruschke [33] concur with Passos et al. They report that supposed soft-
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ware engineering “experts” rarely use lessons from past projects to improve their future
reasoning [33]. They note that when the experts fail to revise their beliefs, this leads to poor
conclusions and software projects (see examples in [33]).

In summary, just like medicine, our field suffers when software engineers do not revise
old beliefs. Therefore, it is important to regularly reexamine old beliefs such as the delayed
issue effect.

4 “DIE” is a commonly held belief

To assess the prevalence of DIE, we conducted a survey of software engineers. If our sur-
veyed practitioners make management decisions based on their understanding of SE theory,
then the DIE may well influence their decisions.

Our survey collected data on software engineers’ views of commonly held software
engineering “laws”. One of the laws questioned is a specific form of our delayed issue
effect: “requirements errors are the most expensive to fix when found during production but
the cheapest to fix early in development” (from Glass [25] p.71 who references Boehm &
Basili [12]). We abbreviate this law (illustrated in Figure 1) as RqtsErr.

(Technical aside: we use the RqtsErr formulation since this issue typically needs no sup-
portive explanatory text. If we had asked respondents about our more general term “delayed
issue effect”, we would have had to burden our respondents with extra explanations).

The survey was conducted in two phases using Amazon’s Mechanical Turk. The first
phase was conducted only with professional software engineers solicited through the Me-
chanical Turk; participants were required to complete a pretest to verify their status as a
professional or open source software developer and to confirm their knowledge of basic
software engineering terminology and technology. The second survey was conducted with
Program Committee members of the ESEC/FSE 2015 and ICSE 2014 conferences solicited
via email.

The respondents answered questions on two scales:

– Agreement: “Based on your experience, do you agree that the statement above is cor-
rect?” A Likert scale captured the agreement score from Strongly Disagree to Strongly
Agree. A text box was provided to explain the answer.

– Applicability: “To the extent that you believe it, how widely do you think it applies
among software development contexts?” The possible answers were: -1 meaning “I
don’t know”; and 0 meaning “this law does not apply at all”; 1 meaning “applies in
a very narrow range of projects”; 2 meaning “rarely applies”; 3 meaning “occasion-
ally applies”; 4 meaning “very frequently applies”; and 5 meaning “always applies”.
Respondents were required to explain the applicability score in a text box.

In order to baseline the participant’s answers, participants were presented with the Rqt-
sErr law and others. For the purposes of this paper, the nature of the other laws other than
RqtsErr are not relevant– we only added them in as a way to calibrate responses to the Rqt-
sErr question. All laws were drawn from [25] and [20]. The PC member survey contained an
additional question on “In general, the longer errors are in the system (requirements errors,
design errors, coding errors, etc.), the more expensive they are to fix” (the Delayed Issue
Effect). Responses were recorded using the agreement question Likert scale.
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agreement applicability
Practitioner survey N med mode med mode
Rqts errors are most expensive... 16 5 5 4 5
Inspections can remove 90% of defects 18 4 5 4 5
80-20 rule (defects to modules) 12 4 5 4 5
Most time is spent removing errors 16 4 4 4 5
Process maturity improves output 17 4 4 4 4
Missing reqts are hardest to fix 17 4 4 4 4
Reuse increases prod. and qual. 16 4 4 4 4
OO-programming reduces errors 13 4 4 4 3
Adding manpower to a late project 15 4 4 4 4
Smaller changes have higher error density 14 3 3 3.5 5
A developer is unsuited to test own code 17 3 1 4 5
Researcher survey
Process maturity improves output 4 4 4 4 5
Rqts errors are most expensive... 30 4 4 4 4
DelayedIssueEffect 30 4 4 – –
Reuse increases prod. and qual. 6 4 4 4 4
80-20 rule (defects to modules) 6 4 4 4 3
Missing reqts are hardest to fix 7 4 4 4 3
OO-programming reduces errors 6 4 4 3 4
Inspections can remove 90% of defects 7 4 4 3 3
Adding manpower to a late project 4 3 4 4 3
Most time is spent removing errors 6 3 3 4 4
Smaller changes have higher error density 4 3 – 4 4
A developer is unsuited to test own code 7 2 1 3 3

Fig. 2: Agreement and applicability of SE axioms.

Summary statistics for the agreement and applicability scores for the RqtsErr and De-
layedIssueEffect laws are presented in Figure 2. Responses whose Applicability response
was ”I don’t know” are omitted from analysis.

Both practitioners and researchers strongly believed in RqtsErr: In both sets of re-
sponses, RqtsErr received scores higher than most other laws. Further, in the case of practi-
tioners, this law was rated as the single most believed effect.

Caveat: in the free reponse texts, we note that the researchers who disagreed with the law
generally asserted that requirements change can be expensive, but that the effect depends on
the process used (e.g., agile vs. waterfall) and the adaptability of the system architecture.

Overall, the RqtsErr law was the most agreed upon and most applicable law of 11 sur-
veyed amongst practitioners, and the second most agreed upon law amongst researchers.
This results strongly support that the notion that the delayed issue effect is a commonly held
belief in software engineering.

5 “DIE” is Poorly Documented

One reason that industrial practitioners and academics believe so strongly in the delayed
issue effect is that it is often referenced in the SE literature. For example, we know that
Figure 1 has been presented to the gradaute SE class at North Carolina State University,
without quarrel or critical comment, every year for the last decade.

Yet when we look at the literature, the evidence for delayed issue effect is both very
sparse and very old. The first data on the difficulties of resolving delayed issues as a function
of lifecycle phase date back to large systems in the late 70s from IBM [21], TRW [8],
GTE [16], and Bell Labs [54] (Figure 3). These studies are most often cited by secondary
sources regarding the delayed issue effect. We note that it is unclear from the text in [16]
and [8] if cost is defined in terms of effort, or in actual cost (i.e., labor, materiel, travel, etc).
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These studies suggest that the difficulty (in terms of effort) to find and fix an error
monotonically increases with lifecycle phase. In 1990, Boehm [9] provides data suggesting
that the cost-to-fix curve for small projects (from two student projects of 2000 deliverable
source instructions) is flatter than for large projects (the dashed line of Figure 3).

In the 40 years since these initial studies, few studies have explored the difficulty to
resolve issues as a function of lifecycle phase. Shull et al. [52] conducted a literature sur-
vey and held a series of e-workshops with industry experts on fighting defects. Workshop
participants from Toshiba and IBM reported cost-to-fix ratios between early lifecycle and
post-delivery defects of 1:137 and 1:117 for large projects respectively [52] – but we note
here that the raw data points were not provided (which makes confirming those numbers a
difficult task).

This was a common theme in the literature reviewed for this paper– i.e. that it was no
longer possible to access the data used to make prior conclusions. As an example of this,
Figure 4 shows one 2004 survey that reports an greatly increased delayed issue effect for
requirements issues in eight case studies. Note that we cannot verify any of those results
since the links in the references of that survey are all broken (“page not found” errors).

As to the research into agile methods, one goal of that approach is to reduce the dif-
ficulty associated with making changes later in the lifecycle [5]. Relatively little empirical
data exists on this point. Elssamadisy and Schalliol [19] offers an anecdotal report on the
growing, high cost of rework in a 50 person, three-year, 500KLOC Extreme Programming
project as the project grew in size and complexity– but again we cannot access their exact
figures.

Fig. 3: Historical cost-to-fix curve. From [10].
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case Phase Requirements Issue Found
study Requirements Design Code Test

1 1 3 5 37
2 1 10 40
3 1 10 40
4 1 5 50
5 1 3 7 51
6 1 5 33 75
7 1 20 45 250

Fig. 4: Cost to resolve requirements issues, relative to resolving during requirements. From [53].

Fig. 5: Cost of change from an agile case study. From [15].

All in all, the literature reviewed in this section does not inspire confidence in a DIE
effect due to a lack of applicability and lack of replication. Adding to our doubts are several
studies that report less-than large increase in the difficulties associated with making the
changes associated with delayed issues. Clutterbuck et al. [15] studied a 5-month effort
by a small-to-medium enterprise team developing a 71KLOEC web interface to a database
application to implement 18 change requests– see Figure 5 (note that these were for new and
changed user requirements, not defects). Clutterbuck et al. found the cost of change to be
relatively flat until the later phases, with much of the effort spent in analysis of the change
requests [15]. Note that in this study, the effort increased by only 60% (see the start and end
of the curve in Figure 5).

Another example of less-than large increase in the difficulty associated with delayed
issues comes from Royce [49]. He studied a million-line, safety-critical missile defense sys-
tem (see Figure 6). Design changes (including architecture changes) required approximately
twice the effort of implementation and test changes, and the cost-to-fix in implementation
and test phases increased slowly. Boehm [11] attributes this success to the development
process, which focused on removing architecture risk early in the development lifecycle.

Other examples that report the opposite of DIE are:

– Boehm [9] reported a flatter growth rate for small, non-critical projects.
– Data from NASA’s Johnson Space Flight Center, reported by Shull [52], found that the

cost to find certain non-critical classes of defects was fairly constant across lifecycle
phases (1.2 hours on average early in the project, versus 1.5 hours late in the project).
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Fig. 6: Exception to the rule - The Royce study: cost-to-fix curve. From [49].

5.1 Early Onset of the DIE Effect

One feature of the above results will become very important in the subsequent discussion.
All the literature described above that reports the onset of DIE prior to delivery.

– Figure 1 reports a 40-fold increase in effort requirements to acceptance testing
– Figure 3 reports a 100-fold increase (for the larger projects) before the code is delivered
– The projects surveyed in Figure 4 report changes of a {37,40,40,50,51,70,75,250}-fold

increase in pre-deployment period when the software was being developed.

Any manager noticing this early onset of DIE (prior to delivery, during the initial devel-
opment) would be well-justified in believing that the difficulty in resolving issues will get
much worse. Such managers would therefore expect DIE to have a marked effect, post-
deployment.

We make this point since, in the new project data presented below, there is no early onset
of DIE. That is:

– There is no evidence of a growing problem prior to delivery that delayed issues are
becoming harder to manage

– Hence, there there is less evidence that DIE is a trend that will significantly and nega-
tively effect the product, post-delivery.

6 Delayed Issues not Harder to Resolve

The above analysis motivates a more detailed look at the delayed issued effect. Accordingly,
we examined 171 software projects conducted between 2006 and 2014. These projects took
place at organizations in many countries and were conducted using the Team Software Pro-
cess (TSPSM).

Since 2000, the SEI has been teaching and coaching TSP teams. One of the authors
(Nichols) has mentored software development teams and coaches around the world as they
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deploy TSP within their organizations since 2006. The most recent completions were in
2014. The projects were mostly small to medium, with a median duration of 46 days and a
maximum duration of 90 days in major increments. Several projects extended for multiple
incremental development cycles. Median team size was 7 people, with a maximum of 40.
See Figure 7 for the total effort seen in those projects.

As to problem domain, many of the projects were e-commerce web portals or banking
systems in the US, South Africa, and Mexico. There were some medical device projects
in the US, France, Japan, and Germany as well as a commercial computer-aided design
systems, and embedded systems.

An anonymized version of that data is available in the PROMISE repository at open-
science.us/repo. For confidentiality restrictions, we cannot offer further details on these
projects.

6.1 About TSPSM

TSP is a software project management approach developed at the Software Engineering
Institute (SEI) at Carnegie Mellon University [27]. TSP is an extension of the Personal
Software Process (PSPSM) developed at the SEI by Watts Humphrey [27]. The data from
these TSP projects were collected and stored in the Software Engineering Measured Pro-
cess Repository (SEMPR) at the SEI. The Software Engineering Institute (SEI) at Carnegie
Mellon University explores methods for software process improvement.

Common features of TSP projects include planning, personal reviews, peer inspections,
and coaching. A TSP coach helps the team to plan and analyze performance. The coach is
the only role authorized to submit project data to the SEI. Before reviewing data with the
teams, therefore before submission, these coaches check the data for obvious errors.

During Planning, developers estimate the size of work products and convert this to a
total effort using historical rates. Time in specific tasks come from the process phases and
historical percent time in phase distributions. Defects are estimated using historical phase
injection rates and phase removal yields. Coaches help the developers to compare estimates
against actual results. In this way, developers acquire a more realistic understanding of their
work behavior, performance, and schedule status.

Personal review is a technique taken from the PSP and its use in TSP is unique. Devel-
opers follow a systematic process to remove defects by examining their own work products
using a checklist built from their personal defect profile. This personal review occurs after
some product or part of a product is considered to be constructed and before peer reviews or
test.

Peer inspection is a technique in traditional software engineering and is often called peer
review. Basili and Boehm commented in 2001 [12] that peer reviews can catch over half the
defects introduced into a system. Peer inspection can be conducted on any artifact generated
anywhere in the software lifecycle and can quickly be adapted to new kinds of artifacts.
TSP peer reviews follow the Fagan style in which the reviewer uses a checklist composed
of common team defects prior to a review team meeting.

Overall, the effort associated with adding TSP to a project is not onerous. McHale re-
ports [38]:

– The time spent tracking time, defects, and tasks requires less then 3% of a developer’s
time. Weekly team meetings require at most an hour, which is only 2.5% of a 40 hour
work week.
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Fig. 7: Distribution of effort (which is team size times days of work). Median value = 271 days.

– Team launches and replans average about 1 day per month or 5% planning overhead.

It is true that one staff member is needed as a “coach” to mentor the teams and certify and
monitor that data collection. However, one of us (Nichols) has worked with dozens of TSP
teams. He reports that one trained coach can support 4 or 6 teams (depending upon team
experience).

6.2 Data Integrity

A common property of real-world data sets is the presence of noisy entries (superfluous or
spurious data). The level of noise can be quite high. As reported in [50], around 10% to 30%
of the records in the NASA MDP defect data sets are affected by noise.

One reason to use the SEI data for the analysis of this paper is its remarkably low level
of noise. Nichols et al. [51] report that the noise levels in the SEI TSP data are smaller than
those seen in other data sets. They found in the SEI TSP data that:

– 4% of the data was incorrect (e.g. nulls, illegal formats);
– 2% of the data has inconsistencies such as timestamps where the stop time was before

the start time;
– 3% of the data contained values that were not credible such as tasks listed in one day

that took more than six hours for a single developer.

One explanation for this low level of noise is the TSP process. One the guiding principles
of TSP was that people performing the work are responsible for planning and tracking the
work. That is, all the data collected here was entered by local developers. This data was
then checked by local coaches before being sent to the SEI databases. Coaches are certified
by demonstrating competent use of the TSP process with the artifacts and data. The use of
certified local coaches within each project increases the integrity of our data.

6.3 Data Details

Using tools provided by the SEI, developers kept very detailed logs of their daily activity.
Our data includes work start time, work end time, delta work time, and interruption time.
Software engineers are often interrupted by meetings, requests for technical help, reporting,
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and so forth. These events are recorded, in minutes, as interruption time. In this paper, when
we report “time to resolve an issue,” we show the difference between the start and end times
of a work session, with any interruption time subtracted (the difference in times, minus the
interruptions).

As of November 2014, the SEI TSP database contained data from 212 TSP projects. The
projects completed between July 2006 and November 2014; they included 47 organizations
and 843 people. The database fact tables contain 268,726 time logs, 154,238 task logs,
47,376 defect logs, and 26,534 size logs. After selecting defects from the data log and joining
the data to the time log table 171 of these projects remained (the excluded projects had no
or too few defects to use in this analysis).

In these logs, a defect is any change to a product, after its construction, that is necessary
to make the product correct. A typographical error found in review is a defect. If that same
defect is discovered while writing the code but before review, it is not considered to be a
defect. SEI TSP defect types are:

– Environment: design, compile, test, other support problems
– Interface: procedure calls and reference, I/O, user format
– Data: structure, content
– Documentation: comments, messages
– Syntax: spelling, punctuation typos, instruction formats
– Function: logic, pointers, loops, recursion, computation
– Checking: error messages, inadequate checks
– Build: change management, library, version control
– Assignment: package declaration, duplicate names, scope
– System: configuration, timing, memory

Fig. 8: Phases of our data. Abbreviations: Before= before development; Reqts = requirements; HLD = high-
level design; IntTest = Integration testing (with code from others); SysTest = system test (e.g. load stress tests);
AcceptTest = acceptance testing (with users); review = private activity; inspect = group activity.
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Fig. 9: Distribution of defects found and fixed by phase.

The defect logs in that data include the time and date a defect was discovered, the phase in
which that defect was injected, the phase in which it was removed, the time (in minutes)
required to find and fix the defect, and the categorical type.

The phases logged by our data are shown in Figure 8. Although the representation sug-
gests a waterfall model, the SEI experience is that all real implementations of any size follow
a spiral approach with many team performing the work in iterative and/or incremental de-
velopment cycles.

One special feature of Figure 8 is the before phase, in which the TSP team assures that
management has clearly identified cost, schedule, and scope goals appropriate to the up-
coming development activities, often including a conceptual model [28]. For example an
architecture team must have sufficient requirements to reason about, prototype, and spec-
ify an architecture [4] while a coding only team within a larger project would have more
precisely defined requirements and high level design.

Note that, in that Figure 8, several phases in which the product is created have sub-phases
of review and inspect to remove defects. In TSP reviews, individuals perform personal re-
views of their work products prior to the peer review (which TSP calls the inspection). Also,
Figure 8 divides testing as follows. Developers perform unit test prior to code complete.
After code complete a standard phase is integration, which combines program units into a
workable system ready for system test. Integration, system test, and acceptance test are often
performed by another group.

Using the above, our units of analysis are:

– defects - individual defects are recorded as line items in the defect logs uploaded to the
SEMPR at the SEI. One or more defects are reported against a single plan item in the
time tracking logs, e.g., a review session, an inspection meeting, a test execution.

– time - Time is tracked per person per plan item in the time-tracking logs, e.g. a 30 minute
design review session involving 3 people will have three time log entries summing to 90
minutes. Time includes the time to analyze, repair, and validate a defect fix.

– time per defect - The total # of defects found in a plan item during a removal phase
divided by the total time spent on that plan item in that phase.
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Phase Percentile Ratio w.r.t. to phase where issue was injected)
injected removed 50th 95th 50th 95th

Before DesignInspect 30 97 1 1
CodeReview 28 94 0.93 0.96
CodeInspect 45 154 1.5 1.58

UnitTest 77 187 2.56 1.92
IntTest 65 424 2.16 4.37

SysTest 56 164 1.86 1.69

Planning ReqtsReview 35 99 1 1
DesignInspect 24 81 0.68 0.81

UnitTest 33 238 0.94 2.4

Reqts ReqtsReview 92 240 1 1
ReqtsInspect 93 243 1.01 1.01

DesignReview 33 119 0.35 0.49
DesignInspect 49 137 0.53 0.57

CodeInspect 38 156 0.41 0.65
UnitTest 49 180 0.53 0.75

IntTest 67 300 0.72 1.25
SysTest 122 459 1.32 1.91

Design DesignReview 103 331 1 1
DesignInspect 101 272 0.98 0.82

CodeReview 66 215 0.64 0.64
CodeInspect 79 259 0.76 0.78

IntTest 88 337 0.85 1.01
UnitTest 119 383 1.15 1.15
SysTest 80 336 0.77 1.01

AcceptTest 45 120 0.43 0.36

Code CodeInspect 113 337 1 1
CodeReview 115 300 1.01 0.89

IntTest 125 473 1.1 1.4
UnitTest 133 434 1.17 1.28
SysTest 95 383 0.84 1.13

AcceptTest 65 360 0.57 1.06

Fig. 10: SEI TSP data: 50th and 95th percentiles of issue resolution times for issues injected in phase X and resolved in
phase Y . The right hand side bars illustrate how these resolutions increases (expressed as ratios of resolution time in the phase
where they were first injected). The BLACK and RED bars show the increases for the 50th (median) and 95th percentile
values, respectively.

6.4 Observations from 171 Projects

The distribution of defects found and fixed per phase in our data is shown in Figure 9.
high percentage of defects (44%) were found and fixed in the early phases, i.e., require-
ments, high level design, and design reviews and inspections. (This distribution is similar to
that observed for other projects that emphasized investment in software engineering qual-
ity assurance practices. For example, Jones and Bonsignour report 52% of pretest defects
removed before entering implementation, for large projects that focus on upfront defect re-
moval techniques [32]. NASA robotics projects had a slightly higher percentage (58%) of
defects removed before implementation began, although these had invested in IV&V on top
of other forms of defect removal [40].)

Figure 10 shows the 50th and 95th percentile of the time spent resolving issues (note
that, in TSP, when developers see issues, they enter review or inspect or test until that issue
is retired). These values include all the time required to (a) collect data and realize there is
an error; (b) prepare a fix; and (c) apply some validation procedure to check the fix (e.g.
discuss it with a colleague or execute some tests).
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In that figure, the data is split out according to issues that were fixed in phase Y after be-
ing introduced in phase X . The data is sub-divided into tables according to X; i.e. according
to before, planning, requirements, design or code. To ensure the representativeness of each
line, we display examples where there exists at least N � 30 examples2 of issues injected
in phase X then removed in phase Y .

The right hand side bars of that figure illustrate how these resolutions increases (ex-
pressed as ratios of resolution time in the phase where they were first injected). The BLACK
and RED bars show the increases for the 50th (median) and 95th percentile values, respec-
tively. Those bars offer some support for the claim that early lifecycle errors are most expen-
sive to fix. In all our results, the biggest scale ups are found with resolving issues introduced
in the before phase. For example, resolving before issues during unit testing was 2.56, 4.37
times (at the 50th and 95th percentile, respectively) slower than resolving issues earlier in
the lifecycle.

Nevertheless, the scale up seen in Figure 10 is much less than that suggested by the DIE
literature. Returning to the before/integration test result: 2.56 and 4.37 is far smaller than
the scale ups seen in Figure 1. In fact, nowhere in our results do we see the kind of very
large increases reported in the papers documenting DIE.

7 Threats to Validity

7.1 External Validity

When discussing these results with colleagues, they raised the following questions as poten-
tial threats to the external validity of this work.

Question1: All the projects used in this study were built using TSP. Does that mean
non-TSP projects might expect DIE effects?

Answer2: As mentioned in §1.1, TSP is a lightweight data collection methodology that
does not require significant changes to the other processes and tools. If the DIE effect was
some widespread effect that significantly cripples many projects, it is unlikely that it could be
solved by something as simple as TSP. What we find more likely is that DIE is an historical
relic from last century when development practices were less flexible and tolerant of change.

Question2: Has this paper proved that DIE does not exist? Or just shown that it does not
exist in certain projects?

Answer2: The claim of this paper is that the delayed issue effect is much less of a con-
cern than stated by various authors (see the introduction). Our results show DIE is not highly
prevalent and can be mitigated by relatively simple methods (e.g. TSP). In support of that
claim, we offered data from 171 TSP projects and, in §5, reports from five projects by Clut-
terbuck [15] and Royce [49], Boehm [9, 11], and Shull [52]. That is, while there exist some
reports of a DIE effect (see the handful of pro-DIE papers in [?]), we found many more
projects that did not have problems with delayed issues. This is a significant result since, as
stated by Boehm & Basili in the introduction, DIE has been used to justify many changes to
early lifecycle software engineering.

Question3: The data collection for this work does not distinguished between “low risk”
and “high risk” issues; i.e. between easy-to-fix issues and other most-expensive fixes. It is
possible that such high risk issues might occur infrequently, yet are still detrimental since
their resolution time is extremely large?

2 We selected 30 for this threshold via the central limit theorem [36].
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Answer3: If such outliers were common, they would appear in the upper percentiles of
results. As shown in the RED bars of Figure 10, no such effect appears in the 95th percentiles
of Figure 10. That is, while such “high risk” issues may certainly exist, they were not a major
effect in our data.

Question4: The data used in this analysis does not extend into post-delivery deployment.
Did this study failed to find the DIE effect since it does not arise until after deployment?

Answer4: As mentioned in §5.1, every other paper reporting DIE also reported early
onset of DIE within the current development. Specifically: those pro-DIE papers reported
very large increases in the time required to resolve issues even before delivery. That is,
extrapolating those trends it would be possible to predict for a large DIE effect, even before
delivering the software. This is an important point since Figure 10 shows an absence of
any large DIE effect during development (in this data, the greatest increase in difficulty in
resolving requirements issues was the 2.16 to 4.37 scale-up seen in the before to integration
testing which is far smaller than the 37 to 250-fold increases reported in Figure 1, Figure 3,
and Figure 4). That is, extrapolating the above data, we would not predict DIE effects, post-
deployment.

Question5: While the 171 project studies here are a large sample, are they representative
of all software projects? For example, Figure 7 shows that the median development time of
these projects less than a year. What about longer projects?

Answer5: These 171 projects contain examples of a wide variety of systems (ranging
from e-commerce web portals to banking systems) run in a variety of ways (agile or waterfall
or some combination of the two). Hence, rather than being unduly biased in some manner,
we view our 171 projects as a large sample of current industrial processes for software
development.

As to projects that take more than a year to build, there certainly exists another class of
very large software project where early requirements errors would be catastrophic for later
development. For example, when NASA launches deep space missions, each of those satel-
lites are special-purpose, uniquely-built devices built by a large contractor population. Such
systems are very hard to reconfigure halfway through the development. We concede that for
those very large complex NASA-like developments, the delayed issue effect could still hold.
However, perhaps we need to split our software engineering principles into two parts- one
for very large NASA-like projects (which are not very numerous) and one for smaller-sized
projects like the ones studied here (which are far more numerous). Most software is not like
the software used on NASA deep-space satellites. As agile methods grew more popular last
decade; and as personal computers grew more powerful; and as the libraries associated with
particular languages grew more extensive; then smaller teams starting deliver systems that
(previously) had required very large teams.

7.2 Construct validity

Our definition of difficult to resolve combines two concepts: time to change and cost to
change. In the above we have used them interchangably, comparing our time to resolve data
(from the 171 TSP projects) against the cost-to-fix results of Boehm et al. e.g. Figure 1. Is it
valid to assume the equivalence of time and cost?

Certainly, there are cases where time is not the same as cost. Consider, for example, if
debugging required some very expensive tool or the services or a very senior (and hence,
very expensive) developer. Under those circumstances, time does not equate to cost.



18 Tim Menzies, William Nichols, Forrest Shull, Lucas Layman

Also, there is the issue of the implication of a defect. Evidence discussed in [52] suggests
that low severity defects may exhibit a lower cost to change. Nonetheless, even “small”
errors have been known to cause enormous damage (e.g., the Mars Climate Orbiter).

Having documented the above issues, we assert that they are unlikely to be major issues
in the study. One of us (Nichols) was closely associated with many of the projects in our
sample. He is unaware of any frequent use of exorbitantly expensive tools or people on
these projects.

7.3 Internal validity

Confounding variables are a threat to any study. In this research, we rely on the substantial
sample size of 171 TSP projects and over 47,000 defect logs to avoid confounding effects
that may arise from the nature of the projects, teams, or defects. Similarly, the 10-year data
collection period should help to ameliorate any maturation or history effects. As described
in §6.3, all TSP teams are required to contribute time and defect data to the SEI, and thus
there should be no selection bias in this sample compared to the overall population of TSP
projects. However, there is likely selection bias in the teams that elect to use TSP compared
to the entire population of software development teams. Further, we assume that each team
has similar defect recording practices, and the TSP coaching provides guidance on what
constitutes a defect. Nonetheless, individual developers and teams may apply their own
internal rules for filtering defects, which would lead to inconsistent reporting thresholds
among the projects in our sample.

Another issue that threatens internal validity is that our results are dependent on devel-
opers correctly identifying which phase initially created an issue. Certainly, if that was done
incorrectly in this study, then all our results must be questioned. However, this issue threat-
ens every study on the delayed issue effect– so if our results are to be doubted on this score,
then all prior work that reported the delayed issue effect should also be doubted. Moreover,
the TSP method used in this study encourages greater care with error reporting:

– Developers are trained to make that judgement;
– All data entry is double-checked by the team couch
– TSP demands that developers analyze their data to make process improvements.

That is, TSP developers are always testing if their project insights are accurate. In such an
environment, it is more likely that they will better identify the injection phase.

8 Conclusion

In this paper, we explored the papers and data related to the commonly believed delayed
issue effect (that delaying the resolution of issues very much increases the difficulty of com-
pleting that resolution). Several prominent SE researchers state this effect is a fundamental
law of software engineering [12,12,25,37]. Based on a survey of both researchers and prac-
titioners, we found that a specific form of this effect (requirements errors are hardest to fix)
is commonly believed held in the community.

We checked for traces of this effect in 171 projects from the period 2006–2014. That
data held no trace of the delayed issued effect. To the best of our knowledge, this paper is
the largest study of this effect yet performed.
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Al the data collected in this study comes from TSP-based developments. Hence, it is
possible that the reason we did not find DIE is that TSP effectively mitigates for this prob-
lem. However, if DIE can be controlled by something as simple as TSP then it can no longer
be regarded as a “major driver in focusing industrial software practice on thorough require-
ments analysis and design, on early verification and validation, and on up-front prototyping
and simulation to avoid costly downstream fixes” (as said by Boehm & Basili in our intro-
duction).

To be clear, we do not claim that this effect never holds in software projects; just that
it cannot be assumed to always hold. Our explanation of the observed lack-of-effect is five-
fold:

1. The effect might be an historical relic. Evidence: the effect was first described in the era
of punch card computing and non-interactive environments.

2. The effect might have been intermittent (rather than some fundamental law of software).
Evidence: we can found nearly as many papers reporting the effect [8, 10, 21, 53, 54] as
otherwise [9, 49, 52].

3. The effect might be confined to very large systems- in which case it would be acceptable
during development to let smaller to medium sized projects carry some unresolved issues
from early phases into later phases.

4. The effect might be mitigated by modern software development approaches that encour-
age change and revision of older parts of the system.

5. The effect might be mitigated by modern software development tools that simplify the
process of large-scale reorganization of software systems.

Our results beg the question: why did an idea, with so little support, become so widespread
in the software engineering literature? No doubt the original evidence was compelling at the
time, but much has changed in the realm of software development in the subsequent 40
years. Possibly the concept of the delayed issue effect (or its more specific description: re-
quirements errors are the hardest to fix) has persisted because, to use Glass’s terms on the
subject, it seems to be “just common sense” [25]. Nevertheless, in a rapidly changing field
such as software engineering, even commonly held rules of thumb must be periodically re-
verified. Progress in the domain of software analytics has made such periodic checks more
cost-effective and feasible, and we argue that an examination of local behaviors (rather than
simply accepting global heuristics) can be of significant benefit.
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