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ABSTRACT

Business users now demand more insightful analytics; specifically,
tools that generate “plans”– specific suggestions on what to change
in order to improve the predicted values.

This paper proposes XTREE, a planner for software projects.
XTREE receives tables of data with independent features and a
corresponding weighted class which indicates the quality (“bad” or
“better”) of each row in the table. Plans are edits to the rows which
ensures the changed row is more likely to be of a “better” qual-
ity. XTREE learns those plans by building a decision tree across
the data, then reporting the differences in the branches from some
current branch to another desired branch. Using data from 11 soft-
ware projects, XTREE can find better plans compared to three al-
ternate methods. Those plans have lead to improvements with a
median size of (56%, 28%) and largest size of (60%, 77%) in (de-
fect counts, runtimes), respectively.
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1. INTRODUCTION
Business users are demanding tools that support business-level

interpretations of their data. At a panel on software analytics at
ICSE‘12, industrial practitioners lamented the state of the art in
software analytics [1]. Panelists commented “prediction is all well
and good, but what about decision making?”. Note that these pan-
elists were more interested in the interpretations and follow-up that
occurs after the mining, rather than just the mining itself. So:

• Instead of just accepting predictions on how many software
defects to expect, business users might now demand a plan

to reduce the likelihood of those defects.

• Instead of just accepting predictions on the runtime time of
their software, business users might now demand a plan to
reduce that runtime.

In response to this business-level demands for planners, we propose
a novel planning method called XTREE for learning changes to a
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software system such that its performance “improves”, according
to some measure. This paper uses XTREE to reduce the expected
value of the defects in Jureczko et al.’s JAVA systems [2]; and the
runtimes in software configured by Siegmund et al. [3].

The contributions of this paper are (1) the new XTREE algorithm
and (2) an evaluation strategy that shows XTREE performing sig-
nificantly “better” than planners proposed in our prior work [4, 5],
where “better” means effective (plans change the expected values
of the class); succinct (it is inconvenient if plans always require
changing everything); and surprising (a planner should sometimes
tell us things we do not expect since, otherwise, there is no value
added from using the planner).

The rest of this paper describes our data, our planners, and the
experiment that ranks XTREE against alternate approaches. This
is followed by notes on related work and validity. To enable repro-
ducibility, all scripts and data used in this study are available online
at http://git.io/vG3DG.

2. PRELIMINARIES

2.1 What is a “Plan”?
Our planners use tables of data with independent features and a

dependent class feature. Classes have weights that indicate what
rows are “bad” or “better”. Plans change a row such that it is more
likely to be “better”. Specifically, for every test example Z, plan-
ners proposes a plan ∆ to adjust feature Zj :

∀δj ∈ ∆ : Zj =

{

Zj + δj if Zj is numeric
δj otherwise

For example, to simplify a large bug-prone method, our planners
might suggest to a developer to reduce its size (i.e. refactor that
code by, say, splitting it across two simpler functions).

Note that we make no assumption that a plan mentions every
feature (so plan1 can be more succinct than plan2 when plan1 men-
tions fewer features than plan2).

2.2 From Prediction to Planning
This paper is about the next step after prediction. Suppose a

business user is presented with a prediction and they do not like
what they see; e.g. the runtimes are too long or the number of
defects is too high. This user may then ask a planning question; i.e.
“what can we change to do better than that?”.

Before exploring automatic methods to answer the planning ques-
tion, we first comment on two manual methods.

One way to propose changes to a project would be to ask some
smart experienced person for their opinion on how to (e.g.) reduce
defects and/or decrease runtimes. Sometimes such advice is an ef-
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fective strategy and sometimes it is not. According to Passos et
al. [6], developers may assume that the lessons they learn from a
few past projects are general to all their future projects. They com-
ment “past experiences were taken into account without much con-
sideration for their context” [6]. Jørgensen & Gruschke [7] offer a
similar warning. They report that the supposed software engineer-
ing “Gurus” rarely use lessons from past projects to improve their
future reasoning and that such poor past advice can be detrimental
to new projects. [7]. Accordingly, we propose a “trust, but verify”
approach. After a software guru offers some sage wisdom, it is
wise to ask some other oracle if there are any better options (just as
a sanity check). The rest of this paper discusses some methods to
build automatic oracles to implement that sanity check.

Another way to find changes to a project might be to rely on the
peer review processes used by the SE research community. This
approach would propose changes to software projects that concur
with internationally accept best practices. There are two problems
with that approach. Firstly, given the rapid pace of change in soft-
ware engineering, we may be asking questions for which there is
no current widely accepted concept of “best practice”.

Secondly, given the diversity of SE products and practices and
personnel, it may well be that the current project being discussed
is substantively different to prior work. Numerous recent local

learning results compare (1) single models learned from all avail-
able data to (2) multiple models learned from clusters within the
data [8–14]. A repeated result in those studies is that the local
models generated better effort and defect predictions (better me-
dian results, lower variance in the predictions). §5.2.3 of this paper
offers yet another locality result:

• One standard rule in the literature is that it is useful to im-
plement modules such that they are internally cohesive (use
much of their own local methods) while being loosely cou-
pled with other classes [15].

• While that may be true in general, for particular classes other
changes may be more important (later in this paper, we show
one set of results where that is indeed the case).

In summary, it is useful to have automatic methods to recommend
changes. Such methods can fill in for human expertise (if such ex-
perts are absent) or to offer a second opinion. Also, prior to mak-
ing automatic recommendations, it is wise to first stratify the data
(clump it into related examples) then generate advice specific to
each clump. Accordingly, the rest of this paper defines and evalu-
ates automatic methods to find plans from N examples divided into
many clumps.

2.3 Trusting the Changes
XTREE is evaluated by comparing predicted performance scores

before and after a planner makes changes to the feature values of an
example: After making those changes, we may have a new example
that has never been seen before. Therefore, it must be asked “can

we trust the predictions made on such new examples?”

To answer this question, we note that data miners explore two
“clouds” of data: (1) the cloud of training examples and (2) the
cloud of test examples (for a visualization of these clouds, see Fig-
ure 2). We should mistrust the predictions made by a model if it is
being applied to examples that are too far away from the training
cloud. To test for “too far”, we can run a data mining experiment
that tests how well a model learned from the training data applies
to the test data. Such experiments return some performance value.

Note that predictions about changes that fall within the space of
the training+test data, will be at least as accurate as the predictions

Figure 2: Gray, red, green show (1) training examples, (2) test

examples and (3) tests that have been altered by planners. This

figure uses axes generated from the first two components of a

PCA analysis of all points.

of the original test data. With this, we assert that the predictions for
changes that move examples towards/away from the training data
can be trusted more/less (respectively).

Accordingly, we need trust-increasing planners to generate new
examples closer to the training examples. To see how this works,
Figure 2 is from the ivy data set (one of the Jureczko data sets used
in this paper). It shows: (1) the training examples in gray, (2) the
test examples in red, and (3) the changed examples displaced after
applying a plan (in green). Note that the the changed examples
cases (shown in green) fall closer to the training cases (shown in
gray) than the test cases (shown in red).

In that green region of changed examples, our belief in the value
of predictions will be just as much as, if not more than, our belief in
the value of the predictions in the red region (that contains the orig-
inal test data). This pattern of Figure 2 (where the new examples
are found closer to the training cases than the test cases) has been
observed in all the other data sets studied in this paper. Hence, we
can assert that predictors learned from these training examples have
some authority in the regions containing the changes examples.

That said, the above comes with some important caveats:

• The quality of the prediction depends on the nature of the
training data. Thus, we strongly recommend that both the
data set and the predictor be assessed prior to planning. This
ensures that the predictor’s performance is adequate for a
data set. We tackle this issue in detail in §3.

• Planners should be designed to be trust increasing. We list
four such planning methods in §4.

• Where possible, planners should be assessed via some exter-
nal oracle that can accurately assess new examples. For an
example of that kind of analysis, see §6.3.

3. TEST DATA
To assess our planning methods, our data (see git.io/vGYxc)

comes from Jureczko et al.’s object-oriented JAVA systems [2] and
software system configuration data from by Siegmund et al. [3].

The Jureczko data records the number of known defects for each
class using a post-release bug tracking system. The classes are de-
scribed in terms of nearly two dozen metrics such as number of
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amc average method complexity e.g. number of JAVA byte codes
avg cc average McCabe average McCabe’s cyclomatic complexity seen in class

ca afferent couplings how many other classes use the specific class.
class.
cam cohesion amongst classes summation of number of different types of method parameters in every method divided by a multiplication of number of

different method parameter types in whole class and number of methods.
cbm coupling between methods total number of new/redefined methods to which all the inherited methods are coupled
cbo coupling between objects increased when the methods of one class access services of another.
ce efferent couplings how many other classes is used by the specific class.

dam data access ratio of the number of private (protected) attributes to the total number of attributes
dit depth of inheritance tree
ic inheritance coupling number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)

lcom lack of cohesion in methods number of pairs of methods that do not share a reference to an case variable.
locm3 another lack of cohesion measure if m, a are the number of methods, attributes in a class number and µ(a) is the number of methods accessing an

attribute, then lcom3 = (( 1

a

∑
, jaµ(a, j)) − m)/(1 − m).

loc lines of code
max cc maximum McCabe maximum McCabe’s cyclomatic complexity seen in class

mfa functional abstraction number of methods inherited by a class plus number of methods accessible by member methods of the class
moa aggregation count of the number of data declarations (class fields) whose types are user defined classes
noc number of children
npm number of public methods
rfc response for a class number of methods invoked in response to a message to the object.

wmc weighted methods per class
nDefects raw defect counts Numeric: number of defects found in post-release bug-tracking systems.

defect defects present? Boolean: if nDefects > 0 then true else false

Figure 1: OO measures used in our defect data sets. Last lines, shown in denote the dependent variables.

data set cases % defective
ant 947 22

camel 1819 19
jedit 1257 2

ivy 352 11
log4j 244 92

lucebe 442 59
poi 936 64

synapse 379 34
velocity 410 34

xalan 2411 99
xerces 1055 74

Figure 3: Jureczko data: columns in the format of Figure 1.

Project Domain Lang. LOC Features Config
BDBC: Berkeley DB Database C 219,811 18 2560
BDBJ: Berkeley DB Database Java 42,596 32 400
Apache Web Server C 230,277 9 192
SQLite Database C 312,625 39 3,932,160
LLVM Compiler C++ 47,549 11 1024
x264 Video Enc. C 45,743 16 1152

Figure 4: Siegmund data.

children (noc), lines of code (loc), etc. For details on the Jureczko
data, see Figure 1 and Figure 3. All the planning methods of this
paper reflect on the numeric value of the raw defect counts. The
predictor considers defects to be a Boolean class data set, where
defects are TRUE if the numeric defect count is greater than zero
and FALSE otherwise.

The Siegmund data, described in Figure 4, records the runtimes
of compiled systems. To obtain the data, Siegmund et al. per-
turbed the configuration parameters in the Makefiles of six systems:
Apache, SQLite, LLVM, x264 and two versions of the Berkeley
database (one written in “C” and one in Java). Then, the perfor-
mance was measured using standard benchmarking tools (delivered
by ORACLE for Berkley data sets and other popular tools such as
AUTOBENCH and HTTPREF for the rest) [3]. It’s worth noting that
in each of the above data sets, several features are interdependent,
this is expressed using a feature model. Figure 5 shows an exam-
ple of such a feature model defining valid combinations of settings
in the Berkley database (“C” version). These feature models were

Figure 5: Berkeley database feature model (“C” version).

used by Siegmund et al. to ensure all their perturbations are valid
(we will use the same models to cull invalid plans).

Our evaluation strategy (discussed below) divides this data into
a training and a testing set. From the training set we apply a data
miner (to learn a quality predictor) and various planning methods
(to learn different plans). Next, we try applying each of those plans
to the test set and ask the quality predictor to assess the changed
examples. Finally, we say that the “best” planner is the one that
most reduces the predicted values in the changed examples.

As mentioned in the last section, this approach depends on hav-
ing effective predictors for assessing the results. For the Siegmund
data, this criteria was relatively easy to achieve. The data in those
data sets have a continuous class (runtime of the compiled system)
so the performance of a quality predictor can be measured in terms
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Data set properties

training testing
data set versions cases versions cases % defective

jedit 3.2, 4.0, 4.1, 4.2 1257 4.3 492 2
ivy 1.1, 1.4 352 2.0 352 11

camel 1.0, 1.2, 1.4 1819 1.6 965 19
ant 1.3, 1.4, 1.5, 1.6 947 1.7 745 22

synapse 1.0, 1.1 379 1.2 256 34
velocity 1.4, 1.5 410 1.6 229 34

lucene 2.0, 2.2 442 2.4 340 59
poi 1.5, 2, 2.5 936 3.0 442 64

xerces 1.0, 1.2, 1.3 1055 1.4 588 74
log4j 1.0, 1.1 244 1.2 205 92
xalan 2.4, 2.5, 2.6 2411 2.7 909 99

Results from learning

untuned tuned change
pd pf good? pd pf good? pd pf
55 29 64 29 y 9 0 ⋆

65 35 y 65 28 y 0 -7 ⋆

49 31 56 37 5 6
49 13 y 63 16 y 14 3 ⋆

45 19 47 15 2 -4
78 60 76 60 -2 0
56 25 60 25 y 4 0
56 31 60 10 y 4 -21 ⋆

30 31 40 29 10 -2 ×

32 6 30 6 -2 0 ×

38 9 47 9 9 0 ×

Figure 6: Training and test data set properties for Jureczko data , sorted by % defective examples. On the right-hand-side, we show

the results from learning. Data is usable if it has a recall of 60% or more and false alarm of 30% or less (and note that, after tuning,

there are more usable data sets than before). Results marked with “⋆” show large improvements in performance, after tuning

(lower pf or higher pd). Data in the three bottom rows , marked with “×”, are performing poorly– that data so few non-defective

examples that it is hard for our learners to distinguish between classes.

of difference between the predicted runtime p of test case items
and their actual runtimes a using s = (1 − abs(a−p)

a
) × 100%

(higher values are better). This paper explores six Siegmund con-
figuration data sets: Berkeley DB (Java and C versions), Apache,
SQLite, LLVM, and x264. As a preliminary study, we split that
data into equal sized train:test groups and trained a Random Forest
Regressor (from the SciKit learn kit [16]) on one half, then applied
to the other. After repeating this process 40 times, we achieved
nearly perfect accuracy of s ={98.45%, 99.62%, 94.86%, 98.89%,
98.60%, 99.87%}; i.e. we are confident that the predictors from the
Siegmund data can assess our plans. (Aside: if the reader doubts
that such high scores are achievable, we note that these scores are
consistent with those achieved by predictors built by Siegmund et
al. [3].)

It proved to be more complicated to commission the Jureczko
data sets for this study. For that data, we found that the quality pre-
dictors built from this data are far from perfect; However, for some
data sets, the predictors could be salvaged using the techniques dis-
cussed in this section.

Figure 6 shows our preliminary studies with the Jureczko data.
Given access to V released versions, we test on version V and train
on the available data from V − 1 earlier releases (as shown in Fig-
ure 6, this means that we are training on hundreds to thousands of
classes and testing on smaller test suites). Note the three bottom
rows marked with ×: these contain predominately defective classes

(two-thirds, or more). In such data sets, it is hard to distinguish
good from bad (since there are so many bad examples).

In order to identify the presence (or absence) of defects, we can
consider using Boolean classes in the Jureczko data ( True if de-
fects > 0; False if defects = 0). For such data, quality of the pre-
dictor can be measured using (1) the probability of detection (a.k.a.
“pd” or recall): the percent of faulty classes in the test data detected
by the predictor; and (2) the probability of false alarm (a.k.a. “pf”):
the percent of non-fault classes that are predicted to be defective.

As a preliminary study, we split the Jureczko data into train and
test groups. Random Forest (again, from the SciKit learn kit [16])
was built from the training data, then applied to the test data. The
“untuned” columns of Figure 6 shows those results. We called a
data set “usable” if Random Forest was able to classify majority of
the instances correctly. For this purpose, we set a threshold of pd ≥

60 ∧ pf ≤ 30% to select suitable data sets. With this threshold,
however, none of our data sets were be suitable for this study.

Fortunately, the “tuned” columns of Figure 6 show that we can
salvage some of the data sets. Pelayo and Dick [17] report that de-
fect prediction is improved by SMOTE [18]; i.e. an over-sampling
of minority-class examples and an under-sampling of majority-class
examples. Also, Fu et al. [19] report that parameter tuning with
differential evolution [20] can quickly explore the tuning options
of Random Forest to find better settings for the (e.g.) size of the
forest, the termination criteria for tree generation, etc. The rows
marked with a ⋆ in Figure 6 show data sets whose performance

was improved remarkably by these techniques. For example, in
poi, the recall increased by 4% while the false alarm rate dropped
by 21%. However, as might have been expected, we could not sal-
vage the data sets in the three bottom rows.

In summary, while we cannot trust predictors from some of our
Jureczko data sets, we can plan ways to reduce defects in jedit,

ivy, ant, lucene and poi. Accordingly, when this study explores the
Jureczko data, we will use these five data sets.

(Aside: One important detail to be stressed here is that, when we
applied SMOTE-ing and parameter tunings, those techniques were
applied to the training data and not the test data; i.e. we took care
that no clues from the test set were ever used in this tuning process.)

4. FOUR PLANNING METHODS
This section describes XTREE (which we call Method4) and

three alternate methods for learning plans. XTREE, a novel plan-
ner introduced in this work, uses the decision tree learner of Fig-
ure 7.D. The other methods use the top-down bi-clustering method
described in Figure 7.C which recursively divides the data in two
using a dimension that captures the greatest variability in the data.
We proposed Method 1 and 2 in 2012 [4] while Methods 3 comes
from research conducted earlier this year [5]. All methods have
the properties proposed in §2: (1) they are local learners that find
plans particular to each test case; and (2) they are trust-increasing;
i.e. the changed examples are moved closer to the training data.

4.1 Methods
Our description of the methods adopts the following convention.

All variables set via our engineering judgement with Greek letters;
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e.g. α, β, γ, ω. In this paper, we show our current settings to these
variables produces useful results. Elsewhere [19, 21], we are ex-
ploring tuning methods to find better settings but we have nothing
definitive yet to report on auto-tuning planners.

4.1.1 Method1= CD= Centroid Deltas

Summary1: Method1 computes a plan from the difference be-
tween where you are (which we will call Ci) and where you want
to be (which we will call Cj).

Assumption1: Large data sets can be adequately represented by
a few dozen (or so) centroids.

Details1: Method1 clusters project data by reflecting on the in-
dependent variables, then reports the delta between the cluster cen-
troids. After clustering training data using the WHERE algorithm
of Figure 7.C, Method1 replaces all clusters with a centroid Ci

computed from the median value of each continuous/discrete fea-
ture. Then, it finds the closest centroid Cj that has a better per-
formance score. For Jureczko data, “better” means fewer defective
examples while for the Seigmund data, “better” means lower me-
dian runtimes for the examples in that cluster. Method1 then caches
the delta between the independent features between Ci and Cj . For
continuous features, this delta is Cj − Ci. For discrete values, this
delta is the value of that feature in Cj . Finally, for every test case,
Method1 use the distance measure d shown in Figure 7.B to find
the nearest centroid Ci. It then proposes a plan for improving that
test case that is the conjunction of all the deltas between Ci and Cj .

4.1.2 Method2=CD+FS=Method1+Feature Selection

Summary2: Method2 works like Method1 but now the plans
only mention the β = 33% most informative features. Hence,
Method2’s plans are simpler.

Assumption2: When reasoning about centroids, we can just use
features that best distinguish centroids; i.e. whose values appear in
just a few centroids.

Details2: A common result is that the signal in a table of data is
mostly contained in a handful of features [22, 23]. Papakroni [24]
has tested for this effect in the Jureczko data sets. Papakroni found
no loss of efficacy in defect prediction after sorting all features by
their information content, then making predictions using (a) all fea-
tures or (b) just using 33% most informative features.

Based on the above, it might be possible to simplify the plans
found by Method1 by pruning back the features in those plans. Fol-
lowing on from Papakroni, our Method2 returns plans containing
just the top β = 33% most informative features. Here, “informa-
tive” means that the values of a feature are good for selecting a
small set of clusters (ideally, just one). This can be estimated using
the Fayyad-Iranni INFOGAIN algorithm [25] of Figure 7.E.

4.1.3 Method3= Best In Cluster (BIC)= Method1 +
Gradient

Summary3: Method3 is like Method1, but it uses more knowl-
edge about the training data.

Assumption3: There exists “gradients” between clusters which,
if used, will better guide us to finding beneficial plans.

Details3: Method3 generates clusters from the training data just
like Method1. Following this, it summarizes the clusters CX using
“Best-In-Cluster” BX , which is (1) the centroid of the cluster for
the Jureczko data; (2) the cluster’s member with the fastest runtime
for the Seigmund data. Following this, Method3 connects each
cluster Ci to a nearest neighbor Cj by a gradient. Each gradient
has a (bottom,top) end labelled (Ci, Cj) containing the (worst,best)
performance scores, respectively.

For each test instance, Method3 finds the nearest gradient, runs

Figure 7.A: Measuring Variability

For continuous and discrete values, the variability can be mea-
sured using standard deviation σ or entropy e. Note that

σ =

√

∑n

i=1

(

(xi−x̄)2

n−1

)

where x̄ is the mean of numeric features

x1, x2, ..xn. Also e = −∑n

i=1 pilog2(pi) for n discrete values at
frequency f1, f2, ..fn for N =

∑n

i=1 fi and pi = fi/N .

Figure 7.B: Measuring distance

We use Aha et al.’s standard Euclidean distance measure [26].
For F independent features, the measure returns d(X,Y ) =
√

∑F

i
wi∆(Xi, Yi)2. Here, wi is a weight term for each feature

(usually set to 1). Within ∆, if Xi, Yi are both missing values, then
return 1. Otherwise, replace any missing items with values that
maximizes the following. For numerics, ∆ normalizes Xi, Yi (to
the range 0,1 for min,max) then returns Xi − Yi. For discrete vari-
ables, ∆ returns 0,1 if Xi, Yi are the same,different (respectively).

Figure 7.C: Top-down Clustering with WHERE

WHERE divides data into groups of size α =
√
N . Using this

measure, WHERE runs as follows:

1. Find two distance cases, X,Y by picking any case W at random,
then setting X to its most distant case, then setting Y to the case
most distant from X (which requires only O(2N) comparisons).

2. Project each case Z to position x on a lines running from X to
Y : if a, b are distances Z to X,Y then x = (a2+c2−b2)/(2ac).

3. Split the data at the median x value of all cases.

4. For splits larger than α =
√
N , recurse from step1.

In terms of related work, the above is similar in approach to Bo-
ley’s PDDP algorithm [27], but PDDP requires an O(N2) calcula-
tion at each recursive level to find the PCA principle component.
Our method, on the other hand, performs the same task with only
O(2N) distance calculations using the FASTMAP heuristic [28]
shown in step1. Platt [29] notes that FASTMAP is a Nyström ap-
proximation to the first component of PCA.

Figure 7.D: Top-down division with Decision Trees

Find a split in the values of independent features that most re-
duces the variability of the dependent feature (measured using Fig-
ure 7.A). Construct a standard decision tree using these splits.

Figure 7.E: Finding the most informative rows

Discretize all numeric features using the Fayyad-Iranni dis-
cretizer [25] (divide numeric columns into bins Bi, each of which
select for the fewest cluster ids). Let feature F have bins Bi, each
of which contains ni rows and let each bin Bi have entropy ei com-
puted from the frequency of clusters seen in that bin (computed
from Figure 7.A). Cull the the features as per [24]; i.e. just use the
β = 33% most informative features where the value of feature F
is
∑

i
ei

ni

N
(N is the number of rows).

Figure 7: Some algorithms used in this paper.
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Using the training data, divide the data using the decision tree al-
gorithm of Figure 7.D into groups of size α =

√
N . For test item,

find the current leaf: take each test instance, run it down to a leaf
in the decision tree. After that, find the desired leaf:

• Starting at current, ascend the tree lvl ∈ {0, 1, 2...} levels;

• Identify sibling leaves; i.e. leaf clusters that can be reached from
level lvl that are not same as current

• Using the score defined above, find the better siblings; i.e. those
with a score less than γ = 0.5 times the mean score of current.
If none found, then repeat for lvl+ = 1. Also, return no plan if
the new lvl is above the root.

• Return the closest better sibling where distance is measured be-
tween the mean centroids of that sibling and current

Also, find the delta; i.e. the set difference between conditions in
the decision tree branch to desired and current. To find that delta:
(1) for discrete attributes, delta is the value from desired; (2) for nu-
merics, delta is the numeric difference; (3) for numerics discretized
into ranges, delta is a random number selected from the low and
high boundaries of the that range.
Finally, return the delta as the plan for improving the test instance.

Figure 8: XTREE
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Figure 9: Experimental design .

up to the top (best) end Cj , then extracts Bj (which is the best-in-
cluster associated with Cj). The returned plan is then computed as
a fraction (ω = 0.5) of the distance between the test case and it’s
corresponding Bj .

4.1.4 Method4=XTREE= Deltas in Decision Branches

Summary4: Method4 builds a decision tree, then generates plans
from the difference between two branches: (1) the branch to where
you are and (2) the branch to where you want to be.

Assumption4: One potential problem with Methods 1,2 and 3
is the unsupervised nature of the clustering algorithm (WHERE)
that executes without knowledge of the target class. Supervised

methods assume that it is useful to also reflect on the target class.
Details4: XTREE uses a supervised decision tree algorithm of

Figure 7.D to divide the data. Next, XTREE builds plans from the
branches of the decision trees using the code of Figure 8. That code
asks three questions, the last of which returns the plan:

1. What current branch does a test case fall in?

2. What desired branch would the test case want to move to?

3. What are the deltas between current and desired?

5. EXPERIMENTS
This section describes an experimental design (and results) for

evaluating the above four methods.

5.1 Experimental Design

5.1.1 A Strategy for Evaluating Planners

Our experimental design is shown in Figure 9. We divide the
project data into two disjoint sets train and test (so train ∩test = ∅).
Next, from the train set, we build both a planner and a predictor.

Our general framework does not commit to any particular choice
of planner or predictor but, for the purposes of this paper:

• Our planner will be one of Methods 1,2,3,4;

• Our predictor will be the Random Forest Classifier [30] (for
discrete classes) and Random Forest Regressor (for contin-
uous classes) taken from SciKit Learn [16]. We use these
data miners since extensive studies have shown these to be
amongst the better alternatives for mining software data [31].

As for the test data, this is passed to the predictor to measure per-
formance statistics related to effectiveness.

If our predictors fail to perform effectively on the test data, then
we cannot trust them to comment on our plans. Accordingly, if that
performance is unsatisfactory, we abort. Recall from §3 that this
step indicated we should not use some of the Jureczko data.

Else, we (1) apply the planner to alter the test data; then (2) ap-
ply the predictor to the altered data test′; then (3) return data on
the before, after predictions expressed as percent improvement, de-
noted by R = (1 − after

before
) × 100%, with the following following

properties:

• If R = 0%, this means “no change from baseline”;

• If R > 0%, this indicates “

improvement over the baseline”;

• If R < 0%, this indicates “optimization failure”.

5.1.2 Statistical Methods

Our methods use some stochastic algorithms; e.g. WHERE’s
selection of “what example to explore first” (see Figure 7.C) and
XTREE’ occasional use of a random guess when deciding what
part of a discretized range to include in the plan (see Figure 8).
Hence, we report the R values seen in 40 repeated runs, with dif-
ferent random number seeds (we use 40 since that is more than the
30 samples needed to satisfy the central limit theorem).

To rank our methods using the results from these 40 repeats, we
use the Scott-Knott test recommended by Mittas and Angelis [32].

In accordance to that test, using the median values of each method,
we sort a list of l = 40 values of R values found in ls = 4 different
methods. Then, we split l into sub-lists m,n in order to maximize
the expected value of differences in the observed performances be-
fore and after divisions. E.g. for lists l,m, n of size ls,ms, ns
where l = m ∪ n:

E(∆) =
ms

ls
abs(m.µ− l.µ)2 +

ns

ls
abs(n.µ− l.µ)2

We then apply a apply a statistical hypothesis test H to check
if m,n are significantly different (in our case, the conjunction of
A12 and bootstrapping). If so, Scott-Knott recurses on the splits.
In other words, we divide the data if both bootstrap sampling and
effect size test agree that a division is statistically significant (with
a confidence of 99%) and not a small effect (A12 ≥ 0.6).
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For a justification of the use of non-parametric bootstrapping, see
Efron & Tibshirani [33, p220-223]. For a justification of the use
of effect size tests see Shepperd&MacDonell [34]; Kampenes [35];
and Kocaguenli et al. [36]. These researchers warn that even if a hy-
pothesis test declares two populations to be “significantly” differ-
ent, then that result is misleading if the “effect size” is very small.
Hence, to assess the performance differences we first must rule out
small effects using A12, a test recently endorsed by Arcuri and
Briand at ICSE’11 [37].

5.1.3 Report Format

Our results are presented in the form of line diagrams like those
shown on the right-hand-side of the following example table. The
black dot shows the median R value and the horizontal likes stretch
from the 25th percentile to the 75th percentile (a region called the
inter-quartile range, or IQR).

Example

Rank Treatment Median IQR
1 XTREE 62 6 s

2 BIC 50 12 s

3 CD 44 18 s

3 CD+FS 43 13 s

In this example table, the rows are sorted on the median values of
each method. Note that all the methods have R > 0%; i.e. all these
methods reduced the expected value of the performance score in
that experiment while XTREE achieved the greatest reduction (of
62% from the original value).

The above example table has a left-hand-side Rank column, com-
puted using the Scott-Knott test described above. In this example
table, XTREE is ranked the best, while CD and CD+FS together
are ranked the worst.

5.1.4 Other Details

Figure 10 and Figure 11 show the effectiveness of our methods
seen in 40 repeats with each data set. In these experiments, the de-
pendent variables of Jureczko and Siegmund data sets are discrete
and continuous in nature, respectively. Hence, while choosing the
predictor, we used Random Forest (1) as a classifier for Jureczko
data and (2) as a regressor for Siegmund data.

For Siegmund data, we performed a k-fold cross validation. Given
the relatively small sample sizes in Apache and BDBJ, we chose
k = 2. This, we reasoned, would maintain a sufficiently large test
data size in order for R to be measured reliably. However, in 2-fold
cross validation, the division of data tends to affect the outcome
significantly. To counter this, we randomized the order of the data,
training on one half while identifying treatment plans on the other,
repeating the process 40 times as mentioned above.

The Jureczko data, being temporal in nature, allows us to im-
plement a validation procedure that ensures only past data is ever
used to predict future values. Hence, in that data, we used the
train/test sets shown in Figure 6. (Aside: note that all the SMOTE-
ing and Random Forest tunings (discussed in §3) occurred in the
train phase of Figure 9).

5.2 Experimental Results
Recall from our introduction that we are assessing planners on

three criteria: effectiveness, which is how much they reduce the
expected value of the changed examples; succinctness, which is
how many things we need to change to achieve a plan; and surprise,
which is how different are the plans from standard truisms.

5.2.1 Effectiveness Results

Measured in terms of effectiveness, some data sets were harder
to optimize than others. SQL (in Figure 11) defied all our methods

for reducing runtimes. XTREE was the only method that could
optimize BDBJ (in Figure 11). In general, in most data sets, large
reductions were observed:

• An improvement of 60%, as compared to the original base-
line in Ant and Lucene of Figure 10;

• An improvement of 77% as compared to the original baseline
in BDBC of Figure 11;

Overall, XTREE was most the effective. It was always the top-
ranked method with the exception of SQL. Where it ranked better,
it had significant improvements in the median performance val-
ues (1) In the Jureczko data sets, there was a median improve-
ment of around 10% larger than the next ranked method; (2) In
the Seigmund data sets, improvements as large as 36% greater than
the next ranked method were observed.

5.2.2 Succinctness Results

Figure 12 reports the percent of times in the 40 repeats that a
method proposed changing a feature. The left-hand-side plot of that
figure reports results from one of the Jureczko data sets (lucene)
and the right-hand-side shows a Siegmund data set (BDBJ).

In these plots, more succinct a planning method, fewer the fre-
quency (in percent) where it recommends changing a particular fea-
ture (i.e. the vertical bars in that plot are lower). For example,
XTREE’s plans were usually succinct – in all data sets, XTREE
changes around a fifth of the features (see Figure 13). On other
hand, Method1 (CD) was the least succinct since it wanted to change
all features (observe the change frequencies as high as 100% for all
features). Method1’s policy of “change everything” might be ac-
ceptable if this approach lead to the most effective changes. How-
ever, in Figure 10 and Figure 11, there is no evidence for this.

An interesting feature of Figure 12 was that fewer things were
changed in the Seigmund data sets like BDBJ than in the Jureczko

Ant

Rank Treatment Median IQR

1 XTREE 60 8 s

2 CD 52 15 s

3 CD+FS 45 1 s

3 BIC 45 3 s

Lucene

Rank Treatment Median IQR
1 XTREE 60 11 s

2 CD+FS 51 4 s

2 CD 48 4 s

3 BIC 37 2 s

Poi

Rank Treatment Median IQR
1 XTREE 56 1 s

2 CD 44 16 s

2 BIC 43 9 s

2 CD+FS 40 5 s

Ivy

Rank Treatment Median IQR

1 XTREE 46 8 s

2 BIC 40 2 s

3 CD 20 5 s

3 CD+FS 18 0 s

Jedit

Rank Treatment Median IQR
1 XTREE 55 1 s

2 CD 45 9 s

2 CD+FS 45 9 s

2 BIC 45 0 s

Figure 10: Results on Jureczko data sets. Results from 40 re-

peats. Ratios of (1) number of examples with defects (expected

in the test examples) after they have been altered by a planner

to (2) the number of examples with defects in the original test

set. Larger median values are better.
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BDBJ

Rank Treatment Median IQR

1 XTREE 43 13 s

2 BIC 7 5 s

3 CD+FS 0 1 s

3 CD 0 1 s

BDBC

Rank Treatment Median IQR

1 XTREE 77 8 s

2 BIC 66 5 s

3 CD -1 1 s

3 CD+FS -1 1 s

Apache

Rank Treatment Median IQR

1 XTREE 28 11 s

2 BIC 5 4 s

3 CD 3 5 s

4 CD+FS 0 1 s

X264

Rank Treatment Median IQR

1 XTREE 28 8 s

2 BIC 6 2 s

3 CD 0 0 s

3 CD+FS 0 1 s

SQL

Rank Treatment Median IQR

1 XTREE 1 3 s

1 BIC 0 0 s

1 CD 0 0 s

1 CD+FS -1 0 s

LLVM:

Rank Treatment Median IQR

1 XTREE 12 1 s

2 BIC 2 1 s

3 CD 0 0 s

3 CD+FS 0 0 s

Figure 11: Results: Seigmund data sets. Results from 40 repeats. Ratios of (1) software runtimes expected in the test examples after

alteration by a planner to (2) the sum of the software runtimes in the original test set. Larger median values are better.
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Figure 12: Percent frequency for how often certain feature was changed by a plan.

data set like lucene. In turns out that this holds true across nearly all
our data sets. Figure 13 summarizes all the change frequencies for
all data sets. As with Figure 12, there are fewer changed features in
the Seigmund data than in the defect prediction data. One explana-
tion for that is the nature of the features: the Jureczko data sets have
continuous features while the Seigmund data has binary indepen-
dent features (where settings can be turned “ON” or “OFF”). While
the features of the Jureczko data sets are not constrained, those of
Seigmund data sets are subject to several constrains (dictated by
their feature models, see Figure 5). It is possible that planners in
Method1, Method2, and Method3 find very few valid settings that
can improve the performance scores, thereby making insignificant
changes. As a result all methods, except XTREE, fail to optimize
the runtime, as evidenced by the results in Figure 11.

XTREE BIC CD CD+FS
Ant 20% 87% 80% 10%

Jureczko Ivy 21% 81% 70% 20%
data Jedit 19% 92% 90% 20%

Lucene 19% 86% 95% 25%
Poi 13% 79% 85% 20%

mean: 18% 85% 84% 19%

Apache 27% 5% 33% 22%
Siegmund BDBJ 7% 8% 3% 15%
data LLVM 33% 4% 36% 9%

X264 24% 12% 18% 12%
BDBC 25% 9% 16% 5%
SQL 10% 6% 10% 23%

mean: 21% 7% 19% 14%

Figure 13: Average number of features whose values are

changed by a planner.

5.2.3 Surprising Results

If a planner only ever reported conclusions that were already
known, then that planner offers little value over “just use estab-
lished wisdom”. Accordingly, we studied our results for plans that
were somewhat counter-intuitive.

Such a surprising plan can be seen in lucene. Recall the standard
advice for OO systems: build classes that are internally cohesive
with low coupling to other parts of the system [15]. We can assess
the relevance of this advice to specific projects by checking how
often a planner changes the coupling-related features:

• ca: afferent couplings = # classes using this class;

• ce: efferent couplings = # classes used by this class.

• cbm: coupling between methods = # new/redefined methods
to which all the inherited methods are coupled

• cbo: coupling between objects = a value that increases when
the methods of one class access services of another.

• ic: inheritance coupling = # parent classes which a given
class is coupled (includeing methods and variables inherited)

In many of our results with the Jureczko data, it was indeed true that
the changes proposed by XTREE lead to lower coupling. However,
the lucene results were quite different and rather surprising.

In the lucene XTREE results of Figure 12, the most frequent
change was to alter the lines of code in a class (see the tallest red
histogram in that figure on the loc, or lines of code). Looking at the
logs of our planner, we can see that XTREE’s proposed change is
to reduce the size of a class. The only way to do that, while keeping
the same functionality, is to create a network of smaller classes that
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interact to produce that functionality. That is, we would need to
increase the coupling of those classes to achieve XTREE’s plan.

In theory, increasing coupling between classes complicates and
confuses a class design. But the lucene XTREE results of Figure 12
rarely proposes changing the coupling features ca, ce, cbm, ic (in
fact, XTREE never proposes any change to ic).

The only coupling issue that XTREE usually adds to its plans
is cbo (which appears 55% of the time in Figure 12). But note
that this is object coupling measure, not class coupling. So here
XTREE is warning against, say, some factory class generating a
large community of agents, all of the same class, who co-ordinate
on some task. This is a different issue to the class redesign issue
that would be triggered by altering loc.

In summary, XTREE satisfies that criteria that, sometimes, it
produces surprising plans. At least for the lucene data set, we can
see advice that recommends increasing coupling to reduce defects.

6. THREATS TO VALIDITY
As with any empirical study, biases can affect the final results.

Therefore, any conclusions made from this work must be consid-
ered with the following issues in mind.

6.1 Learner Bias
For building the defect predictors in this study, we elected to use

Random Forest and Random Forest Regressors . We chose this
approach, based on its reputation for having the better performance
of 21 other learners for defect prediction [31]. Data mining is a
large and active field and any single study can only use a small
subset of the known classification algorithms.

That said, we have taken care to document in this paper the de-
cisions made by engineering judgement that could effect our con-
clusions. The above code used a set of variables which future work
should vary in order to test the internal validity of our conclusions:

• All our planners divide data into groups of size α =
√
N ;

• Method2 used the top β = 33% most informative features
(ranked using INFOGAIN);

• Method3 uses ω = 0.5 to find its deltas;

• XTREE considered a sibling useful if it’s score was less than
γ = 0.5 times the mean score of the current leaf.

6.2 Sampling bias
Sampling bias threatens any data mining experiment; i.e., what

matters there may not be true here. For example, the data sets used
here comes from two sources (Seigmund et al. and Jureczko et al.)
and any biases in their selection procedures threaten the validity of
these results. That said, the best we can do is define our methods
and publicize our data and code so that other researchers can try
to repeat our results and, perhaps, point out a previously unknown
bias in our analysis. Hopefully, other researchers will emulate our
methods in order to repeat, refute, or improve our results.

6.3 Evaluation Bias
Another threat to validity of this work is our use of predictors

learned on the training data to assess the impact of our planners.
This issue was discussed in detail in §2.3.

To those notes, we add a few more details. If possible, plan-
ners should be assessed via some external oracle that can accu-
rately assess new examples. For example, in search-based software
engineering, examples can be assigned objective scores via some

Rank Treatment Median IQR

1 XTREE 59 9 s

2 BIC 5 1 s

2 CD+FS -7 100 s

2 CD -9 77 s

Figure 14: Methods 1,2,3,4 applied to some ground-truth data

(in this case, the POM3 model). Values collected from 40 re-

peated runs of each method with different random seeds. Re-

sults show the efficacy of XTREE in reducing the total overall

cost in the original test data, when other planners fail to do so.

model. In this approach, a changed example can be assessed by
generating actual objective scores from the model.

The POM3 model [38], [39] is a tool for exploring management
challenges. POM3 implements the Boehm and Turner model of
agile programming [40] where teams select tasks as they appear
in the scrum backlog. POM3 can study the implications of differ-
ent ways to adjust task lists in the face of shifting priorities. The
model outputs estimated task completion rates; programmer idle
rates; and total overall cost. POM3 models requirements as a de-
pendency tree. A single requirement in the tree of a prioritization
value has a cost, along with a list of child-requirements and depen-
dencies. Before any requirement can be satisfied, its children and
dependencies must first be satisfied. POM3 simulates changing pri-
orities by making teams aware of random items in the requirements
tree at random intervals, thus forcing teams to constantly readjust
their "to do" lists. For further details on this model see [38], [39],
and [40].

Figure 14 shows results from using POM3 as an oracle to as-
sess our planning methods and their ability to reduce the project
cost. In this experiment, we generated a training and testing set
with 1000 randomly generated instances, which we passed to our
four methods. 40 times, we let those methods propose changes to
those projects. For assessment purposes, the changed projects were
then fed back to the POM3 oracle.

Using this approach, it is possible to assess the value of a plan
by measuring its effectiveness with respect to some ground truth
(in this case, the POM3 model). As shown in Figure 14, XTREE
reduces the cost by 59% thereby passing this assessment. These
results from the POM3 model further endorse our previous conclu-
sions; i.e. compared to three other methods, XTREE’s supervised
methods are best for generating plans on how to change example
projects.

7. RELATED WORK

7.1 Planning in AI
The XTREE planner is somewhat different to the logic-based

planners explored by classical AI. Those kinds of planners employ
a logical procedure [41] that seeks an ordering on operators to take
some domain state from a start state to a goal state. This classi-
cal logical approach is known to suffer from computational bottle-
necks [42]. On the other hand, tools like XTREE will scale to any
domain that can generate decision trees.

7.2 Evaluating Changes
Some organizations have the resources to run repeated trials to

assess project changes. For example, in one study, Bente et al.
reported results where the same specification was developed by
four different organizations [43]. Given those kind of resources,
it would be possible to (say) take a code base, assign it to different
teams, make these teams adopt different polices, then check in 12
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months time which teams have fewer defects than the others.
Seldom do industrial or research groups have access to the kinds

of resources needed for this kind study (evidence: in the six years
since the publication of that work, we know of only one similar
study to Bente et al.). Also, given the diversity of modern soft-
ware projects, it might be unreasonable to demand that all proposed
changes for all projects are always evaluated by something like the
Bente et al. study. Hence, this paper has used data miners to build
an oracle that can assess changed examples. The advantage of our
approach is that it required far less resources to assess the effective-
ness of proposed changes to a project.

7.3 Search-based SE
Another way way to propose changes to software artifacts is via

some search-based method [44,45]. Such SBSE methods are evolu-
tionary programs that make extensive changes to some initial sam-
ple of project data (perhaps 100s to 100,000s of mutations). Each of
these mutations is reassessed using some domain model. Examples
of these algorithms include GALE, NSGA-II, NSGA-III, SPEA2,
IBEA, particle swarm optimization, MOEA/D, etc. [21, 46–51].

One problem with these SBSE methods is that they can make
extensive mutations to the data they are exploring. In the language
of §2.3, these methods may not be trust-increasing since those al-
gorithms make no attempt to prevent new examples from mutat-
ing away from the kinds of data used to commission the model (in
which case, we would start doubting the model’s output).

Another issue with standard search-based SE methods is that
they require ready access to trustworthy domain model that can
offer an assessment of newly generated examples. While some do-
mains have such models (e.g. see the COCOMO effort estimation
model used in the last section), our experience is that many others
do not. For example, consider software defect prediction and all the
intricate issues that may lead to defects in a product. A model that
includes all those potential issues would be very large and com-
plex. Further, the empirical data required to validate any/all parts
of that model can be hard to find.

What we would recommend is a two-pronged policy. In domains
with ready access to trusted models, we recommend the kinds of
tools that are widely used in the search-based software engineering
community such as GALE, NSGA-II, NSGA-III, SPEA2, IBEA,
particle swarm optimization, MOEA/D, etc. [21, 46–51]. Other-
wise, we recommend tools like XTREE.

8. CONCLUSIONS
The planner proposed in this paper proposes changes to software

project details in order to improve the expected value of the per-
formance scores of that part of the project. To evaluate these plan-
ners, data miners can be used to build oracles to assess planners.
Such planners should be trust-increasing; i.e. they should propose
changes that generate changed examples that are closer to the train-
ing data of the data miner. One caveat here is that the evaluations
we can make on the planner are only as good as the predictive per-
formance of the data miner. Hence, if domain data does not sup-
port satisfactory predictors, then planning in that domain cannot be
evaluated.

Four planners were assessed here for the tasks of reducing de-
fects and runtimes. Three of the methods come from our prior
publications [4, 5], and the conclusion of this paper is that a novel
fourth method clearly out-performs the other three (measured in
terms of effectiveness, succinctness, and surprise). We conjecture
that XTREE worked better than the rest since:

• It uses a supervised method to divide the data and;

• When planning how to move examples to better classes, it is
best to reflect over differences between those classes.

9. FUTURE WORK
Future work in this area could explore numerous questions. For

example, XTREE, as used here, sought improvements in a one goal
(the class variable). Does XTREE work for multi-goal reasoning?

Also, the XTREE algorithm seems quite general to any data of
table with rows containing weighted classes (so we can distinguish
“bad” rows from “better” ones). Does XTREE works on domains
(other than the defect/runtime data explored here)?

As an example of a domain that might benefit from XTREE,
recent results raise doubts about the value of changing code to re-
move “bad smells” [52]. Can XTREE be used as a “bad smell”
detector to select the subset of possible refactorings that have the
most potential benefit?

As to scalability, XTREE is a post-processor to a decision tree
algorithm. Hence, in theory, XTREE works on domain where data
miners can generate decision trees. Given the current state of the
art in Big Data, can XTREE be applied to very large data sets?

We discussed above in §2.2 the general conclusions of Passos,
Jørgensen et.al [6, 7]; i.e. software developers are reluctant to sur-
render their old biases in the face of new data. Accordingly, it must
be asked if the mental resistance of developers will prevent them
applying XTREE’s automatically generated recommendations of
tools? Note this this issue is not just a concern for XTREE, but
also for any automatic tool proposing refactorings.

There are many more methods for generating plans and no one
paper can survey them all. For example, this paper has not explored
variations to the α, β, and γ parameters that controlled XTREE.
Would we get better results if we varied those parameters?

That said, the goal of this paper was not to claim that (e.g.)
XTREE is some absolute optimal algorithm. Rather, it is was to
offer a baseline result (with XTREE) and an evaluation strategy
that can assess if alternate methods are better than XTREE. The
authors of this paper would actively support other teams explor-
ing this method (with or without using our current code base). So
our last questions is this: will other researchers try to repeat and/or
improve (or even refute) our results? Perhaps.
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