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Abstract

Military Operations Research makes extensive use
of large complex simulation models. These simu-
lation models are often black-boxes; 1.e. they are
opaque and incomprehensible. A considerable ef-
fort is involved in commissioning a new model into
service. We characterise this activity as the con-
struction of gray-bor approximate causal models
of the functional behaviour of black-box simulation
software.

While the imported black-box models are typ-
ically numeric, determinate and precise, their as-
sociated gray-box models are under-specified, in-
determinant and vague. Here we explore the use
of the HT4 abductive inference engine to support
the process of using ad-hoc experience with black-
box models to construct and maintain partially-
specified gray-box models.

1 Introduction

Military Operations Research (OR) makes exten-
sive use of large complex simulation models. These
can be the result of many person-years of develop-
ment and incorporate modules obtained from ex-
ternal sources. It is common that such a system
may be obtained from a third party. These sim-
ulation models are often black-bozes; i.e. they are
opaque and incomprehensible. A considerable ef-
fort is involved in commissioning a new model into
service. In the process, familiarity and expertise is
gained in the model. The black-box nature of these
simulation systems complicates their verification
and validation for local conditions. Customisation
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is also difficult for the same reason.

We characterise this activity as the construction
of gray-bor approximate causal models of the func-
tional behaviour of the black-box simulation soft-
ware. Such gray-box models have several advan-
tages. They can serve to document and preserve
the expertise gained in the pain of commissioning
the system. Further, such gray-box models can in-
spected, verified and validated, thus increasing our
confidence in the results obtained using the soft-
ware. Finally, such gray-box models can simplify
customisation of legacy systems.

While the imported black-box models are typ-
ically numeric, determinate and precise, their as-
sociated gray-box models are under-specified, in-
determinant and vague. Yet these gray-box mod-
els represent our best understanding of the inner-
workings of complex black-box models. Here we
explore the use of the HT4 [22, 24] abductive infer-
ence engine to support the process of using ad-hoc
experience with black-box models to construct and
maintain partially-specified gray-box models.

This paper is structured as follows. Section 2 of
this document reviews the problem of commission-
ing a model obtained from a remote site to produce
a list of requirements on a methodology for vali-
dating black-box models. Section 3 describes our
preferred abductive framework. Section 4 argues
that the requirements in section 2 can be meet by
the HT4 abductive inference engine. Section 5 dis-
cusses related work in the qualitative reasoning,
abductive, and truth maintenance literature. The
conclusion discusses further work.

Note that portions of this work have appeared
previously (see [24]).

2 Using Remote Models

The remote model commissioning problem is sum-
marised in Figure 1. Some group called TEAM-
1 derives some model M representing their in:-
tial understanding of a problem (e.g. modeling the



performance of a fighter aircraft). This model is
operationalised in some third generation language
to become M. Perhaps an attempt is made to
document M; In a manual Ms3. M is com-
monly a research prototype comprising thousands
or hundreds of thousands of lines of code. Hence
M3 is typically incomplete. My and Mgz are
then shipped to another site where a second team
(TEAM-2 ) tries to understand them. Conceptu-
ally, TEAM-2 builds M4, a model representing the
local understanding of M5 and the incomplete Ma3.
Current practice is for My to be documented in
an incomplete manner (e.g. some procedural man-
ual advising parametric sensitivity and constants
relating to the local physical and operational envi-
ronment).

TEAM-1
initial understanding:
operatlorilﬁllsed: manual:
2 Mg

local understanding

232

TEAM-2

Figure 1: Commissioning Remote Models

The effort required to use My with confidence
can be non-trivial. In our experience in the Air
Operations Division, the effective operational use
of large OR simulation codes can be time consum-
ing. This can be even more time consuming when
object code is supplied without source code or ac-
cess to the author.

In essence My is a black-boxr model that Team 2
must convert (with some support from Ms) into
a gray-bor model My4. Once validated, M4 would
be used for planning, prediction, and optimisation
studies. Note the emphasis on validation. Local
conditions may invalidate Ms. The Australian De-
fence Forces (ADF) use aircraft in configurations
that are different to how they are used overseas.
Certain decision parameters for scenario outcomes
are stored in compiled numerical matrices and are
inaccessible to TEAM-2 . For example, these pa-
rameters may (i) be based on experimental data
from tests in other climates or (ii) contain certain
tacit assumptions about aircraft operation. Prior

to relying on My, TEAM-2 would like to validate
this model under local conditions.
Therefore, our desired solution supports:

Requirement 1 (i) Validation of models; (ii)
planning and prediction using the validated model;
(iii) generating multiple options from the validated
models, from which we can chose the optimum ap-
proach.

The validation module would be particularly im-
portant. Each translation from M; to M; can in-
troduce errors. Also, even though we imply that
the members of TEAM-1 and TEAM-2 have the
same model, this may not be the case. Individuals
within a team may incorrectly believe they share
the same view of a problem. Such a validation
engine would allow individuals to check their own
model as well as settling disputes between com-
peting models; e.g. the best models have fewer
problems.

While we refer to the construction of M; and
My, these models may never be formally recorded.
For example, M4 may only ever be tacit since it is
built during the second team’s informal conversa-
tions about My and Mgz. This is a major problem
since if staff are transferred, they take their hard-
won understanding of My with them. We need to
somehow structure the development of M, such
that the experience gained in this process is not
lost. Therefore:

Requirement 2 An ideal model comprehension
tool would be a workbench within which My can
be documented.

Note that TEAM-2 may not be able to commu-
nicate openly with TEAM-1 . The company that
employs TEAM-1 may have only sold M5 and M3
as stand-alone products without any consultancy
support. Nor may TEAM-2 have full access to the
source code of M. For example, legal or contrac-
tual obligations of TEAM-1 may prevent disclosure
of portions of M3 to (say) non-US citizens. Such
portions may only be available in binary format.
Hence, M4 will be an under-specified “back of the
envelope” sort of model containing guesses about
the internal structure of M,. Therefore:

Requirement 3 The representation system of
My must be able to handle under-specified models.

Such under-specified models are indeterminant
at runtime. When competing influences act on
the same entity, but the magnitude of these influ-
ences is under-specified, then the modeling system



must be able to create one world for each possible
outcome. Note that the ability to create multiple
worlds also supports the processing of “what-if”
scenarios. This is a useful function for models built
for exploratory purposes such as M.

Assumption management will also be useful
when we try to execute the guess that is M. In-
ference over an uncertain model will generate as-
sumptions whenever we traverse some unmeasured
portion of the model. Mutually exclusive assump-
tions must be managed in separate worlds. There-
fore:

Requirement 4 A model comprehension tool
should include assumption management and mul-
tiple world reasoning.

3 Abduction

In this section, we discuss an inference procedure
called abduction. In the next section we will argue
that this procedure can satisfy the requirements of
commissioning remote models.

3.1 An Introduction to Abduction

Informally, abduction is inference to the best
explanation [30]. Given « , B, and the rule
Ry : aF B, then deduction is using the rule and its
preconditions to make a conclusion (a A Ry = 3);
induction is learning Ry after seeing numerous ex-
amples of § and «; and abduction is using the post-
condition and the rule to assume that the precon-
dition could be true (8 A R; = «) [19].

More formally, abduction is the search for as-
sumptions A4 which, when combined with some
theory T achieves some goal G without causing
some contradiction [4]. That is:

EQi: TUAEG

EQy TUAWL

While abduction can be used to generate expla-
nation engines, we believe that F@; and EQ, are
more than just a description of “inference to the
best explanation”. FEQ@; and EQs can be sum-
marised as follows: make what inferences you can
that are relevant to some goal, without causing
any contradictions. Our basic argument is that
that the proof trees used to solve F(); and EQ-
contain many of the inferences we want to make.

3.2 The HT4 Abductive Inference
Engine

In order to understand abduction in more detail,
we describe our HT4 abductive inference engine [22,
24]. To execute HT4, the user must supply a theory
T comprising a set of uniquely labeled statements
S;. For example, from Figure 2, we could say that:

s[1] = plus_plus(a,b).
s[2] = minus_minus(b,c).
etc.
Figure 2 is an under-specified qualitative

model [14]. In that figure:

e X ™ ¥ denotes that Y being UP or DOWN
could be explained by X being UP or DOWN
respectively;

¢ X = Y denotes that Y being UP or DOWN
could be explained by X being DOWN or UP
respectively.

Note that the results of this model may be un-
certain; i.e. it is indeterminate. In the case of both
A and B going UP, then we have two competing
influences of C and it is indeterminate whether C
goes UP, DOWN, or remains STEADY.
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Figure 2: 71: An indeterminate qualitative model.

The dependency graph D connecting lit-
erals in 7 is an and-or graph comprising
<< Ve Yo s & T >; ie. a set of directed
edges &£ connecting vertices V) containing invari-
ants Z. 7 is defined in the negative; i.e. =7 means
that no invariant violation has occurred (e.g. if
Z(p,—p), then we block the simultaneous belief in
a proposition and its negation). Each edge £, and
vertex Vy is labeled with the S, that generated it.

For example, returning to the theory 7 of Fig-
ure 2, let us assume that (i) each node of that fig-
ure can take the value UP, DOWN, or STEADY;
(ii) the conjunction of an UP and a DOWN can
explain a STEADY; and (iii) no change can be ex-
plained in terms of a STEADY (i.e. a STEADY
vertex has no children). With these assumptions,



we can expand Figure 2 into Figure 3. In that fig-
ure, V% vertices are denoted (e.g.) €002 while all
other vertices are V°" vertices. Note that in prac-
tice, the assumptions used to convert 7 into D are
contained in a domain-specific model-compiler.

&008
&007
xSteady/
xUp —= yUp
/ %\ dup
aup eU
N\ 7 &P
/ cUp —= gUp
bDown \L fUp
N
& 005
& 002
/P dDown\
aDown
eDown \_dStead!
\ // y
cDown— gDofvn

7

bUp fDown

Figure 3: D calculated from the 7 of Figure 2

Not shown in Figure 3 are the invariants. For a
qualitative domain, where nodes can have one of
a finite number of mutually exclusive values, the
invariants are merely all pairs of mutually exclusive
assignments; e.g.:

i(aUp, aSteady). i(aSteady, aUp).
i(aUp, aDown). i(aDown, aUp).
i(bUp, bSteady). i(bSteady, bUp).

i(bUp, bDown). i(bDown, bUp).
etc.
3.2.1 Using HT4

HT4 extracts subsets of & which are relevant to
some user-supplied TASK. Each TASK, is a
triple < ZN, OUT , BEST >. Each task comprises
some OUT puts to be reached, given some ZAN put
(OUT C V and IN C V). For the rest of this

paper we will explore the example where:

IN {aUp, bUp}
0UT = {dUp, eUp, fDown}

IN can be either be a member of the known
FACTS or a DEFAULT belief which we can as-

sume if it proves convenient to do so. Typically,

FACTS = IN U OUT. If there is more than
one way to achieve the TASK, then the BEST
operator selects the preferred way(s).

To reach a particular output OUT, € OUT,
we must find a proof tree P, using vertices P*°?
whose single leaf is OUT , and whose roots are
from ZN (denoted P C ZN). All immedi-
ate parent vertices of all V;nd € Pﬁsed must also
appear in P“**?. One parent of all Vv, € pused
must also appear in P4*°? unless V) EIN (ie. is
an acceptable root of a proof). No subset of Pﬁ“d
may contradict the FACTS; e.g. for invariants of
arity 2:

-(Vy € PU AV, € FACTS A I(Vy,V2))

For our example, the proofs are:

p(1) = {aUp, xUp, yUp, dUp}
p(2) = {aUp, cUp, gUp, dUp}
p(3) = {aUp, cUp, gUp, eUp}
p(4) = {bUp, cDown, gDown, fDown}
p(5) = {bUp, fDown}

3.2.2 Assumptions

The union of the vertices used in all proofs that
are not from the FACTS is the HT4 assumption
set Agy; i.e.

A= [ U{vy € Pt} | - FacTs
v,

The proofs in our example makes the assump-
tions:

a = {xUp, yUp, cUp, gUp, cDown, gDown}

The union of the subsets of A,; which violate Z
are the controversial assumptions Ac:

Ac = J{Ve € A AVy € At AZ(V2,Vy)}
V.

The controversial assumptions of our example
are:

ac = {cUp, gUp, cDown, gDown}

Within a proof P, the preconditions for V, €
Puse? are the transitive closure of all the parents
of Vy in that proof. The base controversial assump-
tions (Ap) are the controversial assumptions which
have no controversial assumptions in their precon-
ditions (i.e. are not downstream of any other con-
troversial assumptions). The base controversial as-
sumptions of our example are:

ab = {cUp, cDown}



3.2.3 Worlds

Maximal consistent subsets of P (i.e. maximal
with respect to size, consistent with respect to 7)
are grouped together into worlds W (W; C &).
Each world W; contains a consistent set of beliefs
that are relevant to the 7. ASK. The union of the
vertices used in the proofs of W; is denoted W4,
In terms of separating the proofs into worlds, Apg
are the crucial assumptions. We call the maximal
consistent subsets of Ap the environments ENV
(ENV; C Ap C Ac C Aui C V). The environ-

ments of our example are:

env(1l) = {cUp}
env(2) = {cDown}

The union of the proofs that do not contradict
ENV; is the world W;. In order to check for non-
contradiction, we compute the exclusions set A.
X; are the base controversial assumptions that are
inconsistent with EANV;. The exclusions of our ex-
ample are:

x(1)
x(2)

{cDown}
{cUp}

A proof P; belongs in world W; if it does not
use any member of X; (the excluded assumptions
of that world); i.e.

wi=J{Pretna =0}
P,

Note that each proof can exist in multiple
worlds. The worlds of our example are:

w(l)
w(2)

= {p(1), p(2), p(3), p(5)}
{p(1), p(4), p(5)}

Wi is shown in Figure 4 and W, is shown in
Figure 5.

xUp —= yUp
/ N dup
aup eUp
cUp —= gUp/

bUp fDown
Figure 4: W,
For any world W;, W{*“*°® are the members of

IN found in W; (W™ = W n IN).

The achievable or covered goals G in W, are

xUp —= yUp
/ N dup

aup

ﬁ?owne gDown\

fDown

bDown

Figure 5: Ws

the members of OUT found in that world
(wgevered — wused - OYT). Continuing our

example:

causes (w(1))
causes (w(2))

{aUp, bUp}
{aUp, bUp}

cover(w(1))
cover(w(2))

{dUp, eUp, fDown}
{dUp, fDown}

3.2.4 The BEST of all Possible Worlds

Note that, in our example, we have generated more
than one world and we must now decide which
world(s) we prefer. This is done using the BEST
criteria. Numerous BEST s can be found in the lit-
erature; e.g. the BEST worlds are the one which
contain:

1. the most specific proofs (i.e. largest size) [8];
2. the fewest causes [35];

3. the greatest cover [22];

4. the most number of specific concepts [32];

5. the largest subset of £ [29];

6. the largest number of covered outputs [28];

7. the most number of edges that model pro-
cesses which are familiar to the user [31];

8. the most number of edges that have been used
in prior acceptable solutions [18];

Our view is that BEST is domain specific; i.e.
we believe that there is no universally best BEST .

4 Abduction
Model Commissioning

and Remote

In this section we argue that our abductive model
can be used to satisfy the requirements of remove



model comprehension; i.e. it can support vali-
dation, planning, prediction, optimisation, infer-
ence over under-specified models using assumption
management and multiple-worlds reasoning.

4.1 Inference Over Under-Specified
Models

HT4 can execute over indeterminate/ under-
specified models. Further, if this execution gener-
ates assumptions, then these assumptions are man-

aged in mutually exclusive worlds (W).

4.2 Validation

Validation tests a model’s validity against exter-
nal semantic criteria. Given a library of known
behaviours (i.e. a set of pairs < ZN, OUT >), ab-
ductive validation uses a BEST that favours the
worlds with largest number of covered outputs (i.e.
maximise ZN N W) [28].

Note that this definition of walidation corre-
sponds to answering the following question: “can
a model of X explain known behaviour of X7”. We
have argued elsewhere that this is the definitive
test for a model [22]. Note that this is a non-naive
implementation of validation since it handles cer-
tain interesting cases. In the situation where no
current model explains all known behaviour, com-
peting theories can be assessed by the extent to
which they cover known behaviour. Mx is defi-
nitely better than My if Mx explains far more
behaviour than theory My.

As an example of validation-as-abduction,
recall that W; (see Figure 4) was gener-
ated from 7; when ZN = {aUp, bUp} and
IN = {dUp, eUp,fDown}. Note that WS*re? is
all of OUT . T1 is hence not invalidated since there
exists a set of assumptions under which the known
behaviour can be explained.

See the related work section for a discussion of
other validation approaches.

4.3 Planning

Planning is the search for a set of operators that
convert some current state into a goal state. We
can represent planning in our abductive approach
as follows:

e Represent operators as rules that convert
some state to some other state;

e Augment each operator rule with:

— a unique label 81, 83, etc. When D is
generated, each edge will now include the
name(s) of the operator(s) that gener-
ated it.

— A cost figure representing the effort re-
quired to apply this operator rule.

e Set ZN to the current state, OUT to the goal
state, and FACTS =IN UOUT.

e Set BEST pranning to favour the world(s)
with the least cost. The cost of a world is the
maximum of the “proof cost” of each member
of OUT. The “proof cost” of OUT; is the
minimum cost of the proofs that cover OUT ;.

e Run HT4. Collect and cache the generated
worlds.

e For each BEST world, collect all the names of
the operators used in the edges of that world.
These operators will be in a tree structure that
reflects the structure of the BEST worlds. Re-
port these trees as the output plans.

A related task to planning is monitoring; i.e. the
process of checking that the current plan(s) are
still possible. The worlds generated by the above
planner will contain some assumptions. As new
information comes to light, some of these assump-
tions will prove to be invalid. Delete those worlds
from the set of possible plans. The remaining plans
represent the space of possible ways to achieve the
desired goals in the current situation. If all plans
are rejected, then run HT4 again with all the avail-
able data.

4.4 Optimisation

We view optimisation as planning with a BEST
operator that favours the lower cost world(s).

4.5 Prediction

Prediction is the process of seeing what will follow
from some events ZA. This can be implemented in
HT4 by making OUT C V — ZN;i.e. find all the
non-input vertices we can reach from the inputs.
For prediction, FACT S should not be ZN UOUT
since this will be the entire dependency graph.
If the ZN is certain, then FACTS = IN (i.e.
only the inputs cannot be contradicted). This is a
non-naive implementation of prediction since mu-
tually exclusive predictions (the covered elements

of OUT) will be found in different worlds.



Note that in the special case where:
e ZN are all root vertices in D.

e FACTS = 0

e OUT =V — IN

then our abductive system will compute ATMS-
style [2] total envisionments; i.e. all possible con-
sistent worlds that are extractable from the theory.
A more efficient case is that ZA is smaller than all
the roots of the graph and some interesting sub-
set of the vertices have been identified as possible

reportable outputs (i.e. OUT C V — IN).

5 Related Work

5.1 General Abductive Reasoning

Note that this work is part of Menzies’ abductive
reasoning project. Menzies argues that abduction
provides a comprehensive picture of declarative
knowledge-based systems (KBS) inference such as
prediction, classification, explanation, quantitative
reasoning, planning, monitoring, set-covering diag-
nosis, consistency-based diagnosis, validation, and
verification [24]. Menzies also believes that abduc-
tion is a useful framework for intelligent decision
support systems [23], diagrammatic reasoning [27],
single-user knowledge acquisition, and multiple-
expert knowledge acquisition [25]. Further, ab-
duction could model certain interesting features of
human cognition including the situated nature of
cognition [26]. Others argue elsewhere that ab-
duction is also a framework for natural-language
processing [29], design [33], visual pattern recog-
nition [34], analogical reasoning [5], financial rea-
soning [11], machine learning [12] and case-based
reasoning [18].

5.2 Qualitative Reasoning

We are not the first researchers to argue that in-
tuitions about models can be represented in an in-
determinant, under-specified modeling framework.
The qualitative reasoning (QR) community focuses
on the processing of systems called qualitative dif-
ferential equations (QDE) which are:

e Piece-wise well-approximated by low-order
linear equations or by first-order non-linear
differential equations;

e Whose numeric values are replaced by one
of three qualitative states: up, down, or
steady [14].

Since QDEs are under-specified, they can be
written faster than their fully-specified quantita-
tive counterparts. Hence, they have been proposed
as a tool for recording intuitions. However, we do
not suggest using QR for building M4. A QDE is
still a mathematical equation and mathematics is
a poor model for causality. Ohms’s Law (R = %)
relates resistance R to current I and voltage V.
Note that changes in voltage and current do not
cause changes in resistance, even though the math-
ematical formulae suggests this is possible. Resis-
tors cannot be manufactured to a certain specifi-
cation merely by attaching wire to some rig and
altering the voltage and current over the rig. Ig-
noring the effects of temperature and high-voltage
breakdown, resistance is an invariant built into the
physics of a wire. Hidden within Ohm’s Law are
rules regarding the direction of causality between
voltage, current, and resistance. Such rules are in-
visible to a mathematical formulation.

Causality was a central concern in QR till the
mid-1980s [1] and it is a construct we wish to sup-
port in M.

. It is clear that causality plays an es-
sential role in our understanding of the
world ... to understand a situation means
to have a causal explanation of the situ-
ation [13].

Initially two qualitative ontologies were pro-
posed: DeKleer & Brown’s 1984 CONFLUENCES sys-
tem [3] and Forbus’s 1984 qualitative process the-
ory (QPT) [6]. Later work in 1986 recognised that
both these systems processed QDEs and a special
theorem prover, QSIM, was written by Kuipers es-
pecially for QDEs [16]. Compilers were written
to covert QPT models into QSIM. Note that the
evolution of QR worked down from complex repre-
sentations (QPT to QSIM to simpler graph-theoretic
approach). Kuipers himself now believes that un-
derlying QSIM was a more basic inference process:
Mackworth’s arc consistency algorithm [17, 21]
which is based around a simple graph-theoretic
framework (though Mackworth’s work can be ex-
pressed in a logic framework [20]). Note the evolu-
tion of the QR work from complex representations
(e.g. QPT) to simpler graph-theoretic approaches.

After an inclusive public debate between public
debate in 1986 between the CONFLUENCES approach
and a rival theory [15], the term “causality” was
avoided by many QR researchers. Forbus’s 1992
retrospective on causality and the 1980s QR re-
search is primarily negative:



In terms of violating human intu-
itions, each system of qualitative physics
fails in some way to handle causality
properly. Like (QPT) theory, deKleer and
Brown’s CONFLUENCES theory... fails to dis-
tinguish between equations representing
causal versus non-causal laws. Kuipers
QSIM contains no account of causality at

all [7].

In summary, the 1980s experiment with using
QDEs to model causal intuitions failed. We pre-
fer our directed-graph approach since this at least
gives us a strong sense of inference direction.

5.3 Truth-Maintenance

Here we have explored a graph-theoretic frame-
work for mon-monotonic logic. An alternative
approach is the logic-based approach pioneered
by DeKleer’s assumption-based truth maintenance
system [2]). In his ATMS framework, an inference en-
gine passes justifications to a database which, as a
side-effect, would incrementally modify sets of con-
sistent literals storing the root assumptions of dif-
ferent worlds. Forbus & DeKleer proposed this as
a general inference procedure for knowledge-based
problem solvers [7]. We have a similar intuition.
However, unlike the ATMS, Menzies does not divide
the inference process between an inference engine
and an ATMS database. Rather, Menzies argues that
a thorough declarative reading of common KBS
can be mapped into the world-generation process
described in section 3.

In later work, DeKleer linked his approach with
Reiter’s default logic [36]. An extension E of a
default theory is a set of literals from the the-
ory which do not violate a set of invariants (called
the justifications). All formulae whose precondi-
tions (called prerequisites) are satisfied by F and
whose invariants are consistent with F are also in
E. An HT4 world differs from a default logic exten-
sion in that the latter is closed under deduction
and contains all literals that are consistent with E.
HT4’s worlds only contain relevant literals; i.e. only
the literals that are on proofs leading to known
outputs. HT4 regards full extension generation as
wasted computation.

At its core, the ATMS builds the dependency net-
work between literals in a knowledge base and ex-
plores this network. Invariant knowledge is main-
tained such that mutually incompatible subsets of
this dependency network are avoided. Such a rep-
resentation can be used for validation. Thus de-
pendency network can be used to determine inputs

that will exercise all branches of the knowledge
base. This is the core of the validation systems
by Ginsberg [9] and Zlatereva [37]. However, note
that once an input suite is inferred, an expert still
has to decide what are the appropriate outputs for
those inputs. In the case of vague models (where
there is no definitive oracle), the correct outputs
are unknown. The remove model comprehension
problem is a model construction activity and the
constructed model is less a picture of a domain
than a device for exploring that domain. Asking a
member of TEAM-2 for the correct output across
an uncertain knowledge base that is being built to
explore an area of uncertainty seems, in our view,
inappropriate.

We note that HT4 has much in common with
the Ginsberg/Zlatereva approaches. All these sys-
tems are based on a TMS variant. More pre-
cisely, all these systems use some style of non-
monotonic logic. We prefer our approach since we
believe that our graph-theoretic approach is a more
minimal framework than the logic-based style of
Ginsberg and Zlatereva. Initially, we found that
logic-based approaches to TMS were very compli-
cated. After mapping the TMS process down to
a graph-theoretic process, we found the TMS pro-
cess more approachable and simpler to understand.
HT4 could be used in a Ginsberg/Zlatereva style. If
we use HT4 to generate all possible worlds, then the
roots of those worlds will be test suite inputs that
will exercise all branches of the KB. We hesitate
to suggest this as standard practice, however, since
the generation of all worlds is even slower than HT4
usual practice of generating worlds for the relevant
literals (see the discussion of complexity in [22]).

6 Conclusion

There is a pressing need for some methodology to
structure the creation and recording of the under-
standing of remote models; i.e. the generation of
My. In terms of the computational requirements
of My, an appropriate modeling language must
support:

e Validation;

e Planning;

¢ Prediction;

¢ Optimisation;

e Inference over under-specified models;

e Assumption management and multiple-worlds
reasoning.



In this paper, we have argued that abduction is a
promising approach since it satisfies these criteria.

We have also noted similarities with of the re-
mote model commissioning problem to the QR and
TMS literature. While both the QR and TMS lit-
erature supply us with insights into our problem,
we find the TMS literature more relevant than QR.

Potentially fruitful avenues to explore include:

o A proof-of-concept study in which a gray-box

model is built using our abductive framework
from a readily-available dynamic simulation
black-box computer game. The advantage of
using such a game is that, unlike OR mod-
els, 1t is small enough to explain in a paper.
Furthermore, the game would be available to
other researchers.

Situation awareness: When faced with a novel
domain, people learn models. There are many
styles of learning. We conjecture that people
learn models to the depth required for some
particular purpose. The resulting models are
hence approximate. One way to characterise
our current proposal is the construction of ap-
proximate models gained through incomplete
experience of the entity being modeled. We
speculate that this represents a form of situa-
tion awareness [10].
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